Print this page
5601 TLB invalidation regression in 5498
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/i86pc/vm/hat_i86.c
+++ new/usr/src/uts/i86pc/vm/hat_i86.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 */
24 24 /*
25 25 * Copyright (c) 2010, Intel Corporation.
26 26 * All rights reserved.
27 27 */
28 28 /*
29 29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
30 30 * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
31 31 */
32 32
33 33 /*
34 34 * VM - Hardware Address Translation management for i386 and amd64
35 35 *
36 36 * Implementation of the interfaces described in <common/vm/hat.h>
37 37 *
38 38 * Nearly all the details of how the hardware is managed should not be
39 39 * visible outside this layer except for misc. machine specific functions
40 40 * that work in conjunction with this code.
41 41 *
42 42 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
43 43 */
44 44
45 45 #include <sys/machparam.h>
46 46 #include <sys/machsystm.h>
47 47 #include <sys/mman.h>
48 48 #include <sys/types.h>
49 49 #include <sys/systm.h>
50 50 #include <sys/cpuvar.h>
51 51 #include <sys/thread.h>
52 52 #include <sys/proc.h>
53 53 #include <sys/cpu.h>
54 54 #include <sys/kmem.h>
55 55 #include <sys/disp.h>
56 56 #include <sys/shm.h>
57 57 #include <sys/sysmacros.h>
58 58 #include <sys/machparam.h>
59 59 #include <sys/vmem.h>
60 60 #include <sys/vmsystm.h>
61 61 #include <sys/promif.h>
62 62 #include <sys/var.h>
63 63 #include <sys/x86_archext.h>
64 64 #include <sys/atomic.h>
65 65 #include <sys/bitmap.h>
66 66 #include <sys/controlregs.h>
67 67 #include <sys/bootconf.h>
68 68 #include <sys/bootsvcs.h>
69 69 #include <sys/bootinfo.h>
70 70 #include <sys/archsystm.h>
71 71
72 72 #include <vm/seg_kmem.h>
73 73 #include <vm/hat_i86.h>
74 74 #include <vm/as.h>
75 75 #include <vm/seg.h>
76 76 #include <vm/page.h>
77 77 #include <vm/seg_kp.h>
78 78 #include <vm/seg_kpm.h>
79 79 #include <vm/vm_dep.h>
80 80 #ifdef __xpv
81 81 #include <sys/hypervisor.h>
82 82 #endif
83 83 #include <vm/kboot_mmu.h>
84 84 #include <vm/seg_spt.h>
85 85
86 86 #include <sys/cmn_err.h>
87 87
88 88 /*
89 89 * Basic parameters for hat operation.
90 90 */
91 91 struct hat_mmu_info mmu;
92 92
93 93 /*
94 94 * The page that is the kernel's top level pagetable.
95 95 *
96 96 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
97 97 * on this 4K page for its top level page table. The remaining groups of
98 98 * 4 entries are used for per processor copies of user VLP pagetables for
99 99 * running threads. See hat_switch() and reload_pae32() for details.
100 100 *
101 101 * vlp_page[0..3] - level==2 PTEs for kernel HAT
102 102 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
103 103 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1
104 104 * etc...
105 105 */
106 106 static x86pte_t *vlp_page;
107 107
108 108 /*
109 109 * forward declaration of internal utility routines
110 110 */
111 111 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
112 112 x86pte_t new);
113 113
114 114 /*
115 115 * The kernel address space exists in all HATs. To implement this the
116 116 * kernel reserves a fixed number of entries in the topmost level(s) of page
117 117 * tables. The values are setup during startup and then copied to every user
118 118 * hat created by hat_alloc(). This means that kernelbase must be:
119 119 *
120 120 * 4Meg aligned for 32 bit kernels
121 121 * 512Gig aligned for x86_64 64 bit kernel
122 122 *
123 123 * The hat_kernel_range_ts describe what needs to be copied from kernel hat
124 124 * to each user hat.
125 125 */
126 126 typedef struct hat_kernel_range {
127 127 level_t hkr_level;
128 128 uintptr_t hkr_start_va;
129 129 uintptr_t hkr_end_va; /* zero means to end of memory */
130 130 } hat_kernel_range_t;
131 131 #define NUM_KERNEL_RANGE 2
132 132 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
133 133 static int num_kernel_ranges;
134 134
135 135 uint_t use_boot_reserve = 1; /* cleared after early boot process */
136 136 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */
137 137
138 138 /*
139 139 * enable_1gpg: controls 1g page support for user applications.
140 140 * By default, 1g pages are exported to user applications. enable_1gpg can
141 141 * be set to 0 to not export.
142 142 */
143 143 int enable_1gpg = 1;
144 144
145 145 /*
146 146 * AMD shanghai processors provide better management of 1gb ptes in its tlb.
147 147 * By default, 1g page support will be disabled for pre-shanghai AMD
148 148 * processors that don't have optimal tlb support for the 1g page size.
149 149 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
150 150 * processors.
151 151 */
152 152 int chk_optimal_1gtlb = 1;
153 153
154 154
155 155 #ifdef DEBUG
156 156 uint_t map1gcnt;
157 157 #endif
158 158
159 159
160 160 /*
161 161 * A cpuset for all cpus. This is used for kernel address cross calls, since
162 162 * the kernel addresses apply to all cpus.
163 163 */
164 164 cpuset_t khat_cpuset;
165 165
166 166 /*
167 167 * management stuff for hat structures
168 168 */
169 169 kmutex_t hat_list_lock;
170 170 kcondvar_t hat_list_cv;
171 171 kmem_cache_t *hat_cache;
172 172 kmem_cache_t *hat_hash_cache;
173 173 kmem_cache_t *vlp_hash_cache;
174 174
175 175 /*
176 176 * Simple statistics
177 177 */
178 178 struct hatstats hatstat;
179 179
180 180 /*
181 181 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
182 182 * correctly. For such hypervisors we must set PT_USER for kernel
183 183 * entries ourselves (normally the emulation would set PT_USER for
184 184 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is
185 185 * thus set appropriately. Note that dboot/kbm is OK, as only the full
186 186 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
187 187 * incorrect.
188 188 */
189 189 int pt_kern;
190 190
191 191 /*
192 192 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
193 193 */
194 194 extern void atomic_orb(uchar_t *addr, uchar_t val);
195 195 extern void atomic_andb(uchar_t *addr, uchar_t val);
196 196
197 197 #ifndef __xpv
198 198 extern pfn_t memseg_get_start(struct memseg *);
199 199 #endif
200 200
201 201 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask)
202 202 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD)
203 203 #define PP_ISREF(pp) PP_GETRM(pp, P_REF)
204 204 #define PP_ISRO(pp) PP_GETRM(pp, P_RO)
205 205
206 206 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm)
207 207 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD)
208 208 #define PP_SETREF(pp) PP_SETRM(pp, P_REF)
209 209 #define PP_SETRO(pp) PP_SETRM(pp, P_RO)
210 210
211 211 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm))
212 212 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD)
213 213 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF)
214 214 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO)
215 215 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO)
216 216
217 217 /*
218 218 * kmem cache constructor for struct hat
219 219 */
220 220 /*ARGSUSED*/
221 221 static int
222 222 hati_constructor(void *buf, void *handle, int kmflags)
223 223 {
224 224 hat_t *hat = buf;
225 225
226 226 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
227 227 bzero(hat->hat_pages_mapped,
228 228 sizeof (pgcnt_t) * (mmu.max_page_level + 1));
229 229 hat->hat_ism_pgcnt = 0;
230 230 hat->hat_stats = 0;
231 231 hat->hat_flags = 0;
232 232 CPUSET_ZERO(hat->hat_cpus);
233 233 hat->hat_htable = NULL;
234 234 hat->hat_ht_hash = NULL;
235 235 return (0);
236 236 }
237 237
238 238 /*
239 239 * Allocate a hat structure for as. We also create the top level
240 240 * htable and initialize it to contain the kernel hat entries.
241 241 */
242 242 hat_t *
243 243 hat_alloc(struct as *as)
244 244 {
245 245 hat_t *hat;
246 246 htable_t *ht; /* top level htable */
247 247 uint_t use_vlp;
248 248 uint_t r;
249 249 hat_kernel_range_t *rp;
250 250 uintptr_t va;
251 251 uintptr_t eva;
252 252 uint_t start;
253 253 uint_t cnt;
254 254 htable_t *src;
255 255
256 256 /*
257 257 * Once we start creating user process HATs we can enable
258 258 * the htable_steal() code.
259 259 */
260 260 if (can_steal_post_boot == 0)
261 261 can_steal_post_boot = 1;
262 262
263 263 ASSERT(AS_WRITE_HELD(as, &as->a_lock));
264 264 hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
265 265 hat->hat_as = as;
266 266 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
267 267 ASSERT(hat->hat_flags == 0);
268 268
269 269 #if defined(__xpv)
270 270 /*
271 271 * No VLP stuff on the hypervisor due to the 64-bit split top level
272 272 * page tables. On 32-bit it's not needed as the hypervisor takes
273 273 * care of copying the top level PTEs to a below 4Gig page.
274 274 */
275 275 use_vlp = 0;
276 276 #else /* __xpv */
277 277 /* 32 bit processes uses a VLP style hat when running with PAE */
278 278 #if defined(__amd64)
279 279 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
280 280 #elif defined(__i386)
281 281 use_vlp = mmu.pae_hat;
282 282 #endif
283 283 #endif /* __xpv */
284 284 if (use_vlp) {
285 285 hat->hat_flags = HAT_VLP;
286 286 bzero(hat->hat_vlp_ptes, VLP_SIZE);
287 287 }
288 288
289 289 /*
290 290 * Allocate the htable hash
291 291 */
292 292 if ((hat->hat_flags & HAT_VLP)) {
293 293 hat->hat_num_hash = mmu.vlp_hash_cnt;
294 294 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
295 295 } else {
296 296 hat->hat_num_hash = mmu.hash_cnt;
297 297 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
298 298 }
299 299 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
300 300
301 301 /*
302 302 * Initialize Kernel HAT entries at the top of the top level page
303 303 * tables for the new hat.
304 304 */
305 305 hat->hat_htable = NULL;
306 306 hat->hat_ht_cached = NULL;
307 307 XPV_DISALLOW_MIGRATE();
308 308 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
309 309 hat->hat_htable = ht;
310 310
311 311 #if defined(__amd64)
312 312 if (hat->hat_flags & HAT_VLP)
313 313 goto init_done;
314 314 #endif
315 315
316 316 for (r = 0; r < num_kernel_ranges; ++r) {
317 317 rp = &kernel_ranges[r];
318 318 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
319 319 va += cnt * LEVEL_SIZE(rp->hkr_level)) {
320 320
321 321 if (rp->hkr_level == TOP_LEVEL(hat))
322 322 ht = hat->hat_htable;
323 323 else
324 324 ht = htable_create(hat, va, rp->hkr_level,
325 325 NULL);
326 326
327 327 start = htable_va2entry(va, ht);
328 328 cnt = HTABLE_NUM_PTES(ht) - start;
329 329 eva = va +
330 330 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
331 331 if (rp->hkr_end_va != 0 &&
332 332 (eva > rp->hkr_end_va || eva == 0))
333 333 cnt = htable_va2entry(rp->hkr_end_va, ht) -
334 334 start;
335 335
336 336 #if defined(__i386) && !defined(__xpv)
337 337 if (ht->ht_flags & HTABLE_VLP) {
338 338 bcopy(&vlp_page[start],
339 339 &hat->hat_vlp_ptes[start],
340 340 cnt * sizeof (x86pte_t));
341 341 continue;
342 342 }
343 343 #endif
344 344 src = htable_lookup(kas.a_hat, va, rp->hkr_level);
345 345 ASSERT(src != NULL);
346 346 x86pte_copy(src, ht, start, cnt);
347 347 htable_release(src);
348 348 }
349 349 }
350 350
351 351 init_done:
352 352
353 353 #if defined(__xpv)
354 354 /*
355 355 * Pin top level page tables after initializing them
356 356 */
357 357 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
358 358 #if defined(__amd64)
359 359 xen_pin(hat->hat_user_ptable, mmu.max_level);
360 360 #endif
361 361 #endif
362 362 XPV_ALLOW_MIGRATE();
363 363
364 364 /*
365 365 * Put it at the start of the global list of all hats (used by stealing)
366 366 *
367 367 * kas.a_hat is not in the list but is instead used to find the
368 368 * first and last items in the list.
369 369 *
370 370 * - kas.a_hat->hat_next points to the start of the user hats.
371 371 * The list ends where hat->hat_next == NULL
372 372 *
373 373 * - kas.a_hat->hat_prev points to the last of the user hats.
374 374 * The list begins where hat->hat_prev == NULL
375 375 */
376 376 mutex_enter(&hat_list_lock);
377 377 hat->hat_prev = NULL;
378 378 hat->hat_next = kas.a_hat->hat_next;
379 379 if (hat->hat_next)
380 380 hat->hat_next->hat_prev = hat;
381 381 else
382 382 kas.a_hat->hat_prev = hat;
383 383 kas.a_hat->hat_next = hat;
384 384 mutex_exit(&hat_list_lock);
385 385
386 386 return (hat);
387 387 }
388 388
389 389 /*
390 390 * process has finished executing but as has not been cleaned up yet.
391 391 */
392 392 /*ARGSUSED*/
393 393 void
394 394 hat_free_start(hat_t *hat)
395 395 {
396 396 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
397 397
398 398 /*
399 399 * If the hat is currently a stealing victim, wait for the stealing
400 400 * to finish. Once we mark it as HAT_FREEING, htable_steal()
401 401 * won't look at its pagetables anymore.
402 402 */
403 403 mutex_enter(&hat_list_lock);
404 404 while (hat->hat_flags & HAT_VICTIM)
405 405 cv_wait(&hat_list_cv, &hat_list_lock);
406 406 hat->hat_flags |= HAT_FREEING;
407 407 mutex_exit(&hat_list_lock);
408 408 }
409 409
410 410 /*
411 411 * An address space is being destroyed, so we destroy the associated hat.
412 412 */
413 413 void
414 414 hat_free_end(hat_t *hat)
415 415 {
416 416 kmem_cache_t *cache;
417 417
418 418 ASSERT(hat->hat_flags & HAT_FREEING);
419 419
420 420 /*
421 421 * must not be running on the given hat
422 422 */
423 423 ASSERT(CPU->cpu_current_hat != hat);
424 424
425 425 /*
426 426 * Remove it from the list of HATs
427 427 */
428 428 mutex_enter(&hat_list_lock);
429 429 if (hat->hat_prev)
430 430 hat->hat_prev->hat_next = hat->hat_next;
431 431 else
432 432 kas.a_hat->hat_next = hat->hat_next;
433 433 if (hat->hat_next)
434 434 hat->hat_next->hat_prev = hat->hat_prev;
435 435 else
436 436 kas.a_hat->hat_prev = hat->hat_prev;
437 437 mutex_exit(&hat_list_lock);
438 438 hat->hat_next = hat->hat_prev = NULL;
439 439
440 440 #if defined(__xpv)
441 441 /*
442 442 * On the hypervisor, unpin top level page table(s)
443 443 */
444 444 xen_unpin(hat->hat_htable->ht_pfn);
445 445 #if defined(__amd64)
446 446 xen_unpin(hat->hat_user_ptable);
447 447 #endif
448 448 #endif
449 449
450 450 /*
451 451 * Make a pass through the htables freeing them all up.
452 452 */
453 453 htable_purge_hat(hat);
454 454
455 455 /*
456 456 * Decide which kmem cache the hash table came from, then free it.
457 457 */
458 458 if (hat->hat_flags & HAT_VLP)
459 459 cache = vlp_hash_cache;
460 460 else
461 461 cache = hat_hash_cache;
462 462 kmem_cache_free(cache, hat->hat_ht_hash);
463 463 hat->hat_ht_hash = NULL;
464 464
465 465 hat->hat_flags = 0;
466 466 kmem_cache_free(hat_cache, hat);
467 467 }
468 468
469 469 /*
470 470 * round kernelbase down to a supported value to use for _userlimit
471 471 *
472 472 * userlimit must be aligned down to an entry in the top level htable.
473 473 * The one exception is for 32 bit HAT's running PAE.
474 474 */
475 475 uintptr_t
476 476 hat_kernelbase(uintptr_t va)
477 477 {
478 478 #if defined(__i386)
479 479 va &= LEVEL_MASK(1);
480 480 #endif
481 481 if (IN_VA_HOLE(va))
482 482 panic("_userlimit %p will fall in VA hole\n", (void *)va);
483 483 return (va);
484 484 }
485 485
486 486 /*
487 487 *
488 488 */
489 489 static void
490 490 set_max_page_level()
491 491 {
492 492 level_t lvl;
493 493
494 494 if (!kbm_largepage_support) {
495 495 lvl = 0;
496 496 } else {
497 497 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) {
498 498 lvl = 2;
499 499 if (chk_optimal_1gtlb &&
500 500 cpuid_opteron_erratum(CPU, 6671130)) {
501 501 lvl = 1;
502 502 }
503 503 if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
504 504 LEVEL_SHIFT(0))) {
505 505 lvl = 1;
506 506 }
507 507 } else {
508 508 lvl = 1;
509 509 }
510 510 }
511 511 mmu.max_page_level = lvl;
512 512
513 513 if ((lvl == 2) && (enable_1gpg == 0))
514 514 mmu.umax_page_level = 1;
515 515 else
516 516 mmu.umax_page_level = lvl;
517 517 }
518 518
519 519 /*
520 520 * Initialize hat data structures based on processor MMU information.
521 521 */
522 522 void
523 523 mmu_init(void)
524 524 {
525 525 uint_t max_htables;
526 526 uint_t pa_bits;
527 527 uint_t va_bits;
528 528 int i;
529 529
530 530 /*
531 531 * If CPU enabled the page table global bit, use it for the kernel
532 532 * This is bit 7 in CR4 (PGE - Page Global Enable).
533 533 */
534 534 if (is_x86_feature(x86_featureset, X86FSET_PGE) &&
535 535 (getcr4() & CR4_PGE) != 0)
536 536 mmu.pt_global = PT_GLOBAL;
537 537
538 538 /*
539 539 * Detect NX and PAE usage.
540 540 */
541 541 mmu.pae_hat = kbm_pae_support;
542 542 if (kbm_nx_support)
543 543 mmu.pt_nx = PT_NX;
544 544 else
545 545 mmu.pt_nx = 0;
546 546
547 547 /*
548 548 * Use CPU info to set various MMU parameters
549 549 */
550 550 cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
551 551
552 552 if (va_bits < sizeof (void *) * NBBY) {
553 553 mmu.hole_start = (1ul << (va_bits - 1));
554 554 mmu.hole_end = 0ul - mmu.hole_start - 1;
555 555 } else {
556 556 mmu.hole_end = 0;
557 557 mmu.hole_start = mmu.hole_end - 1;
558 558 }
559 559 #if defined(OPTERON_ERRATUM_121)
560 560 /*
561 561 * If erratum 121 has already been detected at this time, hole_start
562 562 * contains the value to be subtracted from mmu.hole_start.
