1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 /* 29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 30 * Copyright (c) 2014, 2015 by Delphix. All rights reserved. 31 */ 32 33 /* 34 * VM - Hardware Address Translation management for i386 and amd64 35 * 36 * Implementation of the interfaces described in <common/vm/hat.h> 37 * 38 * Nearly all the details of how the hardware is managed should not be 39 * visible outside this layer except for misc. machine specific functions 40 * that work in conjunction with this code. 41 * 42 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 43 */ 44 45 #include <sys/machparam.h> 46 #include <sys/machsystm.h> 47 #include <sys/mman.h> 48 #include <sys/types.h> 49 #include <sys/systm.h> 50 #include <sys/cpuvar.h> 51 #include <sys/thread.h> 52 #include <sys/proc.h> 53 #include <sys/cpu.h> 54 #include <sys/kmem.h> 55 #include <sys/disp.h> 56 #include <sys/shm.h> 57 #include <sys/sysmacros.h> 58 #include <sys/machparam.h> 59 #include <sys/vmem.h> 60 #include <sys/vmsystm.h> 61 #include <sys/promif.h> 62 #include <sys/var.h> 63 #include <sys/x86_archext.h> 64 #include <sys/atomic.h> 65 #include <sys/bitmap.h> 66 #include <sys/controlregs.h> 67 #include <sys/bootconf.h> 68 #include <sys/bootsvcs.h> 69 #include <sys/bootinfo.h> 70 #include <sys/archsystm.h> 71 72 #include <vm/seg_kmem.h> 73 #include <vm/hat_i86.h> 74 #include <vm/as.h> 75 #include <vm/seg.h> 76 #include <vm/page.h> 77 #include <vm/seg_kp.h> 78 #include <vm/seg_kpm.h> 79 #include <vm/vm_dep.h> 80 #ifdef __xpv 81 #include <sys/hypervisor.h> 82 #endif 83 #include <vm/kboot_mmu.h> 84 #include <vm/seg_spt.h> 85 86 #include <sys/cmn_err.h> 87 88 /* 89 * Basic parameters for hat operation. 90 */ 91 struct hat_mmu_info mmu; 92 93 /* 94 * The page that is the kernel's top level pagetable. 95 * 96 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 97 * on this 4K page for its top level page table. The remaining groups of 98 * 4 entries are used for per processor copies of user VLP pagetables for 99 * running threads. See hat_switch() and reload_pae32() for details. 100 * 101 * vlp_page[0..3] - level==2 PTEs for kernel HAT 102 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0 103 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1 104 * etc... 105 */ 106 static x86pte_t *vlp_page; 107 108 /* 109 * forward declaration of internal utility routines 110 */ 111 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 112 x86pte_t new); 113 114 /* 115 * The kernel address space exists in all HATs. To implement this the 116 * kernel reserves a fixed number of entries in the topmost level(s) of page 117 * tables. The values are setup during startup and then copied to every user 118 * hat created by hat_alloc(). This means that kernelbase must be: 119 * 120 * 4Meg aligned for 32 bit kernels 121 * 512Gig aligned for x86_64 64 bit kernel 122 * 123 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 124 * to each user hat. 125 */ 126 typedef struct hat_kernel_range { 127 level_t hkr_level; 128 uintptr_t hkr_start_va; 129 uintptr_t hkr_end_va; /* zero means to end of memory */ 130 } hat_kernel_range_t; 131 #define NUM_KERNEL_RANGE 2 132 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 133 static int num_kernel_ranges; 134 135 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 136 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 137 138 /* 139 * enable_1gpg: controls 1g page support for user applications. 140 * By default, 1g pages are exported to user applications. enable_1gpg can 141 * be set to 0 to not export. 142 */ 143 int enable_1gpg = 1; 144 145 /* 146 * AMD shanghai processors provide better management of 1gb ptes in its tlb. 147 * By default, 1g page support will be disabled for pre-shanghai AMD 148 * processors that don't have optimal tlb support for the 1g page size. 149 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal 150 * processors. 151 */ 152 int chk_optimal_1gtlb = 1; 153 154 155 #ifdef DEBUG 156 uint_t map1gcnt; 157 #endif 158 159 160 /* 161 * A cpuset for all cpus. This is used for kernel address cross calls, since 162 * the kernel addresses apply to all cpus. 163 */ 164 cpuset_t khat_cpuset; 165 166 /* 167 * management stuff for hat structures 168 */ 169 kmutex_t hat_list_lock; 170 kcondvar_t hat_list_cv; 171 kmem_cache_t *hat_cache; 172 kmem_cache_t *hat_hash_cache; 173 kmem_cache_t *vlp_hash_cache; 174 175 /* 176 * Simple statistics 177 */ 178 struct hatstats hatstat; 179 180 /* 181 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs 182 * correctly. For such hypervisors we must set PT_USER for kernel 183 * entries ourselves (normally the emulation would set PT_USER for 184 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is 185 * thus set appropriately. Note that dboot/kbm is OK, as only the full 186 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never 187 * incorrect. 188 */ 189 int pt_kern; 190 191 /* 192 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 193 */ 194 extern void atomic_orb(uchar_t *addr, uchar_t val); 195 extern void atomic_andb(uchar_t *addr, uchar_t val); 196 197 #ifndef __xpv 198 extern pfn_t memseg_get_start(struct memseg *); 199 #endif 200 201 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 202 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 203 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 204 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 205 206 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 207 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 208 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 209 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 210 211 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 212 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 213 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 214 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 215 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 216 217 /* 218 * kmem cache constructor for struct hat 219 */ 220 /*ARGSUSED*/ 221 static int 222 hati_constructor(void *buf, void *handle, int kmflags) 223 { 224 hat_t *hat = buf; 225 226 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 227 bzero(hat->hat_pages_mapped, 228 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 229 hat->hat_ism_pgcnt = 0; 230 hat->hat_stats = 0; 231 hat->hat_flags = 0; 232 CPUSET_ZERO(hat->hat_cpus); 233 hat->hat_htable = NULL; 234 hat->hat_ht_hash = NULL; 235 return (0); 236 } 237 238 /* 239 * Allocate a hat structure for as. We also create the top level 240 * htable and initialize it to contain the kernel hat entries. 241 */ 242 hat_t * 243 hat_alloc(struct as *as) 244 { 245 hat_t *hat; 246 htable_t *ht; /* top level htable */ 247 uint_t use_vlp; 248 uint_t r; 249 hat_kernel_range_t *rp; 250 uintptr_t va; 251 uintptr_t eva; 252 uint_t start; 253 uint_t cnt; 254 htable_t *src; 255 256 /* 257 * Once we start creating user process HATs we can enable 258 * the htable_steal() code. 259 */ 260 if (can_steal_post_boot == 0) 261 can_steal_post_boot = 1; 262 263 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 264 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 265 hat->hat_as = as; 266 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 267 ASSERT(hat->hat_flags == 0); 268 269 #if defined(__xpv) 270 /* 271 * No VLP stuff on the hypervisor due to the 64-bit split top level 272 * page tables. On 32-bit it's not needed as the hypervisor takes 273 * care of copying the top level PTEs to a below 4Gig page. 274 */ 275 use_vlp = 0; 276 #else /* __xpv */ 277 /* 32 bit processes uses a VLP style hat when running with PAE */ 278 #if defined(__amd64) 279 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 280 #elif defined(__i386) 281 use_vlp = mmu.pae_hat; 282 #endif 283 #endif /* __xpv */ 284 if (use_vlp) { 285 hat->hat_flags = HAT_VLP; 286 bzero(hat->hat_vlp_ptes, VLP_SIZE); 287 } 288 289 /* 290 * Allocate the htable hash 291 */ 292 if ((hat->hat_flags & HAT_VLP)) { 293 hat->hat_num_hash = mmu.vlp_hash_cnt; 294 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 295 } else { 296 hat->hat_num_hash = mmu.hash_cnt; 297 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 298 } 299 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 300 301 /* 302 * Initialize Kernel HAT entries at the top of the top level page 303 * tables for the new hat. 304 */ 305 hat->hat_htable = NULL; 306 hat->hat_ht_cached = NULL; 307 XPV_DISALLOW_MIGRATE(); 308 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 309 hat->hat_htable = ht; 310 311 #if defined(__amd64) 312 if (hat->hat_flags & HAT_VLP) 313 goto init_done; 314 #endif 315 316 for (r = 0; r < num_kernel_ranges; ++r) { 317 rp = &kernel_ranges[r]; 318 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 319 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 320 321 if (rp->hkr_level == TOP_LEVEL(hat)) 322 ht = hat->hat_htable; 323 else 324 ht = htable_create(hat, va, rp->hkr_level, 325 NULL); 326 327 start = htable_va2entry(va, ht); 328 cnt = HTABLE_NUM_PTES(ht) - start; 329 eva = va + 330 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 331 if (rp->hkr_end_va != 0 && 332 (eva > rp->hkr_end_va || eva == 0)) 333 cnt = htable_va2entry(rp->hkr_end_va, ht) - 334 start; 335 336 #if defined(__i386) && !defined(__xpv) 337 if (ht->ht_flags & HTABLE_VLP) { 338 bcopy(&vlp_page[start], 339 &hat->hat_vlp_ptes[start], 340 cnt * sizeof (x86pte_t)); 341 continue; 342 } 343 #endif 344 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 345 ASSERT(src != NULL); 346 x86pte_copy(src, ht, start, cnt); 347 htable_release(src); 348 } 349 } 350 351 init_done: 352 353 #if defined(__xpv) 354 /* 355 * Pin top level page tables after initializing them 356 */ 357 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 358 #if defined(__amd64) 359 xen_pin(hat->hat_user_ptable, mmu.max_level); 360 #endif 361 #endif 362 XPV_ALLOW_MIGRATE(); 363 364 /* 365 * Put it at the start of the global list of all hats (used by stealing) 366 * 367 * kas.a_hat is not in the list but is instead used to find the 368 * first and last items in the list. 369 * 370 * - kas.a_hat->hat_next points to the start of the user hats. 371 * The list ends where hat->hat_next == NULL 372 * 373 * - kas.a_hat->hat_prev points to the last of the user hats. 374 * The list begins where hat->hat_prev == NULL 375 */ 376 mutex_enter(&hat_list_lock); 377 hat->hat_prev = NULL; 378 hat->hat_next = kas.a_hat->hat_next; 379 if (hat->hat_next) 380 hat->hat_next->hat_prev = hat; 381 else 382 kas.a_hat->hat_prev = hat; 383 kas.a_hat->hat_next = hat; 384 mutex_exit(&hat_list_lock); 385 386 return (hat); 387 } 388 389 /* 390 * process has finished executing but as has not been cleaned up yet. 391 */ 392 /*ARGSUSED*/ 393 void 394 hat_free_start(hat_t *hat) 395 { 396 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 397 398 /* 399 * If the hat is currently a stealing victim, wait for the stealing 400 * to finish. Once we mark it as HAT_FREEING, htable_steal() 401 * won't look at its pagetables anymore. 402 */ 403 mutex_enter(&hat_list_lock); 404 while (hat->hat_flags & HAT_VICTIM) 405 cv_wait(&hat_list_cv, &hat_list_lock); 406 hat->hat_flags |= HAT_FREEING; 407 mutex_exit(&hat_list_lock); 408 } 409 410 /* 411 * An address space is being destroyed, so we destroy the associated hat. 412 */ 413 void 414 hat_free_end(hat_t *hat) 415 { 416 kmem_cache_t *cache; 417 418 ASSERT(hat->hat_flags & HAT_FREEING); 419 420 /* 421 * must not be running on the given hat 422 */ 423 ASSERT(CPU->cpu_current_hat != hat); 424 425 /* 426 * Remove it from the list of HATs 427 */ 428 mutex_enter(&hat_list_lock); 429 if (hat->hat_prev) 430 hat->hat_prev->hat_next = hat->hat_next; 431 else 432 kas.a_hat->hat_next = hat->hat_next; 433 if (hat->hat_next) 434 hat->hat_next->hat_prev = hat->hat_prev; 435 else 436 kas.a_hat->hat_prev = hat->hat_prev; 437 mutex_exit(&hat_list_lock); 438 hat->hat_next = hat->hat_prev = NULL; 439 440 #if defined(__xpv) 441 /* 442 * On the hypervisor, unpin top level page table(s) 443 */ 444 xen_unpin(hat->hat_htable->ht_pfn); 445 #if defined(__amd64) 446 xen_unpin(hat->hat_user_ptable); 447 #endif 448 #endif 449 450 /* 451 * Make a pass through the htables freeing them all up. 452 */ 453 htable_purge_hat(hat); 454 455 /* 456 * Decide which kmem cache the hash table came from, then free it. 457 */ 458 if (hat->hat_flags & HAT_VLP) 459 cache = vlp_hash_cache; 460 else 461 cache = hat_hash_cache; 462 kmem_cache_free(cache, hat->hat_ht_hash); 463 hat->hat_ht_hash = NULL; 464 465 hat->hat_flags = 0; 466 kmem_cache_free(hat_cache, hat); 467 } 468 469 /* 470 * round kernelbase down to a supported value to use for _userlimit 471 * 472 * userlimit must be aligned down to an entry in the top level htable. 473 * The one exception is for 32 bit HAT's running PAE. 474 */ 475 uintptr_t 476 hat_kernelbase(uintptr_t va) 477 { 478 #if defined(__i386) 479 va &= LEVEL_MASK(1); 480 #endif 481 if (IN_VA_HOLE(va)) 482 panic("_userlimit %p will fall in VA hole\n", (void *)va); 483 return (va); 484 } 485 486 /* 487 * 488 */ 489 static void 490 set_max_page_level() 491 { 492 level_t lvl; 493 494 if (!kbm_largepage_support) { 495 lvl = 0; 496 } else { 497 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) { 498 lvl = 2; 499 if (chk_optimal_1gtlb && 500 cpuid_opteron_erratum(CPU, 6671130)) { 501 lvl = 1; 502 } 503 if (plat_mnode_xcheck(LEVEL_SIZE(2) >> 504 LEVEL_SHIFT(0))) { 505 lvl = 1; 506 } 507 } else { 508 lvl = 1; 509 } 510 } 511 mmu.max_page_level = lvl; 512 513 if ((lvl == 2) && (enable_1gpg == 0)) 514 mmu.umax_page_level = 1; 515 else 516 mmu.umax_page_level = lvl; 517 } 518 519 /* 520 * Initialize hat data structures based on processor MMU information. 521 */ 522 void 523 mmu_init(void) 524 { 525 uint_t max_htables; 526 uint_t pa_bits; 527 uint_t va_bits; 528 int i; 529 530 /* 531 * If CPU enabled the page table global bit, use it for the kernel 532 * This is bit 7 in CR4 (PGE - Page Global Enable). 533 */ 534 if (is_x86_feature(x86_featureset, X86FSET_PGE) && 535 (getcr4() & CR4_PGE) != 0) 536 mmu.pt_global = PT_GLOBAL; 537 538 /* 539 * Detect NX and PAE usage. 540 */ 541 mmu.pae_hat = kbm_pae_support; 542 if (kbm_nx_support) 543 mmu.pt_nx = PT_NX; 544 else 545 mmu.pt_nx = 0; 546 547 /* 548 * Use CPU info to set various MMU parameters 549 */ 550 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 551 552 if (va_bits < sizeof (void *) * NBBY) { 553 mmu.hole_start = (1ul << (va_bits - 1)); 554 mmu.hole_end = 0ul - mmu.hole_start - 1; 555 } else { 556 mmu.hole_end = 0; 557 mmu.hole_start = mmu.hole_end - 1; 558 } 559 #if defined(OPTERON_ERRATUM_121) 560 /* 561 * If erratum 121 has already been detected at this time, hole_start 562 * contains the value to be subtracted from mmu.hole_start. 