563 563 */
564 564 ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
565 565 hole_start = mmu.hole_start - hole_start;
566 566 #else
567 567 hole_start = mmu.hole_start;
568 568 #endif
569 569 hole_end = mmu.hole_end;
570 570
571 571 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
572 572 if (mmu.pae_hat == 0 && pa_bits > 32)
573 573 mmu.highest_pfn = PFN_4G - 1;
574 574
575 575 if (mmu.pae_hat) {
576 576 mmu.pte_size = 8; /* 8 byte PTEs */
577 577 mmu.pte_size_shift = 3;
578 578 } else {
579 579 mmu.pte_size = 4; /* 4 byte PTEs */
580 580 mmu.pte_size_shift = 2;
581 581 }
582 582
583 583 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE))
584 584 panic("Processor does not support PAE");
585 585
586 586 if (!is_x86_feature(x86_featureset, X86FSET_CX8))
587 587 panic("Processor does not support cmpxchg8b instruction");
588 588
589 589 #if defined(__amd64)
590 590
591 591 mmu.num_level = 4;
592 592 mmu.max_level = 3;
593 593 mmu.ptes_per_table = 512;
594 594 mmu.top_level_count = 512;
595 595
596 596 mmu.level_shift[0] = 12;
597 597 mmu.level_shift[1] = 21;
598 598 mmu.level_shift[2] = 30;
599 599 mmu.level_shift[3] = 39;
600 600
601 601 #elif defined(__i386)
602 602
603 603 if (mmu.pae_hat) {
604 604 mmu.num_level = 3;
605 605 mmu.max_level = 2;
606 606 mmu.ptes_per_table = 512;
607 607 mmu.top_level_count = 4;
608 608
609 609 mmu.level_shift[0] = 12;
610 610 mmu.level_shift[1] = 21;
611 611 mmu.level_shift[2] = 30;
612 612
613 613 } else {
614 614 mmu.num_level = 2;
615 615 mmu.max_level = 1;
616 616 mmu.ptes_per_table = 1024;
617 617 mmu.top_level_count = 1024;
618 618
619 619 mmu.level_shift[0] = 12;
620 620 mmu.level_shift[1] = 22;
621 621 }
622 622
623 623 #endif /* __i386 */
624 624
625 625 for (i = 0; i < mmu.num_level; ++i) {
626 626 mmu.level_size[i] = 1UL << mmu.level_shift[i];
627 627 mmu.level_offset[i] = mmu.level_size[i] - 1;
628 628 mmu.level_mask[i] = ~mmu.level_offset[i];
629 629 }
630 630
631 631 set_max_page_level();
632 632
633 633 mmu_page_sizes = mmu.max_page_level + 1;
634 634 mmu_exported_page_sizes = mmu.umax_page_level + 1;
635 635
636 636 /* restrict legacy applications from using pagesizes 1g and above */
637 637 mmu_legacy_page_sizes =
638 638 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
639 639
640 640
641 641 for (i = 0; i <= mmu.max_page_level; ++i) {
642 642 mmu.pte_bits[i] = PT_VALID | pt_kern;
643 643 if (i > 0)
644 644 mmu.pte_bits[i] |= PT_PAGESIZE;
645 645 }
646 646
647 647 /*
648 648 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
649 649 */
650 650 for (i = 1; i < mmu.num_level; ++i)
651 651 mmu.ptp_bits[i] = PT_PTPBITS;
652 652
653 653 #if defined(__i386)
654 654 mmu.ptp_bits[2] = PT_VALID;
655 655 #endif
656 656
657 657 /*
658 658 * Compute how many hash table entries to have per process for htables.
659 659 * We start with 1 page's worth of entries.
660 660 *
661 661 * If physical memory is small, reduce the amount need to cover it.
662 662 */
663 663 max_htables = physmax / mmu.ptes_per_table;
664 664 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
665 665 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
666 666 mmu.hash_cnt >>= 1;
667 667 mmu.vlp_hash_cnt = mmu.hash_cnt;
668 668
669 669 #if defined(__amd64)
670 670 /*
671 671 * If running in 64 bits and physical memory is large,
672 672 * increase the size of the cache to cover all of memory for
673 673 * a 64 bit process.
674 674 */
675 675 #define HASH_MAX_LENGTH 4
676 676 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
677 677 mmu.hash_cnt <<= 1;
678 678 #endif
679 679 }
680 680
681 681
682 682 /*
683 683 * initialize hat data structures
684 684 */
685 685 void
686 686 hat_init()
687 687 {
688 688 #if defined(__i386)
689 689 /*
690 690 * _userlimit must be aligned correctly
691 691 */
692 692 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
693 693 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
694 694 (void *)_userlimit, (void *)LEVEL_SIZE(1));
695 695 halt("hat_init(): Unable to continue");
696 696 }
697 697 #endif
698 698
699 699 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
700 700
701 701 /*
702 702 * initialize kmem caches
703 703 */
704 704 htable_init();
705 705 hment_init();
706 706
707 707 hat_cache = kmem_cache_create("hat_t",
708 708 sizeof (hat_t), 0, hati_constructor, NULL, NULL,
709 709 NULL, 0, 0);
710 710
711 711 hat_hash_cache = kmem_cache_create("HatHash",
712 712 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
713 713 NULL, 0, 0);
714 714
715 715 /*
716 716 * VLP hats can use a smaller hash table size on large memroy machines
717 717 */
718 718 if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
719 719 vlp_hash_cache = hat_hash_cache;
720 720 } else {
721 721 vlp_hash_cache = kmem_cache_create("HatVlpHash",
722 722 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
723 723 NULL, 0, 0);
724 724 }
725 725
726 726 /*
727 727 * Set up the kernel's hat
728 728 */
729 729 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
730 730 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
731 731 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
732 732 kas.a_hat->hat_as = &kas;
733 733 kas.a_hat->hat_flags = 0;
734 734 AS_LOCK_EXIT(&kas, &kas.a_lock);
735 735
736 736 CPUSET_ZERO(khat_cpuset);
737 737 CPUSET_ADD(khat_cpuset, CPU->cpu_id);
738 738
739 739 /*
740 740 * The kernel hat's next pointer serves as the head of the hat list .
741 741 * The kernel hat's prev pointer tracks the last hat on the list for
742 742 * htable_steal() to use.
743 743 */
744 744 kas.a_hat->hat_next = NULL;
745 745 kas.a_hat->hat_prev = NULL;
746 746
747 747 /*
748 748 * Allocate an htable hash bucket for the kernel
749 749 * XX64 - tune for 64 bit procs
750 750 */
751 751 kas.a_hat->hat_num_hash = mmu.hash_cnt;
752 752 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
753 753 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
754 754
755 755 /*
756 756 * zero out the top level and cached htable pointers
757 757 */
758 758 kas.a_hat->hat_ht_cached = NULL;
759 759 kas.a_hat->hat_htable = NULL;
760 760
761 761 /*
762 762 * Pre-allocate hrm_hashtab before enabling the collection of
763 763 * refmod statistics. Allocating on the fly would mean us
764 764 * running the risk of suffering recursive mutex enters or
765 765 * deadlocks.
766 766 */
767 767 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
768 768 KM_SLEEP);
769 769 }
770 770
771 771 /*
772 772 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
773 773 *
774 774 * Each CPU has a set of 2 pagetables that are reused for any 32 bit
775 775 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
776 776 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
777 777 */
778 778 /*ARGSUSED*/
779 779 static void
780 780 hat_vlp_setup(struct cpu *cpu)
781 781 {
782 782 #if defined(__amd64) && !defined(__xpv)
783 783 struct hat_cpu_info *hci = cpu->cpu_hat_info;
784 784 pfn_t pfn;
785 785
786 786 /*
787 787 * allocate the level==2 page table for the bottom most
788 788 * 512Gig of address space (this is where 32 bit apps live)
789 789 */
790 790 ASSERT(hci != NULL);
791 791 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
792 792
793 793 /*
794 794 * Allocate a top level pagetable and copy the kernel's
795 795 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
796 796 */
797 797 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
798 798 hci->hci_vlp_pfn =
799 799 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
800 800 ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
801 801 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
802 802
803 803 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
804 804 ASSERT(pfn != PFN_INVALID);
805 805 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
806 806 #endif /* __amd64 && !__xpv */
807 807 }
808 808
809 809 /*ARGSUSED*/
810 810 static void
811 811 hat_vlp_teardown(cpu_t *cpu)
812 812 {
813 813 #if defined(__amd64) && !defined(__xpv)
814 814 struct hat_cpu_info *hci;
815 815
816 816 if ((hci = cpu->cpu_hat_info) == NULL)
817 817 return;
818 818 if (hci->hci_vlp_l2ptes)
819 819 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
820 820 if (hci->hci_vlp_l3ptes)
821 821 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
822 822 #endif
823 823 }
824 824
825 825 #define NEXT_HKR(r, l, s, e) { \
826 826 kernel_ranges[r].hkr_level = l; \
827 827 kernel_ranges[r].hkr_start_va = s; \
828 828 kernel_ranges[r].hkr_end_va = e; \
829 829 ++r; \
830 830 }
831 831
832 832 /*
833 833 * Finish filling in the kernel hat.
834 834 * Pre fill in all top level kernel page table entries for the kernel's
835 835 * part of the address range. From this point on we can't use any new
836 836 * kernel large pages if they need PTE's at max_level
837 837 *
838 838 * create the kmap mappings.
839 839 */
840 840 void
841 841 hat_init_finish(void)
842 842 {
843 843 size_t size;
844 844 uint_t r = 0;
845 845 uintptr_t va;
846 846 hat_kernel_range_t *rp;
847 847
848 848
849 849 /*
850 850 * We are now effectively running on the kernel hat.
851 851 * Clearing use_boot_reserve shuts off using the pre-allocated boot
852 852 * reserve for all HAT allocations. From here on, the reserves are
853 853 * only used when avoiding recursion in kmem_alloc().
854 854 */
855 855 use_boot_reserve = 0;
856 856 htable_adjust_reserve();
857 857
858 858 /*
859 859 * User HATs are initialized with copies of all kernel mappings in
860 860 * higher level page tables. Ensure that those entries exist.
861 861 */
862 862 #if defined(__amd64)
863 863
864 864 NEXT_HKR(r, 3, kernelbase, 0);
865 865 #if defined(__xpv)
866 866 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
867 867 #endif
868 868
869 869 #elif defined(__i386)
870 870
871 871 #if !defined(__xpv)
872 872 if (mmu.pae_hat) {
873 873 va = kernelbase;
874 874 if ((va & LEVEL_MASK(2)) != va) {
875 875 va = P2ROUNDUP(va, LEVEL_SIZE(2));
876 876 NEXT_HKR(r, 1, kernelbase, va);
877 877 }
878 878 if (va != 0)
879 879 NEXT_HKR(r, 2, va, 0);
880 880 } else
881 881 #endif /* __xpv */
882 882 NEXT_HKR(r, 1, kernelbase, 0);
883 883
884 884 #endif /* __i386 */
885 885
886 886 num_kernel_ranges = r;
887 887
888 888 /*
889 889 * Create all the kernel pagetables that will have entries
890 890 * shared to user HATs.
891 891 */
892 892 for (r = 0; r < num_kernel_ranges; ++r) {
893 893 rp = &kernel_ranges[r];
894 894 for (va = rp->hkr_start_va; va != rp->hkr_end_va;
895 895 va += LEVEL_SIZE(rp->hkr_level)) {
896 896 htable_t *ht;
897 897
898 898 if (IN_HYPERVISOR_VA(va))
899 899 continue;
900 900
901 901 /* can/must skip if a page mapping already exists */
902 902 if (rp->hkr_level <= mmu.max_page_level &&
903 903 (ht = htable_getpage(kas.a_hat, va, NULL)) !=
904 904 NULL) {
905 905 htable_release(ht);
906 906 continue;
907 907 }
908 908
909 909 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
910 910 NULL);
911 911 }
912 912 }
913 913
914 914 /*
915 915 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
916 916 * page holding the top level pagetable. We use the remainder for
917 917 * the "per CPU" page tables for VLP processes.
918 918 * Map the top level kernel pagetable into the kernel to make
919 919 * it easy to use bcopy access these tables.
920 920 */
921 921 if (mmu.pae_hat) {
922 922 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
923 923 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
924 924 kas.a_hat->hat_htable->ht_pfn,
925 925 #if !defined(__xpv)
926 926 PROT_WRITE |
927 927 #endif
928 928 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
929 929 HAT_LOAD | HAT_LOAD_NOCONSIST);
930 930 }
931 931 hat_vlp_setup(CPU);
932 932
933 933 /*
934 934 * Create kmap (cached mappings of kernel PTEs)
935 935 * for 32 bit we map from segmap_start .. ekernelheap
936 936 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
937 937 */
938 938 #if defined(__i386)
939 939 size = (uintptr_t)ekernelheap - segmap_start;
940 940 #elif defined(__amd64)
941 941 size = segmapsize;
942 942 #endif
943 943 hat_kmap_init((uintptr_t)segmap_start, size);
944 944 }
945 945
946 946 /*
947 947 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
948 948 * are 32 bit, so for safety we must use atomic_cas_64() to install these.
949 949 */
950 950 #ifdef __i386
951 951 static void
952 952 reload_pae32(hat_t *hat, cpu_t *cpu)
953 953 {
954 954 x86pte_t *src;
955 955 x86pte_t *dest;
956 956 x86pte_t pte;
957 957 int i;
958 958
959 959 /*
960 960 * Load the 4 entries of the level 2 page table into this
961 961 * cpu's range of the vlp_page and point cr3 at them.
962 962 */
963 963 ASSERT(mmu.pae_hat);
964 964 src = hat->hat_vlp_ptes;
965 965 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
966 966 for (i = 0; i < VLP_NUM_PTES; ++i) {
967 967 for (;;) {
968 968 pte = dest[i];
969 969 if (pte == src[i])
970 970 break;
971 971 if (atomic_cas_64(dest + i, pte, src[i]) != src[i])
972 972 break;
973 973 }
974 974 }
975 975 }
976 976 #endif
977 977
978 978 /*
979 979 * Switch to a new active hat, maintaining bit masks to track active CPUs.
980 980 *
981 981 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
982 982 * remains a 32-bit value.
983 983 */
984 984 void
985 985 hat_switch(hat_t *hat)
986 986 {
987 987 uint64_t newcr3;
988 988 cpu_t *cpu = CPU;
989 989 hat_t *old = cpu->cpu_current_hat;
990 990
991 991 /*
992 992 * set up this information first, so we don't miss any cross calls
993 993 */
994 994 if (old != NULL) {
995 995 if (old == hat)
996 996 return;
997 997 if (old != kas.a_hat)
998 998 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
999 999 }
1000 1000
1001 1001 /*
1002 1002 * Add this CPU to the active set for this HAT.
1003 1003 */
1004 1004 if (hat != kas.a_hat) {
1005 1005 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
1006 1006 }
1007 1007 cpu->cpu_current_hat = hat;
1008 1008
1009 1009 /*
1010 1010 * now go ahead and load cr3
1011 1011 */
1012 1012 if (hat->hat_flags & HAT_VLP) {
1013 1013 #if defined(__amd64)
1014 1014 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1015 1015
1016 1016 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1017 1017 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1018 1018 #elif defined(__i386)
1019 1019 reload_pae32(hat, cpu);
1020 1020 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1021 1021 (cpu->cpu_id + 1) * VLP_SIZE;
1022 1022 #endif
1023 1023 } else {
1024 1024 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1025 1025 }
1026 1026 #ifdef __xpv
1027 1027 {
1028 1028 struct mmuext_op t[2];
1029 1029 uint_t retcnt;
1030 1030 uint_t opcnt = 1;
1031 1031
1032 1032 t[0].cmd = MMUEXT_NEW_BASEPTR;
1033 1033 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1034 1034 #if defined(__amd64)
1035 1035 /*
1036 1036 * There's an interesting problem here, as to what to
1037 1037 * actually specify when switching to the kernel hat.
1038 1038 * For now we'll reuse the kernel hat again.
1039 1039 */
1040 1040 t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1041 1041 if (hat == kas.a_hat)
1042 1042 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1043 1043 else
1044 1044 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1045 1045 ++opcnt;
1046 1046 #endif /* __amd64 */
1047 1047 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1048 1048 panic("HYPERVISOR_mmu_update() failed");
1049 1049 ASSERT(retcnt == opcnt);
1050 1050
1051 1051 }
1052 1052 #else
1053 1053 setcr3(newcr3);
1054 1054 #endif
1055 1055 ASSERT(cpu == CPU);
1056 1056 }
1057 1057
1058 1058 /*
1059 1059 * Utility to return a valid x86pte_t from protections, pfn, and level number
1060 1060 */
1061 1061 static x86pte_t
1062 1062 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1063 1063 {
1064 1064 x86pte_t pte;
1065 1065 uint_t cache_attr = attr & HAT_ORDER_MASK;
1066 1066
1067 1067 pte = MAKEPTE(pfn, level);
1068 1068
1069 1069 if (attr & PROT_WRITE)
1070 1070 PTE_SET(pte, PT_WRITABLE);
1071 1071
1072 1072 if (attr & PROT_USER)
1073 1073 PTE_SET(pte, PT_USER);
1074 1074
1075 1075 if (!(attr & PROT_EXEC))
1076 1076 PTE_SET(pte, mmu.pt_nx);
1077 1077
1078 1078 /*
1079 1079 * Set the software bits used track ref/mod sync's and hments.
1080 1080 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1081 1081 */
1082 1082 if (flags & HAT_LOAD_NOCONSIST)
1083 1083 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1084 1084 else if (attr & HAT_NOSYNC)
1085 1085 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1086 1086
1087 1087 /*
1088 1088 * Set the caching attributes in the PTE. The combination
1089 1089 * of attributes are poorly defined, so we pay attention
1090 1090 * to them in the given order.
1091 1091 *
1092 1092 * The test for HAT_STRICTORDER is different because it's defined
1093 1093 * as "0" - which was a stupid thing to do, but is too late to change!
1094 1094 */
1095 1095 if (cache_attr == HAT_STRICTORDER) {
1096 1096 PTE_SET(pte, PT_NOCACHE);
1097 1097 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1098 1098 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1099 1099 /* nothing to set */;
1100 1100 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1101 1101 PTE_SET(pte, PT_NOCACHE);
1102 1102 if (is_x86_feature(x86_featureset, X86FSET_PAT))
1103 1103 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1104 1104 else
1105 1105 PTE_SET(pte, PT_WRITETHRU);
1106 1106 } else {
1107 1107 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1108 1108 }
1109 1109
1110 1110 return (pte);
1111 1111 }
1112 1112
1113 1113 /*
1114 1114 * Duplicate address translations of the parent to the child.
1115 1115 * This function really isn't used anymore.
1116 1116 */
1117 1117 /*ARGSUSED*/
1118 1118 int
1119 1119 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1120 1120 {
1121 1121 ASSERT((uintptr_t)addr < kernelbase);
1122 1122 ASSERT(new != kas.a_hat);
1123 1123 ASSERT(old != kas.a_hat);
1124 1124 return (0);
1125 1125 }
1126 1126
1127 1127 /*
1128 1128 * Allocate any hat resources required for a process being swapped in.
1129 1129 */
1130 1130 /*ARGSUSED*/
1131 1131 void
1132 1132 hat_swapin(hat_t *hat)
1133 1133 {
1134 1134 /* do nothing - we let everything fault back in */
1135 1135 }
1136 1136
1137 1137 /*
1138 1138 * Unload all translations associated with an address space of a process
1139 1139 * that is being swapped out.
1140 1140 */
1141 1141 void
1142 1142 hat_swapout(hat_t *hat)
1143 1143 {
1144 1144 uintptr_t vaddr = (uintptr_t)0;
1145 1145 uintptr_t eaddr = _userlimit;
1146 1146 htable_t *ht = NULL;
1147 1147 level_t l;
1148 1148
1149 1149 XPV_DISALLOW_MIGRATE();
1150 1150 /*
1151 1151 * We can't just call hat_unload(hat, 0, _userlimit...) here, because
1152 1152 * seg_spt and shared pagetables can't be swapped out.
1153 1153 * Take a look at segspt_shmswapout() - it's a big no-op.
1154 1154 *
1155 1155 * Instead we'll walk through all the address space and unload
1156 1156 * any mappings which we are sure are not shared, not locked.
1157 1157 */
1158 1158 ASSERT(IS_PAGEALIGNED(vaddr));
1159 1159 ASSERT(IS_PAGEALIGNED(eaddr));
1160 1160 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1161 1161 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1162 1162 eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1163 1163
1164 1164 while (vaddr < eaddr) {
1165 1165 (void) htable_walk(hat, &ht, &vaddr, eaddr);
1166 1166 if (ht == NULL)
1167 1167 break;
1168 1168
1169 1169 ASSERT(!IN_VA_HOLE(vaddr));
1170 1170
1171 1171 /*
1172 1172 * If the page table is shared skip its entire range.
1173 1173 */
1174 1174 l = ht->ht_level;
1175 1175 if (ht->ht_flags & HTABLE_SHARED_PFN) {
1176 1176 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1177 1177 htable_release(ht);
1178 1178 ht = NULL;
1179 1179 continue;
1180 1180 }
1181 1181
1182 1182 /*
1183 1183 * If the page table has no locked entries, unload this one.
1184 1184 */
1185 1185 if (ht->ht_lock_cnt == 0)
1186 1186 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1187 1187 HAT_UNLOAD_UNMAP);
1188 1188
1189 1189 /*
1190 1190 * If we have a level 0 page table with locked entries,
1191 1191 * skip the entire page table, otherwise skip just one entry.
1192 1192 */
1193 1193 if (ht->ht_lock_cnt > 0 && l == 0)
1194 1194 vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1195 1195 else
1196 1196 vaddr += LEVEL_SIZE(l);
1197 1197 }
1198 1198 if (ht)
1199 1199 htable_release(ht);
1200 1200
1201 1201 /*
1202 1202 * We're in swapout because the system is low on memory, so
1203 1203 * go back and flush all the htables off the cached list.
1204 1204 */
1205 1205 htable_purge_hat(hat);
1206 1206 XPV_ALLOW_MIGRATE();
1207 1207 }
1208 1208
1209 1209 /*
1210 1210 * returns number of bytes that have valid mappings in hat.
1211 1211 */
1212 1212 size_t
1213 1213 hat_get_mapped_size(hat_t *hat)
1214 1214 {
1215 1215 size_t total = 0;
1216 1216 int l;
1217 1217
1218 1218 for (l = 0; l <= mmu.max_page_level; l++)
1219 1219 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1220 1220 total += hat->hat_ism_pgcnt;
1221 1221
1222 1222 return (total);
1223 1223 }
1224 1224
1225 1225 /*
1226 1226 * enable/disable collection of stats for hat.
1227 1227 */
1228 1228 int
1229 1229 hat_stats_enable(hat_t *hat)
1230 1230 {
1231 1231 atomic_inc_32(&hat->hat_stats);
1232 1232 return (1);
1233 1233 }
1234 1234
1235 1235 void
1236 1236 hat_stats_disable(hat_t *hat)
1237 1237 {
1238 1238 atomic_dec_32(&hat->hat_stats);
1239 1239 }
1240 1240
1241 1241 /*
1242 1242 * Utility to sync the ref/mod bits from a page table entry to the page_t
1243 1243 * We must be holding the mapping list lock when this is called.
1244 1244 */
1245 1245 static void
1246 1246 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1247 1247 {
1248 1248 uint_t rm = 0;
1249 1249 pgcnt_t pgcnt;
1250 1250
1251 1251 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1252 1252 return;
1253 1253
1254 1254 if (PTE_GET(pte, PT_REF))
1255 1255 rm |= P_REF;
1256 1256
1257 1257 if (PTE_GET(pte, PT_MOD))
1258 1258 rm |= P_MOD;
1259 1259
1260 1260 if (rm == 0)
1261 1261 return;
1262 1262
1263 1263 /*
1264 1264 * sync to all constituent pages of a large page
1265 1265 */
1266 1266 ASSERT(x86_hm_held(pp));
1267 1267 pgcnt = page_get_pagecnt(level);
1268 1268 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1269 1269 for (; pgcnt > 0; --pgcnt) {
1270 1270 /*
1271 1271 * hat_page_demote() can't decrease
1272 1272 * pszc below this mapping size
1273 1273 * since this large mapping existed after we
1274 1274 * took mlist lock.
1275 1275 */
1276 1276 ASSERT(pp->p_szc >= level);
1277 1277 hat_page_setattr(pp, rm);
1278 1278 ++pp;
1279 1279 }
1280 1280 }
1281 1281
1282 1282 /*
1283 1283 * This the set of PTE bits for PFN, permissions and caching
1284 1284 * that are allowed to change on a HAT_LOAD_REMAP
1285 1285 */
1286 1286 #define PT_REMAP_BITS \
1287 1287 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \
1288 1288 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1289 1289
1290 1290 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX)
1291 1291 /*
1292 1292 * Do the low-level work to get a mapping entered into a HAT's pagetables
1293 1293 * and in the mapping list of the associated page_t.
1294 1294 */
1295 1295 static int
1296 1296 hati_pte_map(
1297 1297 htable_t *ht,
1298 1298 uint_t entry,
1299 1299 page_t *pp,
1300 1300 x86pte_t pte,
1301 1301 int flags,
1302 1302 void *pte_ptr)
1303 1303 {
1304 1304 hat_t *hat = ht->ht_hat;
1305 1305 x86pte_t old_pte;
1306 1306 level_t l = ht->ht_level;
1307 1307 hment_t *hm;
1308 1308 uint_t is_consist;
1309 1309 uint_t is_locked;
1310 1310 int rv = 0;
1311 1311
1312 1312 /*
1313 1313 * Is this a consistent (ie. need mapping list lock) mapping?
1314 1314 */
1315 1315 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1316 1316
1317 1317 /*
1318 1318 * Track locked mapping count in the htable. Do this first,
1319 1319 * as we track locking even if there already is a mapping present.
1320 1320 */
1321 1321 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1322 1322 if (is_locked)
1323 1323 HTABLE_LOCK_INC(ht);
1324 1324
1325 1325 /*
1326 1326 * Acquire the page's mapping list lock and get an hment to use.
1327 1327 * Note that hment_prepare() might return NULL.
1328 1328 */
1329 1329 if (is_consist) {
1330 1330 x86_hm_enter(pp);
1331 1331 hm = hment_prepare(ht, entry, pp);
1332 1332 }
1333 1333
1334 1334 /*
1335 1335 * Set the new pte, retrieving the old one at the same time.
1336 1336 */
1337 1337 old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1338 1338
1339 1339 /*
1340 1340 * Did we get a large page / page table collision?
1341 1341 */
1342 1342 if (old_pte == LPAGE_ERROR) {
1343 1343 if (is_locked)
1344 1344 HTABLE_LOCK_DEC(ht);
1345 1345 rv = -1;
1346 1346 goto done;
1347 1347 }
1348 1348
1349 1349 /*
1350 1350 * If the mapping didn't change there is nothing more to do.
1351 1351 */
1352 1352 if (PTE_EQUIV(pte, old_pte))
1353 1353 goto done;
1354 1354
1355 1355 /*
1356 1356 * Install a new mapping in the page's mapping list
1357 1357 */
1358 1358 if (!PTE_ISVALID(old_pte)) {
1359 1359 if (is_consist) {
1360 1360 hment_assign(ht, entry, pp, hm);
1361 1361 x86_hm_exit(pp);
1362 1362 } else {
1363 1363 ASSERT(flags & HAT_LOAD_NOCONSIST);
1364 1364 }
1365 1365 #if defined(__amd64)
1366 1366 if (ht->ht_flags & HTABLE_VLP) {
1367 1367 cpu_t *cpu = CPU;
1368 1368 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1369 1369 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1370 1370 }
1371 1371 #endif
1372 1372 HTABLE_INC(ht->ht_valid_cnt);
1373 1373 PGCNT_INC(hat, l);
1374 1374 return (rv);
1375 1375 }
1376 1376
1377 1377 /*
1378 1378 * Remap's are more complicated:
1379 1379 * - HAT_LOAD_REMAP must be specified if changing the pfn.
1380 1380 * We also require that NOCONSIST be specified.
1381 1381 * - Otherwise only permission or caching bits may change.
1382 1382 */
1383 1383 if (!PTE_ISPAGE(old_pte, l))
1384 1384 panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1385 1385
1386 1386 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1387 1387 REMAPASSERT(flags & HAT_LOAD_REMAP);
1388 1388 REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1389 1389 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1390 1390 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1391 1391 pf_is_memory(PTE2PFN(pte, l)));
1392 1392 REMAPASSERT(!is_consist);
1393 1393 }
1394 1394
1395 1395 /*
1396 1396 * We only let remaps change the certain bits in the PTE.
1397 1397 */
1398 1398 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1399 1399 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1400 1400 old_pte, pte);
1401 1401
1402 1402 /*
1403 1403 * We don't create any mapping list entries on a remap, so release
1404 1404 * any allocated hment after we drop the mapping list lock.
1405 1405 */
1406 1406 done:
1407 1407 if (is_consist) {
1408 1408 x86_hm_exit(pp);
1409 1409 if (hm != NULL)
1410 1410 hment_free(hm);
1411 1411 }
1412 1412 return (rv);
1413 1413 }
1414 1414
1415 1415 /*
1416 1416 * Internal routine to load a single page table entry. This only fails if
1417 1417 * we attempt to overwrite a page table link with a large page.
1418 1418 */
1419 1419 static int
1420 1420 hati_load_common(
1421 1421 hat_t *hat,
1422 1422 uintptr_t va,
1423 1423 page_t *pp,
1424 1424 uint_t attr,
1425 1425 uint_t flags,
1426 1426 level_t level,
1427 1427 pfn_t pfn)
1428 1428 {
1429 1429 htable_t *ht;
1430 1430 uint_t entry;
1431 1431 x86pte_t pte;
1432 1432 int rv = 0;
1433 1433
1434 1434 /*
1435 1435 * The number 16 is arbitrary and here to catch a recursion problem
1436 1436 * early before we blow out the kernel stack.
1437 1437 */
1438 1438 ++curthread->t_hatdepth;
1439 1439 ASSERT(curthread->t_hatdepth < 16);
1440 1440
1441 1441 ASSERT(hat == kas.a_hat ||
1442 1442 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1443 1443
1444 1444 if (flags & HAT_LOAD_SHARE)
1445 1445 hat->hat_flags |= HAT_SHARED;
1446 1446
1447 1447 /*
1448 1448 * Find the page table that maps this page if it already exists.
1449 1449 */
1450 1450 ht = htable_lookup(hat, va, level);
1451 1451
1452 1452 /*
1453 1453 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1454 1454 */
1455 1455 if (pp == NULL)
1456 1456 flags |= HAT_LOAD_NOCONSIST;
1457 1457
1458 1458 if (ht == NULL) {
1459 1459 ht = htable_create(hat, va, level, NULL);
1460 1460 ASSERT(ht != NULL);
1461 1461 }
1462 1462 entry = htable_va2entry(va, ht);
1463 1463
1464 1464 /*
1465 1465 * a bunch of paranoid error checking
1466 1466 */
1467 1467 ASSERT(ht->ht_busy > 0);
1468 1468 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1469 1469 panic("hati_load_common: bad htable %p, va %p",
1470 1470 (void *)ht, (void *)va);
1471 1471 ASSERT(ht->ht_level == level);
1472 1472
1473 1473 /*
1474 1474 * construct the new PTE
1475 1475 */
1476 1476 if (hat == kas.a_hat)
1477 1477 attr &= ~PROT_USER;
1478 1478 pte = hati_mkpte(pfn, attr, level, flags);
1479 1479 if (hat == kas.a_hat && va >= kernelbase)
1480 1480 PTE_SET(pte, mmu.pt_global);
1481 1481
1482 1482 /*
1483 1483 * establish the mapping
1484 1484 */
1485 1485 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1486 1486
1487 1487 /*
1488 1488 * release the htable and any reserves
1489 1489 */
1490 1490 htable_release(ht);
1491 1491 --curthread->t_hatdepth;
1492 1492 return (rv);
1493 1493 }
1494 1494
1495 1495 /*
1496 1496 * special case of hat_memload to deal with some kernel addrs for performance
1497 1497 */
1498 1498 static void
1499 1499 hat_kmap_load(
1500 1500 caddr_t addr,
1501 1501 page_t *pp,
1502 1502 uint_t attr,
1503 1503 uint_t flags)
1504 1504 {
1505 1505 uintptr_t va = (uintptr_t)addr;
1506 1506 x86pte_t pte;
1507 1507 pfn_t pfn = page_pptonum(pp);
1508 1508 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr);
1509 1509 htable_t *ht;
1510 1510 uint_t entry;
1511 1511 void *pte_ptr;
1512 1512
1513 1513 /*
1514 1514 * construct the requested PTE
1515 1515 */
1516 1516 attr &= ~PROT_USER;
1517 1517 attr |= HAT_STORECACHING_OK;
1518 1518 pte = hati_mkpte(pfn, attr, 0, flags);
1519 1519 PTE_SET(pte, mmu.pt_global);
1520 1520
1521 1521 /*
1522 1522 * Figure out the pte_ptr and htable and use common code to finish up
1523 1523 */
1524 1524 if (mmu.pae_hat)
1525 1525 pte_ptr = mmu.kmap_ptes + pg_off;
1526 1526 else
1527 1527 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1528 1528 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1529 1529 LEVEL_SHIFT(1)];
1530 1530 entry = htable_va2entry(va, ht);
1531 1531 ++curthread->t_hatdepth;
1532 1532 ASSERT(curthread->t_hatdepth < 16);
1533 1533 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1534 1534 --curthread->t_hatdepth;
1535 1535 }
1536 1536
1537 1537 /*
1538 1538 * hat_memload() - load a translation to the given page struct
1539 1539 *
1540 1540 * Flags for hat_memload/hat_devload/hat_*attr.
1541 1541 *
1542 1542 * HAT_LOAD Default flags to load a translation to the page.
1543 1543 *
1544 1544 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(),
1545 1545 * and hat_devload().
1546 1546 *
1547 1547 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1548 1548 * sets PT_NOCONSIST
1549 1549 *
1550 1550 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables
1551 1551 * that map some user pages (not kas) is shared by more
1552 1552 * than one process (eg. ISM).
1553 1553 *
1554 1554 * HAT_LOAD_REMAP Reload a valid pte with a different page frame.
1555 1555 *
1556 1556 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this
1557 1557 * point, it's setting up mapping to allocate internal
1558 1558 * hat layer data structures. This flag forces hat layer
1559 1559 * to tap its reserves in order to prevent infinite
1560 1560 * recursion.
1561 1561 *
1562 1562 * The following is a protection attribute (like PROT_READ, etc.)
1563 1563 *
1564 1564 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits
1565 1565 * are never cleared.
1566 1566 *
1567 1567 * Installing new valid PTE's and creation of the mapping list
1568 1568 * entry are controlled under the same lock. It's derived from the
1569 1569 * page_t being mapped.
1570 1570 */
1571 1571 static uint_t supported_memload_flags =
1572 1572 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1573 1573 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1574 1574
1575 1575 void
1576 1576 hat_memload(
1577 1577 hat_t *hat,
1578 1578 caddr_t addr,
1579 1579 page_t *pp,
1580 1580 uint_t attr,
1581 1581 uint_t flags)
1582 1582 {
1583 1583 uintptr_t va = (uintptr_t)addr;
1584 1584 level_t level = 0;
1585 1585 pfn_t pfn = page_pptonum(pp);
1586 1586
1587 1587 XPV_DISALLOW_MIGRATE();
1588 1588 ASSERT(IS_PAGEALIGNED(va));
1589 1589 ASSERT(hat == kas.a_hat || va < _userlimit);
1590 1590 ASSERT(hat == kas.a_hat ||
1591 1591 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1592 1592 ASSERT((flags & supported_memload_flags) == flags);
1593 1593
1594 1594 ASSERT(!IN_VA_HOLE(va));
1595 1595 ASSERT(!PP_ISFREE(pp));
1596 1596
1597 1597 /*
1598 1598 * kernel address special case for performance.
1599 1599 */
1600 1600 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1601 1601 ASSERT(hat == kas.a_hat);
1602 1602 hat_kmap_load(addr, pp, attr, flags);
1603 1603 XPV_ALLOW_MIGRATE();
1604 1604 return;
1605 1605 }
1606 1606
1607 1607 /*
1608 1608 * This is used for memory with normal caching enabled, so
1609 1609 * always set HAT_STORECACHING_OK.
1610 1610 */
1611 1611 attr |= HAT_STORECACHING_OK;
1612 1612 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1613 1613 panic("unexpected hati_load_common() failure");
1614 1614 XPV_ALLOW_MIGRATE();
1615 1615 }
1616 1616
1617 1617 /* ARGSUSED */
1618 1618 void
1619 1619 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1620 1620 uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1621 1621 {
1622 1622 hat_memload(hat, addr, pp, attr, flags);
1623 1623 }
1624 1624
1625 1625 /*
1626 1626 * Load the given array of page structs using large pages when possible
1627 1627 */
1628 1628 void
1629 1629 hat_memload_array(
1630 1630 hat_t *hat,
1631 1631 caddr_t addr,
1632 1632 size_t len,
1633 1633 page_t **pages,
1634 1634 uint_t attr,
1635 1635 uint_t flags)
1636 1636 {
1637 1637 uintptr_t va = (uintptr_t)addr;
1638 1638 uintptr_t eaddr = va + len;
1639 1639 level_t level;
1640 1640 size_t pgsize;
1641 1641 pgcnt_t pgindx = 0;
1642 1642 pfn_t pfn;
1643 1643 pgcnt_t i;
1644 1644
1645 1645 XPV_DISALLOW_MIGRATE();
1646 1646 ASSERT(IS_PAGEALIGNED(va));
1647 1647 ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1648 1648 ASSERT(hat == kas.a_hat ||
1649 1649 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1650 1650 ASSERT((flags & supported_memload_flags) == flags);
1651 1651
1652 1652 /*
1653 1653 * memload is used for memory with full caching enabled, so
1654 1654 * set HAT_STORECACHING_OK.
1655 1655 */
1656 1656 attr |= HAT_STORECACHING_OK;
1657 1657
1658 1658 /*
1659 1659 * handle all pages using largest possible pagesize
1660 1660 */
1661 1661 while (va < eaddr) {
1662 1662 /*
1663 1663 * decide what level mapping to use (ie. pagesize)
1664 1664 */
1665 1665 pfn = page_pptonum(pages[pgindx]);
1666 1666 for (level = mmu.max_page_level; ; --level) {
1667 1667 pgsize = LEVEL_SIZE(level);
1668 1668 if (level == 0)
1669 1669 break;
1670 1670
1671 1671 if (!IS_P2ALIGNED(va, pgsize) ||
1672 1672 (eaddr - va) < pgsize ||
1673 1673 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1674 1674 continue;
1675 1675
1676 1676 /*
1677 1677 * To use a large mapping of this size, all the
1678 1678 * pages we are passed must be sequential subpages
1679 1679 * of the large page.
1680 1680 * hat_page_demote() can't change p_szc because
1681 1681 * all pages are locked.
1682 1682 */
1683 1683 if (pages[pgindx]->p_szc >= level) {
1684 1684 for (i = 0; i < mmu_btop(pgsize); ++i) {
1685 1685 if (pfn + i !=
1686 1686 page_pptonum(pages[pgindx + i]))
1687 1687 break;
1688 1688 ASSERT(pages[pgindx + i]->p_szc >=
1689 1689 level);
1690 1690 ASSERT(pages[pgindx] + i ==
1691 1691 pages[pgindx + i]);
1692 1692 }
1693 1693 if (i == mmu_btop(pgsize)) {
1694 1694 #ifdef DEBUG
1695 1695 if (level == 2)
1696 1696 map1gcnt++;
1697 1697 #endif
1698 1698 break;
1699 1699 }
1700 1700 }
1701 1701 }
1702 1702
1703 1703 /*
1704 1704 * Load this page mapping. If the load fails, try a smaller
1705 1705 * pagesize.
1706 1706 */
1707 1707 ASSERT(!IN_VA_HOLE(va));
1708 1708 while (hati_load_common(hat, va, pages[pgindx], attr,
1709 1709 flags, level, pfn) != 0) {
1710 1710 if (level == 0)
1711 1711 panic("unexpected hati_load_common() failure");
1712 1712 --level;
1713 1713 pgsize = LEVEL_SIZE(level);
1714 1714 }
1715 1715
1716 1716 /*
1717 1717 * move to next page
1718 1718 */
1719 1719 va += pgsize;
1720 1720 pgindx += mmu_btop(pgsize);
1721 1721 }
1722 1722 XPV_ALLOW_MIGRATE();
1723 1723 }
1724 1724
1725 1725 /* ARGSUSED */
1726 1726 void
1727 1727 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1728 1728 struct page **pps, uint_t attr, uint_t flags,
1729 1729 hat_region_cookie_t rcookie)
1730 1730 {
1731 1731 hat_memload_array(hat, addr, len, pps, attr, flags);
1732 1732 }
1733 1733
1734 1734 /*
1735 1735 * void hat_devload(hat, addr, len, pf, attr, flags)
1736 1736 * load/lock the given page frame number
1737 1737 *
1738 1738 * Advisory ordering attributes. Apply only to device mappings.
1739 1739 *
1740 1740 * HAT_STRICTORDER: the CPU must issue the references in order, as the
1741 1741 * programmer specified. This is the default.
1742 1742 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1743 1743 * of reordering; store or load with store or load).
1744 1744 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1745 1745 * to consecutive locations (for example, turn two consecutive byte
1746 1746 * stores into one halfword store), and it may batch individual loads
1747 1747 * (for example, turn two consecutive byte loads into one halfword load).
1748 1748 * This also implies re-ordering.
1749 1749 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1750 1750 * until another store occurs. The default is to fetch new data
1751 1751 * on every load. This also implies merging.
1752 1752 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1753 1753 * the device (perhaps with other data) at a later time. The default is
1754 1754 * to push the data right away. This also implies load caching.
1755 1755 *
1756 1756 * Equivalent of hat_memload(), but can be used for device memory where
1757 1757 * there are no page_t's and we support additional flags (write merging, etc).
1758 1758 * Note that we can have large page mappings with this interface.