563 */ 564 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 565 hole_start = mmu.hole_start - hole_start; 566 #else 567 hole_start = mmu.hole_start; 568 #endif 569 hole_end = mmu.hole_end; 570 571 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 572 if (mmu.pae_hat == 0 && pa_bits > 32) 573 mmu.highest_pfn = PFN_4G - 1; 574 575 if (mmu.pae_hat) { 576 mmu.pte_size = 8; /* 8 byte PTEs */ 577 mmu.pte_size_shift = 3; 578 } else { 579 mmu.pte_size = 4; /* 4 byte PTEs */ 580 mmu.pte_size_shift = 2; 581 } 582 583 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE)) 584 panic("Processor does not support PAE"); 585 586 if (!is_x86_feature(x86_featureset, X86FSET_CX8)) 587 panic("Processor does not support cmpxchg8b instruction"); 588 589 #if defined(__amd64) 590 591 mmu.num_level = 4; 592 mmu.max_level = 3; 593 mmu.ptes_per_table = 512; 594 mmu.top_level_count = 512; 595 596 mmu.level_shift[0] = 12; 597 mmu.level_shift[1] = 21; 598 mmu.level_shift[2] = 30; 599 mmu.level_shift[3] = 39; 600 601 #elif defined(__i386) 602 603 if (mmu.pae_hat) { 604 mmu.num_level = 3; 605 mmu.max_level = 2; 606 mmu.ptes_per_table = 512; 607 mmu.top_level_count = 4; 608 609 mmu.level_shift[0] = 12; 610 mmu.level_shift[1] = 21; 611 mmu.level_shift[2] = 30; 612 613 } else { 614 mmu.num_level = 2; 615 mmu.max_level = 1; 616 mmu.ptes_per_table = 1024; 617 mmu.top_level_count = 1024; 618 619 mmu.level_shift[0] = 12; 620 mmu.level_shift[1] = 22; 621 } 622 623 #endif /* __i386 */ 624 625 for (i = 0; i < mmu.num_level; ++i) { 626 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 627 mmu.level_offset[i] = mmu.level_size[i] - 1; 628 mmu.level_mask[i] = ~mmu.level_offset[i]; 629 } 630 631 set_max_page_level(); 632 633 mmu_page_sizes = mmu.max_page_level + 1; 634 mmu_exported_page_sizes = mmu.umax_page_level + 1; 635 636 /* restrict legacy applications from using pagesizes 1g and above */ 637 mmu_legacy_page_sizes = 638 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; 639 640 641 for (i = 0; i <= mmu.max_page_level; ++i) { 642 mmu.pte_bits[i] = PT_VALID | pt_kern; 643 if (i > 0) 644 mmu.pte_bits[i] |= PT_PAGESIZE; 645 } 646 647 /* 648 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 649 */ 650 for (i = 1; i < mmu.num_level; ++i) 651 mmu.ptp_bits[i] = PT_PTPBITS; 652 653 #if defined(__i386) 654 mmu.ptp_bits[2] = PT_VALID; 655 #endif 656 657 /* 658 * Compute how many hash table entries to have per process for htables. 659 * We start with 1 page's worth of entries. 660 * 661 * If physical memory is small, reduce the amount need to cover it. 662 */ 663 max_htables = physmax / mmu.ptes_per_table; 664 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 665 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 666 mmu.hash_cnt >>= 1; 667 mmu.vlp_hash_cnt = mmu.hash_cnt; 668 669 #if defined(__amd64) 670 /* 671 * If running in 64 bits and physical memory is large, 672 * increase the size of the cache to cover all of memory for 673 * a 64 bit process. 674 */ 675 #define HASH_MAX_LENGTH 4 676 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 677 mmu.hash_cnt <<= 1; 678 #endif 679 } 680 681 682 /* 683 * initialize hat data structures 684 */ 685 void 686 hat_init() 687 { 688 #if defined(__i386) 689 /* 690 * _userlimit must be aligned correctly 691 */ 692 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 693 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 694 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 695 halt("hat_init(): Unable to continue"); 696 } 697 #endif 698 699 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 700 701 /* 702 * initialize kmem caches 703 */ 704 htable_init(); 705 hment_init(); 706 707 hat_cache = kmem_cache_create("hat_t", 708 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 709 NULL, 0, 0); 710 711 hat_hash_cache = kmem_cache_create("HatHash", 712 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 713 NULL, 0, 0); 714 715 /* 716 * VLP hats can use a smaller hash table size on large memroy machines 717 */ 718 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 719 vlp_hash_cache = hat_hash_cache; 720 } else { 721 vlp_hash_cache = kmem_cache_create("HatVlpHash", 722 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 723 NULL, 0, 0); 724 } 725 726 /* 727 * Set up the kernel's hat 728 */ 729 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 730 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 731 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 732 kas.a_hat->hat_as = &kas; 733 kas.a_hat->hat_flags = 0; 734 AS_LOCK_EXIT(&kas, &kas.a_lock); 735 736 CPUSET_ZERO(khat_cpuset); 737 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 738 739 /* 740 * The kernel hat's next pointer serves as the head of the hat list . 741 * The kernel hat's prev pointer tracks the last hat on the list for 742 * htable_steal() to use. 743 */ 744 kas.a_hat->hat_next = NULL; 745 kas.a_hat->hat_prev = NULL; 746 747 /* 748 * Allocate an htable hash bucket for the kernel 749 * XX64 - tune for 64 bit procs 750 */ 751 kas.a_hat->hat_num_hash = mmu.hash_cnt; 752 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 753 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 754 755 /* 756 * zero out the top level and cached htable pointers 757 */ 758 kas.a_hat->hat_ht_cached = NULL; 759 kas.a_hat->hat_htable = NULL; 760 761 /* 762 * Pre-allocate hrm_hashtab before enabling the collection of 763 * refmod statistics. Allocating on the fly would mean us 764 * running the risk of suffering recursive mutex enters or 765 * deadlocks. 766 */ 767 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 768 KM_SLEEP); 769 } 770 771 /* 772 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 773 * 774 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 775 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 776 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 777 */ 778 /*ARGSUSED*/ 779 static void 780 hat_vlp_setup(struct cpu *cpu) 781 { 782 #if defined(__amd64) && !defined(__xpv) 783 struct hat_cpu_info *hci = cpu->cpu_hat_info; 784 pfn_t pfn; 785 786 /* 787 * allocate the level==2 page table for the bottom most 788 * 512Gig of address space (this is where 32 bit apps live) 789 */ 790 ASSERT(hci != NULL); 791 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 792 793 /* 794 * Allocate a top level pagetable and copy the kernel's 795 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 796 */ 797 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 798 hci->hci_vlp_pfn = 799 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 800 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 801 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE); 802 803 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 804 ASSERT(pfn != PFN_INVALID); 805 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 806 #endif /* __amd64 && !__xpv */ 807 } 808 809 /*ARGSUSED*/ 810 static void 811 hat_vlp_teardown(cpu_t *cpu) 812 { 813 #if defined(__amd64) && !defined(__xpv) 814 struct hat_cpu_info *hci; 815 816 if ((hci = cpu->cpu_hat_info) == NULL) 817 return; 818 if (hci->hci_vlp_l2ptes) 819 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 820 if (hci->hci_vlp_l3ptes) 821 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 822 #endif 823 } 824 825 #define NEXT_HKR(r, l, s, e) { \ 826 kernel_ranges[r].hkr_level = l; \ 827 kernel_ranges[r].hkr_start_va = s; \ 828 kernel_ranges[r].hkr_end_va = e; \ 829 ++r; \ 830 } 831 832 /* 833 * Finish filling in the kernel hat. 834 * Pre fill in all top level kernel page table entries for the kernel's 835 * part of the address range. From this point on we can't use any new 836 * kernel large pages if they need PTE's at max_level 837 * 838 * create the kmap mappings. 839 */ 840 void 841 hat_init_finish(void) 842 { 843 size_t size; 844 uint_t r = 0; 845 uintptr_t va; 846 hat_kernel_range_t *rp; 847 848 849 /* 850 * We are now effectively running on the kernel hat. 851 * Clearing use_boot_reserve shuts off using the pre-allocated boot 852 * reserve for all HAT allocations. From here on, the reserves are 853 * only used when avoiding recursion in kmem_alloc(). 854 */ 855 use_boot_reserve = 0; 856 htable_adjust_reserve(); 857 858 /* 859 * User HATs are initialized with copies of all kernel mappings in 860 * higher level page tables. Ensure that those entries exist. 861 */ 862 #if defined(__amd64) 863 864 NEXT_HKR(r, 3, kernelbase, 0); 865 #if defined(__xpv) 866 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 867 #endif 868 869 #elif defined(__i386) 870 871 #if !defined(__xpv) 872 if (mmu.pae_hat) { 873 va = kernelbase; 874 if ((va & LEVEL_MASK(2)) != va) { 875 va = P2ROUNDUP(va, LEVEL_SIZE(2)); 876 NEXT_HKR(r, 1, kernelbase, va); 877 } 878 if (va != 0) 879 NEXT_HKR(r, 2, va, 0); 880 } else 881 #endif /* __xpv */ 882 NEXT_HKR(r, 1, kernelbase, 0); 883 884 #endif /* __i386 */ 885 886 num_kernel_ranges = r; 887 888 /* 889 * Create all the kernel pagetables that will have entries 890 * shared to user HATs. 891 */ 892 for (r = 0; r < num_kernel_ranges; ++r) { 893 rp = &kernel_ranges[r]; 894 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 895 va += LEVEL_SIZE(rp->hkr_level)) { 896 htable_t *ht; 897 898 if (IN_HYPERVISOR_VA(va)) 899 continue; 900 901 /* can/must skip if a page mapping already exists */ 902 if (rp->hkr_level <= mmu.max_page_level && 903 (ht = htable_getpage(kas.a_hat, va, NULL)) != 904 NULL) { 905 htable_release(ht); 906 continue; 907 } 908 909 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 910 NULL); 911 } 912 } 913 914 /* 915 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 916 * page holding the top level pagetable. We use the remainder for 917 * the "per CPU" page tables for VLP processes. 918 * Map the top level kernel pagetable into the kernel to make 919 * it easy to use bcopy access these tables. 920 */ 921 if (mmu.pae_hat) { 922 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 923 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 924 kas.a_hat->hat_htable->ht_pfn, 925 #if !defined(__xpv) 926 PROT_WRITE | 927 #endif 928 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 929 HAT_LOAD | HAT_LOAD_NOCONSIST); 930 } 931 hat_vlp_setup(CPU); 932 933 /* 934 * Create kmap (cached mappings of kernel PTEs) 935 * for 32 bit we map from segmap_start .. ekernelheap 936 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 937 */ 938 #if defined(__i386) 939 size = (uintptr_t)ekernelheap - segmap_start; 940 #elif defined(__amd64) 941 size = segmapsize; 942 #endif 943 hat_kmap_init((uintptr_t)segmap_start, size); 944 } 945 946 /* 947 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 948 * are 32 bit, so for safety we must use atomic_cas_64() to install these. 949 */ 950 #ifdef __i386 951 static void 952 reload_pae32(hat_t *hat, cpu_t *cpu) 953 { 954 x86pte_t *src; 955 x86pte_t *dest; 956 x86pte_t pte; 957 int i; 958 959 /* 960 * Load the 4 entries of the level 2 page table into this 961 * cpu's range of the vlp_page and point cr3 at them. 962 */ 963 ASSERT(mmu.pae_hat); 964 src = hat->hat_vlp_ptes; 965 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 966 for (i = 0; i < VLP_NUM_PTES; ++i) { 967 for (;;) { 968 pte = dest[i]; 969 if (pte == src[i]) 970 break; 971 if (atomic_cas_64(dest + i, pte, src[i]) != src[i]) 972 break; 973 } 974 } 975 } 976 #endif 977 978 /* 979 * Switch to a new active hat, maintaining bit masks to track active CPUs. 980 * 981 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it 982 * remains a 32-bit value. 983 */ 984 void 985 hat_switch(hat_t *hat) 986 { 987 uint64_t newcr3; 988 cpu_t *cpu = CPU; 989 hat_t *old = cpu->cpu_current_hat; 990 991 /* 992 * set up this information first, so we don't miss any cross calls 993 */ 994 if (old != NULL) { 995 if (old == hat) 996 return; 997 if (old != kas.a_hat) 998 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 999 } 1000 1001 /* 1002 * Add this CPU to the active set for this HAT. 1003 */ 1004 if (hat != kas.a_hat) { 1005 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 1006 } 1007 cpu->cpu_current_hat = hat; 1008 1009 /* 1010 * now go ahead and load cr3 1011 */ 1012 if (hat->hat_flags & HAT_VLP) { 1013 #if defined(__amd64) 1014 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1015 1016 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1017 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 1018 #elif defined(__i386) 1019 reload_pae32(hat, cpu); 1020 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 1021 (cpu->cpu_id + 1) * VLP_SIZE; 1022 #endif 1023 } else { 1024 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn); 1025 } 1026 #ifdef __xpv 1027 { 1028 struct mmuext_op t[2]; 1029 uint_t retcnt; 1030 uint_t opcnt = 1; 1031 1032 t[0].cmd = MMUEXT_NEW_BASEPTR; 1033 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1034 #if defined(__amd64) 1035 /* 1036 * There's an interesting problem here, as to what to 1037 * actually specify when switching to the kernel hat. 1038 * For now we'll reuse the kernel hat again. 1039 */ 1040 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 1041 if (hat == kas.a_hat) 1042 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1043 else 1044 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 1045 ++opcnt; 1046 #endif /* __amd64 */ 1047 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 1048 panic("HYPERVISOR_mmu_update() failed"); 1049 ASSERT(retcnt == opcnt); 1050 1051 } 1052 #else 1053 setcr3(newcr3); 1054 #endif 1055 ASSERT(cpu == CPU); 1056 } 1057 1058 /* 1059 * Utility to return a valid x86pte_t from protections, pfn, and level number 1060 */ 1061 static x86pte_t 1062 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 1063 { 1064 x86pte_t pte; 1065 uint_t cache_attr = attr & HAT_ORDER_MASK; 1066 1067 pte = MAKEPTE(pfn, level); 1068 1069 if (attr & PROT_WRITE) 1070 PTE_SET(pte, PT_WRITABLE); 1071 1072 if (attr & PROT_USER) 1073 PTE_SET(pte, PT_USER); 1074 1075 if (!(attr & PROT_EXEC)) 1076 PTE_SET(pte, mmu.pt_nx); 1077 1078 /* 1079 * Set the software bits used track ref/mod sync's and hments. 1080 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1081 */ 1082 if (flags & HAT_LOAD_NOCONSIST) 1083 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1084 else if (attr & HAT_NOSYNC) 1085 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1086 1087 /* 1088 * Set the caching attributes in the PTE. The combination 1089 * of attributes are poorly defined, so we pay attention 1090 * to them in the given order. 1091 * 1092 * The test for HAT_STRICTORDER is different because it's defined 1093 * as "0" - which was a stupid thing to do, but is too late to change! 1094 */ 1095 if (cache_attr == HAT_STRICTORDER) { 1096 PTE_SET(pte, PT_NOCACHE); 1097 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1098 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1099 /* nothing to set */; 1100 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1101 PTE_SET(pte, PT_NOCACHE); 1102 if (is_x86_feature(x86_featureset, X86FSET_PAT)) 1103 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1104 else 1105 PTE_SET(pte, PT_WRITETHRU); 1106 } else { 1107 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1108 } 1109 1110 return (pte); 1111 } 1112 1113 /* 1114 * Duplicate address translations of the parent to the child. 1115 * This function really isn't used anymore. 1116 */ 1117 /*ARGSUSED*/ 1118 int 1119 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1120 { 1121 ASSERT((uintptr_t)addr < kernelbase); 1122 ASSERT(new != kas.a_hat); 1123 ASSERT(old != kas.a_hat); 1124 return (0); 1125 } 1126 1127 /* 1128 * Allocate any hat resources required for a process being swapped in. 1129 */ 1130 /*ARGSUSED*/ 1131 void 1132 hat_swapin(hat_t *hat) 1133 { 1134 /* do nothing - we let everything fault back in */ 1135 } 1136 1137 /* 1138 * Unload all translations associated with an address space of a process 1139 * that is being swapped out. 1140 */ 1141 void 1142 hat_swapout(hat_t *hat) 1143 { 1144 uintptr_t vaddr = (uintptr_t)0; 1145 uintptr_t eaddr = _userlimit; 1146 htable_t *ht = NULL; 1147 level_t l; 1148 1149 XPV_DISALLOW_MIGRATE(); 1150 /* 1151 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1152 * seg_spt and shared pagetables can't be swapped out. 1153 * Take a look at segspt_shmswapout() - it's a big no-op. 1154 * 1155 * Instead we'll walk through all the address space and unload 1156 * any mappings which we are sure are not shared, not locked. 1157 */ 1158 ASSERT(IS_PAGEALIGNED(vaddr)); 1159 ASSERT(IS_PAGEALIGNED(eaddr)); 1160 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1161 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1162 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1163 1164 while (vaddr < eaddr) { 1165 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1166 if (ht == NULL) 1167 break; 1168 1169 ASSERT(!IN_VA_HOLE(vaddr)); 1170 1171 /* 1172 * If the page table is shared skip its entire range. 1173 */ 1174 l = ht->ht_level; 1175 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1176 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1); 1177 htable_release(ht); 1178 ht = NULL; 1179 continue; 1180 } 1181 1182 /* 1183 * If the page table has no locked entries, unload this one. 1184 */ 1185 if (ht->ht_lock_cnt == 0) 1186 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1187 HAT_UNLOAD_UNMAP); 1188 1189 /* 1190 * If we have a level 0 page table with locked entries, 1191 * skip the entire page table, otherwise skip just one entry. 1192 */ 1193 if (ht->ht_lock_cnt > 0 && l == 0) 1194 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1195 else 1196 vaddr += LEVEL_SIZE(l); 1197 } 1198 if (ht) 1199 htable_release(ht); 1200 1201 /* 1202 * We're in swapout because the system is low on memory, so 1203 * go back and flush all the htables off the cached list. 1204 */ 1205 htable_purge_hat(hat); 1206 XPV_ALLOW_MIGRATE(); 1207 } 1208 1209 /* 1210 * returns number of bytes that have valid mappings in hat. 1211 */ 1212 size_t 1213 hat_get_mapped_size(hat_t *hat) 1214 { 1215 size_t total = 0; 1216 int l; 1217 1218 for (l = 0; l <= mmu.max_page_level; l++) 1219 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1220 total += hat->hat_ism_pgcnt; 1221 1222 return (total); 1223 } 1224 1225 /* 1226 * enable/disable collection of stats for hat. 1227 */ 1228 int 1229 hat_stats_enable(hat_t *hat) 1230 { 1231 atomic_inc_32(&hat->hat_stats); 1232 return (1); 1233 } 1234 1235 void 1236 hat_stats_disable(hat_t *hat) 1237 { 1238 atomic_dec_32(&hat->hat_stats); 1239 } 1240 1241 /* 1242 * Utility to sync the ref/mod bits from a page table entry to the page_t 1243 * We must be holding the mapping list lock when this is called. 1244 */ 1245 static void 1246 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1247 { 1248 uint_t rm = 0; 1249 pgcnt_t pgcnt; 1250 1251 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1252 return; 1253 1254 if (PTE_GET(pte, PT_REF)) 1255 rm |= P_REF; 1256 1257 if (PTE_GET(pte, PT_MOD)) 1258 rm |= P_MOD; 1259 1260 if (rm == 0) 1261 return; 1262 1263 /* 1264 * sync to all constituent pages of a large page 1265 */ 1266 ASSERT(x86_hm_held(pp)); 1267 pgcnt = page_get_pagecnt(level); 1268 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1269 for (; pgcnt > 0; --pgcnt) { 1270 /* 1271 * hat_page_demote() can't decrease 1272 * pszc below this mapping size 1273 * since this large mapping existed after we 1274 * took mlist lock. 1275 */ 1276 ASSERT(pp->p_szc >= level); 1277 hat_page_setattr(pp, rm); 1278 ++pp; 1279 } 1280 } 1281 1282 /* 1283 * This the set of PTE bits for PFN, permissions and caching 1284 * that are allowed to change on a HAT_LOAD_REMAP 1285 */ 1286 #define PT_REMAP_BITS \ 1287 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1288 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1289 1290 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1291 /* 1292 * Do the low-level work to get a mapping entered into a HAT's pagetables 1293 * and in the mapping list of the associated page_t. 1294 */ 1295 static int 1296 hati_pte_map( 1297 htable_t *ht, 1298 uint_t entry, 1299 page_t *pp, 1300 x86pte_t pte, 1301 int flags, 1302 void *pte_ptr) 1303 { 1304 hat_t *hat = ht->ht_hat; 1305 x86pte_t old_pte; 1306 level_t l = ht->ht_level; 1307 hment_t *hm; 1308 uint_t is_consist; 1309 uint_t is_locked; 1310 int rv = 0; 1311 1312 /* 1313 * Is this a consistent (ie. need mapping list lock) mapping? 1314 */ 1315 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1316 1317 /* 1318 * Track locked mapping count in the htable. Do this first, 1319 * as we track locking even if there already is a mapping present. 1320 */ 1321 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat; 1322 if (is_locked) 1323 HTABLE_LOCK_INC(ht); 1324 1325 /* 1326 * Acquire the page's mapping list lock and get an hment to use. 1327 * Note that hment_prepare() might return NULL. 1328 */ 1329 if (is_consist) { 1330 x86_hm_enter(pp); 1331 hm = hment_prepare(ht, entry, pp); 1332 } 1333 1334 /* 1335 * Set the new pte, retrieving the old one at the same time. 1336 */ 1337 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1338 1339 /* 1340 * Did we get a large page / page table collision? 1341 */ 1342 if (old_pte == LPAGE_ERROR) { 1343 if (is_locked) 1344 HTABLE_LOCK_DEC(ht); 1345 rv = -1; 1346 goto done; 1347 } 1348 1349 /* 1350 * If the mapping didn't change there is nothing more to do. 1351 */ 1352 if (PTE_EQUIV(pte, old_pte)) 1353 goto done; 1354 1355 /* 1356 * Install a new mapping in the page's mapping list 1357 */ 1358 if (!PTE_ISVALID(old_pte)) { 1359 if (is_consist) { 1360 hment_assign(ht, entry, pp, hm); 1361 x86_hm_exit(pp); 1362 } else { 1363 ASSERT(flags & HAT_LOAD_NOCONSIST); 1364 } 1365 #if defined(__amd64) 1366 if (ht->ht_flags & HTABLE_VLP) { 1367 cpu_t *cpu = CPU; 1368 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1369 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1370 } 1371 #endif 1372 HTABLE_INC(ht->ht_valid_cnt); 1373 PGCNT_INC(hat, l); 1374 return (rv); 1375 } 1376 1377 /* 1378 * Remap's are more complicated: 1379 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1380 * We also require that NOCONSIST be specified. 1381 * - Otherwise only permission or caching bits may change. 1382 */ 1383 if (!PTE_ISPAGE(old_pte, l)) 1384 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1385 1386 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1387 REMAPASSERT(flags & HAT_LOAD_REMAP); 1388 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1389 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1390 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1391 pf_is_memory(PTE2PFN(pte, l))); 1392 REMAPASSERT(!is_consist); 1393 } 1394 1395 /* 1396 * We only let remaps change the certain bits in the PTE. 1397 */ 1398 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1399 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1400 old_pte, pte); 1401 1402 /* 1403 * We don't create any mapping list entries on a remap, so release 1404 * any allocated hment after we drop the mapping list lock. 1405 */ 1406 done: 1407 if (is_consist) { 1408 x86_hm_exit(pp); 1409 if (hm != NULL) 1410 hment_free(hm); 1411 } 1412 return (rv); 1413 } 1414 1415 /* 1416 * Internal routine to load a single page table entry. This only fails if 1417 * we attempt to overwrite a page table link with a large page. 1418 */ 1419 static int 1420 hati_load_common( 1421 hat_t *hat, 1422 uintptr_t va, 1423 page_t *pp, 1424 uint_t attr, 1425 uint_t flags, 1426 level_t level, 1427 pfn_t pfn) 1428 { 1429 htable_t *ht; 1430 uint_t entry; 1431 x86pte_t pte; 1432 int rv = 0; 1433 1434 /* 1435 * The number 16 is arbitrary and here to catch a recursion problem 1436 * early before we blow out the kernel stack. 1437 */ 1438 ++curthread->t_hatdepth; 1439 ASSERT(curthread->t_hatdepth < 16); 1440 1441 ASSERT(hat == kas.a_hat || 1442 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1443 1444 if (flags & HAT_LOAD_SHARE) 1445 hat->hat_flags |= HAT_SHARED; 1446 1447 /* 1448 * Find the page table that maps this page if it already exists. 1449 */ 1450 ht = htable_lookup(hat, va, level); 1451 1452 /* 1453 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1454 */ 1455 if (pp == NULL) 1456 flags |= HAT_LOAD_NOCONSIST; 1457 1458 if (ht == NULL) { 1459 ht = htable_create(hat, va, level, NULL); 1460 ASSERT(ht != NULL); 1461 } 1462 entry = htable_va2entry(va, ht); 1463 1464 /* 1465 * a bunch of paranoid error checking 1466 */ 1467 ASSERT(ht->ht_busy > 0); 1468 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1469 panic("hati_load_common: bad htable %p, va %p", 1470 (void *)ht, (void *)va); 1471 ASSERT(ht->ht_level == level); 1472 1473 /* 1474 * construct the new PTE 1475 */ 1476 if (hat == kas.a_hat) 1477 attr &= ~PROT_USER; 1478 pte = hati_mkpte(pfn, attr, level, flags); 1479 if (hat == kas.a_hat && va >= kernelbase) 1480 PTE_SET(pte, mmu.pt_global); 1481 1482 /* 1483 * establish the mapping 1484 */ 1485 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1486 1487 /* 1488 * release the htable and any reserves 1489 */ 1490 htable_release(ht); 1491 --curthread->t_hatdepth; 1492 return (rv); 1493 } 1494 1495 /* 1496 * special case of hat_memload to deal with some kernel addrs for performance 1497 */ 1498 static void 1499 hat_kmap_load( 1500 caddr_t addr, 1501 page_t *pp, 1502 uint_t attr, 1503 uint_t flags) 1504 { 1505 uintptr_t va = (uintptr_t)addr; 1506 x86pte_t pte; 1507 pfn_t pfn = page_pptonum(pp); 1508 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1509 htable_t *ht; 1510 uint_t entry; 1511 void *pte_ptr; 1512 1513 /* 1514 * construct the requested PTE 1515 */ 1516 attr &= ~PROT_USER; 1517 attr |= HAT_STORECACHING_OK; 1518 pte = hati_mkpte(pfn, attr, 0, flags); 1519 PTE_SET(pte, mmu.pt_global); 1520 1521 /* 1522 * Figure out the pte_ptr and htable and use common code to finish up 1523 */ 1524 if (mmu.pae_hat) 1525 pte_ptr = mmu.kmap_ptes + pg_off; 1526 else 1527 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1528 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1529 LEVEL_SHIFT(1)]; 1530 entry = htable_va2entry(va, ht); 1531 ++curthread->t_hatdepth; 1532 ASSERT(curthread->t_hatdepth < 16); 1533 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1534 --curthread->t_hatdepth; 1535 } 1536 1537 /* 1538 * hat_memload() - load a translation to the given page struct 1539 * 1540 * Flags for hat_memload/hat_devload/hat_*attr. 1541 * 1542 * HAT_LOAD Default flags to load a translation to the page. 1543 * 1544 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1545 * and hat_devload(). 1546 * 1547 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1548 * sets PT_NOCONSIST 1549 * 1550 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1551 * that map some user pages (not kas) is shared by more 1552 * than one process (eg. ISM). 1553 * 1554 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1555 * 1556 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1557 * point, it's setting up mapping to allocate internal 1558 * hat layer data structures. This flag forces hat layer 1559 * to tap its reserves in order to prevent infinite 1560 * recursion. 1561 * 1562 * The following is a protection attribute (like PROT_READ, etc.) 1563 * 1564 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1565 * are never cleared. 1566 * 1567 * Installing new valid PTE's and creation of the mapping list 1568 * entry are controlled under the same lock. It's derived from the 1569 * page_t being mapped. 1570 */ 1571 static uint_t supported_memload_flags = 1572 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1573 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1574 1575 void 1576 hat_memload( 1577 hat_t *hat, 1578 caddr_t addr, 1579 page_t *pp, 1580 uint_t attr, 1581 uint_t flags) 1582 { 1583 uintptr_t va = (uintptr_t)addr; 1584 level_t level = 0; 1585 pfn_t pfn = page_pptonum(pp); 1586 1587 XPV_DISALLOW_MIGRATE(); 1588 ASSERT(IS_PAGEALIGNED(va)); 1589 ASSERT(hat == kas.a_hat || va < _userlimit); 1590 ASSERT(hat == kas.a_hat || 1591 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1592 ASSERT((flags & supported_memload_flags) == flags); 1593 1594 ASSERT(!IN_VA_HOLE(va)); 1595 ASSERT(!PP_ISFREE(pp)); 1596 1597 /* 1598 * kernel address special case for performance. 1599 */ 1600 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1601 ASSERT(hat == kas.a_hat); 1602 hat_kmap_load(addr, pp, attr, flags); 1603 XPV_ALLOW_MIGRATE(); 1604 return; 1605 } 1606 1607 /* 1608 * This is used for memory with normal caching enabled, so 1609 * always set HAT_STORECACHING_OK. 1610 */ 1611 attr |= HAT_STORECACHING_OK; 1612 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1613 panic("unexpected hati_load_common() failure"); 1614 XPV_ALLOW_MIGRATE(); 1615 } 1616 1617 /* ARGSUSED */ 1618 void 1619 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1620 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1621 { 1622 hat_memload(hat, addr, pp, attr, flags); 1623 } 1624 1625 /* 1626 * Load the given array of page structs using large pages when possible 1627 */ 1628 void 1629 hat_memload_array( 1630 hat_t *hat, 1631 caddr_t addr, 1632 size_t len, 1633 page_t **pages, 1634 uint_t attr, 1635 uint_t flags) 1636 { 1637 uintptr_t va = (uintptr_t)addr; 1638 uintptr_t eaddr = va + len; 1639 level_t level; 1640 size_t pgsize; 1641 pgcnt_t pgindx = 0; 1642 pfn_t pfn; 1643 pgcnt_t i; 1644 1645 XPV_DISALLOW_MIGRATE(); 1646 ASSERT(IS_PAGEALIGNED(va)); 1647 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1648 ASSERT(hat == kas.a_hat || 1649 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1650 ASSERT((flags & supported_memload_flags) == flags); 1651 1652 /* 1653 * memload is used for memory with full caching enabled, so 1654 * set HAT_STORECACHING_OK. 1655 */ 1656 attr |= HAT_STORECACHING_OK; 1657 1658 /* 1659 * handle all pages using largest possible pagesize 1660 */ 1661 while (va < eaddr) { 1662 /* 1663 * decide what level mapping to use (ie. pagesize) 1664 */ 1665 pfn = page_pptonum(pages[pgindx]); 1666 for (level = mmu.max_page_level; ; --level) { 1667 pgsize = LEVEL_SIZE(level); 1668 if (level == 0) 1669 break; 1670 1671 if (!IS_P2ALIGNED(va, pgsize) || 1672 (eaddr - va) < pgsize || 1673 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1674 continue; 1675 1676 /* 1677 * To use a large mapping of this size, all the 1678 * pages we are passed must be sequential subpages 1679 * of the large page. 1680 * hat_page_demote() can't change p_szc because 1681 * all pages are locked. 