1759 1759 */
1760 1760 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1761 1761 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1762 1762 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1763 1763
1764 1764 void
1765 1765 hat_devload(
1766 1766 hat_t *hat,
1767 1767 caddr_t addr,
1768 1768 size_t len,
1769 1769 pfn_t pfn,
1770 1770 uint_t attr,
1771 1771 int flags)
1772 1772 {
1773 1773 uintptr_t va = ALIGN2PAGE(addr);
1774 1774 uintptr_t eva = va + len;
1775 1775 level_t level;
1776 1776 size_t pgsize;
1777 1777 page_t *pp;
1778 1778 int f; /* per PTE copy of flags - maybe modified */
1779 1779 uint_t a; /* per PTE copy of attr */
1780 1780
1781 1781 XPV_DISALLOW_MIGRATE();
1782 1782 ASSERT(IS_PAGEALIGNED(va));
1783 1783 ASSERT(hat == kas.a_hat || eva <= _userlimit);
1784 1784 ASSERT(hat == kas.a_hat ||
1785 1785 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1786 1786 ASSERT((flags & supported_devload_flags) == flags);
1787 1787
1788 1788 /*
1789 1789 * handle all pages
1790 1790 */
1791 1791 while (va < eva) {
1792 1792
1793 1793 /*
1794 1794 * decide what level mapping to use (ie. pagesize)
1795 1795 */
1796 1796 for (level = mmu.max_page_level; ; --level) {
1797 1797 pgsize = LEVEL_SIZE(level);
1798 1798 if (level == 0)
1799 1799 break;
1800 1800 if (IS_P2ALIGNED(va, pgsize) &&
1801 1801 (eva - va) >= pgsize &&
1802 1802 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1803 1803 #ifdef DEBUG
1804 1804 if (level == 2)
1805 1805 map1gcnt++;
1806 1806 #endif
1807 1807 break;
1808 1808 }
1809 1809 }
1810 1810
1811 1811 /*
1812 1812 * If this is just memory then allow caching (this happens
1813 1813 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1814 1814 * to override that. If we don't have a page_t then make sure
1815 1815 * NOCONSIST is set.
1816 1816 */
1817 1817 a = attr;
1818 1818 f = flags;
1819 1819 if (!pf_is_memory(pfn))
1820 1820 f |= HAT_LOAD_NOCONSIST;
1821 1821 else if (!(a & HAT_PLAT_NOCACHE))
1822 1822 a |= HAT_STORECACHING_OK;
1823 1823
1824 1824 if (f & HAT_LOAD_NOCONSIST)
1825 1825 pp = NULL;
1826 1826 else
1827 1827 pp = page_numtopp_nolock(pfn);
1828 1828
1829 1829 /*
1830 1830 * Check to make sure we are really trying to map a valid
1831 1831 * memory page. The caller wishing to intentionally map
1832 1832 * free memory pages will have passed the HAT_LOAD_NOCONSIST
1833 1833 * flag, then pp will be NULL.
1834 1834 */
1835 1835 if (pp != NULL) {
1836 1836 if (PP_ISFREE(pp)) {
1837 1837 panic("hat_devload: loading "
1838 1838 "a mapping to free page %p", (void *)pp);
1839 1839 }
1840 1840
1841 1841 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1842 1842 panic("hat_devload: loading a mapping "
1843 1843 "to an unlocked page %p",
1844 1844 (void *)pp);
1845 1845 }
1846 1846 }
1847 1847
1848 1848 /*
1849 1849 * load this page mapping
1850 1850 */
1851 1851 ASSERT(!IN_VA_HOLE(va));
1852 1852 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1853 1853 if (level == 0)
1854 1854 panic("unexpected hati_load_common() failure");
1855 1855 --level;
1856 1856 pgsize = LEVEL_SIZE(level);
1857 1857 }
1858 1858
1859 1859 /*
1860 1860 * move to next page
1861 1861 */
1862 1862 va += pgsize;
1863 1863 pfn += mmu_btop(pgsize);
1864 1864 }
1865 1865 XPV_ALLOW_MIGRATE();
1866 1866 }
1867 1867
1868 1868 /*
1869 1869 * void hat_unlock(hat, addr, len)
1870 1870 * unlock the mappings to a given range of addresses
1871 1871 *
1872 1872 * Locks are tracked by ht_lock_cnt in the htable.
1873 1873 */
1874 1874 void
1875 1875 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1876 1876 {
1877 1877 uintptr_t vaddr = (uintptr_t)addr;
1878 1878 uintptr_t eaddr = vaddr + len;
1879 1879 htable_t *ht = NULL;
1880 1880
1881 1881 /*
1882 1882 * kernel entries are always locked, we don't track lock counts
1883 1883 */
1884 1884 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1885 1885 ASSERT(IS_PAGEALIGNED(vaddr));
1886 1886 ASSERT(IS_PAGEALIGNED(eaddr));
1887 1887 if (hat == kas.a_hat)
1888 1888 return;
1889 1889 if (eaddr > _userlimit)
1890 1890 panic("hat_unlock() address out of range - above _userlimit");
1891 1891
1892 1892 XPV_DISALLOW_MIGRATE();
1893 1893 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1894 1894 while (vaddr < eaddr) {
1895 1895 (void) htable_walk(hat, &ht, &vaddr, eaddr);
1896 1896 if (ht == NULL)
1897 1897 break;
1898 1898
1899 1899 ASSERT(!IN_VA_HOLE(vaddr));
1900 1900
1901 1901 if (ht->ht_lock_cnt < 1)
1902 1902 panic("hat_unlock(): lock_cnt < 1, "
1903 1903 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1904 1904 HTABLE_LOCK_DEC(ht);
1905 1905
1906 1906 vaddr += LEVEL_SIZE(ht->ht_level);
1907 1907 }
1908 1908 if (ht)
1909 1909 htable_release(ht);
1910 1910 XPV_ALLOW_MIGRATE();
1911 1911 }
1912 1912
1913 1913 /* ARGSUSED */
1914 1914 void
1915 1915 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1916 1916 hat_region_cookie_t rcookie)
1917 1917 {
1918 1918 panic("No shared region support on x86");
1919 1919 }
1920 1920
1921 1921 #if !defined(__xpv)
1922 1922 /*
1923 1923 * Cross call service routine to demap a virtual page on
1924 1924 * the current CPU or flush all mappings in TLB.
1925 1925 */
1926 1926 /*ARGSUSED*/
1927 1927 static int
1928 1928 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1929 1929 {
1930 1930 hat_t *hat = (hat_t *)a1;
1931 1931 caddr_t addr = (caddr_t)a2;
1932 1932 size_t len = (size_t)a3;
1933 1933
1934 1934 /*
1935 1935 * If the target hat isn't the kernel and this CPU isn't operating
1936 1936 * in the target hat, we can ignore the cross call.
1937 1937 */
1938 1938 if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1939 1939 return (0);
1940 1940
1941 1941 /*
1942 1942 * For a normal address, we flush a range of contiguous mappings
1943 1943 */
1944 1944 if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1945 1945 for (size_t i = 0; i < len; i += MMU_PAGESIZE)
1946 1946 mmu_tlbflush_entry(addr + i);
1947 1947 return (0);
1948 1948 }
1949 1949
1950 1950 /*
1951 1951 * Otherwise we reload cr3 to effect a complete TLB flush.
1952 1952 *
1953 1953 * A reload of cr3 on a VLP process also means we must also recopy in
1954 1954 * the pte values from the struct hat
1955 1955 */
1956 1956 if (hat->hat_flags & HAT_VLP) {
1957 1957 #if defined(__amd64)
1958 1958 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1959 1959
1960 1960 VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1961 1961 #elif defined(__i386)
1962 1962 reload_pae32(hat, CPU);
1963 1963 #endif
1964 1964 }
1965 1965 reload_cr3();
1966 1966 return (0);
1967 1967 }
1968 1968
1969 1969 /*
1970 1970 * Flush all TLB entries, including global (ie. kernel) ones.
1971 1971 */
1972 1972 static void
1973 1973 flush_all_tlb_entries(void)
1974 1974 {
1975 1975 ulong_t cr4 = getcr4();
1976 1976
1977 1977 if (cr4 & CR4_PGE) {
1978 1978 setcr4(cr4 & ~(ulong_t)CR4_PGE);
1979 1979 setcr4(cr4);
1980 1980
1981 1981 /*
1982 1982 * 32 bit PAE also needs to always reload_cr3()
1983 1983 */
1984 1984 if (mmu.max_level == 2)
1985 1985 reload_cr3();
1986 1986 } else {
1987 1987 reload_cr3();
1988 1988 }
1989 1989 }
1990 1990
1991 1991 #define TLB_CPU_HALTED (01ul)
1992 1992 #define TLB_INVAL_ALL (02ul)
1993 1993 #define CAS_TLB_INFO(cpu, old, new) \
1994 1994 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1995 1995
1996 1996 /*
1997 1997 * Record that a CPU is going idle
1998 1998 */
1999 1999 void
2000 2000 tlb_going_idle(void)
2001 2001 {
2002 2002 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
2003 2003 }
2004 2004
2005 2005 /*
2006 2006 * Service a delayed TLB flush if coming out of being idle.
2007 2007 * It will be called from cpu idle notification with interrupt disabled.
2008 2008 */
2009 2009 void
2010 2010 tlb_service(void)
2011 2011 {
2012 2012 ulong_t tlb_info;
2013 2013 ulong_t found;
2014 2014
2015 2015 /*
2016 2016 * We only have to do something if coming out of being idle.
2017 2017 */
2018 2018 tlb_info = CPU->cpu_m.mcpu_tlb_info;
2019 2019 if (tlb_info & TLB_CPU_HALTED) {
2020 2020 ASSERT(CPU->cpu_current_hat == kas.a_hat);
2021 2021
2022 2022 /*
2023 2023 * Atomic clear and fetch of old state.
2024 2024 */
2025 2025 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
2026 2026 ASSERT(found & TLB_CPU_HALTED);
2027 2027 tlb_info = found;
2028 2028 SMT_PAUSE();
2029 2029 }
2030 2030 if (tlb_info & TLB_INVAL_ALL)
2031 2031 flush_all_tlb_entries();
2032 2032 }
2033 2033 }
2034 2034 #endif /* !__xpv */
2035 2035
2036 2036 /*
2037 2037 * Internal routine to do cross calls to invalidate a range of pages on
2038 2038 * all CPUs using a given hat.
2039 2039 */
2040 2040 void
2041 2041 hat_tlb_inval_range(hat_t *hat, uintptr_t va, size_t len)
2042 2042 {
2043 2043 extern int flushes_require_xcalls; /* from mp_startup.c */
2044 2044 cpuset_t justme;
2045 2045 cpuset_t cpus_to_shootdown;
2046 2046 #ifndef __xpv
2047 2047 cpuset_t check_cpus;
2048 2048 cpu_t *cpup;
2049 2049 int c;
2050 2050 #endif
2051 2051
2052 2052 /*
2053 2053 * If the hat is being destroyed, there are no more users, so
2054 2054 * demap need not do anything.
2055 2055 */
2056 2056 if (hat->hat_flags & HAT_FREEING)
2057 2057 return;
2058 2058
2059 2059 /*
2060 2060 * If demapping from a shared pagetable, we best demap the
2061 2061 * entire set of user TLBs, since we don't know what addresses
2062 2062 * these were shared at.
2063 2063 */
2064 2064 if (hat->hat_flags & HAT_SHARED) {
2065 2065 hat = kas.a_hat;
2066 2066 va = DEMAP_ALL_ADDR;
2067 2067 }
2068 2068
2069 2069 /*
2070 2070 * if not running with multiple CPUs, don't use cross calls
2071 2071 */
2072 2072 if (panicstr || !flushes_require_xcalls) {
2073 2073 #ifdef __xpv
2074 2074 if (va == DEMAP_ALL_ADDR) {
2075 2075 xen_flush_tlb();
2076 2076 } else {
2077 2077 for (size_t i = 0; i < len; i += MMU_PAGESIZE)
2078 2078 xen_flush_va((caddr_t)(va + i));
2079 2079 }
2080 2080 #else
2081 2081 (void) hati_demap_func((xc_arg_t)hat,
2082 2082 (xc_arg_t)va, (xc_arg_t)len);
2083 2083 #endif
2084 2084 return;
2085 2085 }
2086 2086
2087 2087
2088 2088 /*
2089 2089 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2090 2090 * Otherwise it's just CPUs currently executing in this hat.
2091 2091 */
2092 2092 kpreempt_disable();
2093 2093 CPUSET_ONLY(justme, CPU->cpu_id);
2094 2094 if (hat == kas.a_hat)
2095 2095 cpus_to_shootdown = khat_cpuset;
2096 2096 else
2097 2097 cpus_to_shootdown = hat->hat_cpus;
2098 2098
2099 2099 #ifndef __xpv
2100 2100 /*
2101 2101 * If any CPUs in the set are idle, just request a delayed flush
2102 2102 * and avoid waking them up.
2103 2103 */
2104 2104 check_cpus = cpus_to_shootdown;
2105 2105 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2106 2106 ulong_t tlb_info;
2107 2107
2108 2108 if (!CPU_IN_SET(check_cpus, c))
2109 2109 continue;
2110 2110 CPUSET_DEL(check_cpus, c);
2111 2111 cpup = cpu[c];
2112 2112 if (cpup == NULL)
2113 2113 continue;
2114 2114
2115 2115 tlb_info = cpup->cpu_m.mcpu_tlb_info;
2116 2116 while (tlb_info == TLB_CPU_HALTED) {
2117 2117 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2118 2118 TLB_CPU_HALTED | TLB_INVAL_ALL);
2119 2119 SMT_PAUSE();
2120 2120 tlb_info = cpup->cpu_m.mcpu_tlb_info;
2121 2121 }
2122 2122 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2123 2123 HATSTAT_INC(hs_tlb_inval_delayed);
2124 2124 CPUSET_DEL(cpus_to_shootdown, c);
2125 2125 }
2126 2126 }
2127 2127 #endif
2128 2128
2129 2129 if (CPUSET_ISNULL(cpus_to_shootdown) ||
2130 2130 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2131 2131
2132 2132 #ifdef __xpv
2133 2133 if (va == DEMAP_ALL_ADDR) {
2134 2134 xen_flush_tlb();
2135 2135 } else {
2136 2136 for (size_t i = 0; i < len; i += MMU_PAGESIZE)
2137 2137 xen_flush_va((caddr_t)(va + i));
2138 2138 }
2139 2139 #else
2140 2140 (void) hati_demap_func((xc_arg_t)hat,
2141 2141 (xc_arg_t)va, (xc_arg_t)len);
2142 2142 #endif
2143 2143
2144 2144 } else {
2145 2145
2146 2146 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2147 2147 #ifdef __xpv
2148 2148 if (va == DEMAP_ALL_ADDR) {
2149 2149 xen_gflush_tlb(cpus_to_shootdown);
2150 2150 } else {
2151 2151 for (size_t i = 0; i < len; i += MMU_PAGESIZE) {
2152 2152 xen_gflush_va((caddr_t)(va + i),
2153 2153 cpus_to_shootdown);
2154 2154 }
2155 2155 }
2156 2156 #else
2157 2157 xc_call((xc_arg_t)hat, (xc_arg_t)va, (xc_arg_t)len,
↓ open down ↓ |
2157 lines elided |
↑ open up ↑ |
2158 2158 CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2159 2159 #endif
2160 2160
2161 2161 }
2162 2162 kpreempt_enable();
2163 2163 }
2164 2164
2165 2165 void
2166 2166 hat_tlb_inval(hat_t *hat, uintptr_t va)
2167 2167 {
2168 - hat_tlb_inval_range(hat, va, MMU_PAGESIZE);
2168 + hat_tlb_inval_range(hat, va, 1);
2169 2169 }
2170 2170
2171 2171 /*
2172 2172 * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2173 2173 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't
2174 2174 * handle releasing of the htables.
2175 2175 */
2176 2176 void
2177 2177 hat_pte_unmap(
2178 2178 htable_t *ht,
2179 2179 uint_t entry,
2180 2180 uint_t flags,
2181 2181 x86pte_t old_pte,
2182 2182 void *pte_ptr,
2183 2183 boolean_t tlb)
2184 2184 {
2185 2185 hat_t *hat = ht->ht_hat;
2186 2186 hment_t *hm = NULL;
2187 2187 page_t *pp = NULL;
2188 2188 level_t l = ht->ht_level;
2189 2189 pfn_t pfn;
2190 2190
2191 2191 /*
2192 2192 * We always track the locking counts, even if nothing is unmapped
2193 2193 */
2194 2194 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2195 2195 ASSERT(ht->ht_lock_cnt > 0);
2196 2196 HTABLE_LOCK_DEC(ht);
2197 2197 }
2198 2198
2199 2199 /*
2200 2200 * Figure out which page's mapping list lock to acquire using the PFN
2201 2201 * passed in "old" PTE. We then attempt to invalidate the PTE.
2202 2202 * If another thread, probably a hat_pageunload, has asynchronously
2203 2203 * unmapped/remapped this address we'll loop here.
2204 2204 */
2205 2205 ASSERT(ht->ht_busy > 0);
2206 2206 while (PTE_ISVALID(old_pte)) {
2207 2207 pfn = PTE2PFN(old_pte, l);
2208 2208 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2209 2209 pp = NULL;
2210 2210 } else {
2211 2211 #ifdef __xpv
2212 2212 if (pfn == PFN_INVALID)
2213 2213 panic("Invalid PFN, but not PT_NOCONSIST");
2214 2214 #endif
2215 2215 pp = page_numtopp_nolock(pfn);
2216 2216 if (pp == NULL) {
2217 2217 panic("no page_t, not NOCONSIST: old_pte="
2218 2218 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2219 2219 old_pte, (uintptr_t)ht, entry,
2220 2220 (uintptr_t)pte_ptr);
2221 2221 }
2222 2222 x86_hm_enter(pp);
2223 2223 }
2224 2224
2225 2225 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb);
2226 2226
2227 2227 /*
2228 2228 * If the page hadn't changed we've unmapped it and can proceed
2229 2229 */
2230 2230 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2231 2231 break;
2232 2232
2233 2233 /*
2234 2234 * Otherwise, we'll have to retry with the current old_pte.
2235 2235 * Drop the hment lock, since the pfn may have changed.
2236 2236 */
2237 2237 if (pp != NULL) {
2238 2238 x86_hm_exit(pp);
2239 2239 pp = NULL;
2240 2240 } else {
2241 2241 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2242 2242 }
2243 2243 }
2244 2244
2245 2245 /*
2246 2246 * If the old mapping wasn't valid, there's nothing more to do
2247 2247 */
2248 2248 if (!PTE_ISVALID(old_pte)) {
2249 2249 if (pp != NULL)
2250 2250 x86_hm_exit(pp);
2251 2251 return;
2252 2252 }
2253 2253
2254 2254 /*
2255 2255 * Take care of syncing any MOD/REF bits and removing the hment.
2256 2256 */
2257 2257 if (pp != NULL) {
2258 2258 if (!(flags & HAT_UNLOAD_NOSYNC))
2259 2259 hati_sync_pte_to_page(pp, old_pte, l);
2260 2260 hm = hment_remove(pp, ht, entry);
2261 2261 x86_hm_exit(pp);
2262 2262 if (hm != NULL)
2263 2263 hment_free(hm);
2264 2264 }
2265 2265
2266 2266 /*
2267 2267 * Handle book keeping in the htable and hat
2268 2268 */
2269 2269 ASSERT(ht->ht_valid_cnt > 0);
2270 2270 HTABLE_DEC(ht->ht_valid_cnt);
2271 2271 PGCNT_DEC(hat, l);
2272 2272 }
2273 2273
2274 2274 /*
2275 2275 * very cheap unload implementation to special case some kernel addresses
2276 2276 */
2277 2277 static void
2278 2278 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2279 2279 {
2280 2280 uintptr_t va = (uintptr_t)addr;
2281 2281 uintptr_t eva = va + len;
2282 2282 pgcnt_t pg_index;
2283 2283 htable_t *ht;
2284 2284 uint_t entry;
2285 2285 x86pte_t *pte_ptr;
2286 2286 x86pte_t old_pte;
2287 2287
2288 2288 for (; va < eva; va += MMU_PAGESIZE) {
2289 2289 /*
2290 2290 * Get the PTE
2291 2291 */
2292 2292 pg_index = mmu_btop(va - mmu.kmap_addr);
2293 2293 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2294 2294 old_pte = GET_PTE(pte_ptr);
2295 2295
2296 2296 /*
2297 2297 * get the htable / entry
2298 2298 */
2299 2299 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2300 2300 >> LEVEL_SHIFT(1)];
2301 2301 entry = htable_va2entry(va, ht);
2302 2302
2303 2303 /*
2304 2304 * use mostly common code to unmap it.
2305 2305 */
2306 2306 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE);
2307 2307 }
2308 2308 }
2309 2309
2310 2310
2311 2311 /*
2312 2312 * unload a range of virtual address space (no callback)
2313 2313 */
2314 2314 void
2315 2315 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2316 2316 {
2317 2317 uintptr_t va = (uintptr_t)addr;
2318 2318
2319 2319 XPV_DISALLOW_MIGRATE();
2320 2320 ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2321 2321
2322 2322 /*
2323 2323 * special case for performance.
2324 2324 */
2325 2325 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2326 2326 ASSERT(hat == kas.a_hat);
2327 2327 hat_kmap_unload(addr, len, flags);
2328 2328 } else {
2329 2329 hat_unload_callback(hat, addr, len, flags, NULL);
2330 2330 }
2331 2331 XPV_ALLOW_MIGRATE();
2332 2332 }
2333 2333
2334 2334 /*
2335 2335 * Do the callbacks for ranges being unloaded.
2336 2336 */
2337 2337 typedef struct range_info {
2338 2338 uintptr_t rng_va;
2339 2339 ulong_t rng_cnt;
2340 2340 level_t rng_level;
2341 2341 } range_info_t;
2342 2342
2343 2343 /*
2344 2344 * Invalidate the TLB, and perform the callback to the upper level VM system,
2345 2345 * for the specified ranges of contiguous pages.
2346 2346 */
2347 2347 static void
2348 2348 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, range_info_t *range)
2349 2349 {
2350 2350 while (cnt > 0) {
2351 2351 size_t len;
2352 2352
2353 2353 --cnt;
2354 2354 len = range[cnt].rng_cnt << LEVEL_SHIFT(range[cnt].rng_level);
2355 2355 hat_tlb_inval_range(hat, (uintptr_t)range[cnt].rng_va, len);
2356 2356
2357 2357 if (cb != NULL) {
2358 2358 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2359 2359 cb->hcb_end_addr = cb->hcb_start_addr;
2360 2360 cb->hcb_end_addr += len;
2361 2361 cb->hcb_function(cb);
2362 2362 }
2363 2363 }
2364 2364 }
2365 2365
2366 2366 /*
2367 2367 * Unload a given range of addresses (has optional callback)
2368 2368 *
2369 2369 * Flags:
2370 2370 * define HAT_UNLOAD 0x00
2371 2371 * define HAT_UNLOAD_NOSYNC 0x02
2372 2372 * define HAT_UNLOAD_UNLOCK 0x04
2373 2373 * define HAT_UNLOAD_OTHER 0x08 - not used
2374 2374 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD
2375 2375 */
2376 2376 #define MAX_UNLOAD_CNT (8)
2377 2377 void
2378 2378 hat_unload_callback(
2379 2379 hat_t *hat,
2380 2380 caddr_t addr,
2381 2381 size_t len,
2382 2382 uint_t flags,
2383 2383 hat_callback_t *cb)
2384 2384 {
2385 2385 uintptr_t vaddr = (uintptr_t)addr;
2386 2386 uintptr_t eaddr = vaddr + len;
2387 2387 htable_t *ht = NULL;
2388 2388 uint_t entry;
2389 2389 uintptr_t contig_va = (uintptr_t)-1L;
2390 2390 range_info_t r[MAX_UNLOAD_CNT];
2391 2391 uint_t r_cnt = 0;
2392 2392 x86pte_t old_pte;
2393 2393
2394 2394 XPV_DISALLOW_MIGRATE();
2395 2395 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2396 2396 ASSERT(IS_PAGEALIGNED(vaddr));
2397 2397 ASSERT(IS_PAGEALIGNED(eaddr));
2398 2398
2399 2399 /*
2400 2400 * Special case a single page being unloaded for speed. This happens
2401 2401 * quite frequently, COW faults after a fork() for example.
2402 2402 */
2403 2403 if (cb == NULL && len == MMU_PAGESIZE) {
2404 2404 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2405 2405 if (ht != NULL) {
2406 2406 if (PTE_ISVALID(old_pte)) {
2407 2407 hat_pte_unmap(ht, entry, flags, old_pte,
2408 2408 NULL, B_TRUE);
2409 2409 }
2410 2410 htable_release(ht);
2411 2411 }
2412 2412 XPV_ALLOW_MIGRATE();
2413 2413 return;
2414 2414 }
2415 2415
2416 2416 while (vaddr < eaddr) {
2417 2417 old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2418 2418 if (ht == NULL)
2419 2419 break;
2420 2420
2421 2421 ASSERT(!IN_VA_HOLE(vaddr));
2422 2422
2423 2423 if (vaddr < (uintptr_t)addr)
2424 2424 panic("hat_unload_callback(): unmap inside large page");
2425 2425
2426 2426 /*
2427 2427 * We'll do the call backs for contiguous ranges
2428 2428 */
2429 2429 if (vaddr != contig_va ||
2430 2430 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2431 2431 if (r_cnt == MAX_UNLOAD_CNT) {
2432 2432 handle_ranges(hat, cb, r_cnt, r);
2433 2433 r_cnt = 0;
2434 2434 }
2435 2435 r[r_cnt].rng_va = vaddr;
2436 2436 r[r_cnt].rng_cnt = 0;
2437 2437 r[r_cnt].rng_level = ht->ht_level;
2438 2438 ++r_cnt;
2439 2439 }
2440 2440
2441 2441 /*
2442 2442 * Unload one mapping (for a single page) from the page tables.
2443 2443 * Note that we do not remove the mapping from the TLB yet,
2444 2444 * as indicated by the tlb=FALSE argument to hat_pte_unmap().
2445 2445 * handle_ranges() will clear the TLB entries with one call to
2446 2446 * hat_tlb_inval_range() per contiguous range. This is
2447 2447 * safe because the page can not be reused until the
2448 2448 * callback is made (or we return).
2449 2449 */
2450 2450 entry = htable_va2entry(vaddr, ht);
2451 2451 hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE);
2452 2452 ASSERT(ht->ht_level <= mmu.max_page_level);
2453 2453 vaddr += LEVEL_SIZE(ht->ht_level);
2454 2454 contig_va = vaddr;
2455 2455 ++r[r_cnt - 1].rng_cnt;
2456 2456 }
2457 2457 if (ht)
2458 2458 htable_release(ht);
2459 2459
2460 2460 /*
2461 2461 * handle last range for callbacks
2462 2462 */
2463 2463 if (r_cnt > 0)
2464 2464 handle_ranges(hat, cb, r_cnt, r);
2465 2465 XPV_ALLOW_MIGRATE();
2466 2466 }
2467 2467
2468 2468 /*
2469 2469 * Invalidate a virtual address translation on a slave CPU during
2470 2470 * panic() dumps.
2471 2471 */
2472 2472 void
2473 2473 hat_flush_range(hat_t *hat, caddr_t va, size_t size)
2474 2474 {
2475 2475 ssize_t sz;
2476 2476 caddr_t endva = va + size;
2477 2477
2478 2478 while (va < endva) {
2479 2479 sz = hat_getpagesize(hat, va);
2480 2480 if (sz < 0) {
2481 2481 #ifdef __xpv
2482 2482 xen_flush_tlb();
2483 2483 #else
2484 2484 flush_all_tlb_entries();
2485 2485 #endif
2486 2486 break;
2487 2487 }
2488 2488 #ifdef __xpv
2489 2489 xen_flush_va(va);
2490 2490 #else
2491 2491 mmu_tlbflush_entry(va);
2492 2492 #endif
2493 2493 va += sz;
2494 2494 }
2495 2495 }
2496 2496
2497 2497 /*
2498 2498 * synchronize mapping with software data structures
2499 2499 *
2500 2500 * This interface is currently only used by the working set monitor
2501 2501 * driver.
2502 2502 */
2503 2503 /*ARGSUSED*/
2504 2504 void
2505 2505 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2506 2506 {
2507 2507 uintptr_t vaddr = (uintptr_t)addr;
2508 2508 uintptr_t eaddr = vaddr + len;
2509 2509 htable_t *ht = NULL;
2510 2510 uint_t entry;
2511 2511 x86pte_t pte;
2512 2512 x86pte_t save_pte;
2513 2513 x86pte_t new;
2514 2514 page_t *pp;
2515 2515
2516 2516 ASSERT(!IN_VA_HOLE(vaddr));
2517 2517 ASSERT(IS_PAGEALIGNED(vaddr));
2518 2518 ASSERT(IS_PAGEALIGNED(eaddr));
2519 2519 ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2520 2520
2521 2521 XPV_DISALLOW_MIGRATE();
2522 2522 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2523 2523 try_again:
2524 2524 pte = htable_walk(hat, &ht, &vaddr, eaddr);
2525 2525 if (ht == NULL)
2526 2526 break;
2527 2527 entry = htable_va2entry(vaddr, ht);
2528 2528
2529 2529 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2530 2530 PTE_GET(pte, PT_REF | PT_MOD) == 0)
2531 2531 continue;
2532 2532
2533 2533 /*
2534 2534 * We need to acquire the mapping list lock to protect
2535 2535 * against hat_pageunload(), hat_unload(), etc.
2536 2536 */
2537 2537 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2538 2538 if (pp == NULL)
2539 2539 break;
2540 2540 x86_hm_enter(pp);
2541 2541 save_pte = pte;
2542 2542 pte = x86pte_get(ht, entry);
2543 2543 if (pte != save_pte) {
2544 2544 x86_hm_exit(pp);
2545 2545 goto try_again;
2546 2546 }
2547 2547 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2548 2548 PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2549 2549 x86_hm_exit(pp);
2550 2550 continue;
2551 2551 }
2552 2552
2553 2553 /*
2554 2554 * Need to clear ref or mod bits. We may compete with
2555 2555 * hardware updating the R/M bits and have to try again.
2556 2556 */
2557 2557 if (flags == HAT_SYNC_ZERORM) {
2558 2558 new = pte;
2559 2559 PTE_CLR(new, PT_REF | PT_MOD);
2560 2560 pte = hati_update_pte(ht, entry, pte, new);
2561 2561 if (pte != 0) {
2562 2562 x86_hm_exit(pp);
2563 2563 goto try_again;
2564 2564 }
2565 2565 } else {
2566 2566 /*
2567 2567 * sync the PTE to the page_t
2568 2568 */
2569 2569 hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2570 2570 }
2571 2571 x86_hm_exit(pp);
2572 2572 }
2573 2573 if (ht)
2574 2574 htable_release(ht);
2575 2575 XPV_ALLOW_MIGRATE();
2576 2576 }
2577 2577
2578 2578 /*
2579 2579 * void hat_map(hat, addr, len, flags)
2580 2580 */
2581 2581 /*ARGSUSED*/
2582 2582 void
2583 2583 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2584 2584 {
2585 2585 /* does nothing */
2586 2586 }
2587 2587
2588 2588 /*
2589 2589 * uint_t hat_getattr(hat, addr, *attr)
2590 2590 * returns attr for <hat,addr> in *attr. returns 0 if there was a
2591 2591 * mapping and *attr is valid, nonzero if there was no mapping and
2592 2592 * *attr is not valid.
2593 2593 */
2594 2594 uint_t
2595 2595 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2596 2596 {
2597 2597 uintptr_t vaddr = ALIGN2PAGE(addr);
2598 2598 htable_t *ht = NULL;
2599 2599 x86pte_t pte;
2600 2600
2601 2601 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2602 2602
2603 2603 if (IN_VA_HOLE(vaddr))
2604 2604 return ((uint_t)-1);
2605 2605
2606 2606 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2607 2607 if (ht == NULL)
2608 2608 return ((uint_t)-1);
2609 2609
2610 2610 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2611 2611 htable_release(ht);
2612 2612 return ((uint_t)-1);
2613 2613 }
2614 2614
2615 2615 *attr = PROT_READ;
2616 2616 if (PTE_GET(pte, PT_WRITABLE))
2617 2617 *attr |= PROT_WRITE;
2618 2618 if (PTE_GET(pte, PT_USER))
2619 2619 *attr |= PROT_USER;
2620 2620 if (!PTE_GET(pte, mmu.pt_nx))
2621 2621 *attr |= PROT_EXEC;
2622 2622 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2623 2623 *attr |= HAT_NOSYNC;
2624 2624 htable_release(ht);
2625 2625 return (0);
2626 2626 }
2627 2627
2628 2628 /*
2629 2629 * hat_updateattr() applies the given attribute change to an existing mapping
2630 2630 */
2631 2631 #define HAT_LOAD_ATTR 1
2632 2632 #define HAT_SET_ATTR 2
2633 2633 #define HAT_CLR_ATTR 3
2634 2634
2635 2635 static void
2636 2636 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2637 2637 {
2638 2638 uintptr_t vaddr = (uintptr_t)addr;
2639 2639 uintptr_t eaddr = (uintptr_t)addr + len;
2640 2640 htable_t *ht = NULL;
2641 2641 uint_t entry;
2642 2642 x86pte_t oldpte, newpte;
2643 2643 page_t *pp;
2644 2644
2645 2645 XPV_DISALLOW_MIGRATE();
2646 2646 ASSERT(IS_PAGEALIGNED(vaddr));
2647 2647 ASSERT(IS_PAGEALIGNED(eaddr));
2648 2648 ASSERT(hat == kas.a_hat ||
2649 2649 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2650 2650 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2651 2651 try_again:
2652 2652 oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2653 2653 if (ht == NULL)
2654 2654 break;
2655 2655 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2656 2656 continue;
2657 2657
2658 2658 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2659 2659 if (pp == NULL)
2660 2660 continue;
2661 2661 x86_hm_enter(pp);
2662 2662
2663 2663 newpte = oldpte;
2664 2664 /*
2665 2665 * We found a page table entry in the desired range,
2666 2666 * figure out the new attributes.
2667 2667 */
2668 2668 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2669 2669 if ((attr & PROT_WRITE) &&
2670 2670 !PTE_GET(oldpte, PT_WRITABLE))
2671 2671 newpte |= PT_WRITABLE;
2672 2672
2673 2673 if ((attr & HAT_NOSYNC) &&
2674 2674 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2675 2675 newpte |= PT_NOSYNC;
2676 2676
2677 2677 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2678 2678 newpte &= ~mmu.pt_nx;
2679 2679 }
2680 2680
2681 2681 if (what == HAT_LOAD_ATTR) {
2682 2682 if (!(attr & PROT_WRITE) &&
2683 2683 PTE_GET(oldpte, PT_WRITABLE))
2684 2684 newpte &= ~PT_WRITABLE;
2685 2685
2686 2686 if (!(attr & HAT_NOSYNC) &&
2687 2687 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2688 2688 newpte &= ~PT_SOFTWARE;
2689 2689
2690 2690 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2691 2691 newpte |= mmu.pt_nx;
2692 2692 }
2693 2693
2694 2694 if (what == HAT_CLR_ATTR) {
2695 2695 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2696 2696 newpte &= ~PT_WRITABLE;
2697 2697
2698 2698 if ((attr & HAT_NOSYNC) &&
2699 2699 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2700 2700 newpte &= ~PT_SOFTWARE;
2701 2701
2702 2702 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2703 2703 newpte |= mmu.pt_nx;
2704 2704 }
2705 2705
2706 2706 /*
2707 2707 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2708 2708 * x86pte_set() depends on this.
2709 2709 */
2710 2710 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2711 2711 newpte |= PT_REF | PT_MOD;
2712 2712
2713 2713 /*
2714 2714 * what about PROT_READ or others? this code only handles:
2715 2715 * EXEC, WRITE, NOSYNC
2716 2716 */
2717 2717
2718 2718 /*
2719 2719 * If new PTE really changed, update the table.
2720 2720 */
2721 2721 if (newpte != oldpte) {
2722 2722 entry = htable_va2entry(vaddr, ht);
2723 2723 oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2724 2724 if (oldpte != 0) {
2725 2725 x86_hm_exit(pp);
2726 2726 goto try_again;
2727 2727 }
2728 2728 }
2729 2729 x86_hm_exit(pp);
2730 2730 }
2731 2731 if (ht)
2732 2732 htable_release(ht);
2733 2733 XPV_ALLOW_MIGRATE();
2734 2734 }
2735 2735
2736 2736 /*
2737 2737 * Various wrappers for hat_updateattr()
2738 2738 */
2739 2739 void
2740 2740 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2741 2741 {
2742 2742 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2743 2743 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2744 2744 }
2745 2745
2746 2746 void
2747 2747 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2748 2748 {
2749 2749 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2750 2750 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2751 2751 }
2752 2752
2753 2753 void
2754 2754 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2755 2755 {
2756 2756 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2757 2757 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2758 2758 }
2759 2759
2760 2760 void
2761 2761 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2762 2762 {
2763 2763 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2764 2764 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2765 2765 }
2766 2766
2767 2767 /*
2768 2768 * size_t hat_getpagesize(hat, addr)
2769 2769 * returns pagesize in bytes for <hat, addr>. returns -1 of there is
2770 2770 * no mapping. This is an advisory call.
2771 2771 */
2772 2772 ssize_t
2773 2773 hat_getpagesize(hat_t *hat, caddr_t addr)
2774 2774 {
2775 2775 uintptr_t vaddr = ALIGN2PAGE(addr);
2776 2776 htable_t *ht;
2777 2777 size_t pagesize;
2778 2778
2779 2779 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2780 2780 if (IN_VA_HOLE(vaddr))
2781 2781 return (-1);
2782 2782 ht = htable_getpage(hat, vaddr, NULL);
2783 2783 if (ht == NULL)
2784 2784 return (-1);
2785 2785 pagesize = LEVEL_SIZE(ht->ht_level);
2786 2786 htable_release(ht);
2787 2787 return (pagesize);
2788 2788 }
2789 2789
2790 2790
2791 2791
2792 2792 /*
2793 2793 * pfn_t hat_getpfnum(hat, addr)
2794 2794 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2795 2795 */
2796 2796 pfn_t
2797 2797 hat_getpfnum(hat_t *hat, caddr_t addr)
2798 2798 {
2799 2799 uintptr_t vaddr = ALIGN2PAGE(addr);
2800 2800 htable_t *ht;
2801 2801 uint_t entry;
2802 2802 pfn_t pfn = PFN_INVALID;
2803 2803
2804 2804 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2805 2805 if (khat_running == 0)
2806 2806 return (PFN_INVALID);
2807 2807
2808 2808 if (IN_VA_HOLE(vaddr))
2809 2809 return (PFN_INVALID);
2810 2810
2811 2811 XPV_DISALLOW_MIGRATE();
2812 2812 /*
2813 2813 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2814 2814 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2815 2815 * this up.
2816 2816 */
2817 2817 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2818 2818 x86pte_t pte;
2819 2819 pgcnt_t pg_index;
2820 2820
2821 2821 pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2822 2822 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2823 2823 if (PTE_ISVALID(pte))
2824 2824 /*LINTED [use of constant 0 causes a lint warning] */
2825 2825 pfn = PTE2PFN(pte, 0);
2826 2826 XPV_ALLOW_MIGRATE();
2827 2827 return (pfn);
2828 2828 }
2829 2829
2830 2830 ht = htable_getpage(hat, vaddr, &entry);
2831 2831 if (ht == NULL) {
2832 2832 XPV_ALLOW_MIGRATE();
2833 2833 return (PFN_INVALID);
2834 2834 }
2835 2835 ASSERT(vaddr >= ht->ht_vaddr);
2836 2836 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2837 2837 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2838 2838 if (ht->ht_level > 0)
2839 2839 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2840 2840 htable_release(ht);
2841 2841 XPV_ALLOW_MIGRATE();
2842 2842 return (pfn);
2843 2843 }
2844 2844
2845 2845 /*
2846 2846 * int hat_probe(hat, addr)
2847 2847 * return 0 if no valid mapping is present. Faster version
2848 2848 * of hat_getattr in certain architectures.
2849 2849 */
2850 2850 int
2851 2851 hat_probe(hat_t *hat, caddr_t addr)
2852 2852 {
2853 2853 uintptr_t vaddr = ALIGN2PAGE(addr);
2854 2854 uint_t entry;
2855 2855 htable_t *ht;
2856 2856 pgcnt_t pg_off;
2857 2857
2858 2858 ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2859 2859 ASSERT(hat == kas.a_hat ||
2860 2860 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2861 2861 if (IN_VA_HOLE(vaddr))
2862 2862 return (0);
2863 2863
2864 2864 /*
2865 2865 * Most common use of hat_probe is from segmap. We special case it
2866 2866 * for performance.