1682 */ 1683 if (pages[pgindx]->p_szc >= level) { 1684 for (i = 0; i < mmu_btop(pgsize); ++i) { 1685 if (pfn + i != 1686 page_pptonum(pages[pgindx + i])) 1687 break; 1688 ASSERT(pages[pgindx + i]->p_szc >= 1689 level); 1690 ASSERT(pages[pgindx] + i == 1691 pages[pgindx + i]); 1692 } 1693 if (i == mmu_btop(pgsize)) { 1694 #ifdef DEBUG 1695 if (level == 2) 1696 map1gcnt++; 1697 #endif 1698 break; 1699 } 1700 } 1701 } 1702 1703 /* 1704 * Load this page mapping. If the load fails, try a smaller 1705 * pagesize. 1706 */ 1707 ASSERT(!IN_VA_HOLE(va)); 1708 while (hati_load_common(hat, va, pages[pgindx], attr, 1709 flags, level, pfn) != 0) { 1710 if (level == 0) 1711 panic("unexpected hati_load_common() failure"); 1712 --level; 1713 pgsize = LEVEL_SIZE(level); 1714 } 1715 1716 /* 1717 * move to next page 1718 */ 1719 va += pgsize; 1720 pgindx += mmu_btop(pgsize); 1721 } 1722 XPV_ALLOW_MIGRATE(); 1723 } 1724 1725 /* ARGSUSED */ 1726 void 1727 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1728 struct page **pps, uint_t attr, uint_t flags, 1729 hat_region_cookie_t rcookie) 1730 { 1731 hat_memload_array(hat, addr, len, pps, attr, flags); 1732 } 1733 1734 /* 1735 * void hat_devload(hat, addr, len, pf, attr, flags) 1736 * load/lock the given page frame number 1737 * 1738 * Advisory ordering attributes. Apply only to device mappings. 1739 * 1740 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1741 * programmer specified. This is the default. 1742 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1743 * of reordering; store or load with store or load). 1744 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1745 * to consecutive locations (for example, turn two consecutive byte 1746 * stores into one halfword store), and it may batch individual loads 1747 * (for example, turn two consecutive byte loads into one halfword load). 1748 * This also implies re-ordering. 1749 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1750 * until another store occurs. The default is to fetch new data 1751 * on every load. This also implies merging. 1752 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1753 * the device (perhaps with other data) at a later time. The default is 1754 * to push the data right away. This also implies load caching. 1755 * 1756 * Equivalent of hat_memload(), but can be used for device memory where 1757 * there are no page_t's and we support additional flags (write merging, etc). 1758 * Note that we can have large page mappings with this interface. 1759 */ 1760 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1761 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1762 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1763 1764 void 1765 hat_devload( 1766 hat_t *hat, 1767 caddr_t addr, 1768 size_t len, 1769 pfn_t pfn, 1770 uint_t attr, 1771 int flags) 1772 { 1773 uintptr_t va = ALIGN2PAGE(addr); 1774 uintptr_t eva = va + len; 1775 level_t level; 1776 size_t pgsize; 1777 page_t *pp; 1778 int f; /* per PTE copy of flags - maybe modified */ 1779 uint_t a; /* per PTE copy of attr */ 1780 1781 XPV_DISALLOW_MIGRATE(); 1782 ASSERT(IS_PAGEALIGNED(va)); 1783 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1784 ASSERT(hat == kas.a_hat || 1785 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1786 ASSERT((flags & supported_devload_flags) == flags); 1787 1788 /* 1789 * handle all pages 1790 */ 1791 while (va < eva) { 1792 1793 /* 1794 * decide what level mapping to use (ie. pagesize) 1795 */ 1796 for (level = mmu.max_page_level; ; --level) { 1797 pgsize = LEVEL_SIZE(level); 1798 if (level == 0) 1799 break; 1800 if (IS_P2ALIGNED(va, pgsize) && 1801 (eva - va) >= pgsize && 1802 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { 1803 #ifdef DEBUG 1804 if (level == 2) 1805 map1gcnt++; 1806 #endif 1807 break; 1808 } 1809 } 1810 1811 /* 1812 * If this is just memory then allow caching (this happens 1813 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1814 * to override that. If we don't have a page_t then make sure 1815 * NOCONSIST is set. 1816 */ 1817 a = attr; 1818 f = flags; 1819 if (!pf_is_memory(pfn)) 1820 f |= HAT_LOAD_NOCONSIST; 1821 else if (!(a & HAT_PLAT_NOCACHE)) 1822 a |= HAT_STORECACHING_OK; 1823 1824 if (f & HAT_LOAD_NOCONSIST) 1825 pp = NULL; 1826 else 1827 pp = page_numtopp_nolock(pfn); 1828 1829 /* 1830 * Check to make sure we are really trying to map a valid 1831 * memory page. The caller wishing to intentionally map 1832 * free memory pages will have passed the HAT_LOAD_NOCONSIST 1833 * flag, then pp will be NULL. 1834 */ 1835 if (pp != NULL) { 1836 if (PP_ISFREE(pp)) { 1837 panic("hat_devload: loading " 1838 "a mapping to free page %p", (void *)pp); 1839 } 1840 1841 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 1842 panic("hat_devload: loading a mapping " 1843 "to an unlocked page %p", 1844 (void *)pp); 1845 } 1846 } 1847 1848 /* 1849 * load this page mapping 1850 */ 1851 ASSERT(!IN_VA_HOLE(va)); 1852 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1853 if (level == 0) 1854 panic("unexpected hati_load_common() failure"); 1855 --level; 1856 pgsize = LEVEL_SIZE(level); 1857 } 1858 1859 /* 1860 * move to next page 1861 */ 1862 va += pgsize; 1863 pfn += mmu_btop(pgsize); 1864 } 1865 XPV_ALLOW_MIGRATE(); 1866 } 1867 1868 /* 1869 * void hat_unlock(hat, addr, len) 1870 * unlock the mappings to a given range of addresses 1871 * 1872 * Locks are tracked by ht_lock_cnt in the htable. 1873 */ 1874 void 1875 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1876 { 1877 uintptr_t vaddr = (uintptr_t)addr; 1878 uintptr_t eaddr = vaddr + len; 1879 htable_t *ht = NULL; 1880 1881 /* 1882 * kernel entries are always locked, we don't track lock counts 1883 */ 1884 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1885 ASSERT(IS_PAGEALIGNED(vaddr)); 1886 ASSERT(IS_PAGEALIGNED(eaddr)); 1887 if (hat == kas.a_hat) 1888 return; 1889 if (eaddr > _userlimit) 1890 panic("hat_unlock() address out of range - above _userlimit"); 1891 1892 XPV_DISALLOW_MIGRATE(); 1893 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1894 while (vaddr < eaddr) { 1895 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1896 if (ht == NULL) 1897 break; 1898 1899 ASSERT(!IN_VA_HOLE(vaddr)); 1900 1901 if (ht->ht_lock_cnt < 1) 1902 panic("hat_unlock(): lock_cnt < 1, " 1903 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr); 1904 HTABLE_LOCK_DEC(ht); 1905 1906 vaddr += LEVEL_SIZE(ht->ht_level); 1907 } 1908 if (ht) 1909 htable_release(ht); 1910 XPV_ALLOW_MIGRATE(); 1911 } 1912 1913 /* ARGSUSED */ 1914 void 1915 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 1916 hat_region_cookie_t rcookie) 1917 { 1918 panic("No shared region support on x86"); 1919 } 1920 1921 #if !defined(__xpv) 1922 /* 1923 * Cross call service routine to demap a virtual page on 1924 * the current CPU or flush all mappings in TLB. 1925 */ 1926 /*ARGSUSED*/ 1927 static int 1928 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1929 { 1930 hat_t *hat = (hat_t *)a1; 1931 caddr_t addr = (caddr_t)a2; 1932 size_t len = (size_t)a3; 1933 1934 /* 1935 * If the target hat isn't the kernel and this CPU isn't operating 1936 * in the target hat, we can ignore the cross call. 1937 */ 1938 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1939 return (0); 1940 1941 /* 1942 * For a normal address, we flush a range of contiguous mappings 1943 */ 1944 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1945 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 1946 mmu_tlbflush_entry(addr + i); 1947 return (0); 1948 } 1949 1950 /* 1951 * Otherwise we reload cr3 to effect a complete TLB flush. 1952 * 1953 * A reload of cr3 on a VLP process also means we must also recopy in 1954 * the pte values from the struct hat 1955 */ 1956 if (hat->hat_flags & HAT_VLP) { 1957 #if defined(__amd64) 1958 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1959 1960 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1961 #elif defined(__i386) 1962 reload_pae32(hat, CPU); 1963 #endif 1964 } 1965 reload_cr3(); 1966 return (0); 1967 } 1968 1969 /* 1970 * Flush all TLB entries, including global (ie. kernel) ones. 1971 */ 1972 static void 1973 flush_all_tlb_entries(void) 1974 { 1975 ulong_t cr4 = getcr4(); 1976 1977 if (cr4 & CR4_PGE) { 1978 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1979 setcr4(cr4); 1980 1981 /* 1982 * 32 bit PAE also needs to always reload_cr3() 1983 */ 1984 if (mmu.max_level == 2) 1985 reload_cr3(); 1986 } else { 1987 reload_cr3(); 1988 } 1989 } 1990 1991 #define TLB_CPU_HALTED (01ul) 1992 #define TLB_INVAL_ALL (02ul) 1993 #define CAS_TLB_INFO(cpu, old, new) \ 1994 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1995 1996 /* 1997 * Record that a CPU is going idle 1998 */ 1999 void 2000 tlb_going_idle(void) 2001 { 2002 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 2003 } 2004 2005 /* 2006 * Service a delayed TLB flush if coming out of being idle. 2007 * It will be called from cpu idle notification with interrupt disabled. 2008 */ 2009 void 2010 tlb_service(void) 2011 { 2012 ulong_t tlb_info; 2013 ulong_t found; 2014 2015 /* 2016 * We only have to do something if coming out of being idle. 2017 */ 2018 tlb_info = CPU->cpu_m.mcpu_tlb_info; 2019 if (tlb_info & TLB_CPU_HALTED) { 2020 ASSERT(CPU->cpu_current_hat == kas.a_hat); 2021 2022 /* 2023 * Atomic clear and fetch of old state. 2024 */ 2025 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 2026 ASSERT(found & TLB_CPU_HALTED); 2027 tlb_info = found; 2028 SMT_PAUSE(); 2029 } 2030 if (tlb_info & TLB_INVAL_ALL) 2031 flush_all_tlb_entries(); 2032 } 2033 } 2034 #endif /* !__xpv */ 2035 2036 /* 2037 * Internal routine to do cross calls to invalidate a range of pages on 2038 * all CPUs using a given hat. 2039 */ 2040 void 2041 hat_tlb_inval_range(hat_t *hat, uintptr_t va, size_t len) 2042 { 2043 extern int flushes_require_xcalls; /* from mp_startup.c */ 2044 cpuset_t justme; 2045 cpuset_t cpus_to_shootdown; 2046 #ifndef __xpv 2047 cpuset_t check_cpus; 2048 cpu_t *cpup; 2049 int c; 2050 #endif 2051 2052 /* 2053 * If the hat is being destroyed, there are no more users, so 2054 * demap need not do anything. 2055 */ 2056 if (hat->hat_flags & HAT_FREEING) 2057 return; 2058 2059 /* 2060 * If demapping from a shared pagetable, we best demap the 2061 * entire set of user TLBs, since we don't know what addresses 2062 * these were shared at. 2063 */ 2064 if (hat->hat_flags & HAT_SHARED) { 2065 hat = kas.a_hat; 2066 va = DEMAP_ALL_ADDR; 2067 } 2068 2069 /* 2070 * if not running with multiple CPUs, don't use cross calls 2071 */ 2072 if (panicstr || !flushes_require_xcalls) { 2073 #ifdef __xpv 2074 if (va == DEMAP_ALL_ADDR) { 2075 xen_flush_tlb(); 2076 } else { 2077 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 2078 xen_flush_va((caddr_t)(va + i)); 2079 } 2080 #else 2081 (void) hati_demap_func((xc_arg_t)hat, 2082 (xc_arg_t)va, (xc_arg_t)len); 2083 #endif 2084 return; 2085 } 2086 2087 2088 /* 2089 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 2090 * Otherwise it's just CPUs currently executing in this hat. 2091 */ 2092 kpreempt_disable(); 2093 CPUSET_ONLY(justme, CPU->cpu_id); 2094 if (hat == kas.a_hat) 2095 cpus_to_shootdown = khat_cpuset; 2096 else 2097 cpus_to_shootdown = hat->hat_cpus; 2098 2099 #ifndef __xpv 2100 /* 2101 * If any CPUs in the set are idle, just request a delayed flush 2102 * and avoid waking them up. 2103 */ 2104 check_cpus = cpus_to_shootdown; 2105 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2106 ulong_t tlb_info; 2107 2108 if (!CPU_IN_SET(check_cpus, c)) 2109 continue; 2110 CPUSET_DEL(check_cpus, c); 2111 cpup = cpu[c]; 2112 if (cpup == NULL) 2113 continue; 2114 2115 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2116 while (tlb_info == TLB_CPU_HALTED) { 2117 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 2118 TLB_CPU_HALTED | TLB_INVAL_ALL); 2119 SMT_PAUSE(); 2120 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2121 } 2122 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 2123 HATSTAT_INC(hs_tlb_inval_delayed); 2124 CPUSET_DEL(cpus_to_shootdown, c); 2125 } 2126 } 2127 #endif 2128 2129 if (CPUSET_ISNULL(cpus_to_shootdown) || 2130 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2131 2132 #ifdef __xpv 2133 if (va == DEMAP_ALL_ADDR) { 2134 xen_flush_tlb(); 2135 } else { 2136 for (size_t i = 0; i < len; i += MMU_PAGESIZE) 2137 xen_flush_va((caddr_t)(va + i)); 2138 } 2139 #else 2140 (void) hati_demap_func((xc_arg_t)hat, 2141 (xc_arg_t)va, (xc_arg_t)len); 2142 #endif 2143 2144 } else { 2145 2146 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2147 #ifdef __xpv 2148 if (va == DEMAP_ALL_ADDR) { 2149 xen_gflush_tlb(cpus_to_shootdown); 2150 } else { 2151 for (size_t i = 0; i < len; i += MMU_PAGESIZE) { 2152 xen_gflush_va((caddr_t)(va + i), 2153 cpus_to_shootdown); 2154 } 2155 } 2156 #else 2157 xc_call((xc_arg_t)hat, (xc_arg_t)va, (xc_arg_t)len, 2158 CPUSET2BV(cpus_to_shootdown), hati_demap_func); 2159 #endif 2160 2161 } 2162 kpreempt_enable(); 2163 } 2164 2165 void 2166 hat_tlb_inval(hat_t *hat, uintptr_t va) 2167 { 2168 hat_tlb_inval_range(hat, va, 1); 2169 } 2170 2171 /* 2172 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2173 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2174 * handle releasing of the htables. 2175 */ 2176 void 2177 hat_pte_unmap( 2178 htable_t *ht, 2179 uint_t entry, 2180 uint_t flags, 2181 x86pte_t old_pte, 2182 void *pte_ptr, 2183 boolean_t tlb) 2184 { 2185 hat_t *hat = ht->ht_hat; 2186 hment_t *hm = NULL; 2187 page_t *pp = NULL; 2188 level_t l = ht->ht_level; 2189 pfn_t pfn; 2190 2191 /* 2192 * We always track the locking counts, even if nothing is unmapped 2193 */ 2194 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2195 ASSERT(ht->ht_lock_cnt > 0); 2196 HTABLE_LOCK_DEC(ht); 2197 } 2198 2199 /* 2200 * Figure out which page's mapping list lock to acquire using the PFN 2201 * passed in "old" PTE. We then attempt to invalidate the PTE. 2202 * If another thread, probably a hat_pageunload, has asynchronously 2203 * unmapped/remapped this address we'll loop here. 2204 */ 2205 ASSERT(ht->ht_busy > 0); 2206 while (PTE_ISVALID(old_pte)) { 2207 pfn = PTE2PFN(old_pte, l); 2208 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2209 pp = NULL; 2210 } else { 2211 #ifdef __xpv 2212 if (pfn == PFN_INVALID) 2213 panic("Invalid PFN, but not PT_NOCONSIST"); 2214 #endif 2215 pp = page_numtopp_nolock(pfn); 2216 if (pp == NULL) { 2217 panic("no page_t, not NOCONSIST: old_pte=" 2218 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2219 old_pte, (uintptr_t)ht, entry, 2220 (uintptr_t)pte_ptr); 2221 } 2222 x86_hm_enter(pp); 2223 } 2224 2225 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb); 2226 2227 /* 2228 * If the page hadn't changed we've unmapped it and can proceed 2229 */ 2230 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2231 break; 2232 2233 /* 2234 * Otherwise, we'll have to retry with the current old_pte. 2235 * Drop the hment lock, since the pfn may have changed. 