2867 2867 */
2868 2868 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2869 2869 pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2870 2870 if (mmu.pae_hat)
2871 2871 return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2872 2872 else
2873 2873 return (PTE_ISVALID(
2874 2874 ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2875 2875 }
2876 2876
2877 2877 ht = htable_getpage(hat, vaddr, &entry);
2878 2878 htable_release(ht);
2879 2879 return (ht != NULL);
2880 2880 }
2881 2881
2882 2882 /*
2883 2883 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2884 2884 */
2885 2885 static int
2886 2886 is_it_dism(hat_t *hat, caddr_t va)
2887 2887 {
2888 2888 struct seg *seg;
2889 2889 struct shm_data *shmd;
2890 2890 struct spt_data *sptd;
2891 2891
2892 2892 seg = as_findseg(hat->hat_as, va, 0);
2893 2893 ASSERT(seg != NULL);
2894 2894 ASSERT(seg->s_base <= va);
2895 2895 shmd = (struct shm_data *)seg->s_data;
2896 2896 ASSERT(shmd != NULL);
2897 2897 sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2898 2898 ASSERT(sptd != NULL);
2899 2899 if (sptd->spt_flags & SHM_PAGEABLE)
2900 2900 return (1);
2901 2901 return (0);
2902 2902 }
2903 2903
2904 2904 /*
2905 2905 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2906 2906 * except that we use the ism_hat's existing mappings to determine the pages
2907 2907 * and protections to use for this hat. If we find a full properly aligned
2908 2908 * and sized pagetable, we will attempt to share the pagetable itself.
2909 2909 */
2910 2910 /*ARGSUSED*/
2911 2911 int
2912 2912 hat_share(
2913 2913 hat_t *hat,
2914 2914 caddr_t addr,
2915 2915 hat_t *ism_hat,
2916 2916 caddr_t src_addr,
2917 2917 size_t len, /* almost useless value, see below.. */
2918 2918 uint_t ismszc)
2919 2919 {
2920 2920 uintptr_t vaddr_start = (uintptr_t)addr;
2921 2921 uintptr_t vaddr;
2922 2922 uintptr_t eaddr = vaddr_start + len;
2923 2923 uintptr_t ism_addr_start = (uintptr_t)src_addr;
2924 2924 uintptr_t ism_addr = ism_addr_start;
2925 2925 uintptr_t e_ism_addr = ism_addr + len;
2926 2926 htable_t *ism_ht = NULL;
2927 2927 htable_t *ht;
2928 2928 x86pte_t pte;
2929 2929 page_t *pp;
2930 2930 pfn_t pfn;
2931 2931 level_t l;
2932 2932 pgcnt_t pgcnt;
2933 2933 uint_t prot;
2934 2934 int is_dism;
2935 2935 int flags;
2936 2936
2937 2937 /*
2938 2938 * We might be asked to share an empty DISM hat by as_dup()
2939 2939 */
2940 2940 ASSERT(hat != kas.a_hat);
2941 2941 ASSERT(eaddr <= _userlimit);
2942 2942 if (!(ism_hat->hat_flags & HAT_SHARED)) {
2943 2943 ASSERT(hat_get_mapped_size(ism_hat) == 0);
2944 2944 return (0);
2945 2945 }
2946 2946 XPV_DISALLOW_MIGRATE();
2947 2947
2948 2948 /*
2949 2949 * The SPT segment driver often passes us a size larger than there are
2950 2950 * valid mappings. That's because it rounds the segment size up to a
2951 2951 * large pagesize, even if the actual memory mapped by ism_hat is less.
2952 2952 */
2953 2953 ASSERT(IS_PAGEALIGNED(vaddr_start));
2954 2954 ASSERT(IS_PAGEALIGNED(ism_addr_start));
2955 2955 ASSERT(ism_hat->hat_flags & HAT_SHARED);
2956 2956 is_dism = is_it_dism(hat, addr);
2957 2957 while (ism_addr < e_ism_addr) {
2958 2958 /*
2959 2959 * use htable_walk to get the next valid ISM mapping
2960 2960 */
2961 2961 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2962 2962 if (ism_ht == NULL)
2963 2963 break;
2964 2964
2965 2965 /*
2966 2966 * First check to see if we already share the page table.
2967 2967 */
2968 2968 l = ism_ht->ht_level;
2969 2969 vaddr = vaddr_start + (ism_addr - ism_addr_start);
2970 2970 ht = htable_lookup(hat, vaddr, l);
2971 2971 if (ht != NULL) {
2972 2972 if (ht->ht_flags & HTABLE_SHARED_PFN)
2973 2973 goto shared;
2974 2974 htable_release(ht);
2975 2975 goto not_shared;
2976 2976 }
2977 2977
2978 2978 /*
2979 2979 * Can't ever share top table.
2980 2980 */
2981 2981 if (l == mmu.max_level)
2982 2982 goto not_shared;
2983 2983
2984 2984 /*
2985 2985 * Avoid level mismatches later due to DISM faults.
2986 2986 */
2987 2987 if (is_dism && l > 0)
2988 2988 goto not_shared;
2989 2989
2990 2990 /*
2991 2991 * addresses and lengths must align
2992 2992 * table must be fully populated
2993 2993 * no lower level page tables
2994 2994 */
2995 2995 if (ism_addr != ism_ht->ht_vaddr ||
2996 2996 (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2997 2997 goto not_shared;
2998 2998
2999 2999 /*
3000 3000 * The range of address space must cover a full table.
3001 3001 */
3002 3002 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
3003 3003 goto not_shared;
3004 3004
3005 3005 /*
3006 3006 * All entries in the ISM page table must be leaf PTEs.
3007 3007 */
3008 3008 if (l > 0) {
3009 3009 int e;
3010 3010
3011 3011 /*
3012 3012 * We know the 0th is from htable_walk() above.
3013 3013 */
3014 3014 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
3015 3015 x86pte_t pte;
3016 3016 pte = x86pte_get(ism_ht, e);
3017 3017 if (!PTE_ISPAGE(pte, l))
3018 3018 goto not_shared;
3019 3019 }
3020 3020 }
3021 3021
3022 3022 /*
3023 3023 * share the page table
3024 3024 */
3025 3025 ht = htable_create(hat, vaddr, l, ism_ht);
3026 3026 shared:
3027 3027 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
3028 3028 ASSERT(ht->ht_shares == ism_ht);
3029 3029 hat->hat_ism_pgcnt +=
3030 3030 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
3031 3031 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3032 3032 ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3033 3033 htable_release(ht);
3034 3034 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3035 3035 htable_release(ism_ht);
3036 3036 ism_ht = NULL;
3037 3037 continue;
3038 3038
3039 3039 not_shared:
3040 3040 /*
3041 3041 * Unable to share the page table. Instead we will
3042 3042 * create new mappings from the values in the ISM mappings.
3043 3043 * Figure out what level size mappings to use;
3044 3044 */
3045 3045 for (l = ism_ht->ht_level; l > 0; --l) {
3046 3046 if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3047 3047 (vaddr & LEVEL_OFFSET(l)) == 0)
3048 3048 break;
3049 3049 }
3050 3050
3051 3051 /*
3052 3052 * The ISM mapping might be larger than the share area,
3053 3053 * be careful to truncate it if needed.
3054 3054 */
3055 3055 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3056 3056 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3057 3057 } else {
3058 3058 pgcnt = mmu_btop(eaddr - vaddr);
3059 3059 l = 0;
3060 3060 }
3061 3061
3062 3062 pfn = PTE2PFN(pte, ism_ht->ht_level);
3063 3063 ASSERT(pfn != PFN_INVALID);
3064 3064 while (pgcnt > 0) {
3065 3065 /*
3066 3066 * Make a new pte for the PFN for this level.
3067 3067 * Copy protections for the pte from the ISM pte.
3068 3068 */
3069 3069 pp = page_numtopp_nolock(pfn);
3070 3070 ASSERT(pp != NULL);
3071 3071
3072 3072 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3073 3073 if (PTE_GET(pte, PT_WRITABLE))
3074 3074 prot |= PROT_WRITE;
3075 3075 if (!PTE_GET(pte, PT_NX))
3076 3076 prot |= PROT_EXEC;
3077 3077
3078 3078 flags = HAT_LOAD;
3079 3079 if (!is_dism)
3080 3080 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3081 3081 while (hati_load_common(hat, vaddr, pp, prot, flags,
3082 3082 l, pfn) != 0) {
3083 3083 if (l == 0)
3084 3084 panic("hati_load_common() failure");
3085 3085 --l;
3086 3086 }
3087 3087
3088 3088 vaddr += LEVEL_SIZE(l);
3089 3089 ism_addr += LEVEL_SIZE(l);
3090 3090 pfn += mmu_btop(LEVEL_SIZE(l));
3091 3091 pgcnt -= mmu_btop(LEVEL_SIZE(l));
3092 3092 }
3093 3093 }
3094 3094 if (ism_ht != NULL)
3095 3095 htable_release(ism_ht);
3096 3096 XPV_ALLOW_MIGRATE();
3097 3097 return (0);
3098 3098 }
3099 3099
3100 3100
3101 3101 /*
3102 3102 * hat_unshare() is similar to hat_unload_callback(), but
3103 3103 * we have to look for empty shared pagetables. Note that
3104 3104 * hat_unshare() is always invoked against an entire segment.
3105 3105 */
3106 3106 /*ARGSUSED*/
3107 3107 void
3108 3108 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3109 3109 {
3110 3110 uint64_t vaddr = (uintptr_t)addr;
3111 3111 uintptr_t eaddr = vaddr + len;
3112 3112 htable_t *ht = NULL;
3113 3113 uint_t need_demaps = 0;
3114 3114 int flags = HAT_UNLOAD_UNMAP;
3115 3115 level_t l;
3116 3116
3117 3117 ASSERT(hat != kas.a_hat);
3118 3118 ASSERT(eaddr <= _userlimit);
3119 3119 ASSERT(IS_PAGEALIGNED(vaddr));
3120 3120 ASSERT(IS_PAGEALIGNED(eaddr));
3121 3121 XPV_DISALLOW_MIGRATE();
3122 3122
3123 3123 /*
3124 3124 * First go through and remove any shared pagetables.
3125 3125 *
3126 3126 * Note that it's ok to delay the TLB shootdown till the entire range is
3127 3127 * finished, because if hat_pageunload() were to unload a shared
3128 3128 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3129 3129 */
3130 3130 l = mmu.max_page_level;
3131 3131 if (l == mmu.max_level)
3132 3132 --l;
3133 3133 for (; l >= 0; --l) {
3134 3134 for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3135 3135 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3136 3136 ASSERT(!IN_VA_HOLE(vaddr));
3137 3137 /*
3138 3138 * find a pagetable that maps the current address
3139 3139 */
3140 3140 ht = htable_lookup(hat, vaddr, l);
3141 3141 if (ht == NULL)
3142 3142 continue;
3143 3143 if (ht->ht_flags & HTABLE_SHARED_PFN) {
3144 3144 /*
3145 3145 * clear page count, set valid_cnt to 0,
3146 3146 * let htable_release() finish the job
3147 3147 */
3148 3148 hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3149 3149 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3150 3150 ht->ht_valid_cnt = 0;
3151 3151 need_demaps = 1;
3152 3152 }
3153 3153 htable_release(ht);
3154 3154 }
3155 3155 }
3156 3156
3157 3157 /*
3158 3158 * flush the TLBs - since we're probably dealing with MANY mappings
3159 3159 * we do just one CR3 reload.
3160 3160 */
3161 3161 if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3162 3162 hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3163 3163
3164 3164 /*
3165 3165 * Now go back and clean up any unaligned mappings that
3166 3166 * couldn't share pagetables.
3167 3167 */
3168 3168 if (!is_it_dism(hat, addr))
3169 3169 flags |= HAT_UNLOAD_UNLOCK;
3170 3170 hat_unload(hat, addr, len, flags);
3171 3171 XPV_ALLOW_MIGRATE();
3172 3172 }
3173 3173
3174 3174
3175 3175 /*
3176 3176 * hat_reserve() does nothing
3177 3177 */
3178 3178 /*ARGSUSED*/
3179 3179 void
3180 3180 hat_reserve(struct as *as, caddr_t addr, size_t len)
3181 3181 {
3182 3182 }
3183 3183
3184 3184
3185 3185 /*
3186 3186 * Called when all mappings to a page should have write permission removed.
3187 3187 * Mostly stolen from hat_pagesync()
3188 3188 */
3189 3189 static void
3190 3190 hati_page_clrwrt(struct page *pp)
3191 3191 {
3192 3192 hment_t *hm = NULL;
3193 3193 htable_t *ht;
3194 3194 uint_t entry;
3195 3195 x86pte_t old;
3196 3196 x86pte_t new;
3197 3197 uint_t pszc = 0;
3198 3198
3199 3199 XPV_DISALLOW_MIGRATE();
3200 3200 next_size:
3201 3201 /*
3202 3202 * walk thru the mapping list clearing write permission
3203 3203 */
3204 3204 x86_hm_enter(pp);
3205 3205 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3206 3206 if (ht->ht_level < pszc)
3207 3207 continue;
3208 3208 old = x86pte_get(ht, entry);
3209 3209
3210 3210 for (;;) {
3211 3211 /*
3212 3212 * Is this mapping of interest?
3213 3213 */
3214 3214 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3215 3215 PTE_GET(old, PT_WRITABLE) == 0)
3216 3216 break;
3217 3217
3218 3218 /*
3219 3219 * Clear ref/mod writable bits. This requires cross
3220 3220 * calls to ensure any executing TLBs see cleared bits.
3221 3221 */
3222 3222 new = old;
3223 3223 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3224 3224 old = hati_update_pte(ht, entry, old, new);
3225 3225 if (old != 0)
3226 3226 continue;
3227 3227
3228 3228 break;
3229 3229 }
3230 3230 }
3231 3231 x86_hm_exit(pp);
3232 3232 while (pszc < pp->p_szc) {
3233 3233 page_t *tpp;
3234 3234 pszc++;
3235 3235 tpp = PP_GROUPLEADER(pp, pszc);
3236 3236 if (pp != tpp) {
3237 3237 pp = tpp;
3238 3238 goto next_size;
3239 3239 }
3240 3240 }
3241 3241 XPV_ALLOW_MIGRATE();
3242 3242 }
3243 3243
3244 3244 /*
3245 3245 * void hat_page_setattr(pp, flag)
3246 3246 * void hat_page_clrattr(pp, flag)
3247 3247 * used to set/clr ref/mod bits.
3248 3248 */
3249 3249 void
3250 3250 hat_page_setattr(struct page *pp, uint_t flag)
3251 3251 {
3252 3252 vnode_t *vp = pp->p_vnode;
3253 3253 kmutex_t *vphm = NULL;
3254 3254 page_t **listp;
3255 3255 int noshuffle;
3256 3256
3257 3257 noshuffle = flag & P_NSH;
3258 3258 flag &= ~P_NSH;
3259 3259
3260 3260 if (PP_GETRM(pp, flag) == flag)
3261 3261 return;
3262 3262
3263 3263 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3264 3264 !noshuffle) {
3265 3265 vphm = page_vnode_mutex(vp);
3266 3266 mutex_enter(vphm);
3267 3267 }
3268 3268
3269 3269 PP_SETRM(pp, flag);
3270 3270
3271 3271 if (vphm != NULL) {
3272 3272
3273 3273 /*
3274 3274 * Some File Systems examine v_pages for NULL w/o
3275 3275 * grabbing the vphm mutex. Must not let it become NULL when
3276 3276 * pp is the only page on the list.
3277 3277 */
3278 3278 if (pp->p_vpnext != pp) {
3279 3279 page_vpsub(&vp->v_pages, pp);
3280 3280 if (vp->v_pages != NULL)
3281 3281 listp = &vp->v_pages->p_vpprev->p_vpnext;
3282 3282 else
3283 3283 listp = &vp->v_pages;
3284 3284 page_vpadd(listp, pp);
3285 3285 }
3286 3286 mutex_exit(vphm);
3287 3287 }
3288 3288 }
3289 3289
3290 3290 void
3291 3291 hat_page_clrattr(struct page *pp, uint_t flag)
3292 3292 {
3293 3293 vnode_t *vp = pp->p_vnode;
3294 3294 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3295 3295
3296 3296 /*
3297 3297 * Caller is expected to hold page's io lock for VMODSORT to work
3298 3298 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3299 3299 * bit is cleared.
3300 3300 * We don't have assert to avoid tripping some existing third party
3301 3301 * code. The dirty page is moved back to top of the v_page list
3302 3302 * after IO is done in pvn_write_done().
3303 3303 */
3304 3304 PP_CLRRM(pp, flag);
3305 3305
3306 3306 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3307 3307
3308 3308 /*
3309 3309 * VMODSORT works by removing write permissions and getting
3310 3310 * a fault when a page is made dirty. At this point
3311 3311 * we need to remove write permission from all mappings
3312 3312 * to this page.
3313 3313 */
3314 3314 hati_page_clrwrt(pp);
3315 3315 }
3316 3316 }
3317 3317
3318 3318 /*
3319 3319 * If flag is specified, returns 0 if attribute is disabled
3320 3320 * and non zero if enabled. If flag specifes multiple attributes
3321 3321 * then returns 0 if ALL attributes are disabled. This is an advisory
3322 3322 * call.
3323 3323 */
3324 3324 uint_t
3325 3325 hat_page_getattr(struct page *pp, uint_t flag)
3326 3326 {
3327 3327 return (PP_GETRM(pp, flag));
3328 3328 }
3329 3329
3330 3330
3331 3331 /*
3332 3332 * common code used by hat_pageunload() and hment_steal()
3333 3333 */
3334 3334 hment_t *
3335 3335 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3336 3336 {
3337 3337 x86pte_t old_pte;
3338 3338 pfn_t pfn = pp->p_pagenum;
3339 3339 hment_t *hm;
3340 3340
3341 3341 /*
3342 3342 * We need to acquire a hold on the htable in order to
3343 3343 * do the invalidate. We know the htable must exist, since
3344 3344 * unmap's don't release the htable until after removing any
3345 3345 * hment. Having x86_hm_enter() keeps that from proceeding.
3346 3346 */
3347 3347 htable_acquire(ht);
3348 3348
3349 3349 /*
3350 3350 * Invalidate the PTE and remove the hment.
3351 3351 */
3352 3352 old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE);
3353 3353 if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3354 3354 panic("x86pte_inval() failure found PTE = " FMT_PTE
3355 3355 " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3356 3356 old_pte, pfn, (uintptr_t)ht, entry);
3357 3357 }
3358 3358
3359 3359 /*
3360 3360 * Clean up all the htable information for this mapping
3361 3361 */
3362 3362 ASSERT(ht->ht_valid_cnt > 0);
3363 3363 HTABLE_DEC(ht->ht_valid_cnt);
3364 3364 PGCNT_DEC(ht->ht_hat, ht->ht_level);
3365 3365
3366 3366 /*
3367 3367 * sync ref/mod bits to the page_t
3368 3368 */
3369 3369 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3370 3370 hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3371 3371
3372 3372 /*
3373 3373 * Remove the mapping list entry for this page.
3374 3374 */
3375 3375 hm = hment_remove(pp, ht, entry);
3376 3376
3377 3377 /*
3378 3378 * drop the mapping list lock so that we might free the
3379 3379 * hment and htable.
3380 3380 */
3381 3381 x86_hm_exit(pp);
3382 3382 htable_release(ht);
3383 3383 return (hm);
3384 3384 }
3385 3385
3386 3386 extern int vpm_enable;
3387 3387 /*
3388 3388 * Unload all translations to a page. If the page is a subpage of a large
3389 3389 * page, the large page mappings are also removed.
3390 3390 *
3391 3391 * The forceflags are unused.
3392 3392 */
3393 3393
3394 3394 /*ARGSUSED*/
3395 3395 static int
3396 3396 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3397 3397 {
3398 3398 page_t *cur_pp = pp;
3399 3399 hment_t *hm;
3400 3400 hment_t *prev;
3401 3401 htable_t *ht;
3402 3402 uint_t entry;
3403 3403 level_t level;
3404 3404
3405 3405 XPV_DISALLOW_MIGRATE();
3406 3406
3407 3407 /*
3408 3408 * prevent recursion due to kmem_free()
3409 3409 */
3410 3410 ++curthread->t_hatdepth;
3411 3411 ASSERT(curthread->t_hatdepth < 16);
3412 3412
3413 3413 #if defined(__amd64)
3414 3414 /*
3415 3415 * clear the vpm ref.
3416 3416 */
3417 3417 if (vpm_enable) {
3418 3418 pp->p_vpmref = 0;
3419 3419 }
3420 3420 #endif
3421 3421 /*
3422 3422 * The loop with next_size handles pages with multiple pagesize mappings
3423 3423 */
3424 3424 next_size:
3425 3425 for (;;) {
3426 3426
3427 3427 /*
3428 3428 * Get a mapping list entry
3429 3429 */
3430 3430 x86_hm_enter(cur_pp);
3431 3431 for (prev = NULL; ; prev = hm) {
3432 3432 hm = hment_walk(cur_pp, &ht, &entry, prev);
3433 3433 if (hm == NULL) {
3434 3434 x86_hm_exit(cur_pp);
3435 3435
3436 3436 /*
3437 3437 * If not part of a larger page, we're done.
3438 3438 */
3439 3439 if (cur_pp->p_szc <= pg_szcd) {
3440 3440 ASSERT(curthread->t_hatdepth > 0);
3441 3441 --curthread->t_hatdepth;
3442 3442 XPV_ALLOW_MIGRATE();
3443 3443 return (0);
3444 3444 }
3445 3445
3446 3446 /*
3447 3447 * Else check the next larger page size.
3448 3448 * hat_page_demote() may decrease p_szc
3449 3449 * but that's ok we'll just take an extra
3450 3450 * trip discover there're no larger mappings
3451 3451 * and return.
3452 3452 */
3453 3453 ++pg_szcd;
3454 3454 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3455 3455 goto next_size;
3456 3456 }
3457 3457
3458 3458 /*
3459 3459 * If this mapping size matches, remove it.
3460 3460 */
3461 3461 level = ht->ht_level;
3462 3462 if (level == pg_szcd)
3463 3463 break;
3464 3464 }
3465 3465
3466 3466 /*
3467 3467 * Remove the mapping list entry for this page.
3468 3468 * Note this does the x86_hm_exit() for us.
3469 3469 */
3470 3470 hm = hati_page_unmap(cur_pp, ht, entry);
3471 3471 if (hm != NULL)
3472 3472 hment_free(hm);
3473 3473 }
3474 3474 }
3475 3475
3476 3476 int
3477 3477 hat_pageunload(struct page *pp, uint_t forceflag)
3478 3478 {
3479 3479 ASSERT(PAGE_EXCL(pp));
3480 3480 return (hati_pageunload(pp, 0, forceflag));
3481 3481 }
3482 3482
3483 3483 /*
3484 3484 * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3485 3485 * page level that included pp.
3486 3486 *
3487 3487 * pp must be locked EXCL. Even though no other constituent pages are locked
3488 3488 * it's legal to unload large mappings to pp because all constituent pages of
3489 3489 * large locked mappings have to be locked SHARED. therefore if we have EXCL
3490 3490 * lock on one of constituent pages none of the large mappings to pp are
3491 3491 * locked.
3492 3492 *
3493 3493 * Change (always decrease) p_szc field starting from the last constituent
3494 3494 * page and ending with root constituent page so that root's pszc always shows
3495 3495 * the area where hat_page_demote() may be active.
3496 3496 *
3497 3497 * This mechanism is only used for file system pages where it's not always
3498 3498 * possible to get EXCL locks on all constituent pages to demote the size code
3499 3499 * (as is done for anonymous or kernel large pages).
3500 3500 */
3501 3501 void
3502 3502 hat_page_demote(page_t *pp)
3503 3503 {
3504 3504 uint_t pszc;
3505 3505 uint_t rszc;
3506 3506 uint_t szc;
3507 3507 page_t *rootpp;
3508 3508 page_t *firstpp;
3509 3509 page_t *lastpp;
3510 3510 pgcnt_t pgcnt;
3511 3511
3512 3512 ASSERT(PAGE_EXCL(pp));
3513 3513 ASSERT(!PP_ISFREE(pp));
3514 3514 ASSERT(page_szc_lock_assert(pp));
3515 3515
3516 3516 if (pp->p_szc == 0)
3517 3517 return;
3518 3518
3519 3519 rootpp = PP_GROUPLEADER(pp, 1);
3520 3520 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3521 3521
3522 3522 /*
3523 3523 * all large mappings to pp are gone
3524 3524 * and no new can be setup since pp is locked exclusively.
3525 3525 *
3526 3526 * Lock the root to make sure there's only one hat_page_demote()
3527 3527 * outstanding within the area of this root's pszc.
3528 3528 *
3529 3529 * Second potential hat_page_demote() is already eliminated by upper
3530 3530 * VM layer via page_szc_lock() but we don't rely on it and use our
3531 3531 * own locking (so that upper layer locking can be changed without
3532 3532 * assumptions that hat depends on upper layer VM to prevent multiple
3533 3533 * hat_page_demote() to be issued simultaneously to the same large
3534 3534 * page).
3535 3535 */
3536 3536 again:
3537 3537 pszc = pp->p_szc;
3538 3538 if (pszc == 0)
3539 3539 return;
3540 3540 rootpp = PP_GROUPLEADER(pp, pszc);
3541 3541 x86_hm_enter(rootpp);
3542 3542 /*
3543 3543 * If root's p_szc is different from pszc we raced with another
3544 3544 * hat_page_demote(). Drop the lock and try to find the root again.
3545 3545 * If root's p_szc is greater than pszc previous hat_page_demote() is
3546 3546 * not done yet. Take and release mlist lock of root's root to wait
3547 3547 * for previous hat_page_demote() to complete.
3548 3548 */
3549 3549 if ((rszc = rootpp->p_szc) != pszc) {
3550 3550 x86_hm_exit(rootpp);
3551 3551 if (rszc > pszc) {
3552 3552 /* p_szc of a locked non free page can't increase */
3553 3553 ASSERT(pp != rootpp);
3554 3554
3555 3555 rootpp = PP_GROUPLEADER(rootpp, rszc);
3556 3556 x86_hm_enter(rootpp);
3557 3557 x86_hm_exit(rootpp);
3558 3558 }
3559 3559 goto again;
3560 3560 }
3561 3561 ASSERT(pp->p_szc == pszc);
3562 3562
3563 3563 /*
3564 3564 * Decrement by 1 p_szc of every constituent page of a region that
3565 3565 * covered pp. For example if original szc is 3 it gets changed to 2
3566 3566 * everywhere except in region 2 that covered pp. Region 2 that
3567 3567 * covered pp gets demoted to 1 everywhere except in region 1 that
3568 3568 * covered pp. The region 1 that covered pp is demoted to region
3569 3569 * 0. It's done this way because from region 3 we removed level 3
3570 3570 * mappings, from region 2 that covered pp we removed level 2 mappings
3571 3571 * and from region 1 that covered pp we removed level 1 mappings. All
3572 3572 * changes are done from from high pfn's to low pfn's so that roots
3573 3573 * are changed last allowing one to know the largest region where
3574 3574 * hat_page_demote() is stil active by only looking at the root page.
3575 3575 *
3576 3576 * This algorithm is implemented in 2 while loops. First loop changes
3577 3577 * p_szc of pages to the right of pp's level 1 region and second
3578 3578 * loop changes p_szc of pages of level 1 region that covers pp
3579 3579 * and all pages to the left of level 1 region that covers pp.
3580 3580 * In the first loop p_szc keeps dropping with every iteration
3581 3581 * and in the second loop it keeps increasing with every iteration.
3582 3582 *
3583 3583 * First loop description: Demote pages to the right of pp outside of
3584 3584 * level 1 region that covers pp. In every iteration of the while
3585 3585 * loop below find the last page of szc region and the first page of
3586 3586 * (szc - 1) region that is immediately to the right of (szc - 1)
3587 3587 * region that covers pp. From last such page to first such page
3588 3588 * change every page's szc to szc - 1. Decrement szc and continue
3589 3589 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3590 3590 * of szc region skip to the next iteration.
3591 3591 */
3592 3592 szc = pszc;
3593 3593 while (szc > 1) {
3594 3594 lastpp = PP_GROUPLEADER(pp, szc);
3595 3595 pgcnt = page_get_pagecnt(szc);
3596 3596 lastpp += pgcnt - 1;
3597 3597 firstpp = PP_GROUPLEADER(pp, (szc - 1));
3598 3598 pgcnt = page_get_pagecnt(szc - 1);
3599 3599 if (lastpp - firstpp < pgcnt) {
3600 3600 szc--;
3601 3601 continue;
3602 3602 }
3603 3603 firstpp += pgcnt;
3604 3604 while (lastpp != firstpp) {
3605 3605 ASSERT(lastpp->p_szc == pszc);
3606 3606 lastpp->p_szc = szc - 1;
3607 3607 lastpp--;
3608 3608 }
3609 3609 firstpp->p_szc = szc - 1;
3610 3610 szc--;
3611 3611 }
3612 3612
3613 3613 /*
3614 3614 * Second loop description:
3615 3615 * First iteration changes p_szc to 0 of every
3616 3616 * page of level 1 region that covers pp.
3617 3617 * Subsequent iterations find last page of szc region
3618 3618 * immediately to the left of szc region that covered pp
3619 3619 * and first page of (szc + 1) region that covers pp.
3620 3620 * From last to first page change p_szc of every page to szc.
3621 3621 * Increment szc and continue looping until szc is pszc.
3622 3622 * If pp belongs to the fist szc region of (szc + 1) region
3623 3623 * skip to the next iteration.
3624 3624 *
3625 3625 */
3626 3626 szc = 0;
3627 3627 while (szc < pszc) {
3628 3628 firstpp = PP_GROUPLEADER(pp, (szc + 1));
3629 3629 if (szc == 0) {
3630 3630 pgcnt = page_get_pagecnt(1);
3631 3631 lastpp = firstpp + (pgcnt - 1);
3632 3632 } else {
3633 3633 lastpp = PP_GROUPLEADER(pp, szc);
3634 3634 if (firstpp == lastpp) {
3635 3635 szc++;
3636 3636 continue;
3637 3637 }
3638 3638 lastpp--;
3639 3639 pgcnt = page_get_pagecnt(szc);
3640 3640 }
3641 3641 while (lastpp != firstpp) {
3642 3642 ASSERT(lastpp->p_szc == pszc);
3643 3643 lastpp->p_szc = szc;
3644 3644 lastpp--;
3645 3645 }
3646 3646 firstpp->p_szc = szc;
3647 3647 if (firstpp == rootpp)
3648 3648 break;
3649 3649 szc++;
3650 3650 }
3651 3651 x86_hm_exit(rootpp);
3652 3652 }
3653 3653
3654 3654 /*
3655 3655 * get hw stats from hardware into page struct and reset hw stats
3656 3656 * returns attributes of page
3657 3657 * Flags for hat_pagesync, hat_getstat, hat_sync
3658 3658 *
3659 3659 * define HAT_SYNC_ZERORM 0x01
3660 3660 *
3661 3661 * Additional flags for hat_pagesync
3662 3662 *
3663 3663 * define HAT_SYNC_STOPON_REF 0x02
3664 3664 * define HAT_SYNC_STOPON_MOD 0x04
3665 3665 * define HAT_SYNC_STOPON_RM 0x06
3666 3666 * define HAT_SYNC_STOPON_SHARED 0x08
3667 3667 */
3668 3668 uint_t
3669 3669 hat_pagesync(struct page *pp, uint_t flags)
3670 3670 {
3671 3671 hment_t *hm = NULL;
3672 3672 htable_t *ht;
3673 3673 uint_t entry;
3674 3674 x86pte_t old, save_old;
3675 3675 x86pte_t new;
3676 3676 uchar_t nrmbits = P_REF|P_MOD|P_RO;
3677 3677 extern ulong_t po_share;
3678 3678 page_t *save_pp = pp;
3679 3679 uint_t pszc = 0;
3680 3680
3681 3681 ASSERT(PAGE_LOCKED(pp) || panicstr);
3682 3682
3683 3683 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3684 3684 return (pp->p_nrm & nrmbits);
3685 3685
3686 3686 if ((flags & HAT_SYNC_ZERORM) == 0) {
3687 3687
3688 3688 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3689 3689 return (pp->p_nrm & nrmbits);
3690 3690
3691 3691 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3692 3692 return (pp->p_nrm & nrmbits);
3693 3693
3694 3694 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3695 3695 hat_page_getshare(pp) > po_share) {
3696 3696 if (PP_ISRO(pp))
3697 3697 PP_SETREF(pp);
3698 3698 return (pp->p_nrm & nrmbits);
3699 3699 }
3700 3700 }
3701 3701
3702 3702 XPV_DISALLOW_MIGRATE();
3703 3703 next_size:
3704 3704 /*
3705 3705 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3706 3706 */
3707 3707 x86_hm_enter(pp);
3708 3708 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3709 3709 if (ht->ht_level < pszc)
3710 3710 continue;
3711 3711 old = x86pte_get(ht, entry);
3712 3712 try_again:
3713 3713
3714 3714 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3715 3715
3716 3716 if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3717 3717 continue;
3718 3718
3719 3719 save_old = old;
3720 3720 if ((flags & HAT_SYNC_ZERORM) != 0) {
3721 3721
3722 3722 /*
3723 3723 * Need to clear ref or mod bits. Need to demap
3724 3724 * to make sure any executing TLBs see cleared bits.
3725 3725 */
3726 3726 new = old;
3727 3727 PTE_CLR(new, PT_REF | PT_MOD);
3728 3728 old = hati_update_pte(ht, entry, old, new);
3729 3729 if (old != 0)
3730 3730 goto try_again;
3731 3731
3732 3732 old = save_old;
3733 3733 }
3734 3734
3735 3735 /*
3736 3736 * Sync the PTE
3737 3737 */
3738 3738 if (!(flags & HAT_SYNC_ZERORM) &&
3739 3739 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3740 3740 hati_sync_pte_to_page(pp, old, ht->ht_level);
3741 3741
3742 3742 /*
3743 3743 * can stop short if we found a ref'd or mod'd page
3744 3744 */
3745 3745 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3746 3746 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3747 3747 x86_hm_exit(pp);
3748 3748 goto done;
3749 3749 }
3750 3750 }
3751 3751 x86_hm_exit(pp);
3752 3752 while (pszc < pp->p_szc) {
3753 3753 page_t *tpp;
3754 3754 pszc++;
3755 3755 tpp = PP_GROUPLEADER(pp, pszc);
3756 3756 if (pp != tpp) {
3757 3757 pp = tpp;
3758 3758 goto next_size;
3759 3759 }
3760 3760 }
3761 3761 done:
3762 3762 XPV_ALLOW_MIGRATE();
3763 3763 return (save_pp->p_nrm & nrmbits);
3764 3764 }
3765 3765
3766 3766 /*
3767 3767 * returns approx number of mappings to this pp. A return of 0 implies
3768 3768 * there are no mappings to the page.
3769 3769 */
3770 3770 ulong_t
3771 3771 hat_page_getshare(page_t *pp)
3772 3772 {
3773 3773 uint_t cnt;
3774 3774 cnt = hment_mapcnt(pp);
3775 3775 #if defined(__amd64)
3776 3776 if (vpm_enable && pp->p_vpmref) {
3777 3777 cnt += 1;
3778 3778 }
3779 3779 #endif
3780 3780 return (cnt);
3781 3781 }
3782 3782
3783 3783 /*
3784 3784 * Return 1 the number of mappings exceeds sh_thresh. Return 0
3785 3785 * otherwise.
3786 3786 */
3787 3787 int
3788 3788 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3789 3789 {
3790 3790 return (hat_page_getshare(pp) > sh_thresh);
3791 3791 }
3792 3792
3793 3793 /*
3794 3794 * hat_softlock isn't supported anymore
3795 3795 */
3796 3796 /*ARGSUSED*/
3797 3797 faultcode_t
3798 3798 hat_softlock(
3799 3799 hat_t *hat,
3800 3800 caddr_t addr,
3801 3801 size_t *len,
3802 3802 struct page **page_array,
3803 3803 uint_t flags)
3804 3804 {
3805 3805 return (FC_NOSUPPORT);
3806 3806 }
3807 3807
3808 3808
3809 3809
3810 3810 /*
3811 3811 * Routine to expose supported HAT features to platform independent code.
3812 3812 */
3813 3813 /*ARGSUSED*/
3814 3814 int
3815 3815 hat_supported(enum hat_features feature, void *arg)
3816 3816 {
3817 3817 switch (feature) {
3818 3818
3819 3819 case HAT_SHARED_PT: /* this is really ISM */
3820 3820 return (1);
3821 3821
3822 3822 case HAT_DYNAMIC_ISM_UNMAP:
3823 3823 return (0);
3824 3824
3825 3825 case HAT_VMODSORT:
3826 3826 return (1);
3827 3827
3828 3828 case HAT_SHARED_REGIONS:
3829 3829 return (0);
3830 3830
3831 3831 default:
3832 3832 panic("hat_supported() - unknown feature");
3833 3833 }
3834 3834 return (0);
3835 3835 }
3836 3836
3837 3837 /*
3838 3838 * Called when a thread is exiting and has been switched to the kernel AS
3839 3839 */
3840 3840 void
3841 3841 hat_thread_exit(kthread_t *thd)
3842 3842 {
3843 3843 ASSERT(thd->t_procp->p_as == &kas);
3844 3844 XPV_DISALLOW_MIGRATE();
3845 3845 hat_switch(thd->t_procp->p_as->a_hat);
3846 3846 XPV_ALLOW_MIGRATE();
3847 3847 }
3848 3848
3849 3849 /*
3850 3850 * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3851 3851 */
3852 3852 /*ARGSUSED*/
3853 3853 void
3854 3854 hat_setup(hat_t *hat, int flags)
3855 3855 {
3856 3856 XPV_DISALLOW_MIGRATE();
3857 3857 kpreempt_disable();
3858 3858
3859 3859 hat_switch(hat);
3860 3860
3861 3861 kpreempt_enable();
3862 3862 XPV_ALLOW_MIGRATE();
3863 3863 }
3864 3864
3865 3865 /*
3866 3866 * Prepare for a CPU private mapping for the given address.
3867 3867 *
3868 3868 * The address can only be used from a single CPU and can be remapped
3869 3869 * using hat_mempte_remap(). Return the address of the PTE.
3870 3870 *
3871 3871 * We do the htable_create() if necessary and increment the valid count so
3872 3872 * the htable can't disappear. We also hat_devload() the page table into
3873 3873 * kernel so that the PTE is quickly accessed.
3874 3874 */
3875 3875 hat_mempte_t
3876 3876 hat_mempte_setup(caddr_t addr)
3877 3877 {
3878 3878 uintptr_t va = (uintptr_t)addr;
3879 3879 htable_t *ht;
3880 3880 uint_t entry;
3881 3881 x86pte_t oldpte;
3882 3882 hat_mempte_t p;
3883 3883
3884 3884 ASSERT(IS_PAGEALIGNED(va));
3885 3885 ASSERT(!IN_VA_HOLE(va));
3886 3886 ++curthread->t_hatdepth;
3887 3887 XPV_DISALLOW_MIGRATE();
3888 3888 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3889 3889 if (ht == NULL) {
3890 3890 ht = htable_create(kas.a_hat, va, 0, NULL);
3891 3891 entry = htable_va2entry(va, ht);
3892 3892 ASSERT(ht->ht_level == 0);
3893 3893 oldpte = x86pte_get(ht, entry);
3894 3894 }
3895 3895 if (PTE_ISVALID(oldpte))
3896 3896 panic("hat_mempte_setup(): address already mapped"
3897 3897 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3898 3898
3899 3899 /*
3900 3900 * increment ht_valid_cnt so that the pagetable can't disappear
3901 3901 */
3902 3902 HTABLE_INC(ht->ht_valid_cnt);
3903 3903
3904 3904 /*
3905 3905 * return the PTE physical address to the caller.
3906 3906 */
3907 3907 htable_release(ht);
3908 3908 XPV_ALLOW_MIGRATE();
3909 3909 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3910 3910 --curthread->t_hatdepth;
3911 3911 return (p);
3912 3912 }
3913 3913
3914 3914 /*
3915 3915 * Release a CPU private mapping for the given address.
3916 3916 * We decrement the htable valid count so it might be destroyed.