2236 */ 2237 if (pp != NULL) { 2238 x86_hm_exit(pp); 2239 pp = NULL; 2240 } else { 2241 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2242 } 2243 } 2244 2245 /* 2246 * If the old mapping wasn't valid, there's nothing more to do 2247 */ 2248 if (!PTE_ISVALID(old_pte)) { 2249 if (pp != NULL) 2250 x86_hm_exit(pp); 2251 return; 2252 } 2253 2254 /* 2255 * Take care of syncing any MOD/REF bits and removing the hment. 2256 */ 2257 if (pp != NULL) { 2258 if (!(flags & HAT_UNLOAD_NOSYNC)) 2259 hati_sync_pte_to_page(pp, old_pte, l); 2260 hm = hment_remove(pp, ht, entry); 2261 x86_hm_exit(pp); 2262 if (hm != NULL) 2263 hment_free(hm); 2264 } 2265 2266 /* 2267 * Handle book keeping in the htable and hat 2268 */ 2269 ASSERT(ht->ht_valid_cnt > 0); 2270 HTABLE_DEC(ht->ht_valid_cnt); 2271 PGCNT_DEC(hat, l); 2272 } 2273 2274 /* 2275 * very cheap unload implementation to special case some kernel addresses 2276 */ 2277 static void 2278 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2279 { 2280 uintptr_t va = (uintptr_t)addr; 2281 uintptr_t eva = va + len; 2282 pgcnt_t pg_index; 2283 htable_t *ht; 2284 uint_t entry; 2285 x86pte_t *pte_ptr; 2286 x86pte_t old_pte; 2287 2288 for (; va < eva; va += MMU_PAGESIZE) { 2289 /* 2290 * Get the PTE 2291 */ 2292 pg_index = mmu_btop(va - mmu.kmap_addr); 2293 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2294 old_pte = GET_PTE(pte_ptr); 2295 2296 /* 2297 * get the htable / entry 2298 */ 2299 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2300 >> LEVEL_SHIFT(1)]; 2301 entry = htable_va2entry(va, ht); 2302 2303 /* 2304 * use mostly common code to unmap it. 2305 */ 2306 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE); 2307 } 2308 } 2309 2310 2311 /* 2312 * unload a range of virtual address space (no callback) 2313 */ 2314 void 2315 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2316 { 2317 uintptr_t va = (uintptr_t)addr; 2318 2319 XPV_DISALLOW_MIGRATE(); 2320 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2321 2322 /* 2323 * special case for performance. 2324 */ 2325 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2326 ASSERT(hat == kas.a_hat); 2327 hat_kmap_unload(addr, len, flags); 2328 } else { 2329 hat_unload_callback(hat, addr, len, flags, NULL); 2330 } 2331 XPV_ALLOW_MIGRATE(); 2332 } 2333 2334 /* 2335 * Do the callbacks for ranges being unloaded. 2336 */ 2337 typedef struct range_info { 2338 uintptr_t rng_va; 2339 ulong_t rng_cnt; 2340 level_t rng_level; 2341 } range_info_t; 2342 2343 /* 2344 * Invalidate the TLB, and perform the callback to the upper level VM system, 2345 * for the specified ranges of contiguous pages. 2346 */ 2347 static void 2348 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, range_info_t *range) 2349 { 2350 while (cnt > 0) { 2351 size_t len; 2352 2353 --cnt; 2354 len = range[cnt].rng_cnt << LEVEL_SHIFT(range[cnt].rng_level); 2355 hat_tlb_inval_range(hat, (uintptr_t)range[cnt].rng_va, len); 2356 2357 if (cb != NULL) { 2358 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2359 cb->hcb_end_addr = cb->hcb_start_addr; 2360 cb->hcb_end_addr += len; 2361 cb->hcb_function(cb); 2362 } 2363 } 2364 } 2365 2366 /* 2367 * Unload a given range of addresses (has optional callback) 2368 * 2369 * Flags: 2370 * define HAT_UNLOAD 0x00 2371 * define HAT_UNLOAD_NOSYNC 0x02 2372 * define HAT_UNLOAD_UNLOCK 0x04 2373 * define HAT_UNLOAD_OTHER 0x08 - not used 2374 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2375 */ 2376 #define MAX_UNLOAD_CNT (8) 2377 void 2378 hat_unload_callback( 2379 hat_t *hat, 2380 caddr_t addr, 2381 size_t len, 2382 uint_t flags, 2383 hat_callback_t *cb) 2384 { 2385 uintptr_t vaddr = (uintptr_t)addr; 2386 uintptr_t eaddr = vaddr + len; 2387 htable_t *ht = NULL; 2388 uint_t entry; 2389 uintptr_t contig_va = (uintptr_t)-1L; 2390 range_info_t r[MAX_UNLOAD_CNT]; 2391 uint_t r_cnt = 0; 2392 x86pte_t old_pte; 2393 2394 XPV_DISALLOW_MIGRATE(); 2395 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2396 ASSERT(IS_PAGEALIGNED(vaddr)); 2397 ASSERT(IS_PAGEALIGNED(eaddr)); 2398 2399 /* 2400 * Special case a single page being unloaded for speed. This happens 2401 * quite frequently, COW faults after a fork() for example. 2402 */ 2403 if (cb == NULL && len == MMU_PAGESIZE) { 2404 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2405 if (ht != NULL) { 2406 if (PTE_ISVALID(old_pte)) { 2407 hat_pte_unmap(ht, entry, flags, old_pte, 2408 NULL, B_TRUE); 2409 } 2410 htable_release(ht); 2411 } 2412 XPV_ALLOW_MIGRATE(); 2413 return; 2414 } 2415 2416 while (vaddr < eaddr) { 2417 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2418 if (ht == NULL) 2419 break; 2420 2421 ASSERT(!IN_VA_HOLE(vaddr)); 2422 2423 if (vaddr < (uintptr_t)addr) 2424 panic("hat_unload_callback(): unmap inside large page"); 2425 2426 /* 2427 * We'll do the call backs for contiguous ranges 2428 */ 2429 if (vaddr != contig_va || 2430 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2431 if (r_cnt == MAX_UNLOAD_CNT) { 2432 handle_ranges(hat, cb, r_cnt, r); 2433 r_cnt = 0; 2434 } 2435 r[r_cnt].rng_va = vaddr; 2436 r[r_cnt].rng_cnt = 0; 2437 r[r_cnt].rng_level = ht->ht_level; 2438 ++r_cnt; 2439 } 2440 2441 /* 2442 * Unload one mapping (for a single page) from the page tables. 2443 * Note that we do not remove the mapping from the TLB yet, 2444 * as indicated by the tlb=FALSE argument to hat_pte_unmap(). 2445 * handle_ranges() will clear the TLB entries with one call to 2446 * hat_tlb_inval_range() per contiguous range. This is 2447 * safe because the page can not be reused until the 2448 * callback is made (or we return). 2449 */ 2450 entry = htable_va2entry(vaddr, ht); 2451 hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE); 2452 ASSERT(ht->ht_level <= mmu.max_page_level); 2453 vaddr += LEVEL_SIZE(ht->ht_level); 2454 contig_va = vaddr; 2455 ++r[r_cnt - 1].rng_cnt; 2456 } 2457 if (ht) 2458 htable_release(ht); 2459 2460 /* 2461 * handle last range for callbacks 2462 */ 2463 if (r_cnt > 0) 2464 handle_ranges(hat, cb, r_cnt, r); 2465 XPV_ALLOW_MIGRATE(); 2466 } 2467 2468 /* 2469 * Invalidate a virtual address translation on a slave CPU during 2470 * panic() dumps. 2471 */ 2472 void 2473 hat_flush_range(hat_t *hat, caddr_t va, size_t size) 2474 { 2475 ssize_t sz; 2476 caddr_t endva = va + size; 2477 2478 while (va < endva) { 2479 sz = hat_getpagesize(hat, va); 2480 if (sz < 0) { 2481 #ifdef __xpv 2482 xen_flush_tlb(); 2483 #else 2484 flush_all_tlb_entries(); 2485 #endif 2486 break; 2487 } 2488 #ifdef __xpv 2489 xen_flush_va(va); 2490 #else 2491 mmu_tlbflush_entry(va); 2492 #endif 2493 va += sz; 2494 } 2495 } 2496 2497 /* 2498 * synchronize mapping with software data structures 2499 * 2500 * This interface is currently only used by the working set monitor 2501 * driver. 2502 */ 2503 /*ARGSUSED*/ 2504 void 2505 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2506 { 2507 uintptr_t vaddr = (uintptr_t)addr; 2508 uintptr_t eaddr = vaddr + len; 2509 htable_t *ht = NULL; 2510 uint_t entry; 2511 x86pte_t pte; 2512 x86pte_t save_pte; 2513 x86pte_t new; 2514 page_t *pp; 2515 2516 ASSERT(!IN_VA_HOLE(vaddr)); 2517 ASSERT(IS_PAGEALIGNED(vaddr)); 2518 ASSERT(IS_PAGEALIGNED(eaddr)); 2519 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2520 2521 XPV_DISALLOW_MIGRATE(); 2522 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2523 try_again: 2524 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2525 if (ht == NULL) 2526 break; 2527 entry = htable_va2entry(vaddr, ht); 2528 2529 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2530 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2531 continue; 2532 2533 /* 2534 * We need to acquire the mapping list lock to protect 2535 * against hat_pageunload(), hat_unload(), etc. 2536 */ 2537 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2538 if (pp == NULL) 2539 break; 2540 x86_hm_enter(pp); 2541 save_pte = pte; 2542 pte = x86pte_get(ht, entry); 2543 if (pte != save_pte) { 2544 x86_hm_exit(pp); 2545 goto try_again; 2546 } 2547 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2548 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2549 x86_hm_exit(pp); 2550 continue; 2551 } 2552 2553 /* 2554 * Need to clear ref or mod bits. We may compete with 2555 * hardware updating the R/M bits and have to try again. 2556 */ 2557 if (flags == HAT_SYNC_ZERORM) { 2558 new = pte; 2559 PTE_CLR(new, PT_REF | PT_MOD); 2560 pte = hati_update_pte(ht, entry, pte, new); 2561 if (pte != 0) { 2562 x86_hm_exit(pp); 2563 goto try_again; 2564 } 2565 } else { 2566 /* 2567 * sync the PTE to the page_t 2568 */ 2569 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2570 } 2571 x86_hm_exit(pp); 2572 } 2573 if (ht) 2574 htable_release(ht); 2575 XPV_ALLOW_MIGRATE(); 2576 } 2577 2578 /* 2579 * void hat_map(hat, addr, len, flags) 2580 */ 2581 /*ARGSUSED*/ 2582 void 2583 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2584 { 2585 /* does nothing */ 2586 } 2587 2588 /* 2589 * uint_t hat_getattr(hat, addr, *attr) 2590 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2591 * mapping and *attr is valid, nonzero if there was no mapping and 2592 * *attr is not valid. 2593 */ 2594 uint_t 2595 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2596 { 2597 uintptr_t vaddr = ALIGN2PAGE(addr); 2598 htable_t *ht = NULL; 2599 x86pte_t pte; 2600 2601 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2602 2603 if (IN_VA_HOLE(vaddr)) 2604 return ((uint_t)-1); 2605 2606 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2607 if (ht == NULL) 2608 return ((uint_t)-1); 2609 2610 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2611 htable_release(ht); 2612 return ((uint_t)-1); 2613 } 2614 2615 *attr = PROT_READ; 2616 if (PTE_GET(pte, PT_WRITABLE)) 2617 *attr |= PROT_WRITE; 2618 if (PTE_GET(pte, PT_USER)) 2619 *attr |= PROT_USER; 2620 if (!PTE_GET(pte, mmu.pt_nx)) 2621 *attr |= PROT_EXEC; 2622 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2623 *attr |= HAT_NOSYNC; 2624 htable_release(ht); 2625 return (0); 2626 } 2627 2628 /* 2629 * hat_updateattr() applies the given attribute change to an existing mapping 2630 */ 2631 #define HAT_LOAD_ATTR 1 2632 #define HAT_SET_ATTR 2 2633 #define HAT_CLR_ATTR 3 2634 2635 static void 2636 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2637 { 2638 uintptr_t vaddr = (uintptr_t)addr; 2639 uintptr_t eaddr = (uintptr_t)addr + len; 2640 htable_t *ht = NULL; 2641 uint_t entry; 2642 x86pte_t oldpte, newpte; 2643 page_t *pp; 2644 2645 XPV_DISALLOW_MIGRATE(); 2646 ASSERT(IS_PAGEALIGNED(vaddr)); 2647 ASSERT(IS_PAGEALIGNED(eaddr)); 2648 ASSERT(hat == kas.a_hat || 2649 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2650 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2651 try_again: 2652 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2653 if (ht == NULL) 2654 break; 2655 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2656 continue; 2657 2658 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2659 if (pp == NULL) 2660 continue; 2661 x86_hm_enter(pp); 2662 2663 newpte = oldpte; 2664 /* 2665 * We found a page table entry in the desired range, 2666 * figure out the new attributes. 2667 */ 2668 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2669 if ((attr & PROT_WRITE) && 2670 !PTE_GET(oldpte, PT_WRITABLE)) 2671 newpte |= PT_WRITABLE; 2672 2673 if ((attr & HAT_NOSYNC) && 2674 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2675 newpte |= PT_NOSYNC; 2676 2677 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2678 newpte &= ~mmu.pt_nx; 2679 } 2680 2681 if (what == HAT_LOAD_ATTR) { 2682 if (!(attr & PROT_WRITE) && 2683 PTE_GET(oldpte, PT_WRITABLE)) 2684 newpte &= ~PT_WRITABLE; 2685 2686 if (!(attr & HAT_NOSYNC) && 2687 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2688 newpte &= ~PT_SOFTWARE; 2689 2690 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2691 newpte |= mmu.pt_nx; 2692 } 2693 2694 if (what == HAT_CLR_ATTR) { 2695 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2696 newpte &= ~PT_WRITABLE; 2697 2698 if ((attr & HAT_NOSYNC) && 2699 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2700 newpte &= ~PT_SOFTWARE; 2701 2702 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2703 newpte |= mmu.pt_nx; 2704 } 2705 2706 /* 2707 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2708 * x86pte_set() depends on this. 2709 */ 2710 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2711 newpte |= PT_REF | PT_MOD; 2712 2713 /* 2714 * what about PROT_READ or others? this code only handles: 2715 * EXEC, WRITE, NOSYNC 2716 */ 2717 2718 /* 2719 * If new PTE really changed, update the table. 2720 */ 2721 if (newpte != oldpte) { 2722 entry = htable_va2entry(vaddr, ht); 2723 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2724 if (oldpte != 0) { 2725 x86_hm_exit(pp); 2726 goto try_again; 2727 } 2728 } 2729 x86_hm_exit(pp); 2730 } 2731 if (ht) 2732 htable_release(ht); 2733 XPV_ALLOW_MIGRATE(); 2734 } 2735 2736 /* 2737 * Various wrappers for hat_updateattr() 2738 */ 2739 void 2740 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2741 { 2742 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2743 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2744 } 2745 2746 void 2747 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2748 { 2749 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2750 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2751 } 2752 2753 void 2754 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2755 { 2756 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2757 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2758 } 2759 2760 void 2761 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2762 { 2763 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2764 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2765 } 2766 2767 /* 2768 * size_t hat_getpagesize(hat, addr) 2769 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2770 * no mapping. This is an advisory call. 2771 */ 2772 ssize_t 2773 hat_getpagesize(hat_t *hat, caddr_t addr) 2774 { 2775 uintptr_t vaddr = ALIGN2PAGE(addr); 2776 htable_t *ht; 2777 size_t pagesize; 2778 2779 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2780 if (IN_VA_HOLE(vaddr)) 2781 return (-1); 2782 ht = htable_getpage(hat, vaddr, NULL); 2783 if (ht == NULL) 2784 return (-1); 2785 pagesize = LEVEL_SIZE(ht->ht_level); 2786 htable_release(ht); 2787 return (pagesize); 2788 } 2789 2790 2791 2792 /* 2793 * pfn_t hat_getpfnum(hat, addr) 2794 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2795 */ 2796 pfn_t 2797 hat_getpfnum(hat_t *hat, caddr_t addr) 2798 { 2799 uintptr_t vaddr = ALIGN2PAGE(addr); 2800 htable_t *ht; 2801 uint_t entry; 2802 pfn_t pfn = PFN_INVALID; 2803 2804 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2805 if (khat_running == 0) 2806 return (PFN_INVALID); 2807 2808 if (IN_VA_HOLE(vaddr)) 2809 return (PFN_INVALID); 2810 2811 XPV_DISALLOW_MIGRATE(); 2812 /* 2813 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2814 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2815 * this up. 2816 */ 2817 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2818 x86pte_t pte; 2819 pgcnt_t pg_index; 2820 2821 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2822 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2823 if (PTE_ISVALID(pte)) 2824 /*LINTED [use of constant 0 causes a lint warning] */ 2825 pfn = PTE2PFN(pte, 0); 2826 XPV_ALLOW_MIGRATE(); 2827 return (pfn); 2828 } 2829 2830 ht = htable_getpage(hat, vaddr, &entry); 2831 if (ht == NULL) { 2832 XPV_ALLOW_MIGRATE(); 2833 return (PFN_INVALID); 2834 } 2835 ASSERT(vaddr >= ht->ht_vaddr); 2836 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2837 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2838 if (ht->ht_level > 0) 2839 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2840 htable_release(ht); 2841 XPV_ALLOW_MIGRATE(); 2842 return (pfn); 2843 } 2844 2845 /* 2846 * int hat_probe(hat, addr) 2847 * return 0 if no valid mapping is present. Faster version 2848 * of hat_getattr in certain architectures. 2849 */ 2850 int 2851 hat_probe(hat_t *hat, caddr_t addr) 2852 { 2853 uintptr_t vaddr = ALIGN2PAGE(addr); 2854 uint_t entry; 2855 htable_t *ht; 2856 pgcnt_t pg_off; 2857 2858 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2859 ASSERT(hat == kas.a_hat || 2860 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2861 if (IN_VA_HOLE(vaddr)) 2862 return (0); 2863 2864 /* 2865 * Most common use of hat_probe is from segmap. We special case it 2866 * for performance. 2867 */ 2868 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2869 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2870 if (mmu.pae_hat) 2871 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2872 else 2873 return (PTE_ISVALID( 2874 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2875 } 2876 2877 ht = htable_getpage(hat, vaddr, &entry); 2878 htable_release(ht); 2879 return (ht != NULL); 2880 } 2881 2882 /* 2883 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2884 */ 2885 static int 2886 is_it_dism(hat_t *hat, caddr_t va) 2887 { 2888 struct seg *seg; 2889 struct shm_data *shmd; 2890 struct spt_data *sptd; 2891 2892 seg = as_findseg(hat->hat_as, va, 0); 2893 ASSERT(seg != NULL); 2894 ASSERT(seg->s_base <= va); 2895 shmd = (struct shm_data *)seg->s_data; 2896 ASSERT(shmd != NULL); 2897 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2898 ASSERT(sptd != NULL); 2899 if (sptd->spt_flags & SHM_PAGEABLE) 2900 return (1); 2901 return (0); 2902 } 2903 2904 /* 2905 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2906 * except that we use the ism_hat's existing mappings to determine the pages 2907 * and protections to use for this hat. If we find a full properly aligned 2908 * and sized pagetable, we will attempt to share the pagetable itself. 2909 */ 2910 /*ARGSUSED*/ 2911 int 2912 hat_share( 2913 hat_t *hat, 2914 caddr_t addr, 2915 hat_t *ism_hat, 2916 caddr_t src_addr, 2917 size_t len, /* almost useless value, see below.. */ 2918 uint_t ismszc) 2919 { 2920 uintptr_t vaddr_start = (uintptr_t)addr; 2921 uintptr_t vaddr; 2922 uintptr_t eaddr = vaddr_start + len; 2923 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2924 uintptr_t ism_addr = ism_addr_start; 2925 uintptr_t e_ism_addr = ism_addr + len; 2926 htable_t *ism_ht = NULL; 2927 htable_t *ht; 2928 x86pte_t pte; 2929 page_t *pp; 2930 pfn_t pfn; 2931 level_t l; 2932 pgcnt_t pgcnt; 2933 uint_t prot; 2934 int is_dism; 2935 int flags; 2936 2937 /* 2938 * We might be asked to share an empty DISM hat by as_dup() 2939 */ 2940 ASSERT(hat != kas.a_hat); 2941 ASSERT(eaddr <= _userlimit); 2942 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2943 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2944 return (0); 2945 } 2946 XPV_DISALLOW_MIGRATE(); 2947 2948 /* 2949 * The SPT segment driver often passes us a size larger than there are 2950 * valid mappings. That's because it rounds the segment size up to a 2951 * large pagesize, even if the actual memory mapped by ism_hat is less. 2952 */ 2953 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2954 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2955 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2956 is_dism = is_it_dism(hat, addr); 2957 while (ism_addr < e_ism_addr) { 2958 /* 2959 * use htable_walk to get the next valid ISM mapping 2960 */ 2961 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2962 if (ism_ht == NULL) 2963 break; 2964 2965 /* 2966 * First check to see if we already share the page table. 2967 */ 2968 l = ism_ht->ht_level; 2969 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2970 ht = htable_lookup(hat, vaddr, l); 2971 if (ht != NULL) { 2972 if (ht->ht_flags & HTABLE_SHARED_PFN) 2973 goto shared; 2974 htable_release(ht); 2975 goto not_shared; 2976 } 2977 2978 /* 2979 * Can't ever share top table. 2980 */ 2981 if (l == mmu.max_level) 2982 goto not_shared; 2983 2984 /* 2985 * Avoid level mismatches later due to DISM faults. 2986 */ 2987 if (is_dism && l > 0) 2988 goto not_shared; 2989 2990 /* 2991 * addresses and lengths must align 2992 * table must be fully populated 2993 * no lower level page tables 2994 */ 2995 if (ism_addr != ism_ht->ht_vaddr || 2996 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 2997 goto not_shared; 2998 2999 /* 3000 * The range of address space must cover a full table. 3001 */ 3002 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 3003 goto not_shared; 3004 3005 /* 3006 * All entries in the ISM page table must be leaf PTEs. 3007 */ 3008 if (l > 0) { 3009 int e; 3010 3011 /* 3012 * We know the 0th is from htable_walk() above. 3013 */ 3014 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 3015 x86pte_t pte; 3016 pte = x86pte_get(ism_ht, e); 3017 if (!PTE_ISPAGE(pte, l)) 3018 goto not_shared; 3019 } 3020 } 3021 3022 /* 3023 * share the page table 3024 */ 3025 ht = htable_create(hat, vaddr, l, ism_ht); 3026 shared: 3027 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 3028 ASSERT(ht->ht_shares == ism_ht); 3029 hat->hat_ism_pgcnt += 3030 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 3031 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3032 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 3033 htable_release(ht); 3034 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 3035 htable_release(ism_ht); 3036 ism_ht = NULL; 3037 continue; 3038 3039 not_shared: 3040 /* 3041 * Unable to share the page table. Instead we will 3042 * create new mappings from the values in the ISM mappings. 3043 * Figure out what level size mappings to use; 3044 */ 3045 for (l = ism_ht->ht_level; l > 0; --l) { 3046 if (LEVEL_SIZE(l) <= eaddr - vaddr && 3047 (vaddr & LEVEL_OFFSET(l)) == 0) 3048 break; 3049 } 3050 3051 /* 3052 * The ISM mapping might be larger than the share area, 3053 * be careful to truncate it if needed. 3054 */ 3055 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 3056 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 3057 } else { 3058 pgcnt = mmu_btop(eaddr - vaddr); 3059 l = 0; 3060 } 3061 3062 pfn = PTE2PFN(pte, ism_ht->ht_level); 3063 ASSERT(pfn != PFN_INVALID); 3064 while (pgcnt > 0) { 3065 /* 3066 * Make a new pte for the PFN for this level. 3067 * Copy protections for the pte from the ISM pte. 3068 */ 3069 pp = page_numtopp_nolock(pfn); 3070 ASSERT(pp != NULL); 3071 3072 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 3073 if (PTE_GET(pte, PT_WRITABLE)) 3074 prot |= PROT_WRITE; 3075 if (!PTE_GET(pte, PT_NX)) 3076 prot |= PROT_EXEC; 3077 3078 flags = HAT_LOAD; 3079 if (!is_dism) 3080 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 3081 while (hati_load_common(hat, vaddr, pp, prot, flags, 3082 l, pfn) != 0) { 3083 if (l == 0) 3084 panic("hati_load_common() failure"); 3085 --l; 3086 } 3087 3088 vaddr += LEVEL_SIZE(l); 3089 ism_addr += LEVEL_SIZE(l); 3090 pfn += mmu_btop(LEVEL_SIZE(l)); 3091 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 3092 } 3093 } 3094 if (ism_ht != NULL) 3095 htable_release(ism_ht); 3096 XPV_ALLOW_MIGRATE(); 3097 return (0); 3098 } 3099 3100 3101 /* 3102 * hat_unshare() is similar to hat_unload_callback(), but 3103 * we have to look for empty shared pagetables. Note that 3104 * hat_unshare() is always invoked against an entire segment. 3105 */ 3106 /*ARGSUSED*/ 3107 void 3108 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3109 { 3110 uint64_t vaddr = (uintptr_t)addr; 3111 uintptr_t eaddr = vaddr + len; 3112 htable_t *ht = NULL; 3113 uint_t need_demaps = 0; 3114 int flags = HAT_UNLOAD_UNMAP; 3115 level_t l; 3116 3117 ASSERT(hat != kas.a_hat); 3118 ASSERT(eaddr <= _userlimit); 3119 ASSERT(IS_PAGEALIGNED(vaddr)); 3120 ASSERT(IS_PAGEALIGNED(eaddr)); 3121 XPV_DISALLOW_MIGRATE(); 3122 3123 /* 3124 * First go through and remove any shared pagetables. 3125 * 3126 * Note that it's ok to delay the TLB shootdown till the entire range is 3127 * finished, because if hat_pageunload() were to unload a shared 3128 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3129 */ 3130 l = mmu.max_page_level; 3131 if (l == mmu.max_level) 3132 --l; 3133 for (; l >= 0; --l) { 3134 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3135 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3136 ASSERT(!IN_VA_HOLE(vaddr)); 3137 /* 3138 * find a pagetable that maps the current address 3139 */ 3140 ht = htable_lookup(hat, vaddr, l); 3141 if (ht == NULL) 3142 continue; 3143 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3144 /* 3145 * clear page count, set valid_cnt to 0, 3146 * let htable_release() finish the job 3147 */ 3148 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3149 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3150 ht->ht_valid_cnt = 0; 3151 need_demaps = 1; 3152 } 3153 htable_release(ht); 3154 } 3155 } 3156 3157 /* 3158 * flush the TLBs - since we're probably dealing with MANY mappings 3159 * we do just one CR3 reload. 3160 */ 3161 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3162 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3163 3164 /* 3165 * Now go back and clean up any unaligned mappings that 3166 * couldn't share pagetables. 3167 */ 3168 if (!is_it_dism(hat, addr)) 3169 flags |= HAT_UNLOAD_UNLOCK; 3170 hat_unload(hat, addr, len, flags); 3171 XPV_ALLOW_MIGRATE(); 3172 } 3173 3174 3175 /* 3176 * hat_reserve() does nothing 3177 */ 3178 /*ARGSUSED*/ 3179 void 3180 hat_reserve(struct as *as, caddr_t addr, size_t len) 3181 { 3182 } 3183 3184 3185 /* 3186 * Called when all mappings to a page should have write permission removed. 3187 * Mostly stolen from hat_pagesync() 3188 */ 3189 static void 3190 hati_page_clrwrt(struct page *pp) 3191 { 3192 hment_t *hm = NULL; 3193 htable_t *ht; 3194 uint_t entry; 3195 x86pte_t old; 3196 x86pte_t new; 3197 uint_t pszc = 0; 3198 3199 XPV_DISALLOW_MIGRATE(); 3200 next_size: 3201 /* 3202 * walk thru the mapping list clearing write permission 3203 */ 3204 x86_hm_enter(pp); 3205 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3206 if (ht->ht_level < pszc) 3207 continue; 3208 old = x86pte_get(ht, entry); 3209 3210 for (;;) { 3211 /* 3212 * Is this mapping of interest? 3213 */ 3214 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3215 PTE_GET(old, PT_WRITABLE) == 0) 3216 break; 3217 3218 /* 3219 * Clear ref/mod writable bits. This requires cross 3220 * calls to ensure any executing TLBs see cleared bits. 3221 */ 3222 new = old; 3223 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3224 old = hati_update_pte(ht, entry, old, new); 3225 if (old != 0) 3226 continue; 3227 3228 break; 3229 } 3230 } 3231 x86_hm_exit(pp); 3232 while (pszc < pp->p_szc) { 3233 page_t *tpp; 3234 pszc++; 3235 tpp = PP_GROUPLEADER(pp, pszc); 3236 if (pp != tpp) { 3237 pp = tpp; 3238 goto next_size; 3239 } 3240 } 3241 XPV_ALLOW_MIGRATE(); 3242 } 3243 3244 /* 3245 * void hat_page_setattr(pp, flag) 3246 * void hat_page_clrattr(pp, flag) 3247 * used to set/clr ref/mod bits. 3248 */ 3249 void 3250 hat_page_setattr(struct page *pp, uint_t flag) 3251 { 3252 vnode_t *vp = pp->p_vnode; 3253 kmutex_t *vphm = NULL; 3254 page_t **listp; 3255 int noshuffle; 3256 3257 noshuffle = flag & P_NSH; 3258 flag &= ~P_NSH; 3259 3260 if (PP_GETRM(pp, flag) == flag) 3261 return; 3262 3263 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3264 !noshuffle) { 3265 vphm = page_vnode_mutex(vp); 3266 mutex_enter(vphm); 3267 } 3268 3269 PP_SETRM(pp, flag); 3270 3271 if (vphm != NULL) { 3272 3273 /* 3274 * Some File Systems examine v_pages for NULL w/o 3275 * grabbing the vphm mutex. Must not let it become NULL when 3276 * pp is the only page on the list. 3277 */ 3278 if (pp->p_vpnext != pp) { 3279 page_vpsub(&vp->v_pages, pp); 3280 if (vp->v_pages != NULL) 3281 listp = &vp->v_pages->p_vpprev->p_vpnext; 3282 else 3283 listp = &vp->v_pages; 3284 page_vpadd(listp, pp); 3285 } 3286 mutex_exit(vphm); 3287 } 3288 } 3289 3290 void 3291 hat_page_clrattr(struct page *pp, uint_t flag) 3292 { 3293 vnode_t *vp = pp->p_vnode; 3294 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3295 3296 /* 3297 * Caller is expected to hold page's io lock for VMODSORT to work 3298 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3299 * bit is cleared. 3300 * We don't have assert to avoid tripping some existing third party 3301 * code. The dirty page is moved back to top of the v_page list 3302 * after IO is done in pvn_write_done(). 3303 */ 3304 PP_CLRRM(pp, flag); 3305 3306 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3307 3308 /* 3309 * VMODSORT works by removing write permissions and getting 3310 * a fault when a page is made dirty. At this point 3311 * we need to remove write permission from all mappings 3312 * to this page. 3313 */ 3314 hati_page_clrwrt(pp); 3315 } 3316 } 3317 3318 /* 3319 * If flag is specified, returns 0 if attribute is disabled 3320 * and non zero if enabled. If flag specifes multiple attributes 3321 * then returns 0 if ALL attributes are disabled. This is an advisory 3322 * call. 3323 */ 3324 uint_t 3325 hat_page_getattr(struct page *pp, uint_t flag) 3326 { 3327 return (PP_GETRM(pp, flag)); 3328 } 3329 3330 3331 /* 3332 * common code used by hat_pageunload() and hment_steal() 3333 */ 3334 hment_t * 3335 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3336 { 3337 x86pte_t old_pte; 3338 pfn_t pfn = pp->p_pagenum; 3339 hment_t *hm; 3340 3341 /* 3342 * We need to acquire a hold on the htable in order to 3343 * do the invalidate. We know the htable must exist, since 3344 * unmap's don't release the htable until after removing any 3345 * hment. Having x86_hm_enter() keeps that from proceeding. 3346 */ 3347 htable_acquire(ht); 3348 3349 /* 3350 * Invalidate the PTE and remove the hment. 3351 */ 3352 old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE); 3353 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3354 panic("x86pte_inval() failure found PTE = " FMT_PTE 3355 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3356 old_pte, pfn, (uintptr_t)ht, entry); 3357 } 3358 3359 /* 3360 * Clean up all the htable information for this mapping 3361 */ 3362 ASSERT(ht->ht_valid_cnt > 0); 3363 HTABLE_DEC(ht->ht_valid_cnt); 3364 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3365 3366 /* 3367 * sync ref/mod bits to the page_t 3368 */ 3369 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3370 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3371 3372 /* 3373 * Remove the mapping list entry for this page. 3374 */ 3375 hm = hment_remove(pp, ht, entry); 3376 3377 /* 3378 * drop the mapping list lock so that we might free the 3379 * hment and htable. 3380 */ 3381 x86_hm_exit(pp); 3382 htable_release(ht); 3383 return (hm); 3384 } 3385 3386 extern int vpm_enable; 3387 /* 3388 * Unload all translations to a page. If the page is a subpage of a large 3389 * page, the large page mappings are also removed. 3390 * 3391 * The forceflags are unused. 3392 */ 3393 3394 /*ARGSUSED*/ 3395 static int 3396 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3397 { 3398 page_t *cur_pp = pp; 3399 hment_t *hm; 3400 hment_t *prev; 3401 htable_t *ht; 3402 uint_t entry; 3403 level_t level; 3404 3405 XPV_DISALLOW_MIGRATE(); 3406 3407 /* 3408 * prevent recursion due to kmem_free() 3409 */ 3410 ++curthread->t_hatdepth; 3411 ASSERT(curthread->t_hatdepth < 16); 3412 3413 #if defined(__amd64) 3414 /* 3415 * clear the vpm ref. 3416 */ 3417 if (vpm_enable) { 3418 pp->p_vpmref = 0; 3419 } 3420 #endif 3421 /* 3422 * The loop with next_size handles pages with multiple pagesize mappings 3423 */ 3424 next_size: 3425 for (;;) { 3426 3427 /* 3428 * Get a mapping list entry 3429 */ 3430 x86_hm_enter(cur_pp); 3431 for (prev = NULL; ; prev = hm) { 3432 hm = hment_walk(cur_pp, &ht, &entry, prev); 3433 if (hm == NULL) { 3434 x86_hm_exit(cur_pp); 3435 3436 /* 3437 * If not part of a larger page, we're done. 3438 */ 3439 if (cur_pp->p_szc <= pg_szcd) { 3440 ASSERT(curthread->t_hatdepth > 0); 3441 --curthread->t_hatdepth; 3442 XPV_ALLOW_MIGRATE(); 3443 return (0); 3444 } 3445 3446 /* 3447 * Else check the next larger page size. 3448 * hat_page_demote() may decrease p_szc 3449 * but that's ok we'll just take an extra 3450 * trip discover there're no larger mappings 3451 * and return. 3452 */ 3453 ++pg_szcd; 3454 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3455 goto next_size; 3456 } 3457 3458 /* 3459 * If this mapping size matches, remove it. 3460 */ 3461 level = ht->ht_level; 3462 if (level == pg_szcd) 3463 break; 3464 } 3465 3466 /* 3467 * Remove the mapping list entry for this page. 3468 * Note this does the x86_hm_exit() for us. 3469 */ 3470 hm = hati_page_unmap(cur_pp, ht, entry); 3471 if (hm != NULL) 3472 hment_free(hm); 3473 } 3474 } 3475 3476 int 3477 hat_pageunload(struct page *pp, uint_t forceflag) 3478 { 3479 ASSERT(PAGE_EXCL(pp)); 3480 return (hati_pageunload(pp, 0, forceflag)); 3481 } 3482 3483 /* 3484 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3485 * page level that included pp. 3486 * 3487 * pp must be locked EXCL. Even though no other constituent pages are locked 3488 * it's legal to unload large mappings to pp because all constituent pages of 3489 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3490 * lock on one of constituent pages none of the large mappings to pp are 3491 * locked. 3492 * 3493 * Change (always decrease) p_szc field starting from the last constituent 3494 * page and ending with root constituent page so that root's pszc always shows 3495 * the area where hat_page_demote() may be active. 3496 * 3497 * This mechanism is only used for file system pages where it's not always 3498 * possible to get EXCL locks on all constituent pages to demote the size code 3499 * (as is done for anonymous or kernel large pages). 3500 */ 3501 void 3502 hat_page_demote(page_t *pp) 3503 { 3504 uint_t pszc; 3505 uint_t rszc; 3506 uint_t szc; 3507 page_t *rootpp; 3508 page_t *firstpp; 3509 page_t *lastpp; 3510 pgcnt_t pgcnt; 3511 3512 ASSERT(PAGE_EXCL(pp)); 3513 ASSERT(!PP_ISFREE(pp)); 3514 ASSERT(page_szc_lock_assert(pp)); 3515 3516 if (pp->p_szc == 0) 3517 return; 3518 3519 rootpp = PP_GROUPLEADER(pp, 1); 3520 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3521 3522 /* 3523 * all large mappings to pp are gone 3524 * and no new can be setup since pp is locked exclusively. 3525 * 3526 * Lock the root to make sure there's only one hat_page_demote() 3527 * outstanding within the area of this root's pszc. 3528 * 3529 * Second potential hat_page_demote() is already eliminated by upper 3530 * VM layer via page_szc_lock() but we don't rely on it and use our 3531 * own locking (so that upper layer locking can be changed without 3532 * assumptions that hat depends on upper layer VM to prevent multiple 3533 * hat_page_demote() to be issued simultaneously to the same large 3534 * page). 3535 */ 3536 again: 3537 pszc = pp->p_szc; 3538 if (pszc == 0) 3539 return; 3540 rootpp = PP_GROUPLEADER(pp, pszc); 3541 x86_hm_enter(rootpp); 3542 /* 3543 * If root's p_szc is different from pszc we raced with another 3544 * hat_page_demote(). Drop the lock and try to find the root again. 3545 * If root's p_szc is greater than pszc previous hat_page_demote() is 3546 * not done yet. Take and release mlist lock of root's root to wait 3547 * for previous hat_page_demote() to complete. 3548 */ 3549 if ((rszc = rootpp->p_szc) != pszc) { 3550 x86_hm_exit(rootpp); 3551 if (rszc > pszc) { 3552 /* p_szc of a locked non free page can't increase */ 3553 ASSERT(pp != rootpp); 3554 3555 rootpp = PP_GROUPLEADER(rootpp, rszc); 3556 x86_hm_enter(rootpp); 3557 x86_hm_exit(rootpp); 3558 } 3559 goto again; 3560 } 3561 ASSERT(pp->p_szc == pszc); 3562 3563 /* 3564 * Decrement by 1 p_szc of every constituent page of a region that 3565 * covered pp. For example if original szc is 3 it gets changed to 2 3566 * everywhere except in region 2 that covered pp. Region 2 that 3567 * covered pp gets demoted to 1 everywhere except in region 1 that 3568 * covered pp. The region 1 that covered pp is demoted to region 3569 * 0. It's done this way because from region 3 we removed level 3 3570 * mappings, from region 2 that covered pp we removed level 2 mappings 3571 * and from region 1 that covered pp we removed level 1 mappings. All 3572 * changes are done from from high pfn's to low pfn's so that roots 3573 * are changed last allowing one to know the largest region where 3574 * hat_page_demote() is stil active by only looking at the root page. 3575 * 3576 * This algorithm is implemented in 2 while loops. First loop changes 3577 * p_szc of pages to the right of pp's level 1 region and second 3578 * loop changes p_szc of pages of level 1 region that covers pp 3579 * and all pages to the left of level 1 region that covers pp. 3580 * In the first loop p_szc keeps dropping with every iteration 3581 * and in the second loop it keeps increasing with every iteration. 3582 * 3583 * First loop description: Demote pages to the right of pp outside of 3584 * level 1 region that covers pp. In every iteration of the while 3585 * loop below find the last page of szc region and the first page of 3586 * (szc - 1) region that is immediately to the right of (szc - 1) 3587 * region that covers pp. From last such page to first such page 3588 * change every page's szc to szc - 1. Decrement szc and continue 3589 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3590 * of szc region skip to the next iteration. 3591 */ 3592 szc = pszc; 3593 while (szc > 1) { 3594 lastpp = PP_GROUPLEADER(pp, szc); 3595 pgcnt = page_get_pagecnt(szc); 3596 lastpp += pgcnt - 1; 3597 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3598 pgcnt = page_get_pagecnt(szc - 1); 3599 if (lastpp - firstpp < pgcnt) { 3600 szc--; 3601 continue; 3602 } 3603 firstpp += pgcnt; 3604 while (lastpp != firstpp) { 3605 ASSERT(lastpp->p_szc == pszc); 3606 lastpp->p_szc = szc - 1; 3607 lastpp--; 3608 } 3609 firstpp->p_szc = szc - 1; 3610 szc--; 3611 } 3612 3613 /* 3614 * Second loop description: 3615 * First iteration changes p_szc to 0 of every 3616 * page of level 1 region that covers pp. 3617 * Subsequent iterations find last page of szc region 3618 * immediately to the left of szc region that covered pp 3619 * and first page of (szc + 1) region that covers pp. 3620 * From last to first page change p_szc of every page to szc. 3621 * Increment szc and continue looping until szc is pszc. 3622 * If pp belongs to the fist szc region of (szc + 1) region 3623 * skip to the next iteration. 3624 * 3625 */ 3626 szc = 0; 3627 while (szc < pszc) { 3628 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3629 if (szc == 0) { 3630 pgcnt = page_get_pagecnt(1); 3631 lastpp = firstpp + (pgcnt - 1); 3632 } else { 3633 lastpp = PP_GROUPLEADER(pp, szc); 3634 if (firstpp == lastpp) { 3635 szc++; 3636 continue; 3637 } 3638 lastpp--; 3639 pgcnt = page_get_pagecnt(szc); 3640 } 3641 while (lastpp != firstpp) { 3642 ASSERT(lastpp->p_szc == pszc); 3643 lastpp->p_szc = szc; 3644 lastpp--; 3645 } 3646 firstpp->p_szc = szc; 3647 if (firstpp == rootpp) 3648 break; 3649 szc++; 3650 } 3651 x86_hm_exit(rootpp); 3652 } 3653 3654 /* 3655 * get hw stats from hardware into page struct and reset hw stats 3656 * returns attributes of page 3657 * Flags for hat_pagesync, hat_getstat, hat_sync 3658 * 3659 * define HAT_SYNC_ZERORM 0x01 3660 * 3661 * Additional flags for hat_pagesync 3662 * 3663 * define HAT_SYNC_STOPON_REF 0x02 3664 * define HAT_SYNC_STOPON_MOD 0x04 3665 * define HAT_SYNC_STOPON_RM 0x06 3666 * define HAT_SYNC_STOPON_SHARED 0x08 3667 */ 3668 uint_t 3669 hat_pagesync(struct page *pp, uint_t flags) 3670 { 3671 hment_t *hm = NULL; 3672 htable_t *ht; 3673 uint_t entry; 3674 x86pte_t old, save_old; 3675 x86pte_t new; 3676 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3677 extern ulong_t po_share; 3678 page_t *save_pp = pp; 3679 uint_t pszc = 0; 3680 3681 ASSERT(PAGE_LOCKED(pp) || panicstr); 3682 3683 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3684 return (pp->p_nrm & nrmbits); 3685 3686 if ((flags & HAT_SYNC_ZERORM) == 0) { 3687 3688 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3689 return (pp->p_nrm & nrmbits); 3690 3691 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3692 return (pp->p_nrm & nrmbits); 3693 3694 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3695 hat_page_getshare(pp) > po_share) { 3696 if (PP_ISRO(pp)) 3697 PP_SETREF(pp); 3698 return (pp->p_nrm & nrmbits); 3699 } 3700 } 3701 3702 XPV_DISALLOW_MIGRATE(); 3703 next_size: 3704 /* 3705 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3706 */ 3707 x86_hm_enter(pp); 3708 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3709 if (ht->ht_level < pszc) 3710 continue; 3711 old = x86pte_get(ht, entry); 3712 try_again: 3713 3714 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3715 3716 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3717 continue; 3718 3719 save_old = old; 3720 if ((flags & HAT_SYNC_ZERORM) != 0) { 3721 3722 /* 3723 * Need to clear ref or mod bits. Need to demap 3724 * to make sure any executing TLBs see cleared bits. 3725 */ 3726 new = old; 3727 PTE_CLR(new, PT_REF | PT_MOD); 3728 old = hati_update_pte(ht, entry, old, new); 3729 if (old != 0) 3730 goto try_again; 3731 3732 old = save_old; 3733 } 3734 3735 /* 3736 * Sync the PTE 3737 */ 3738 if (!(flags & HAT_SYNC_ZERORM) && 3739 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3740 hati_sync_pte_to_page(pp, old, ht->ht_level); 3741 3742 /* 3743 * can stop short if we found a ref'd or mod'd page 3744 */ 3745 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3746 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3747 x86_hm_exit(pp); 3748 goto done; 3749 } 3750 } 3751 x86_hm_exit(pp); 3752 while (pszc < pp->p_szc) { 3753 page_t *tpp; 3754 pszc++; 3755 tpp = PP_GROUPLEADER(pp, pszc); 3756 if (pp != tpp) { 3757 pp = tpp; 3758 goto next_size; 3759 } 3760 } 3761 done: 3762 XPV_ALLOW_MIGRATE(); 3763 return (save_pp->p_nrm & nrmbits); 3764 } 3765 3766 /* 3767 * returns approx number of mappings to this pp. A return of 0 implies 3768 * there are no mappings to the page. 3769 */ 3770 ulong_t 3771 hat_page_getshare(page_t *pp) 3772 { 3773 uint_t cnt; 3774 cnt = hment_mapcnt(pp); 3775 #if defined(__amd64) 3776 if (vpm_enable && pp->p_vpmref) { 3777 cnt += 1; 3778 } 3779 #endif 3780 return (cnt); 3781 } 3782 3783 /* 3784 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3785 * otherwise. 3786 */ 3787 int 3788 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3789 { 3790 return (hat_page_getshare(pp) > sh_thresh); 3791 } 3792 3793 /* 3794 * hat_softlock isn't supported anymore 3795 */ 3796 /*ARGSUSED*/ 3797 faultcode_t 3798 hat_softlock( 3799 hat_t *hat, 3800 caddr_t addr, 3801 size_t *len, 3802 struct page **page_array, 3803 uint_t flags) 3804 { 3805 return (FC_NOSUPPORT); 3806 } 3807 3808 3809 3810 /* 3811 * Routine to expose supported HAT features to platform independent code. 3812 */ 3813 /*ARGSUSED*/ 3814 int 3815 hat_supported(enum hat_features feature, void *arg) 3816 { 3817 switch (feature) { 3818 3819 case HAT_SHARED_PT: /* this is really ISM */ 3820 return (1); 3821 3822 case HAT_DYNAMIC_ISM_UNMAP: 3823 return (0); 3824 3825 case HAT_VMODSORT: 3826 return (1); 3827 3828 case HAT_SHARED_REGIONS: 3829 return (0); 3830 3831 default: 3832 panic("hat_supported() - unknown feature"); 3833 } 3834 return (0); 3835 } 3836 3837 /* 3838 * Called when a thread is exiting and has been switched to the kernel AS 3839 */ 3840 void 3841 hat_thread_exit(kthread_t *thd) 3842 { 3843 ASSERT(thd->t_procp->p_as == &kas); 3844 XPV_DISALLOW_MIGRATE(); 3845 hat_switch(thd->t_procp->p_as->a_hat); 3846 XPV_ALLOW_MIGRATE(); 3847 } 3848 3849 /* 3850 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3851 */ 3852 /*ARGSUSED*/ 3853 void 3854 hat_setup(hat_t *hat, int flags) 3855 { 3856 XPV_DISALLOW_MIGRATE(); 3857 kpreempt_disable(); 3858 3859 hat_switch(hat); 3860 3861 kpreempt_enable(); 3862 XPV_ALLOW_MIGRATE(); 3863 } 3864 3865 /* 3866 * Prepare for a CPU private mapping for the given address. 3867 * 3868 * The address can only be used from a single CPU and can be remapped 3869 * using hat_mempte_remap(). Return the address of the PTE. 3870 * 3871 * We do the htable_create() if necessary and increment the valid count so 3872 * the htable can't disappear. We also hat_devload() the page table into 3873 * kernel so that the PTE is quickly accessed. 3874 */ 3875 hat_mempte_t 3876 hat_mempte_setup(caddr_t addr) 3877 { 3878 uintptr_t va = (uintptr_t)addr; 3879 htable_t *ht; 3880 uint_t entry; 3881 x86pte_t oldpte; 3882 hat_mempte_t p; 3883 3884 ASSERT(IS_PAGEALIGNED(va)); 3885 ASSERT(!IN_VA_HOLE(va)); 3886 ++curthread->t_hatdepth; 3887 XPV_DISALLOW_MIGRATE(); 3888 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3889 if (ht == NULL) { 3890 ht = htable_create(kas.a_hat, va, 0, NULL); 3891 entry = htable_va2entry(va, ht); 3892 ASSERT(ht->ht_level == 0); 3893 oldpte = x86pte_get(ht, entry); 3894 } 3895 if (PTE_ISVALID(oldpte)) 3896 panic("hat_mempte_setup(): address already mapped" 3897 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte); 3898 3899 /* 3900 * increment ht_valid_cnt so that the pagetable can't disappear 3901 */ 3902 HTABLE_INC(ht->ht_valid_cnt); 3903 3904 /* 3905 * return the PTE physical address to the caller. 3906 */ 3907 htable_release(ht); 3908 XPV_ALLOW_MIGRATE(); 3909 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3910 --curthread->t_hatdepth; 3911 return (p); 3912 } 3913 3914 /* 3915 * Release a CPU private mapping for the given address. 3916 * We decrement the htable valid count so it might be destroyed. 3917 */ 3918 /*ARGSUSED1*/ 3919 void 3920 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3921 { 3922 htable_t *ht; 3923 3924 XPV_DISALLOW_MIGRATE(); 3925 /* 3926 * invalidate any left over mapping and decrement the htable valid count 3927 */ 3928 #ifdef __xpv 3929 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 3930 UVMF_INVLPG | UVMF_LOCAL)) 3931 panic("HYPERVISOR_update_va_mapping() failed"); 3932 #else 3933 { 3934 x86pte_t *pteptr; 3935 3936 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3937 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3938 if (mmu.pae_hat) 3939 *pteptr = 0; 3940 else 3941 *(x86pte32_t *)pteptr = 0; 3942 mmu_tlbflush_entry(addr); 3943 x86pte_mapout(); 3944 } 3945 #endif 3946 3947 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3948 if (ht == NULL) 3949 panic("hat_mempte_release(): invalid address"); 3950 ASSERT(ht->ht_level == 0); 3951 HTABLE_DEC(ht->ht_valid_cnt); 3952 htable_release(ht); 3953 XPV_ALLOW_MIGRATE(); 3954 } 3955 3956 /* 3957 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3958 * on this CPU, so this ought to have been called with preemption disabled. 3959 */ 3960 void 3961 hat_mempte_remap( 3962 pfn_t pfn, 3963 caddr_t addr, 3964 hat_mempte_t pte_pa, 3965 uint_t attr, 3966 uint_t flags) 3967 { 3968 uintptr_t va = (uintptr_t)addr; 3969 x86pte_t pte; 3970 3971 /* 3972 * Remap the given PTE to the new page's PFN. Invalidate only 3973 * on this CPU. 3974 */ 3975 #ifdef DEBUG 3976 htable_t *ht; 3977 uint_t entry; 3978 3979 ASSERT(IS_PAGEALIGNED(va)); 3980 ASSERT(!IN_VA_HOLE(va)); 3981 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3982 ASSERT(ht != NULL); 3983 ASSERT(ht->ht_level == 0); 3984 ASSERT(ht->ht_valid_cnt > 0); 3985 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3986 htable_release(ht); 3987 #endif 3988 XPV_DISALLOW_MIGRATE(); 3989 pte = hati_mkpte(pfn, attr, 0, flags); 3990 #ifdef __xpv 3991 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 3992 panic("HYPERVISOR_update_va_mapping() failed"); 3993 #else 3994 { 3995 x86pte_t *pteptr; 3996 3997 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3998 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3999 if (mmu.pae_hat) 4000 *(x86pte_t *)pteptr = pte; 4001 else 4002 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 4003 mmu_tlbflush_entry(addr); 4004 x86pte_mapout(); 4005 } 4006 #endif 4007 XPV_ALLOW_MIGRATE(); 4008 } 4009 4010 4011 4012 /* 4013 * Hat locking functions 4014 * XXX - these two functions are currently being used by hatstats 4015 * they can be removed by using a per-as mutex for hatstats. 4016 */ 4017 void 4018 hat_enter(hat_t *hat) 4019 { 4020 mutex_enter(&hat->hat_mutex); 4021 } 4022 4023 void 4024 hat_exit(hat_t *hat) 4025 { 4026 mutex_exit(&hat->hat_mutex); 4027 } 4028 4029 /* 4030 * HAT part of cpu initialization. 4031 */ 4032 void 4033 hat_cpu_online(struct cpu *cpup) 4034 { 4035 if (cpup != CPU) { 4036 x86pte_cpu_init(cpup); 4037 hat_vlp_setup(cpup); 4038 } 4039 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 4040 } 4041 4042 /* 4043 * HAT part of cpu deletion. 4044 * (currently, we only call this after the cpu is safely passivated.) 4045 */ 4046 void 4047 hat_cpu_offline(struct cpu *cpup) 4048 { 4049 ASSERT(cpup != CPU); 4050 4051 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 4052 hat_vlp_teardown(cpup); 4053 x86pte_cpu_fini(cpup); 4054 } 4055 4056 /* 4057 * Function called after all CPUs are brought online. 4058 * Used to remove low address boot mappings. 4059 */ 4060 void 4061 clear_boot_mappings(uintptr_t low, uintptr_t high) 4062 { 4063 uintptr_t vaddr = low; 4064 htable_t *ht = NULL; 4065 level_t level; 4066 uint_t entry; 4067 x86pte_t pte; 4068 4069 /* 4070 * On 1st CPU we can unload the prom mappings, basically we blow away 4071 * all virtual mappings under _userlimit. 4072 */ 4073 while (vaddr < high) { 4074 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 4075 if (ht == NULL) 4076 break; 4077 4078 level = ht->ht_level; 4079 entry = htable_va2entry(vaddr, ht); 4080 ASSERT(level <= mmu.max_page_level); 4081 ASSERT(PTE_ISPAGE(pte, level)); 4082 4083 /* 4084 * Unload the mapping from the page tables. 4085 */ 4086 (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE); 4087 ASSERT(ht->ht_valid_cnt > 0); 4088 HTABLE_DEC(ht->ht_valid_cnt); 4089 PGCNT_DEC(ht->ht_hat, ht->ht_level); 4090 4091 vaddr += LEVEL_SIZE(ht->ht_level); 4092 } 4093 if (ht) 4094 htable_release(ht); 4095 } 4096 4097 /* 4098 * Atomically update a new translation for a single page. If the 4099 * currently installed PTE doesn't match the value we expect to find, 4100 * it's not updated and we return the PTE we found. 4101 * 4102 * If activating nosync or NOWRITE and the page was modified we need to sync 4103 * with the page_t. Also sync with page_t if clearing ref/mod bits. 4104 */ 4105 static x86pte_t 4106 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 4107 { 4108 page_t *pp; 4109 uint_t rm = 0; 4110 x86pte_t replaced; 4111 4112 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 4113 PTE_GET(expected, PT_MOD | PT_REF) && 4114 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 4115 !PTE_GET(new, PT_MOD | PT_REF))) { 4116 4117 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 4118 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4119 ASSERT(pp != NULL); 4120 if (PTE_GET(expected, PT_MOD)) 4121 rm |= P_MOD; 4122 if (PTE_GET(expected, PT_REF)) 4123 rm |= P_REF; 4124 PTE_CLR(new, PT_MOD | PT_REF); 4125 } 4126 4127 replaced = x86pte_update(ht, entry, expected, new); 4128 if (replaced != expected) 4129 return (replaced); 4130 4131 if (rm) { 4132 /* 4133 * sync to all constituent pages of a large page 4134 */ 4135 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4136 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4137 while (pgcnt-- > 0) { 4138 /* 4139 * hat_page_demote() can't decrease 4140 * pszc below this mapping size 4141 * since large mapping existed after we 4142 * took mlist lock. 4143 */ 4144 ASSERT(pp->p_szc >= ht->ht_level); 4145 hat_page_setattr(pp, rm); 4146 ++pp; 4147 } 4148 } 4149 4150 return (0); 4151 } 4152 4153 /* ARGSUSED */ 4154 void 4155 hat_join_srd(struct hat *hat, vnode_t *evp) 4156 { 4157 } 4158 4159 /* ARGSUSED */ 4160 hat_region_cookie_t 4161 hat_join_region(struct hat *hat, 4162 caddr_t r_saddr, 4163 size_t r_size, 4164 void *r_obj, 4165 u_offset_t r_objoff, 4166 uchar_t r_perm, 4167 uchar_t r_pgszc, 4168 hat_rgn_cb_func_t r_cb_function, 4169 uint_t flags) 4170 { 4171 panic("No shared region support on x86"); 4172 return (HAT_INVALID_REGION_COOKIE); 4173 } 4174 4175 /* ARGSUSED */ 4176 void 4177 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4178 { 4179 panic("No shared region support on x86"); 4180 } 4181 4182 /* ARGSUSED */ 4183 void 4184 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4185 { 4186 panic("No shared region support on x86"); 4187 } 4188 4189 4190 /* 4191 * Kernel Physical Mapping (kpm) facility 4192 * 4193 * Most of the routines needed to support segkpm are almost no-ops on the 4194 * x86 platform. We map in the entire segment when it is created and leave 4195 * it mapped in, so there is no additional work required to set up and tear 4196 * down individual mappings. All of these routines were created to support 4197 * SPARC platforms that have to avoid aliasing in their virtually indexed 4198 * caches. 4199 * 4200 * Most of the routines have sanity checks in them (e.g. verifying that the 4201 * passed-in page is locked). We don't actually care about most of these 4202 * checks on x86, but we leave them in place to identify problems in the 4203 * upper levels. 4204 */ 4205 4206 /* 4207 * Map in a locked page and return the vaddr. 4208 */ 4209 /*ARGSUSED*/ 4210 caddr_t 4211 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4212 { 4213 caddr_t vaddr; 4214 4215 #ifdef DEBUG 4216 if (kpm_enable == 0) { 4217 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4218 return ((caddr_t)NULL); 4219 } 4220 4221 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4222 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4223 return ((caddr_t)NULL); 4224 } 4225 #endif 4226 4227 vaddr = hat_kpm_page2va(pp, 1); 4228 4229 return (vaddr); 4230 } 4231 4232 /* 4233 * Mapout a locked page. 4234 */ 4235 /*ARGSUSED*/ 4236 void 4237 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4238 { 4239 #ifdef DEBUG 4240 if (kpm_enable == 0) { 4241 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4242 return; 4243 } 4244 4245 if (IS_KPM_ADDR(vaddr) == 0) { 4246 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4247 return; 4248 } 4249 4250 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4251 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4252 return; 4253 } 4254 #endif 4255 } 4256 4257 /* 4258 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical 4259 * memory addresses that are not described by a page_t. It can 4260 * also be used for normal pages that are not locked, but beware 4261 * this is dangerous - no locking is performed, so the identity of 4262 * the page could change. hat_kpm_mapin_pfn is not supported when 4263 * vac_colors > 1, because the chosen va depends on the page identity, 4264 * which could change. 4265 * The caller must only pass pfn's for valid physical addresses; violation 4266 * of this rule will cause panic. 4267 */ 4268 caddr_t 4269 hat_kpm_mapin_pfn(pfn_t pfn) 4270 { 4271 caddr_t paddr, vaddr; 4272 4273 if (kpm_enable == 0) 4274 return ((caddr_t)NULL); 4275 4276 paddr = (caddr_t)ptob(pfn); 4277 vaddr = (uintptr_t)kpm_vbase + paddr; 4278 4279 return ((caddr_t)vaddr); 4280 } 4281 4282 /*ARGSUSED*/ 4283 void 4284 hat_kpm_mapout_pfn(pfn_t pfn) 4285 { 4286 /* empty */ 4287 } 4288 4289 /* 4290 * Return the kpm virtual address for a specific pfn 4291 */ 4292 caddr_t 4293 hat_kpm_pfn2va(pfn_t pfn) 4294 { 4295 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4296 4297 ASSERT(!pfn_is_foreign(pfn)); 4298 return ((caddr_t)vaddr); 4299 } 4300 4301 /* 4302 * Return the kpm virtual address for the page at pp. 4303 */ 4304 /*ARGSUSED*/ 4305 caddr_t 4306 hat_kpm_page2va(struct page *pp, int checkswap) 4307 { 4308 return (hat_kpm_pfn2va(pp->p_pagenum)); 4309 } 4310 4311 /* 4312 * Return the page frame number for the kpm virtual address vaddr. 4313 */ 4314 pfn_t 4315 hat_kpm_va2pfn(caddr_t vaddr) 4316 { 4317 pfn_t pfn; 4318 4319 ASSERT(IS_KPM_ADDR(vaddr)); 4320 4321 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4322 4323 return (pfn); 4324 } 4325 4326 4327 /* 4328 * Return the page for the kpm virtual address vaddr. 4329 */ 4330 page_t * 4331 hat_kpm_vaddr2page(caddr_t vaddr) 4332 { 4333 pfn_t pfn; 4334 4335 ASSERT(IS_KPM_ADDR(vaddr)); 4336 4337 pfn = hat_kpm_va2pfn(vaddr); 4338 4339 return (page_numtopp_nolock(pfn)); 4340 } 4341 4342 /* 4343 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4344 * KPM page. This should never happen on x86 4345 */ 4346 int 4347 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4348 { 4349 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", 4350 (void *)hat, (void *)vaddr); 4351 4352 return (0); 4353 } 4354 4355 /*ARGSUSED*/ 4356 void 4357 hat_kpm_mseghash_clear(int nentries) 4358 {} 4359 4360 /*ARGSUSED*/ 4361 void 4362 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4363 {} 4364 4365 #ifndef __xpv 4366 void 4367 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, 4368 offset_t kpm_pages_off) 4369 { 4370 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off)); 4371 pfn_t base, end; 4372 4373 /* 4374 * kphysm_add_memory_dynamic() does not set nkpmpgs 4375 * when page_t memory is externally allocated. That 4376 * code must properly calculate nkpmpgs in all cases 4377 * if nkpmpgs needs to be used at some point. 4378 */ 4379 4380 /* 4381 * The meta (page_t) pages for dynamically added memory are allocated 4382 * either from the incoming memory itself or from existing memory. 4383 * In the former case the base of the incoming pages will be different 4384 * than the base of the dynamic segment so call memseg_get_start() to 4385 * get the actual base of the incoming memory for each case. 4386 */ 4387 4388 base = memseg_get_start(msp); 4389 end = msp->pages_end; 4390 4391 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base), 4392 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE, 4393 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4394 } 4395 4396 void 4397 hat_kpm_addmem_mseg_insert(struct memseg *msp) 4398 { 4399 _NOTE(ARGUNUSED(msp)); 4400 } 4401 4402 void 4403 hat_kpm_addmem_memsegs_update(struct memseg *msp) 4404 { 4405 _NOTE(ARGUNUSED(msp)); 4406 } 4407 4408 /* 4409 * Return end of metadata for an already setup memseg. 4410 * X86 platforms don't need per-page meta data to support kpm. 4411 */ 4412 caddr_t 4413 hat_kpm_mseg_reuse(struct memseg *msp) 4414 { 4415 return ((caddr_t)msp->epages); 4416 } 4417 4418 void 4419 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) 4420 { 4421 _NOTE(ARGUNUSED(msp, mspp)); 4422 ASSERT(0); 4423 } 4424 4425 void 4426 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, 4427 struct memseg *lo, struct memseg *mid, struct memseg *hi) 4428 { 4429 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi)); 4430 ASSERT(0); 4431 } 4432 4433 /* 4434 * Walk the memsegs chain, applying func to each memseg span. 4435 */ 4436 void 4437 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) 4438 { 4439 pfn_t pbase, pend; 4440 void *base; 4441 size_t size; 4442 struct memseg *msp; 4443 4444 for (msp = memsegs; msp; msp = msp->next) { 4445 pbase = msp->pages_base; 4446 pend = msp->pages_end; 4447 base = ptob(pbase) + kpm_vbase; 4448 size = ptob(pend - pbase); 4449 func(arg, base, size); 4450 } 4451 } 4452 4453 #else /* __xpv */ 4454 4455 /* 4456 * There are specific Hypervisor calls to establish and remove mappings 4457 * to grant table references and the privcmd driver. We have to ensure 4458 * that a page table actually exists. 4459 */ 4460 void 4461 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma) 4462 { 4463 maddr_t base_ma; 4464 htable_t *ht; 4465 uint_t entry; 4466 4467 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4468 XPV_DISALLOW_MIGRATE(); 4469 ht = htable_create(hat, (uintptr_t)addr, 0, NULL); 4470 4471 /* 4472 * if an address for pte_ma is passed in, return the MA of the pte 4473 * for this specific address. This address is only valid as long 4474 * as the htable stays locked. 4475 */ 4476 if (pte_ma != NULL) { 4477 entry = htable_va2entry((uintptr_t)addr, ht); 4478 base_ma = pa_to_ma(ptob(ht->ht_pfn)); 4479 *pte_ma = base_ma + (entry << mmu.pte_size_shift); 4480 } 4481 XPV_ALLOW_MIGRATE(); 4482 } 4483 4484 void 4485 hat_release_mapping(hat_t *hat, caddr_t addr) 4486 { 4487 htable_t *ht; 4488 4489 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4490 XPV_DISALLOW_MIGRATE(); 4491 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4492 ASSERT(ht != NULL); 4493 ASSERT(ht->ht_busy >= 2); 4494 htable_release(ht); 4495 htable_release(ht); 4496 XPV_ALLOW_MIGRATE(); 4497 } 4498 #endif /* __xpv */