3917 3917 */
3918 3918 /*ARGSUSED1*/
3919 3919 void
3920 3920 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3921 3921 {
3922 3922 htable_t *ht;
3923 3923
3924 3924 XPV_DISALLOW_MIGRATE();
3925 3925 /*
3926 3926 * invalidate any left over mapping and decrement the htable valid count
3927 3927 */
3928 3928 #ifdef __xpv
3929 3929 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3930 3930 UVMF_INVLPG | UVMF_LOCAL))
3931 3931 panic("HYPERVISOR_update_va_mapping() failed");
3932 3932 #else
3933 3933 {
3934 3934 x86pte_t *pteptr;
3935 3935
3936 3936 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3937 3937 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3938 3938 if (mmu.pae_hat)
3939 3939 *pteptr = 0;
3940 3940 else
3941 3941 *(x86pte32_t *)pteptr = 0;
3942 3942 mmu_tlbflush_entry(addr);
3943 3943 x86pte_mapout();
3944 3944 }
3945 3945 #endif
3946 3946
3947 3947 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3948 3948 if (ht == NULL)
3949 3949 panic("hat_mempte_release(): invalid address");
3950 3950 ASSERT(ht->ht_level == 0);
3951 3951 HTABLE_DEC(ht->ht_valid_cnt);
3952 3952 htable_release(ht);
3953 3953 XPV_ALLOW_MIGRATE();
3954 3954 }
3955 3955
3956 3956 /*
3957 3957 * Apply a temporary CPU private mapping to a page. We flush the TLB only
3958 3958 * on this CPU, so this ought to have been called with preemption disabled.
3959 3959 */
3960 3960 void
3961 3961 hat_mempte_remap(
3962 3962 pfn_t pfn,
3963 3963 caddr_t addr,
3964 3964 hat_mempte_t pte_pa,
3965 3965 uint_t attr,
3966 3966 uint_t flags)
3967 3967 {
3968 3968 uintptr_t va = (uintptr_t)addr;
3969 3969 x86pte_t pte;
3970 3970
3971 3971 /*
3972 3972 * Remap the given PTE to the new page's PFN. Invalidate only
3973 3973 * on this CPU.
3974 3974 */
3975 3975 #ifdef DEBUG
3976 3976 htable_t *ht;
3977 3977 uint_t entry;
3978 3978
3979 3979 ASSERT(IS_PAGEALIGNED(va));
3980 3980 ASSERT(!IN_VA_HOLE(va));
3981 3981 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3982 3982 ASSERT(ht != NULL);
3983 3983 ASSERT(ht->ht_level == 0);
3984 3984 ASSERT(ht->ht_valid_cnt > 0);
3985 3985 ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3986 3986 htable_release(ht);
3987 3987 #endif
3988 3988 XPV_DISALLOW_MIGRATE();
3989 3989 pte = hati_mkpte(pfn, attr, 0, flags);
3990 3990 #ifdef __xpv
3991 3991 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3992 3992 panic("HYPERVISOR_update_va_mapping() failed");
3993 3993 #else
3994 3994 {
3995 3995 x86pte_t *pteptr;
3996 3996
3997 3997 pteptr = x86pte_mapin(mmu_btop(pte_pa),
3998 3998 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3999 3999 if (mmu.pae_hat)
4000 4000 *(x86pte_t *)pteptr = pte;
4001 4001 else
4002 4002 *(x86pte32_t *)pteptr = (x86pte32_t)pte;
4003 4003 mmu_tlbflush_entry(addr);
4004 4004 x86pte_mapout();
4005 4005 }
4006 4006 #endif
4007 4007 XPV_ALLOW_MIGRATE();
4008 4008 }
4009 4009
4010 4010
4011 4011
4012 4012 /*
4013 4013 * Hat locking functions
4014 4014 * XXX - these two functions are currently being used by hatstats
4015 4015 * they can be removed by using a per-as mutex for hatstats.
4016 4016 */
4017 4017 void
4018 4018 hat_enter(hat_t *hat)
4019 4019 {
4020 4020 mutex_enter(&hat->hat_mutex);
4021 4021 }
4022 4022
4023 4023 void
4024 4024 hat_exit(hat_t *hat)
4025 4025 {
4026 4026 mutex_exit(&hat->hat_mutex);
4027 4027 }
4028 4028
4029 4029 /*
4030 4030 * HAT part of cpu initialization.
4031 4031 */
4032 4032 void
4033 4033 hat_cpu_online(struct cpu *cpup)
4034 4034 {
4035 4035 if (cpup != CPU) {
4036 4036 x86pte_cpu_init(cpup);
4037 4037 hat_vlp_setup(cpup);
4038 4038 }
4039 4039 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4040 4040 }
4041 4041
4042 4042 /*
4043 4043 * HAT part of cpu deletion.
4044 4044 * (currently, we only call this after the cpu is safely passivated.)
4045 4045 */
4046 4046 void
4047 4047 hat_cpu_offline(struct cpu *cpup)
4048 4048 {
4049 4049 ASSERT(cpup != CPU);
4050 4050
4051 4051 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4052 4052 hat_vlp_teardown(cpup);
4053 4053 x86pte_cpu_fini(cpup);
4054 4054 }
4055 4055
4056 4056 /*
4057 4057 * Function called after all CPUs are brought online.
4058 4058 * Used to remove low address boot mappings.
4059 4059 */
4060 4060 void
4061 4061 clear_boot_mappings(uintptr_t low, uintptr_t high)
4062 4062 {
4063 4063 uintptr_t vaddr = low;
4064 4064 htable_t *ht = NULL;
4065 4065 level_t level;
4066 4066 uint_t entry;
4067 4067 x86pte_t pte;
4068 4068
4069 4069 /*
4070 4070 * On 1st CPU we can unload the prom mappings, basically we blow away
4071 4071 * all virtual mappings under _userlimit.
4072 4072 */
4073 4073 while (vaddr < high) {
4074 4074 pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4075 4075 if (ht == NULL)
4076 4076 break;
4077 4077
4078 4078 level = ht->ht_level;
4079 4079 entry = htable_va2entry(vaddr, ht);
4080 4080 ASSERT(level <= mmu.max_page_level);
4081 4081 ASSERT(PTE_ISPAGE(pte, level));
4082 4082
4083 4083 /*
4084 4084 * Unload the mapping from the page tables.
4085 4085 */
4086 4086 (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE);
4087 4087 ASSERT(ht->ht_valid_cnt > 0);
4088 4088 HTABLE_DEC(ht->ht_valid_cnt);
4089 4089 PGCNT_DEC(ht->ht_hat, ht->ht_level);
4090 4090
4091 4091 vaddr += LEVEL_SIZE(ht->ht_level);
4092 4092 }
4093 4093 if (ht)
4094 4094 htable_release(ht);
4095 4095 }
4096 4096
4097 4097 /*
4098 4098 * Atomically update a new translation for a single page. If the
4099 4099 * currently installed PTE doesn't match the value we expect to find,
4100 4100 * it's not updated and we return the PTE we found.
4101 4101 *
4102 4102 * If activating nosync or NOWRITE and the page was modified we need to sync
4103 4103 * with the page_t. Also sync with page_t if clearing ref/mod bits.
4104 4104 */
4105 4105 static x86pte_t
4106 4106 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4107 4107 {
4108 4108 page_t *pp;
4109 4109 uint_t rm = 0;
4110 4110 x86pte_t replaced;
4111 4111
4112 4112 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4113 4113 PTE_GET(expected, PT_MOD | PT_REF) &&
4114 4114 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4115 4115 !PTE_GET(new, PT_MOD | PT_REF))) {
4116 4116
4117 4117 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4118 4118 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4119 4119 ASSERT(pp != NULL);
4120 4120 if (PTE_GET(expected, PT_MOD))
4121 4121 rm |= P_MOD;
4122 4122 if (PTE_GET(expected, PT_REF))
4123 4123 rm |= P_REF;
4124 4124 PTE_CLR(new, PT_MOD | PT_REF);
4125 4125 }
4126 4126
4127 4127 replaced = x86pte_update(ht, entry, expected, new);
4128 4128 if (replaced != expected)
4129 4129 return (replaced);
4130 4130
4131 4131 if (rm) {
4132 4132 /*
4133 4133 * sync to all constituent pages of a large page
4134 4134 */
4135 4135 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4136 4136 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4137 4137 while (pgcnt-- > 0) {
4138 4138 /*
4139 4139 * hat_page_demote() can't decrease
4140 4140 * pszc below this mapping size
4141 4141 * since large mapping existed after we
4142 4142 * took mlist lock.
4143 4143 */
4144 4144 ASSERT(pp->p_szc >= ht->ht_level);
4145 4145 hat_page_setattr(pp, rm);
4146 4146 ++pp;
4147 4147 }
4148 4148 }
4149 4149
4150 4150 return (0);
4151 4151 }
4152 4152
4153 4153 /* ARGSUSED */
4154 4154 void
4155 4155 hat_join_srd(struct hat *hat, vnode_t *evp)
4156 4156 {
4157 4157 }
4158 4158
4159 4159 /* ARGSUSED */
4160 4160 hat_region_cookie_t
4161 4161 hat_join_region(struct hat *hat,
4162 4162 caddr_t r_saddr,
4163 4163 size_t r_size,
4164 4164 void *r_obj,
4165 4165 u_offset_t r_objoff,
4166 4166 uchar_t r_perm,
4167 4167 uchar_t r_pgszc,
4168 4168 hat_rgn_cb_func_t r_cb_function,
4169 4169 uint_t flags)
4170 4170 {
4171 4171 panic("No shared region support on x86");
4172 4172 return (HAT_INVALID_REGION_COOKIE);
4173 4173 }
4174 4174
4175 4175 /* ARGSUSED */
4176 4176 void
4177 4177 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4178 4178 {
4179 4179 panic("No shared region support on x86");
4180 4180 }
4181 4181
4182 4182 /* ARGSUSED */
4183 4183 void
4184 4184 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4185 4185 {
4186 4186 panic("No shared region support on x86");
4187 4187 }
4188 4188
4189 4189
4190 4190 /*
4191 4191 * Kernel Physical Mapping (kpm) facility
4192 4192 *
4193 4193 * Most of the routines needed to support segkpm are almost no-ops on the
4194 4194 * x86 platform. We map in the entire segment when it is created and leave
4195 4195 * it mapped in, so there is no additional work required to set up and tear
4196 4196 * down individual mappings. All of these routines were created to support
4197 4197 * SPARC platforms that have to avoid aliasing in their virtually indexed
4198 4198 * caches.
4199 4199 *
4200 4200 * Most of the routines have sanity checks in them (e.g. verifying that the
4201 4201 * passed-in page is locked). We don't actually care about most of these
4202 4202 * checks on x86, but we leave them in place to identify problems in the
4203 4203 * upper levels.
4204 4204 */
4205 4205
4206 4206 /*
4207 4207 * Map in a locked page and return the vaddr.
4208 4208 */
4209 4209 /*ARGSUSED*/
4210 4210 caddr_t
4211 4211 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4212 4212 {
4213 4213 caddr_t vaddr;
4214 4214
4215 4215 #ifdef DEBUG
4216 4216 if (kpm_enable == 0) {
4217 4217 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4218 4218 return ((caddr_t)NULL);
4219 4219 }
4220 4220
4221 4221 if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4222 4222 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4223 4223 return ((caddr_t)NULL);
4224 4224 }
4225 4225 #endif
4226 4226
4227 4227 vaddr = hat_kpm_page2va(pp, 1);
4228 4228
4229 4229 return (vaddr);
4230 4230 }
4231 4231
4232 4232 /*
4233 4233 * Mapout a locked page.
4234 4234 */
4235 4235 /*ARGSUSED*/
4236 4236 void
4237 4237 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4238 4238 {
4239 4239 #ifdef DEBUG
4240 4240 if (kpm_enable == 0) {
4241 4241 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4242 4242 return;
4243 4243 }
4244 4244
4245 4245 if (IS_KPM_ADDR(vaddr) == 0) {
4246 4246 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4247 4247 return;
4248 4248 }
4249 4249
4250 4250 if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4251 4251 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4252 4252 return;
4253 4253 }
4254 4254 #endif
4255 4255 }
4256 4256
4257 4257 /*
4258 4258 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4259 4259 * memory addresses that are not described by a page_t. It can
4260 4260 * also be used for normal pages that are not locked, but beware
4261 4261 * this is dangerous - no locking is performed, so the identity of
4262 4262 * the page could change. hat_kpm_mapin_pfn is not supported when
4263 4263 * vac_colors > 1, because the chosen va depends on the page identity,
4264 4264 * which could change.
4265 4265 * The caller must only pass pfn's for valid physical addresses; violation
4266 4266 * of this rule will cause panic.
4267 4267 */
4268 4268 caddr_t
4269 4269 hat_kpm_mapin_pfn(pfn_t pfn)
4270 4270 {
4271 4271 caddr_t paddr, vaddr;
4272 4272
4273 4273 if (kpm_enable == 0)
4274 4274 return ((caddr_t)NULL);
4275 4275
4276 4276 paddr = (caddr_t)ptob(pfn);
4277 4277 vaddr = (uintptr_t)kpm_vbase + paddr;
4278 4278
4279 4279 return ((caddr_t)vaddr);
4280 4280 }
4281 4281
4282 4282 /*ARGSUSED*/
4283 4283 void
4284 4284 hat_kpm_mapout_pfn(pfn_t pfn)
4285 4285 {
4286 4286 /* empty */
4287 4287 }
4288 4288
4289 4289 /*
4290 4290 * Return the kpm virtual address for a specific pfn
4291 4291 */
4292 4292 caddr_t
4293 4293 hat_kpm_pfn2va(pfn_t pfn)
4294 4294 {
4295 4295 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4296 4296
4297 4297 ASSERT(!pfn_is_foreign(pfn));
4298 4298 return ((caddr_t)vaddr);
4299 4299 }
4300 4300
4301 4301 /*
4302 4302 * Return the kpm virtual address for the page at pp.
4303 4303 */
4304 4304 /*ARGSUSED*/
4305 4305 caddr_t
4306 4306 hat_kpm_page2va(struct page *pp, int checkswap)
4307 4307 {
4308 4308 return (hat_kpm_pfn2va(pp->p_pagenum));
4309 4309 }
4310 4310
4311 4311 /*
4312 4312 * Return the page frame number for the kpm virtual address vaddr.
4313 4313 */
4314 4314 pfn_t
4315 4315 hat_kpm_va2pfn(caddr_t vaddr)
4316 4316 {
4317 4317 pfn_t pfn;
4318 4318
4319 4319 ASSERT(IS_KPM_ADDR(vaddr));
4320 4320
4321 4321 pfn = (pfn_t)btop(vaddr - kpm_vbase);
4322 4322
4323 4323 return (pfn);
4324 4324 }
4325 4325
4326 4326
4327 4327 /*
4328 4328 * Return the page for the kpm virtual address vaddr.
4329 4329 */
4330 4330 page_t *
4331 4331 hat_kpm_vaddr2page(caddr_t vaddr)
4332 4332 {
4333 4333 pfn_t pfn;
4334 4334
4335 4335 ASSERT(IS_KPM_ADDR(vaddr));
4336 4336
4337 4337 pfn = hat_kpm_va2pfn(vaddr);
4338 4338
4339 4339 return (page_numtopp_nolock(pfn));
4340 4340 }
4341 4341
4342 4342 /*
4343 4343 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4344 4344 * KPM page. This should never happen on x86
4345 4345 */
4346 4346 int
4347 4347 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4348 4348 {
4349 4349 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p",
4350 4350 (void *)hat, (void *)vaddr);
4351 4351
4352 4352 return (0);
4353 4353 }
4354 4354
4355 4355 /*ARGSUSED*/
4356 4356 void
4357 4357 hat_kpm_mseghash_clear(int nentries)
4358 4358 {}
4359 4359
4360 4360 /*ARGSUSED*/
4361 4361 void
4362 4362 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4363 4363 {}
4364 4364
4365 4365 #ifndef __xpv
4366 4366 void
4367 4367 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
4368 4368 offset_t kpm_pages_off)
4369 4369 {
4370 4370 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off));
4371 4371 pfn_t base, end;
4372 4372
4373 4373 /*
4374 4374 * kphysm_add_memory_dynamic() does not set nkpmpgs
4375 4375 * when page_t memory is externally allocated. That
4376 4376 * code must properly calculate nkpmpgs in all cases
4377 4377 * if nkpmpgs needs to be used at some point.
4378 4378 */
4379 4379
4380 4380 /*
4381 4381 * The meta (page_t) pages for dynamically added memory are allocated
4382 4382 * either from the incoming memory itself or from existing memory.
4383 4383 * In the former case the base of the incoming pages will be different
4384 4384 * than the base of the dynamic segment so call memseg_get_start() to
4385 4385 * get the actual base of the incoming memory for each case.
4386 4386 */
4387 4387
4388 4388 base = memseg_get_start(msp);
4389 4389 end = msp->pages_end;
4390 4390
4391 4391 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base),
4392 4392 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE,
4393 4393 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4394 4394 }
4395 4395
4396 4396 void
4397 4397 hat_kpm_addmem_mseg_insert(struct memseg *msp)
4398 4398 {
4399 4399 _NOTE(ARGUNUSED(msp));
4400 4400 }
4401 4401
4402 4402 void
4403 4403 hat_kpm_addmem_memsegs_update(struct memseg *msp)
4404 4404 {
4405 4405 _NOTE(ARGUNUSED(msp));
4406 4406 }
4407 4407
4408 4408 /*
4409 4409 * Return end of metadata for an already setup memseg.
4410 4410 * X86 platforms don't need per-page meta data to support kpm.
4411 4411 */
4412 4412 caddr_t
4413 4413 hat_kpm_mseg_reuse(struct memseg *msp)
4414 4414 {
4415 4415 return ((caddr_t)msp->epages);
4416 4416 }
4417 4417
4418 4418 void
4419 4419 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
4420 4420 {
4421 4421 _NOTE(ARGUNUSED(msp, mspp));
4422 4422 ASSERT(0);
4423 4423 }
4424 4424
4425 4425 void
4426 4426 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
4427 4427 struct memseg *lo, struct memseg *mid, struct memseg *hi)
4428 4428 {
4429 4429 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi));
4430 4430 ASSERT(0);
4431 4431 }
4432 4432
4433 4433 /*
4434 4434 * Walk the memsegs chain, applying func to each memseg span.
4435 4435 */
4436 4436 void
4437 4437 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
4438 4438 {
4439 4439 pfn_t pbase, pend;
4440 4440 void *base;
4441 4441 size_t size;
4442 4442 struct memseg *msp;
4443 4443
4444 4444 for (msp = memsegs; msp; msp = msp->next) {
4445 4445 pbase = msp->pages_base;
4446 4446 pend = msp->pages_end;
4447 4447 base = ptob(pbase) + kpm_vbase;
4448 4448 size = ptob(pend - pbase);
4449 4449 func(arg, base, size);
4450 4450 }
4451 4451 }
4452 4452
4453 4453 #else /* __xpv */
4454 4454
4455 4455 /*
4456 4456 * There are specific Hypervisor calls to establish and remove mappings
4457 4457 * to grant table references and the privcmd driver. We have to ensure
4458 4458 * that a page table actually exists.
4459 4459 */
4460 4460 void
4461 4461 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
4462 4462 {
4463 4463 maddr_t base_ma;
4464 4464 htable_t *ht;
4465 4465 uint_t entry;
4466 4466
4467 4467 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4468 4468 XPV_DISALLOW_MIGRATE();
4469 4469 ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
4470 4470
4471 4471 /*
4472 4472 * if an address for pte_ma is passed in, return the MA of the pte
4473 4473 * for this specific address. This address is only valid as long
4474 4474 * as the htable stays locked.
4475 4475 */
4476 4476 if (pte_ma != NULL) {
4477 4477 entry = htable_va2entry((uintptr_t)addr, ht);
4478 4478 base_ma = pa_to_ma(ptob(ht->ht_pfn));
4479 4479 *pte_ma = base_ma + (entry << mmu.pte_size_shift);
4480 4480 }
4481 4481 XPV_ALLOW_MIGRATE();
4482 4482 }
4483 4483
4484 4484 void
4485 4485 hat_release_mapping(hat_t *hat, caddr_t addr)
4486 4486 {
4487 4487 htable_t *ht;
4488 4488
4489 4489 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4490 4490 XPV_DISALLOW_MIGRATE();
4491 4491 ht = htable_lookup(hat, (uintptr_t)addr, 0);
4492 4492 ASSERT(ht != NULL);
4493 4493 ASSERT(ht->ht_busy >= 2);
4494 4494 htable_release(ht);
4495 4495 htable_release(ht);
4496 4496 XPV_ALLOW_MIGRATE();
4497 4497 }
4498 4498 #endif /* __xpv */
↓ open down ↓ |
2320 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX