1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 #define MACTYPE_KMODDIR "mac" 347 #define MACTYPE_HASHSZ 67 348 static mod_hash_t *i_mactype_hash; 349 /* 350 * i_mactype_lock synchronizes threads that obtain references to mactype_t 351 * structures through i_mactype_getplugin(). 352 */ 353 static kmutex_t i_mactype_lock; 354 355 /* 356 * mac_tx_percpu_cnt 357 * 358 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 359 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 360 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 361 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 362 */ 363 int mac_tx_percpu_cnt; 364 int mac_tx_percpu_cnt_max = 128; 365 366 /* 367 * Call back functions for the bridge module. These are guaranteed to be valid 368 * when holding a reference on a link or when holding mip->mi_bridge_lock and 369 * mi_bridge_link is non-NULL. 370 */ 371 mac_bridge_tx_t mac_bridge_tx_cb; 372 mac_bridge_rx_t mac_bridge_rx_cb; 373 mac_bridge_ref_t mac_bridge_ref_cb; 374 mac_bridge_ls_t mac_bridge_ls_cb; 375 376 static int i_mac_constructor(void *, void *, int); 377 static void i_mac_destructor(void *, void *); 378 static int i_mac_ring_ctor(void *, void *, int); 379 static void i_mac_ring_dtor(void *, void *); 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 381 void mac_tx_client_flush(mac_client_impl_t *); 382 void mac_tx_client_block(mac_client_impl_t *); 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 384 static int mac_start_group_and_rings(mac_group_t *); 385 static void mac_stop_group_and_rings(mac_group_t *); 386 static void mac_pool_event_cb(pool_event_t, int, void *); 387 388 typedef struct netinfo_s { 389 list_node_t ni_link; 390 void *ni_record; 391 int ni_size; 392 int ni_type; 393 } netinfo_t; 394 395 /* 396 * Module initialization functions. 397 */ 398 399 void 400 mac_init(void) 401 { 402 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 403 boot_max_ncpus); 404 405 /* Upper bound is mac_tx_percpu_cnt_max */ 406 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 407 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 408 409 if (mac_tx_percpu_cnt < 1) { 410 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 411 mac_tx_percpu_cnt = 1; 412 } 413 414 ASSERT(mac_tx_percpu_cnt >= 1); 415 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 416 /* 417 * Make it of the form 2**N - 1 in the range 418 * [0 .. mac_tx_percpu_cnt_max - 1] 419 */ 420 mac_tx_percpu_cnt--; 421 422 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 423 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 424 NULL, NULL, NULL, 0); 425 ASSERT(i_mac_impl_cachep != NULL); 426 427 mac_ring_cache = kmem_cache_create("mac_ring_cache", 428 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 429 NULL, NULL, 0); 430 ASSERT(mac_ring_cache != NULL); 431 432 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 433 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 434 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 435 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 436 437 mac_flow_init(); 438 mac_soft_ring_init(); 439 mac_bcast_init(); 440 mac_client_init(); 441 442 i_mac_impl_count = 0; 443 444 i_mactype_hash = mod_hash_create_extended("mactype_hash", 445 MACTYPE_HASHSZ, 446 mod_hash_null_keydtor, mod_hash_null_valdtor, 447 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 448 449 /* 450 * Allocate an id space to manage minor numbers. The range of the 451 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 452 * leaves half of the 32-bit minors available for driver private use. 453 */ 454 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 455 MAC_PRIVATE_MINOR-1); 456 ASSERT(minor_ids != NULL); 457 minor_count = 0; 458 459 /* Let's default to 20 seconds */ 460 mac_logging_interval = 20; 461 mac_flow_log_enable = B_FALSE; 462 mac_link_log_enable = B_FALSE; 463 mac_logging_timer = NULL; 464 465 /* Register to be notified of noteworthy pools events */ 466 mac_pool_event_reg.pec_func = mac_pool_event_cb; 467 mac_pool_event_reg.pec_arg = NULL; 468 pool_event_cb_register(&mac_pool_event_reg); 469 } 470 471 int 472 mac_fini(void) 473 { 474 475 if (i_mac_impl_count > 0 || minor_count > 0) 476 return (EBUSY); 477 478 pool_event_cb_unregister(&mac_pool_event_reg); 479 480 id_space_destroy(minor_ids); 481 mac_flow_fini(); 482 483 mod_hash_destroy_hash(i_mac_impl_hash); 484 rw_destroy(&i_mac_impl_lock); 485 486 mac_client_fini(); 487 kmem_cache_destroy(mac_ring_cache); 488 489 mod_hash_destroy_hash(i_mactype_hash); 490 mac_soft_ring_finish(); 491 492 493 return (0); 494 } 495 496 /* 497 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 498 * (e.g. softmac) may pass in a NULL ops argument. 499 */ 500 void 501 mac_init_ops(struct dev_ops *ops, const char *name) 502 { 503 major_t major = ddi_name_to_major((char *)name); 504 505 /* 506 * By returning on error below, we are not letting the driver continue 507 * in an undefined context. The mac_register() function will faill if 508 * DN_GLDV3_DRIVER isn't set. 509 */ 510 if (major == DDI_MAJOR_T_NONE) 511 return; 512 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 513 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 514 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 515 if (ops != NULL) 516 dld_init_ops(ops, name); 517 } 518 519 void 520 mac_fini_ops(struct dev_ops *ops) 521 { 522 dld_fini_ops(ops); 523 } 524 525 /*ARGSUSED*/ 526 static int 527 i_mac_constructor(void *buf, void *arg, int kmflag) 528 { 529 mac_impl_t *mip = buf; 530 531 bzero(buf, sizeof (mac_impl_t)); 532 533 mip->mi_linkstate = LINK_STATE_UNKNOWN; 534 535 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 536 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 537 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 538 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 539 540 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 541 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 542 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 543 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 544 545 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 546 547 return (0); 548 } 549 550 /*ARGSUSED*/ 551 static void 552 i_mac_destructor(void *buf, void *arg) 553 { 554 mac_impl_t *mip = buf; 555 mac_cb_info_t *mcbi; 556 557 ASSERT(mip->mi_ref == 0); 558 ASSERT(mip->mi_active == 0); 559 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 560 ASSERT(mip->mi_devpromisc == 0); 561 ASSERT(mip->mi_ksp == NULL); 562 ASSERT(mip->mi_kstat_count == 0); 563 ASSERT(mip->mi_nclients == 0); 564 ASSERT(mip->mi_nactiveclients == 0); 565 ASSERT(mip->mi_single_active_client == NULL); 566 ASSERT(mip->mi_state_flags == 0); 567 ASSERT(mip->mi_factory_addr == NULL); 568 ASSERT(mip->mi_factory_addr_num == 0); 569 ASSERT(mip->mi_default_tx_ring == NULL); 570 571 mcbi = &mip->mi_notify_cb_info; 572 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 573 ASSERT(mip->mi_notify_bits == 0); 574 ASSERT(mip->mi_notify_thread == NULL); 575 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 576 mcbi->mcbi_lockp = NULL; 577 578 mcbi = &mip->mi_promisc_cb_info; 579 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 580 ASSERT(mip->mi_promisc_list == NULL); 581 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 582 mcbi->mcbi_lockp = NULL; 583 584 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 585 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 586 587 rw_destroy(&mip->mi_rw_lock); 588 589 mutex_destroy(&mip->mi_promisc_lock); 590 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 591 mutex_destroy(&mip->mi_notify_lock); 592 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 593 mutex_destroy(&mip->mi_ring_lock); 594 595 ASSERT(mip->mi_bridge_link == NULL); 596 } 597 598 /* ARGSUSED */ 599 static int 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 601 { 602 mac_ring_t *ring = (mac_ring_t *)buf; 603 604 bzero(ring, sizeof (mac_ring_t)); 605 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 606 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 607 ring->mr_state = MR_FREE; 608 return (0); 609 } 610 611 /* ARGSUSED */ 612 static void 613 i_mac_ring_dtor(void *buf, void *arg) 614 { 615 mac_ring_t *ring = (mac_ring_t *)buf; 616 617 cv_destroy(&ring->mr_cv); 618 mutex_destroy(&ring->mr_lock); 619 } 620 621 /* 622 * Common functions to do mac callback addition and deletion. Currently this is 623 * used by promisc callbacks and notify callbacks. List addition and deletion 624 * need to take care of list walkers. List walkers in general, can't hold list 625 * locks and make upcall callbacks due to potential lock order and recursive 626 * reentry issues. Instead list walkers increment the list walker count to mark 627 * the presence of a walker thread. Addition can be carefully done to ensure 628 * that the list walker always sees either the old list or the new list. 629 * However the deletion can't be done while the walker is active, instead the 630 * deleting thread simply marks the entry as logically deleted. The last walker 631 * physically deletes and frees up the logically deleted entries when the walk 632 * is complete. 633 */ 634 void 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 636 mac_cb_t *mcb_elem) 637 { 638 mac_cb_t *p; 639 mac_cb_t **pp; 640 641 /* Verify it is not already in the list */ 642 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 643 if (p == mcb_elem) 644 break; 645 } 646 VERIFY(p == NULL); 647 648 /* 649 * Add it to the head of the callback list. The membar ensures that 650 * the following list pointer manipulations reach global visibility 651 * in exactly the program order below. 652 */ 653 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 654 655 mcb_elem->mcb_nextp = *mcb_head; 656 membar_producer(); 657 *mcb_head = mcb_elem; 658 } 659 660 /* 661 * Mark the entry as logically deleted. If there aren't any walkers unlink 662 * from the list. In either case return the corresponding status. 663 */ 664 boolean_t 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 666 mac_cb_t *mcb_elem) 667 { 668 mac_cb_t *p; 669 mac_cb_t **pp; 670 671 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 672 /* 673 * Search the callback list for the entry to be removed 674 */ 675 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 676 if (p == mcb_elem) 677 break; 678 } 679 VERIFY(p != NULL); 680 681 /* 682 * If there are walkers just mark it as deleted and the last walker 683 * will remove from the list and free it. 684 */ 685 if (mcbi->mcbi_walker_cnt != 0) { 686 p->mcb_flags |= MCB_CONDEMNED; 687 mcbi->mcbi_del_cnt++; 688 return (B_FALSE); 689 } 690 691 ASSERT(mcbi->mcbi_del_cnt == 0); 692 *pp = p->mcb_nextp; 693 p->mcb_nextp = NULL; 694 return (B_TRUE); 695 } 696 697 /* 698 * Wait for all pending callback removals to be completed 699 */ 700 void 701 mac_callback_remove_wait(mac_cb_info_t *mcbi) 702 { 703 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 704 while (mcbi->mcbi_del_cnt != 0) { 705 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 706 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 707 } 708 } 709 710 /* 711 * The last mac callback walker does the cleanup. Walk the list and unlik 712 * all the logically deleted entries and construct a temporary list of 713 * removed entries. Return the list of removed entries to the caller. 714 */ 715 mac_cb_t * 716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 717 { 718 mac_cb_t *p; 719 mac_cb_t **pp; 720 mac_cb_t *rmlist = NULL; /* List of removed elements */ 721 int cnt = 0; 722 723 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 724 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 725 726 pp = mcb_head; 727 while (*pp != NULL) { 728 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 729 p = *pp; 730 *pp = p->mcb_nextp; 731 p->mcb_nextp = rmlist; 732 rmlist = p; 733 cnt++; 734 continue; 735 } 736 pp = &(*pp)->mcb_nextp; 737 } 738 739 ASSERT(mcbi->mcbi_del_cnt == cnt); 740 mcbi->mcbi_del_cnt = 0; 741 return (rmlist); 742 } 743 744 boolean_t 745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 746 { 747 mac_cb_t *mcb; 748 749 /* Verify it is not already in the list */ 750 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 751 if (mcb == mcb_elem) 752 return (B_TRUE); 753 } 754 755 return (B_FALSE); 756 } 757 758 boolean_t 759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 760 { 761 boolean_t found; 762 763 mutex_enter(mcbi->mcbi_lockp); 764 found = mac_callback_lookup(mcb_headp, mcb_elem); 765 mutex_exit(mcbi->mcbi_lockp); 766 767 return (found); 768 } 769 770 /* Free the list of removed callbacks */ 771 void 772 mac_callback_free(mac_cb_t *rmlist) 773 { 774 mac_cb_t *mcb; 775 mac_cb_t *mcb_next; 776 777 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 778 mcb_next = mcb->mcb_nextp; 779 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 780 } 781 } 782 783 /* 784 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 785 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 786 * is only a single shared total walker count, and an entry can't be physically 787 * unlinked if a walker is active on either list. The last walker does this 788 * cleanup of logically deleted entries. 789 */ 790 void 791 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 792 { 793 mac_cb_t *rmlist; 794 mac_cb_t *mcb; 795 mac_cb_t *mcb_next; 796 mac_promisc_impl_t *mpip; 797 798 /* 799 * Construct a temporary list of deleted callbacks by walking the 800 * the mi_promisc_list. Then for each entry in the temporary list, 801 * remove it from the mci_promisc_list and free the entry. 802 */ 803 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 804 &mip->mi_promisc_list); 805 806 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 807 mcb_next = mcb->mcb_nextp; 808 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 809 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 810 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 811 mcb->mcb_flags = 0; 812 mcb->mcb_nextp = NULL; 813 kmem_cache_free(mac_promisc_impl_cache, mpip); 814 } 815 } 816 817 void 818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 819 { 820 mac_cb_info_t *mcbi; 821 822 /* 823 * Signal the notify thread even after mi_ref has become zero and 824 * mi_disabled is set. The synchronization with the notify thread 825 * happens in mac_unregister and that implies the driver must make 826 * sure it is single-threaded (with respect to mac calls) and that 827 * all pending mac calls have returned before it calls mac_unregister 828 */ 829 rw_enter(&i_mac_impl_lock, RW_READER); 830 if (mip->mi_state_flags & MIS_DISABLED) 831 goto exit; 832 833 /* 834 * Guard against incorrect notifications. (Running a newer 835 * mac client against an older implementation?) 836 */ 837 if (type >= MAC_NNOTE) 838 goto exit; 839 840 mcbi = &mip->mi_notify_cb_info; 841 mutex_enter(mcbi->mcbi_lockp); 842 mip->mi_notify_bits |= (1 << type); 843 cv_broadcast(&mcbi->mcbi_cv); 844 mutex_exit(mcbi->mcbi_lockp); 845 846 exit: 847 rw_exit(&i_mac_impl_lock); 848 } 849 850 /* 851 * Mac serialization primitives. Please see the block comment at the 852 * top of the file. 853 */ 854 void 855 i_mac_perim_enter(mac_impl_t *mip) 856 { 857 mac_client_impl_t *mcip; 858 859 if (mip->mi_state_flags & MIS_IS_VNIC) { 860 /* 861 * This is a VNIC. Return the lower mac since that is what 862 * we want to serialize on. 863 */ 864 mcip = mac_vnic_lower(mip); 865 mip = mcip->mci_mip; 866 } 867 868 mutex_enter(&mip->mi_perim_lock); 869 if (mip->mi_perim_owner == curthread) { 870 mip->mi_perim_ocnt++; 871 mutex_exit(&mip->mi_perim_lock); 872 return; 873 } 874 875 while (mip->mi_perim_owner != NULL) 876 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 877 878 mip->mi_perim_owner = curthread; 879 ASSERT(mip->mi_perim_ocnt == 0); 880 mip->mi_perim_ocnt++; 881 #ifdef DEBUG 882 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 883 MAC_PERIM_STACK_DEPTH); 884 #endif 885 mutex_exit(&mip->mi_perim_lock); 886 } 887 888 int 889 i_mac_perim_enter_nowait(mac_impl_t *mip) 890 { 891 /* 892 * The vnic is a special case, since the serialization is done based 893 * on the lower mac. If the lower mac is busy, it does not imply the 894 * vnic can't be unregistered. But in the case of other drivers, 895 * a busy perimeter or open mac handles implies that the mac is busy 896 * and can't be unregistered. 897 */ 898 if (mip->mi_state_flags & MIS_IS_VNIC) { 899 i_mac_perim_enter(mip); 900 return (0); 901 } 902 903 mutex_enter(&mip->mi_perim_lock); 904 if (mip->mi_perim_owner != NULL) { 905 mutex_exit(&mip->mi_perim_lock); 906 return (EBUSY); 907 } 908 ASSERT(mip->mi_perim_ocnt == 0); 909 mip->mi_perim_owner = curthread; 910 mip->mi_perim_ocnt++; 911 mutex_exit(&mip->mi_perim_lock); 912 913 return (0); 914 } 915 916 void 917 i_mac_perim_exit(mac_impl_t *mip) 918 { 919 mac_client_impl_t *mcip; 920 921 if (mip->mi_state_flags & MIS_IS_VNIC) { 922 /* 923 * This is a VNIC. Return the lower mac since that is what 924 * we want to serialize on. 925 */ 926 mcip = mac_vnic_lower(mip); 927 mip = mcip->mci_mip; 928 } 929 930 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 931 932 mutex_enter(&mip->mi_perim_lock); 933 if (--mip->mi_perim_ocnt == 0) { 934 mip->mi_perim_owner = NULL; 935 cv_signal(&mip->mi_perim_cv); 936 } 937 mutex_exit(&mip->mi_perim_lock); 938 } 939 940 /* 941 * Returns whether the current thread holds the mac perimeter. Used in making 942 * assertions. 943 */ 944 boolean_t 945 mac_perim_held(mac_handle_t mh) 946 { 947 mac_impl_t *mip = (mac_impl_t *)mh; 948 mac_client_impl_t *mcip; 949 950 if (mip->mi_state_flags & MIS_IS_VNIC) { 951 /* 952 * This is a VNIC. Return the lower mac since that is what 953 * we want to serialize on. 954 */ 955 mcip = mac_vnic_lower(mip); 956 mip = mcip->mci_mip; 957 } 958 return (mip->mi_perim_owner == curthread); 959 } 960 961 /* 962 * mac client interfaces to enter the mac perimeter of a mac end point, given 963 * its mac handle, or macname or linkid. 964 */ 965 void 966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 967 { 968 mac_impl_t *mip = (mac_impl_t *)mh; 969 970 i_mac_perim_enter(mip); 971 /* 972 * The mac_perim_handle_t returned encodes the 'mip' and whether a 973 * mac_open has been done internally while entering the perimeter. 974 * This information is used in mac_perim_exit 975 */ 976 MAC_ENCODE_MPH(*mphp, mip, 0); 977 } 978 979 int 980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 981 { 982 int err; 983 mac_handle_t mh; 984 985 if ((err = mac_open(name, &mh)) != 0) 986 return (err); 987 988 mac_perim_enter_by_mh(mh, mphp); 989 MAC_ENCODE_MPH(*mphp, mh, 1); 990 return (0); 991 } 992 993 int 994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 995 { 996 int err; 997 mac_handle_t mh; 998 999 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1000 return (err); 1001 1002 mac_perim_enter_by_mh(mh, mphp); 1003 MAC_ENCODE_MPH(*mphp, mh, 1); 1004 return (0); 1005 } 1006 1007 void 1008 mac_perim_exit(mac_perim_handle_t mph) 1009 { 1010 mac_impl_t *mip; 1011 boolean_t need_close; 1012 1013 MAC_DECODE_MPH(mph, mip, need_close); 1014 i_mac_perim_exit(mip); 1015 if (need_close) 1016 mac_close((mac_handle_t)mip); 1017 } 1018 1019 int 1020 mac_hold(const char *macname, mac_impl_t **pmip) 1021 { 1022 mac_impl_t *mip; 1023 int err; 1024 1025 /* 1026 * Check the device name length to make sure it won't overflow our 1027 * buffer. 1028 */ 1029 if (strlen(macname) >= MAXNAMELEN) 1030 return (EINVAL); 1031 1032 /* 1033 * Look up its entry in the global hash table. 1034 */ 1035 rw_enter(&i_mac_impl_lock, RW_WRITER); 1036 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1037 (mod_hash_val_t *)&mip); 1038 1039 if (err != 0) { 1040 rw_exit(&i_mac_impl_lock); 1041 return (ENOENT); 1042 } 1043 1044 if (mip->mi_state_flags & MIS_DISABLED) { 1045 rw_exit(&i_mac_impl_lock); 1046 return (ENOENT); 1047 } 1048 1049 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1050 rw_exit(&i_mac_impl_lock); 1051 return (EBUSY); 1052 } 1053 1054 mip->mi_ref++; 1055 rw_exit(&i_mac_impl_lock); 1056 1057 *pmip = mip; 1058 return (0); 1059 } 1060 1061 void 1062 mac_rele(mac_impl_t *mip) 1063 { 1064 rw_enter(&i_mac_impl_lock, RW_WRITER); 1065 ASSERT(mip->mi_ref != 0); 1066 if (--mip->mi_ref == 0) { 1067 ASSERT(mip->mi_nactiveclients == 0 && 1068 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1069 } 1070 rw_exit(&i_mac_impl_lock); 1071 } 1072 1073 /* 1074 * Private GLDv3 function to start a MAC instance. 1075 */ 1076 int 1077 mac_start(mac_handle_t mh) 1078 { 1079 mac_impl_t *mip = (mac_impl_t *)mh; 1080 int err = 0; 1081 mac_group_t *defgrp; 1082 1083 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1084 ASSERT(mip->mi_start != NULL); 1085 1086 /* 1087 * Check whether the device is already started. 1088 */ 1089 if (mip->mi_active++ == 0) { 1090 mac_ring_t *ring = NULL; 1091 1092 /* 1093 * Start the device. 1094 */ 1095 err = mip->mi_start(mip->mi_driver); 1096 if (err != 0) { 1097 mip->mi_active--; 1098 return (err); 1099 } 1100 1101 /* 1102 * Start the default tx ring. 1103 */ 1104 if (mip->mi_default_tx_ring != NULL) { 1105 1106 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1107 if (ring->mr_state != MR_INUSE) { 1108 err = mac_start_ring(ring); 1109 if (err != 0) { 1110 mip->mi_active--; 1111 return (err); 1112 } 1113 } 1114 } 1115 1116 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1117 /* 1118 * Start the default group which is responsible 1119 * for receiving broadcast and multicast 1120 * traffic for both primary and non-primary 1121 * MAC clients. 1122 */ 1123 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1124 err = mac_start_group_and_rings(defgrp); 1125 if (err != 0) { 1126 mip->mi_active--; 1127 if ((ring != NULL) && 1128 (ring->mr_state == MR_INUSE)) 1129 mac_stop_ring(ring); 1130 return (err); 1131 } 1132 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1133 } 1134 } 1135 1136 return (err); 1137 } 1138 1139 /* 1140 * Private GLDv3 function to stop a MAC instance. 1141 */ 1142 void 1143 mac_stop(mac_handle_t mh) 1144 { 1145 mac_impl_t *mip = (mac_impl_t *)mh; 1146 mac_group_t *grp; 1147 1148 ASSERT(mip->mi_stop != NULL); 1149 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1150 1151 /* 1152 * Check whether the device is still needed. 1153 */ 1154 ASSERT(mip->mi_active != 0); 1155 if (--mip->mi_active == 0) { 1156 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1157 /* 1158 * There should be no more active clients since the 1159 * MAC is being stopped. Stop the default RX group 1160 * and transition it back to registered state. 1161 * 1162 * When clients are torn down, the groups 1163 * are release via mac_release_rx_group which 1164 * knows the the default group is always in 1165 * started mode since broadcast uses it. So 1166 * we can assert that their are no clients 1167 * (since mac_bcast_add doesn't register itself 1168 * as a client) and group is in SHARED state. 1169 */ 1170 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1171 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1172 mip->mi_nactiveclients == 0); 1173 mac_stop_group_and_rings(grp); 1174 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1175 } 1176 1177 if (mip->mi_default_tx_ring != NULL) { 1178 mac_ring_t *ring; 1179 1180 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1181 if (ring->mr_state == MR_INUSE) { 1182 mac_stop_ring(ring); 1183 ring->mr_flag = 0; 1184 } 1185 } 1186 1187 /* 1188 * Stop the device. 1189 */ 1190 mip->mi_stop(mip->mi_driver); 1191 } 1192 } 1193 1194 int 1195 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1196 { 1197 int err = 0; 1198 1199 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1200 ASSERT(mip->mi_setpromisc != NULL); 1201 1202 if (on) { 1203 /* 1204 * Enable promiscuous mode on the device if not yet enabled. 1205 */ 1206 if (mip->mi_devpromisc++ == 0) { 1207 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1208 if (err != 0) { 1209 mip->mi_devpromisc--; 1210 return (err); 1211 } 1212 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1213 } 1214 } else { 1215 if (mip->mi_devpromisc == 0) 1216 return (EPROTO); 1217 1218 /* 1219 * Disable promiscuous mode on the device if this is the last 1220 * enabling. 1221 */ 1222 if (--mip->mi_devpromisc == 0) { 1223 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1224 if (err != 0) { 1225 mip->mi_devpromisc++; 1226 return (err); 1227 } 1228 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1229 } 1230 } 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * The promiscuity state can change any time. If the caller needs to take 1237 * actions that are atomic with the promiscuity state, then the caller needs 1238 * to bracket the entire sequence with mac_perim_enter/exit 1239 */ 1240 boolean_t 1241 mac_promisc_get(mac_handle_t mh) 1242 { 1243 mac_impl_t *mip = (mac_impl_t *)mh; 1244 1245 /* 1246 * Return the current promiscuity. 1247 */ 1248 return (mip->mi_devpromisc != 0); 1249 } 1250 1251 /* 1252 * Invoked at MAC instance attach time to initialize the list 1253 * of factory MAC addresses supported by a MAC instance. This function 1254 * builds a local cache in the mac_impl_t for the MAC addresses 1255 * supported by the underlying hardware. The MAC clients themselves 1256 * use the mac_addr_factory*() functions to query and reserve 1257 * factory MAC addresses. 1258 */ 1259 void 1260 mac_addr_factory_init(mac_impl_t *mip) 1261 { 1262 mac_capab_multifactaddr_t capab; 1263 uint8_t *addr; 1264 int i; 1265 1266 /* 1267 * First round to see how many factory MAC addresses are available. 1268 */ 1269 bzero(&capab, sizeof (capab)); 1270 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1271 &capab) || (capab.mcm_naddr == 0)) { 1272 /* 1273 * The MAC instance doesn't support multiple factory 1274 * MAC addresses, we're done here. 1275 */ 1276 return; 1277 } 1278 1279 /* 1280 * Allocate the space and get all the factory addresses. 1281 */ 1282 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1283 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1284 1285 mip->mi_factory_addr_num = capab.mcm_naddr; 1286 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1287 sizeof (mac_factory_addr_t), KM_SLEEP); 1288 1289 for (i = 0; i < capab.mcm_naddr; i++) { 1290 bcopy(addr + i * MAXMACADDRLEN, 1291 mip->mi_factory_addr[i].mfa_addr, 1292 mip->mi_type->mt_addr_length); 1293 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1294 } 1295 1296 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1297 } 1298 1299 void 1300 mac_addr_factory_fini(mac_impl_t *mip) 1301 { 1302 if (mip->mi_factory_addr == NULL) { 1303 ASSERT(mip->mi_factory_addr_num == 0); 1304 return; 1305 } 1306 1307 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1308 sizeof (mac_factory_addr_t)); 1309 1310 mip->mi_factory_addr = NULL; 1311 mip->mi_factory_addr_num = 0; 1312 } 1313 1314 /* 1315 * Reserve a factory MAC address. If *slot is set to -1, the function 1316 * attempts to reserve any of the available factory MAC addresses and 1317 * returns the reserved slot id. If no slots are available, the function 1318 * returns ENOSPC. If *slot is not set to -1, the function reserves 1319 * the specified slot if it is available, or returns EBUSY is the slot 1320 * is already used. Returns ENOTSUP if the underlying MAC does not 1321 * support multiple factory addresses. If the slot number is not -1 but 1322 * is invalid, returns EINVAL. 1323 */ 1324 int 1325 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1326 { 1327 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1328 mac_impl_t *mip = mcip->mci_mip; 1329 int i, ret = 0; 1330 1331 i_mac_perim_enter(mip); 1332 /* 1333 * Protect against concurrent readers that may need a self-consistent 1334 * view of the factory addresses 1335 */ 1336 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1337 1338 if (mip->mi_factory_addr_num == 0) { 1339 ret = ENOTSUP; 1340 goto bail; 1341 } 1342 1343 if (*slot != -1) { 1344 /* check the specified slot */ 1345 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1346 ret = EINVAL; 1347 goto bail; 1348 } 1349 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1350 ret = EBUSY; 1351 goto bail; 1352 } 1353 } else { 1354 /* pick the next available slot */ 1355 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1356 if (!mip->mi_factory_addr[i].mfa_in_use) 1357 break; 1358 } 1359 1360 if (i == mip->mi_factory_addr_num) { 1361 ret = ENOSPC; 1362 goto bail; 1363 } 1364 *slot = i+1; 1365 } 1366 1367 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1368 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1369 1370 bail: 1371 rw_exit(&mip->mi_rw_lock); 1372 i_mac_perim_exit(mip); 1373 return (ret); 1374 } 1375 1376 /* 1377 * Release the specified factory MAC address slot. 1378 */ 1379 void 1380 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1381 { 1382 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1383 mac_impl_t *mip = mcip->mci_mip; 1384 1385 i_mac_perim_enter(mip); 1386 /* 1387 * Protect against concurrent readers that may need a self-consistent 1388 * view of the factory addresses 1389 */ 1390 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1391 1392 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1393 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1394 1395 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1396 1397 rw_exit(&mip->mi_rw_lock); 1398 i_mac_perim_exit(mip); 1399 } 1400 1401 /* 1402 * Stores in mac_addr the value of the specified MAC address. Returns 1403 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1404 * The caller must provide a string of at least MAXNAMELEN bytes. 1405 */ 1406 void 1407 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1408 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1409 { 1410 mac_impl_t *mip = (mac_impl_t *)mh; 1411 boolean_t in_use; 1412 1413 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1414 1415 /* 1416 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1417 * and mi_rw_lock 1418 */ 1419 rw_enter(&mip->mi_rw_lock, RW_READER); 1420 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1421 *addr_len = mip->mi_type->mt_addr_length; 1422 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1423 if (in_use && client_name != NULL) { 1424 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1425 client_name, MAXNAMELEN); 1426 } 1427 if (in_use_arg != NULL) 1428 *in_use_arg = in_use; 1429 rw_exit(&mip->mi_rw_lock); 1430 } 1431 1432 /* 1433 * Returns the number of factory MAC addresses (in addition to the 1434 * primary MAC address), 0 if the underlying MAC doesn't support 1435 * that feature. 1436 */ 1437 uint_t 1438 mac_addr_factory_num(mac_handle_t mh) 1439 { 1440 mac_impl_t *mip = (mac_impl_t *)mh; 1441 1442 return (mip->mi_factory_addr_num); 1443 } 1444 1445 1446 void 1447 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1448 { 1449 mac_ring_t *ring; 1450 1451 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1452 ring->mr_flag &= ~flag; 1453 } 1454 1455 /* 1456 * The following mac_hwrings_xxx() functions are private mac client functions 1457 * used by the aggr driver to access and control the underlying HW Rx group 1458 * and rings. In this case, the aggr driver has exclusive control of the 1459 * underlying HW Rx group/rings, it calls the following functions to 1460 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1461 * addresses, or set up the Rx callback. 1462 */ 1463 /* ARGSUSED */ 1464 static void 1465 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1466 mblk_t *mp_chain, boolean_t loopback) 1467 { 1468 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1469 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1470 mac_direct_rx_t proc; 1471 void *arg1; 1472 mac_resource_handle_t arg2; 1473 1474 proc = srs_rx->sr_func; 1475 arg1 = srs_rx->sr_arg1; 1476 arg2 = mac_srs->srs_mrh; 1477 1478 proc(arg1, arg2, mp_chain, NULL); 1479 } 1480 1481 /* 1482 * This function is called to get the list of HW rings that are reserved by 1483 * an exclusive mac client. 1484 * 1485 * Return value: the number of HW rings. 1486 */ 1487 int 1488 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1489 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1490 { 1491 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1492 flow_entry_t *flent = mcip->mci_flent; 1493 mac_group_t *grp; 1494 mac_ring_t *ring; 1495 int cnt = 0; 1496 1497 if (rtype == MAC_RING_TYPE_RX) { 1498 grp = flent->fe_rx_ring_group; 1499 } else if (rtype == MAC_RING_TYPE_TX) { 1500 grp = flent->fe_tx_ring_group; 1501 } else { 1502 ASSERT(B_FALSE); 1503 return (-1); 1504 } 1505 /* 1506 * The mac client did not reserve any RX group, return directly. 1507 * This is probably because the underlying MAC does not support 1508 * any groups. 1509 */ 1510 if (hwgh != NULL) 1511 *hwgh = NULL; 1512 if (grp == NULL) 1513 return (0); 1514 /* 1515 * This group must be reserved by this mac client. 1516 */ 1517 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1518 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1519 1520 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1521 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1522 hwrh[cnt] = (mac_ring_handle_t)ring; 1523 } 1524 if (hwgh != NULL) 1525 *hwgh = (mac_group_handle_t)grp; 1526 1527 return (cnt); 1528 } 1529 1530 /* 1531 * This function is called to get info about Tx/Rx rings. 1532 * 1533 * Return value: returns uint_t which will have various bits set 1534 * that indicates different properties of the ring. 1535 */ 1536 uint_t 1537 mac_hwring_getinfo(mac_ring_handle_t rh) 1538 { 1539 mac_ring_t *ring = (mac_ring_t *)rh; 1540 mac_ring_info_t *info = &ring->mr_info; 1541 1542 return (info->mri_flags); 1543 } 1544 1545 /* 1546 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1547 * setup the RX callback of the mac client which exclusively controls 1548 * HW ring. 1549 */ 1550 void 1551 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1552 mac_ring_handle_t pseudo_rh) 1553 { 1554 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1555 mac_ring_t *pseudo_ring; 1556 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1557 1558 if (pseudo_rh != NULL) { 1559 pseudo_ring = (mac_ring_t *)pseudo_rh; 1560 /* Export the ddi handles to pseudo ring */ 1561 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1562 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1563 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1564 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1565 /* 1566 * Save a pointer to pseudo ring in the hw ring. If 1567 * interrupt handle changes, the hw ring will be 1568 * notified of the change (see mac_ring_intr_set()) 1569 * and the appropriate change has to be made to 1570 * the pseudo ring that has exported the ddi handle. 1571 */ 1572 hw_ring->mr_prh = pseudo_rh; 1573 } 1574 1575 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1576 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1577 mac_srs->srs_mrh = prh; 1578 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1579 } 1580 } 1581 1582 void 1583 mac_hwring_teardown(mac_ring_handle_t hwrh) 1584 { 1585 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1586 mac_soft_ring_set_t *mac_srs; 1587 1588 if (hw_ring == NULL) 1589 return; 1590 hw_ring->mr_prh = NULL; 1591 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1592 mac_srs = hw_ring->mr_srs; 1593 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1594 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1595 mac_srs->srs_mrh = NULL; 1596 } 1597 } 1598 1599 int 1600 mac_hwring_disable_intr(mac_ring_handle_t rh) 1601 { 1602 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1603 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1604 1605 return (intr->mi_disable(intr->mi_handle)); 1606 } 1607 1608 int 1609 mac_hwring_enable_intr(mac_ring_handle_t rh) 1610 { 1611 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1612 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1613 1614 return (intr->mi_enable(intr->mi_handle)); 1615 } 1616 1617 int 1618 mac_hwring_start(mac_ring_handle_t rh) 1619 { 1620 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1621 1622 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1623 return (0); 1624 } 1625 1626 void 1627 mac_hwring_stop(mac_ring_handle_t rh) 1628 { 1629 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1630 1631 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1632 } 1633 1634 mblk_t * 1635 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1636 { 1637 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1638 mac_ring_info_t *info = &rr_ring->mr_info; 1639 1640 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1641 } 1642 1643 /* 1644 * Send packets through a selected tx ring. 1645 */ 1646 mblk_t * 1647 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1648 { 1649 mac_ring_t *ring = (mac_ring_t *)rh; 1650 mac_ring_info_t *info = &ring->mr_info; 1651 1652 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1653 ring->mr_state >= MR_INUSE); 1654 return (info->mri_tx(info->mri_driver, mp)); 1655 } 1656 1657 /* 1658 * Query stats for a particular rx/tx ring 1659 */ 1660 int 1661 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1662 { 1663 mac_ring_t *ring = (mac_ring_t *)rh; 1664 mac_ring_info_t *info = &ring->mr_info; 1665 1666 return (info->mri_stat(info->mri_driver, stat, val)); 1667 } 1668 1669 /* 1670 * Private function that is only used by aggr to send packets through 1671 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1672 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1673 * access to mac_impl_t to send packets through m_tx() entry point. 1674 * It accomplishes this by calling mac_hwring_send_priv() function. 1675 */ 1676 mblk_t * 1677 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1678 { 1679 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1680 mac_impl_t *mip = mcip->mci_mip; 1681 1682 MAC_TX(mip, rh, mp, mcip); 1683 return (mp); 1684 } 1685 1686 /* 1687 * Private function that is only used by aggr to update the default transmission 1688 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1689 * temporarily be down, it may need to update the default ring that is used by 1690 * MAC such that it refers to a link that can actively be used to send traffic. 1691 * Note that this is different from the case where the port has been removed 1692 * from the group. In those cases, all of the rings will be torn down because 1693 * the ring will no longer exist. It's important to give aggr a case where the 1694 * rings can still exist such that it may be able to continue to send LACP PDUs 1695 * to potentially restore the link. 1696 * 1697 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1698 * This is to help out aggr which doesn't really know the internal state that 1699 * MAC does about the rings and can't know that it's not quite ready for use 1700 * yet. 1701 */ 1702 void 1703 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1704 { 1705 mac_impl_t *mip = (mac_impl_t *)mh; 1706 mac_ring_t *ring = (mac_ring_t *)rh; 1707 1708 ASSERT(MAC_PERIM_HELD(mh)); 1709 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1710 1711 if (ring->mr_state != MR_INUSE) 1712 return; 1713 1714 mip->mi_default_tx_ring = rh; 1715 } 1716 1717 int 1718 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1719 { 1720 mac_group_t *group = (mac_group_t *)gh; 1721 1722 return (mac_group_addmac(group, addr)); 1723 } 1724 1725 int 1726 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1727 { 1728 mac_group_t *group = (mac_group_t *)gh; 1729 1730 return (mac_group_remmac(group, addr)); 1731 } 1732 1733 /* 1734 * Program the group's HW VLAN filter if it has such support. 1735 * Otherwise, the group will implicitly accept tagged traffic and 1736 * there is nothing to do. 1737 */ 1738 int 1739 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid) 1740 { 1741 mac_group_t *group = (mac_group_t *)gh; 1742 1743 if (!MAC_GROUP_HW_VLAN(group)) 1744 return (0); 1745 1746 return (mac_group_addvlan(group, vid)); 1747 } 1748 1749 int 1750 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid) 1751 { 1752 mac_group_t *group = (mac_group_t *)gh; 1753 1754 if (!MAC_GROUP_HW_VLAN(group)) 1755 return (0); 1756 1757 return (mac_group_remvlan(group, vid)); 1758 } 1759 1760 /* 1761 * Determine if a MAC has HW VLAN support. This is a private API 1762 * consumed by aggr. In the future it might be nice to have a bitfield 1763 * in mac_capab_rings_t to track which forms of HW filtering are 1764 * supported by the MAC. 1765 */ 1766 boolean_t 1767 mac_has_hw_vlan(mac_handle_t mh) 1768 { 1769 mac_impl_t *mip = (mac_impl_t *)mh; 1770 1771 return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups)); 1772 } 1773 1774 /* 1775 * Set the RX group to be shared/reserved. Note that the group must be 1776 * started/stopped outside of this function. 1777 */ 1778 void 1779 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1780 { 1781 /* 1782 * If there is no change in the group state, just return. 1783 */ 1784 if (grp->mrg_state == state) 1785 return; 1786 1787 switch (state) { 1788 case MAC_GROUP_STATE_RESERVED: 1789 /* 1790 * Successfully reserved the group. 1791 * 1792 * Given that there is an exclusive client controlling this 1793 * group, we enable the group level polling when available, 1794 * so that SRSs get to turn on/off individual rings they's 1795 * assigned to. 1796 */ 1797 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1798 1799 if (grp->mrg_type == MAC_RING_TYPE_RX && 1800 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1801 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1802 } 1803 break; 1804 1805 case MAC_GROUP_STATE_SHARED: 1806 /* 1807 * Set all rings of this group to software classified. 1808 * If the group has an overriding interrupt, then re-enable it. 1809 */ 1810 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1811 1812 if (grp->mrg_type == MAC_RING_TYPE_RX && 1813 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 1814 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1815 } 1816 /* The ring is not available for reservations any more */ 1817 break; 1818 1819 case MAC_GROUP_STATE_REGISTERED: 1820 /* Also callable from mac_register, perim is not held */ 1821 break; 1822 1823 default: 1824 ASSERT(B_FALSE); 1825 break; 1826 } 1827 1828 grp->mrg_state = state; 1829 } 1830 1831 /* 1832 * Quiesce future hardware classified packets for the specified Rx ring 1833 */ 1834 static void 1835 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1836 { 1837 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1838 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1839 1840 mutex_enter(&rx_ring->mr_lock); 1841 rx_ring->mr_flag |= ring_flag; 1842 while (rx_ring->mr_refcnt != 0) 1843 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1844 mutex_exit(&rx_ring->mr_lock); 1845 } 1846 1847 /* 1848 * Please see mac_tx for details about the per cpu locking scheme 1849 */ 1850 static void 1851 mac_tx_lock_all(mac_client_impl_t *mcip) 1852 { 1853 int i; 1854 1855 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1856 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1857 } 1858 1859 static void 1860 mac_tx_unlock_all(mac_client_impl_t *mcip) 1861 { 1862 int i; 1863 1864 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1865 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1866 } 1867 1868 static void 1869 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1870 { 1871 int i; 1872 1873 for (i = mac_tx_percpu_cnt; i > 0; i--) 1874 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1875 } 1876 1877 static int 1878 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1879 { 1880 int i; 1881 int refcnt = 0; 1882 1883 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1884 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1885 1886 return (refcnt); 1887 } 1888 1889 /* 1890 * Stop future Tx packets coming down from the client in preparation for 1891 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1892 * of rings between clients 1893 */ 1894 void 1895 mac_tx_client_block(mac_client_impl_t *mcip) 1896 { 1897 mac_tx_lock_all(mcip); 1898 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1899 while (mac_tx_sum_refcnt(mcip) != 0) { 1900 mac_tx_unlock_allbutzero(mcip); 1901 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1902 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1903 mac_tx_lock_all(mcip); 1904 } 1905 mac_tx_unlock_all(mcip); 1906 } 1907 1908 void 1909 mac_tx_client_unblock(mac_client_impl_t *mcip) 1910 { 1911 mac_tx_lock_all(mcip); 1912 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1913 mac_tx_unlock_all(mcip); 1914 /* 1915 * We may fail to disable flow control for the last MAC_NOTE_TX 1916 * notification because the MAC client is quiesced. Send the 1917 * notification again. 1918 */ 1919 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1920 } 1921 1922 /* 1923 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1924 * quiesce is done. 1925 */ 1926 static void 1927 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1928 { 1929 mutex_enter(&srs->srs_lock); 1930 while (!(srs->srs_state & srs_flag)) 1931 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1932 mutex_exit(&srs->srs_lock); 1933 } 1934 1935 /* 1936 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1937 * works bottom up by cutting off packet flow from the bottommost point in the 1938 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1939 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1940 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1941 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1942 * for the SRS and MR flags. In the former case the threads pause waiting for 1943 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1944 * is also mostly similar to the above. 1945 * 1946 * 1. Stop future hardware classified packets at the lowest level in the mac. 1947 * Remove any hardware classification rule (CONDEMNED case) and mark the 1948 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1949 * from increasing. Upcalls from the driver that come through hardware 1950 * classification will be dropped in mac_rx from now on. Then we wait for 1951 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1952 * sure there aren't any upcall threads from the driver through hardware 1953 * classification. In the case of SRS teardown we also remove the 1954 * classification rule in the driver. 1955 * 1956 * 2. Stop future software classified packets by marking the flow entry with 1957 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1958 * increasing. We also remove the flow entry from the table in the latter 1959 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1960 * that indicates there aren't any active threads using that flow entry. 1961 * 1962 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1963 * SRS worker thread, and the soft ring threads are quiesced in sequence 1964 * with the SRS worker thread serving as a master controller. This 1965 * mechansim is explained in mac_srs_worker_quiesce(). 1966 * 1967 * The restart mechanism to reactivate the SRS and softrings is explained 1968 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1969 * restart sequence. 1970 */ 1971 void 1972 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1973 { 1974 flow_entry_t *flent = srs->srs_flent; 1975 uint_t mr_flag, srs_done_flag; 1976 1977 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1978 ASSERT(!(srs->srs_type & SRST_TX)); 1979 1980 if (srs_quiesce_flag == SRS_CONDEMNED) { 1981 mr_flag = MR_CONDEMNED; 1982 srs_done_flag = SRS_CONDEMNED_DONE; 1983 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1984 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1985 } else { 1986 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1987 mr_flag = MR_QUIESCE; 1988 srs_done_flag = SRS_QUIESCE_DONE; 1989 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1990 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1991 } 1992 1993 if (srs->srs_ring != NULL) { 1994 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1995 } else { 1996 /* 1997 * SRS is driven by software classification. In case 1998 * of CONDEMNED, the top level teardown functions will 1999 * deal with flow removal. 2000 */ 2001 if (srs_quiesce_flag != SRS_CONDEMNED) { 2002 FLOW_MARK(flent, FE_QUIESCE); 2003 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2004 } 2005 } 2006 2007 /* 2008 * Signal the SRS to quiesce itself, and then cv_wait for the 2009 * SRS quiesce to complete. The SRS worker thread will wake us 2010 * up when the quiesce is complete 2011 */ 2012 mac_srs_signal(srs, srs_quiesce_flag); 2013 mac_srs_quiesce_wait(srs, srs_done_flag); 2014 } 2015 2016 /* 2017 * Remove an SRS. 2018 */ 2019 void 2020 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 2021 { 2022 flow_entry_t *flent = srs->srs_flent; 2023 int i; 2024 2025 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 2026 /* 2027 * Locate and remove our entry in the fe_rx_srs[] array, and 2028 * adjust the fe_rx_srs array entries and array count by 2029 * moving the last entry into the vacated spot. 2030 */ 2031 mutex_enter(&flent->fe_lock); 2032 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2033 if (flent->fe_rx_srs[i] == srs) 2034 break; 2035 } 2036 2037 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 2038 if (i != flent->fe_rx_srs_cnt - 1) { 2039 flent->fe_rx_srs[i] = 2040 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2041 i = flent->fe_rx_srs_cnt - 1; 2042 } 2043 2044 flent->fe_rx_srs[i] = NULL; 2045 flent->fe_rx_srs_cnt--; 2046 mutex_exit(&flent->fe_lock); 2047 2048 mac_srs_free(srs); 2049 } 2050 2051 static void 2052 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2053 { 2054 mutex_enter(&srs->srs_lock); 2055 srs->srs_state &= ~flag; 2056 mutex_exit(&srs->srs_lock); 2057 } 2058 2059 void 2060 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2061 { 2062 flow_entry_t *flent = srs->srs_flent; 2063 mac_ring_t *mr; 2064 2065 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2066 ASSERT((srs->srs_type & SRST_TX) == 0); 2067 2068 /* 2069 * This handles a change in the number of SRSs between the quiesce and 2070 * and restart operation of a flow. 2071 */ 2072 if (!SRS_QUIESCED(srs)) 2073 return; 2074 2075 /* 2076 * Signal the SRS to restart itself. Wait for the restart to complete 2077 * Note that we only restart the SRS if it is not marked as 2078 * permanently quiesced. 2079 */ 2080 if (!SRS_QUIESCED_PERMANENT(srs)) { 2081 mac_srs_signal(srs, SRS_RESTART); 2082 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2083 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2084 2085 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2086 } 2087 2088 /* Finally clear the flags to let the packets in */ 2089 mr = srs->srs_ring; 2090 if (mr != NULL) { 2091 MAC_RING_UNMARK(mr, MR_QUIESCE); 2092 /* In case the ring was stopped, safely restart it */ 2093 if (mr->mr_state != MR_INUSE) 2094 (void) mac_start_ring(mr); 2095 } else { 2096 FLOW_UNMARK(flent, FE_QUIESCE); 2097 } 2098 } 2099 2100 /* 2101 * Temporary quiesce of a flow and associated Rx SRS. 2102 * Please see block comment above mac_rx_classify_flow_rem. 2103 */ 2104 /* ARGSUSED */ 2105 int 2106 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2107 { 2108 int i; 2109 2110 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2111 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2112 SRS_QUIESCE); 2113 } 2114 return (0); 2115 } 2116 2117 /* 2118 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2119 * Please see block comment above mac_rx_classify_flow_rem 2120 */ 2121 /* ARGSUSED */ 2122 int 2123 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2124 { 2125 int i; 2126 2127 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2128 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2129 2130 return (0); 2131 } 2132 2133 void 2134 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2135 { 2136 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2137 flow_entry_t *flent = mcip->mci_flent; 2138 mac_impl_t *mip = mcip->mci_mip; 2139 mac_soft_ring_set_t *mac_srs; 2140 int i; 2141 2142 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2143 2144 if (flent == NULL) 2145 return; 2146 2147 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2148 mac_srs = flent->fe_rx_srs[i]; 2149 mutex_enter(&mac_srs->srs_lock); 2150 if (on) 2151 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2152 else 2153 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2154 mutex_exit(&mac_srs->srs_lock); 2155 } 2156 } 2157 2158 void 2159 mac_rx_client_quiesce(mac_client_handle_t mch) 2160 { 2161 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2162 mac_impl_t *mip = mcip->mci_mip; 2163 2164 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2165 2166 if (MCIP_DATAPATH_SETUP(mcip)) { 2167 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2168 NULL); 2169 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2170 mac_rx_classify_flow_quiesce, NULL); 2171 } 2172 } 2173 2174 void 2175 mac_rx_client_restart(mac_client_handle_t mch) 2176 { 2177 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2178 mac_impl_t *mip = mcip->mci_mip; 2179 2180 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2181 2182 if (MCIP_DATAPATH_SETUP(mcip)) { 2183 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2184 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2185 mac_rx_classify_flow_restart, NULL); 2186 } 2187 } 2188 2189 /* 2190 * This function only quiesces the Tx SRS and softring worker threads. Callers 2191 * need to make sure that there aren't any mac client threads doing current or 2192 * future transmits in the mac before calling this function. 2193 */ 2194 void 2195 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2196 { 2197 mac_client_impl_t *mcip = srs->srs_mcip; 2198 2199 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2200 2201 ASSERT(srs->srs_type & SRST_TX); 2202 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2203 srs_quiesce_flag == SRS_QUIESCE); 2204 2205 /* 2206 * Signal the SRS to quiesce itself, and then cv_wait for the 2207 * SRS quiesce to complete. The SRS worker thread will wake us 2208 * up when the quiesce is complete 2209 */ 2210 mac_srs_signal(srs, srs_quiesce_flag); 2211 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2212 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2213 } 2214 2215 void 2216 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2217 { 2218 /* 2219 * Resizing the fanout could result in creation of new SRSs. 2220 * They may not necessarily be in the quiesced state in which 2221 * case it need be restarted 2222 */ 2223 if (!SRS_QUIESCED(srs)) 2224 return; 2225 2226 mac_srs_signal(srs, SRS_RESTART); 2227 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2228 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2229 } 2230 2231 /* 2232 * Temporary quiesce of a flow and associated Rx SRS. 2233 * Please see block comment above mac_rx_srs_quiesce 2234 */ 2235 /* ARGSUSED */ 2236 int 2237 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2238 { 2239 /* 2240 * The fe_tx_srs is null for a subflow on an interface that is 2241 * not plumbed 2242 */ 2243 if (flent->fe_tx_srs != NULL) 2244 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2245 return (0); 2246 } 2247 2248 /* ARGSUSED */ 2249 int 2250 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2251 { 2252 /* 2253 * The fe_tx_srs is null for a subflow on an interface that is 2254 * not plumbed 2255 */ 2256 if (flent->fe_tx_srs != NULL) 2257 mac_tx_srs_restart(flent->fe_tx_srs); 2258 return (0); 2259 } 2260 2261 static void 2262 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2263 { 2264 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2265 2266 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2267 2268 mac_tx_client_block(mcip); 2269 if (MCIP_TX_SRS(mcip) != NULL) { 2270 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2271 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2272 mac_tx_flow_quiesce, NULL); 2273 } 2274 } 2275 2276 void 2277 mac_tx_client_quiesce(mac_client_handle_t mch) 2278 { 2279 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2280 } 2281 2282 void 2283 mac_tx_client_condemn(mac_client_handle_t mch) 2284 { 2285 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2286 } 2287 2288 void 2289 mac_tx_client_restart(mac_client_handle_t mch) 2290 { 2291 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2292 2293 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2294 2295 mac_tx_client_unblock(mcip); 2296 if (MCIP_TX_SRS(mcip) != NULL) { 2297 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2298 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2299 mac_tx_flow_restart, NULL); 2300 } 2301 } 2302 2303 void 2304 mac_tx_client_flush(mac_client_impl_t *mcip) 2305 { 2306 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2307 2308 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2309 mac_tx_client_restart((mac_client_handle_t)mcip); 2310 } 2311 2312 void 2313 mac_client_quiesce(mac_client_impl_t *mcip) 2314 { 2315 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2316 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2317 } 2318 2319 void 2320 mac_client_restart(mac_client_impl_t *mcip) 2321 { 2322 mac_rx_client_restart((mac_client_handle_t)mcip); 2323 mac_tx_client_restart((mac_client_handle_t)mcip); 2324 } 2325 2326 /* 2327 * Allocate a minor number. 2328 */ 2329 minor_t 2330 mac_minor_hold(boolean_t sleep) 2331 { 2332 id_t id; 2333 2334 /* 2335 * Grab a value from the arena. 2336 */ 2337 atomic_inc_32(&minor_count); 2338 2339 if (sleep) 2340 return ((uint_t)id_alloc(minor_ids)); 2341 2342 if ((id = id_alloc_nosleep(minor_ids)) == -1) { 2343 atomic_dec_32(&minor_count); 2344 return (0); 2345 } 2346 2347 return ((uint_t)id); 2348 } 2349 2350 /* 2351 * Release a previously allocated minor number. 2352 */ 2353 void 2354 mac_minor_rele(minor_t minor) 2355 { 2356 /* 2357 * Return the value to the arena. 2358 */ 2359 id_free(minor_ids, minor); 2360 atomic_dec_32(&minor_count); 2361 } 2362 2363 uint32_t 2364 mac_no_notification(mac_handle_t mh) 2365 { 2366 mac_impl_t *mip = (mac_impl_t *)mh; 2367 2368 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2369 mip->mi_capab_legacy.ml_unsup_note : 0); 2370 } 2371 2372 /* 2373 * Prevent any new opens of this mac in preparation for unregister 2374 */ 2375 int 2376 i_mac_disable(mac_impl_t *mip) 2377 { 2378 mac_client_impl_t *mcip; 2379 2380 rw_enter(&i_mac_impl_lock, RW_WRITER); 2381 if (mip->mi_state_flags & MIS_DISABLED) { 2382 /* Already disabled, return success */ 2383 rw_exit(&i_mac_impl_lock); 2384 return (0); 2385 } 2386 /* 2387 * See if there are any other references to this mac_t (e.g., VLAN's). 2388 * If so return failure. If all the other checks below pass, then 2389 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2390 * any new VLAN's from being created or new mac client opens of this 2391 * mac end point. 2392 */ 2393 if (mip->mi_ref > 0) { 2394 rw_exit(&i_mac_impl_lock); 2395 return (EBUSY); 2396 } 2397 2398 /* 2399 * mac clients must delete all multicast groups they join before 2400 * closing. bcast groups are reference counted, the last client 2401 * to delete the group will wait till the group is physically 2402 * deleted. Since all clients have closed this mac end point 2403 * mi_bcast_ngrps must be zero at this point 2404 */ 2405 ASSERT(mip->mi_bcast_ngrps == 0); 2406 2407 /* 2408 * Don't let go of this if it has some flows. 2409 * All other code guarantees no flows are added to a disabled 2410 * mac, therefore it is sufficient to check for the flow table 2411 * only here. 2412 */ 2413 mcip = mac_primary_client_handle(mip); 2414 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2415 rw_exit(&i_mac_impl_lock); 2416 return (ENOTEMPTY); 2417 } 2418 2419 mip->mi_state_flags |= MIS_DISABLED; 2420 rw_exit(&i_mac_impl_lock); 2421 return (0); 2422 } 2423 2424 int 2425 mac_disable_nowait(mac_handle_t mh) 2426 { 2427 mac_impl_t *mip = (mac_impl_t *)mh; 2428 int err; 2429 2430 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2431 return (err); 2432 err = i_mac_disable(mip); 2433 i_mac_perim_exit(mip); 2434 return (err); 2435 } 2436 2437 int 2438 mac_disable(mac_handle_t mh) 2439 { 2440 mac_impl_t *mip = (mac_impl_t *)mh; 2441 int err; 2442 2443 i_mac_perim_enter(mip); 2444 err = i_mac_disable(mip); 2445 i_mac_perim_exit(mip); 2446 2447 /* 2448 * Clean up notification thread and wait for it to exit. 2449 */ 2450 if (err == 0) 2451 i_mac_notify_exit(mip); 2452 2453 return (err); 2454 } 2455 2456 /* 2457 * Called when the MAC instance has a non empty flow table, to de-multiplex 2458 * incoming packets to the right flow. 2459 */ 2460 /* ARGSUSED */ 2461 static mblk_t * 2462 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2463 { 2464 flow_entry_t *flent = NULL; 2465 uint_t flags = FLOW_INBOUND; 2466 int err; 2467 2468 /* 2469 * If the MAC is a port of an aggregation, pass FLOW_IGNORE_VLAN 2470 * to mac_flow_lookup() so that the VLAN packets can be successfully 2471 * passed to the non-VLAN aggregation flows. 2472 * 2473 * Note that there is possibly a race between this and 2474 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2475 * classified to non-VLAN flows of non-aggregation MAC clients. These 2476 * VLAN packets will be then filtered out by the MAC module. 2477 */ 2478 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2479 flags |= FLOW_IGNORE_VLAN; 2480 2481 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2482 if (err != 0) { 2483 /* no registered receive function */ 2484 return (mp); 2485 } else { 2486 mac_client_impl_t *mcip; 2487 2488 /* 2489 * This flent might just be an additional one on the MAC client, 2490 * i.e. for classification purposes (different fdesc), however 2491 * the resources, SRS et. al., are in the mci_flent, so if 2492 * this isn't the mci_flent, we need to get it. 2493 */ 2494 if ((mcip = flent->fe_mcip) != NULL && 2495 mcip->mci_flent != flent) { 2496 FLOW_REFRELE(flent); 2497 flent = mcip->mci_flent; 2498 FLOW_TRY_REFHOLD(flent, err); 2499 if (err != 0) 2500 return (mp); 2501 } 2502 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2503 B_FALSE); 2504 FLOW_REFRELE(flent); 2505 } 2506 return (NULL); 2507 } 2508 2509 mblk_t * 2510 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2511 { 2512 mac_impl_t *mip = (mac_impl_t *)mh; 2513 mblk_t *bp, *bp1, **bpp, *list = NULL; 2514 2515 /* 2516 * We walk the chain and attempt to classify each packet. 2517 * The packets that couldn't be classified will be returned 2518 * back to the caller. 2519 */ 2520 bp = mp_chain; 2521 bpp = &list; 2522 while (bp != NULL) { 2523 bp1 = bp; 2524 bp = bp->b_next; 2525 bp1->b_next = NULL; 2526 2527 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2528 *bpp = bp1; 2529 bpp = &bp1->b_next; 2530 } 2531 } 2532 return (list); 2533 } 2534 2535 static int 2536 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2537 { 2538 mac_ring_handle_t ring = arg; 2539 2540 if (flent->fe_tx_srs) 2541 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2542 return (0); 2543 } 2544 2545 void 2546 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2547 { 2548 mac_client_impl_t *cclient; 2549 mac_soft_ring_set_t *mac_srs; 2550 2551 /* 2552 * After grabbing the mi_rw_lock, the list of clients can't change. 2553 * If there are any clients mi_disabled must be B_FALSE and can't 2554 * get set since there are clients. If there aren't any clients we 2555 * don't do anything. In any case the mip has to be valid. The driver 2556 * must make sure that it goes single threaded (with respect to mac 2557 * calls) and wait for all pending mac calls to finish before calling 2558 * mac_unregister. 2559 */ 2560 rw_enter(&i_mac_impl_lock, RW_READER); 2561 if (mip->mi_state_flags & MIS_DISABLED) { 2562 rw_exit(&i_mac_impl_lock); 2563 return; 2564 } 2565 2566 /* 2567 * Get MAC tx srs from walking mac_client_handle list. 2568 */ 2569 rw_enter(&mip->mi_rw_lock, RW_READER); 2570 for (cclient = mip->mi_clients_list; cclient != NULL; 2571 cclient = cclient->mci_client_next) { 2572 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2573 mac_tx_srs_wakeup(mac_srs, ring); 2574 } else { 2575 /* 2576 * Aggr opens underlying ports in exclusive mode 2577 * and registers flow control callbacks using 2578 * mac_tx_client_notify(). When opened in 2579 * exclusive mode, Tx SRS won't be created 2580 * during mac_unicast_add(). 2581 */ 2582 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2583 mac_tx_invoke_callbacks(cclient, 2584 (mac_tx_cookie_t)ring); 2585 } 2586 } 2587 (void) mac_flow_walk(cclient->mci_subflow_tab, 2588 mac_tx_flow_srs_wakeup, ring); 2589 } 2590 rw_exit(&mip->mi_rw_lock); 2591 rw_exit(&i_mac_impl_lock); 2592 } 2593 2594 /* ARGSUSED */ 2595 void 2596 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2597 boolean_t add) 2598 { 2599 mac_impl_t *mip = (mac_impl_t *)mh; 2600 2601 i_mac_perim_enter((mac_impl_t *)mh); 2602 /* 2603 * If no specific refresh function was given then default to the 2604 * driver's m_multicst entry point. 2605 */ 2606 if (refresh == NULL) { 2607 refresh = mip->mi_multicst; 2608 arg = mip->mi_driver; 2609 } 2610 2611 mac_bcast_refresh(mip, refresh, arg, add); 2612 i_mac_perim_exit((mac_impl_t *)mh); 2613 } 2614 2615 void 2616 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2617 { 2618 mac_impl_t *mip = (mac_impl_t *)mh; 2619 2620 /* 2621 * If no specific refresh function was given then default to the 2622 * driver's m_promisc entry point. 2623 */ 2624 if (refresh == NULL) { 2625 refresh = mip->mi_setpromisc; 2626 arg = mip->mi_driver; 2627 } 2628 ASSERT(refresh != NULL); 2629 2630 /* 2631 * Call the refresh function with the current promiscuity. 2632 */ 2633 refresh(arg, (mip->mi_devpromisc != 0)); 2634 } 2635 2636 /* 2637 * The mac client requests that the mac not to change its margin size to 2638 * be less than the specified value. If "current" is B_TRUE, then the client 2639 * requests the mac not to change its margin size to be smaller than the 2640 * current size. Further, return the current margin size value in this case. 2641 * 2642 * We keep every requested size in an ordered list from largest to smallest. 2643 */ 2644 int 2645 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2646 { 2647 mac_impl_t *mip = (mac_impl_t *)mh; 2648 mac_margin_req_t **pp, *p; 2649 int err = 0; 2650 2651 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2652 if (current) 2653 *marginp = mip->mi_margin; 2654 2655 /* 2656 * If the current margin value cannot satisfy the margin requested, 2657 * return ENOTSUP directly. 2658 */ 2659 if (*marginp > mip->mi_margin) { 2660 err = ENOTSUP; 2661 goto done; 2662 } 2663 2664 /* 2665 * Check whether the given margin is already in the list. If so, 2666 * bump the reference count. 2667 */ 2668 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2669 if (p->mmr_margin == *marginp) { 2670 /* 2671 * The margin requested is already in the list, 2672 * so just bump the reference count. 2673 */ 2674 p->mmr_ref++; 2675 goto done; 2676 } 2677 if (p->mmr_margin < *marginp) 2678 break; 2679 } 2680 2681 2682 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2683 p->mmr_margin = *marginp; 2684 p->mmr_ref++; 2685 p->mmr_nextp = *pp; 2686 *pp = p; 2687 2688 done: 2689 rw_exit(&(mip->mi_rw_lock)); 2690 return (err); 2691 } 2692 2693 /* 2694 * The mac client requests to cancel its previous mac_margin_add() request. 2695 * We remove the requested margin size from the list. 2696 */ 2697 int 2698 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2699 { 2700 mac_impl_t *mip = (mac_impl_t *)mh; 2701 mac_margin_req_t **pp, *p; 2702 int err = 0; 2703 2704 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2705 /* 2706 * Find the entry in the list for the given margin. 2707 */ 2708 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2709 if (p->mmr_margin == margin) { 2710 if (--p->mmr_ref == 0) 2711 break; 2712 2713 /* 2714 * There is still a reference to this address so 2715 * there's nothing more to do. 2716 */ 2717 goto done; 2718 } 2719 } 2720 2721 /* 2722 * We did not find an entry for the given margin. 2723 */ 2724 if (p == NULL) { 2725 err = ENOENT; 2726 goto done; 2727 } 2728 2729 ASSERT(p->mmr_ref == 0); 2730 2731 /* 2732 * Remove it from the list. 2733 */ 2734 *pp = p->mmr_nextp; 2735 kmem_free(p, sizeof (mac_margin_req_t)); 2736 done: 2737 rw_exit(&(mip->mi_rw_lock)); 2738 return (err); 2739 } 2740 2741 boolean_t 2742 mac_margin_update(mac_handle_t mh, uint32_t margin) 2743 { 2744 mac_impl_t *mip = (mac_impl_t *)mh; 2745 uint32_t margin_needed = 0; 2746 2747 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2748 2749 if (mip->mi_mmrp != NULL) 2750 margin_needed = mip->mi_mmrp->mmr_margin; 2751 2752 if (margin_needed <= margin) 2753 mip->mi_margin = margin; 2754 2755 rw_exit(&(mip->mi_rw_lock)); 2756 2757 if (margin_needed <= margin) 2758 i_mac_notify(mip, MAC_NOTE_MARGIN); 2759 2760 return (margin_needed <= margin); 2761 } 2762 2763 /* 2764 * MAC clients use this interface to request that a MAC device not change its 2765 * MTU below the specified amount. At this time, that amount must be within the 2766 * range of the device's current minimum and the device's current maximum. eg. a 2767 * client cannot request a 3000 byte MTU when the device's MTU is currently 2768 * 2000. 2769 * 2770 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2771 * current underlying mac's maximum for this mac client and return it in mtup. 2772 */ 2773 int 2774 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2775 { 2776 mac_impl_t *mip = (mac_impl_t *)mh; 2777 mac_mtu_req_t *prev, *cur; 2778 mac_propval_range_t mpr; 2779 int err; 2780 2781 i_mac_perim_enter(mip); 2782 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2783 2784 if (current == B_TRUE) 2785 *mtup = mip->mi_sdu_max; 2786 mpr.mpr_count = 1; 2787 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2788 if (err != 0) { 2789 rw_exit(&mip->mi_rw_lock); 2790 i_mac_perim_exit(mip); 2791 return (err); 2792 } 2793 2794 if (*mtup > mip->mi_sdu_max || 2795 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2796 rw_exit(&mip->mi_rw_lock); 2797 i_mac_perim_exit(mip); 2798 return (ENOTSUP); 2799 } 2800 2801 prev = NULL; 2802 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2803 if (*mtup == cur->mtr_mtu) { 2804 cur->mtr_ref++; 2805 rw_exit(&mip->mi_rw_lock); 2806 i_mac_perim_exit(mip); 2807 return (0); 2808 } 2809 2810 if (*mtup > cur->mtr_mtu) 2811 break; 2812 2813 prev = cur; 2814 } 2815 2816 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 2817 cur->mtr_mtu = *mtup; 2818 cur->mtr_ref = 1; 2819 if (prev != NULL) { 2820 cur->mtr_nextp = prev->mtr_nextp; 2821 prev->mtr_nextp = cur; 2822 } else { 2823 cur->mtr_nextp = mip->mi_mtrp; 2824 mip->mi_mtrp = cur; 2825 } 2826 2827 rw_exit(&mip->mi_rw_lock); 2828 i_mac_perim_exit(mip); 2829 return (0); 2830 } 2831 2832 int 2833 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 2834 { 2835 mac_impl_t *mip = (mac_impl_t *)mh; 2836 mac_mtu_req_t *cur, *prev; 2837 2838 i_mac_perim_enter(mip); 2839 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2840 2841 prev = NULL; 2842 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2843 if (cur->mtr_mtu == mtu) { 2844 ASSERT(cur->mtr_ref > 0); 2845 cur->mtr_ref--; 2846 if (cur->mtr_ref == 0) { 2847 if (prev == NULL) { 2848 mip->mi_mtrp = cur->mtr_nextp; 2849 } else { 2850 prev->mtr_nextp = cur->mtr_nextp; 2851 } 2852 kmem_free(cur, sizeof (mac_mtu_req_t)); 2853 } 2854 rw_exit(&mip->mi_rw_lock); 2855 i_mac_perim_exit(mip); 2856 return (0); 2857 } 2858 2859 prev = cur; 2860 } 2861 2862 rw_exit(&mip->mi_rw_lock); 2863 i_mac_perim_exit(mip); 2864 return (ENOENT); 2865 } 2866 2867 /* 2868 * MAC Type Plugin functions. 2869 */ 2870 2871 mactype_t * 2872 mactype_getplugin(const char *pname) 2873 { 2874 mactype_t *mtype = NULL; 2875 boolean_t tried_modload = B_FALSE; 2876 2877 mutex_enter(&i_mactype_lock); 2878 2879 find_registered_mactype: 2880 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2881 (mod_hash_val_t *)&mtype) != 0) { 2882 if (!tried_modload) { 2883 /* 2884 * If the plugin has not yet been loaded, then 2885 * attempt to load it now. If modload() succeeds, 2886 * the plugin should have registered using 2887 * mactype_register(), in which case we can go back 2888 * and attempt to find it again. 2889 */ 2890 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2891 tried_modload = B_TRUE; 2892 goto find_registered_mactype; 2893 } 2894 } 2895 } else { 2896 /* 2897 * Note that there's no danger that the plugin we've loaded 2898 * could be unloaded between the modload() step and the 2899 * reference count bump here, as we're holding 2900 * i_mactype_lock, which mactype_unregister() also holds. 2901 */ 2902 atomic_inc_32(&mtype->mt_ref); 2903 } 2904 2905 mutex_exit(&i_mactype_lock); 2906 return (mtype); 2907 } 2908 2909 mactype_register_t * 2910 mactype_alloc(uint_t mactype_version) 2911 { 2912 mactype_register_t *mtrp; 2913 2914 /* 2915 * Make sure there isn't a version mismatch between the plugin and 2916 * the framework. In the future, if multiple versions are 2917 * supported, this check could become more sophisticated. 2918 */ 2919 if (mactype_version != MACTYPE_VERSION) 2920 return (NULL); 2921 2922 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2923 mtrp->mtr_version = mactype_version; 2924 return (mtrp); 2925 } 2926 2927 void 2928 mactype_free(mactype_register_t *mtrp) 2929 { 2930 kmem_free(mtrp, sizeof (mactype_register_t)); 2931 } 2932 2933 int 2934 mactype_register(mactype_register_t *mtrp) 2935 { 2936 mactype_t *mtp; 2937 mactype_ops_t *ops = mtrp->mtr_ops; 2938 2939 /* Do some sanity checking before we register this MAC type. */ 2940 if (mtrp->mtr_ident == NULL || ops == NULL) 2941 return (EINVAL); 2942 2943 /* 2944 * Verify that all mandatory callbacks are set in the ops 2945 * vector. 2946 */ 2947 if (ops->mtops_unicst_verify == NULL || 2948 ops->mtops_multicst_verify == NULL || 2949 ops->mtops_sap_verify == NULL || 2950 ops->mtops_header == NULL || 2951 ops->mtops_header_info == NULL) { 2952 return (EINVAL); 2953 } 2954 2955 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2956 mtp->mt_ident = mtrp->mtr_ident; 2957 mtp->mt_ops = *ops; 2958 mtp->mt_type = mtrp->mtr_mactype; 2959 mtp->mt_nativetype = mtrp->mtr_nativetype; 2960 mtp->mt_addr_length = mtrp->mtr_addrlen; 2961 if (mtrp->mtr_brdcst_addr != NULL) { 2962 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2963 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2964 mtrp->mtr_addrlen); 2965 } 2966 2967 mtp->mt_stats = mtrp->mtr_stats; 2968 mtp->mt_statcount = mtrp->mtr_statcount; 2969 2970 mtp->mt_mapping = mtrp->mtr_mapping; 2971 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2972 2973 if (mod_hash_insert(i_mactype_hash, 2974 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2975 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2976 kmem_free(mtp, sizeof (*mtp)); 2977 return (EEXIST); 2978 } 2979 return (0); 2980 } 2981 2982 int 2983 mactype_unregister(const char *ident) 2984 { 2985 mactype_t *mtp; 2986 mod_hash_val_t val; 2987 int err; 2988 2989 /* 2990 * Let's not allow MAC drivers to use this plugin while we're 2991 * trying to unregister it. Holding i_mactype_lock also prevents a 2992 * plugin from unregistering while a MAC driver is attempting to 2993 * hold a reference to it in i_mactype_getplugin(). 2994 */ 2995 mutex_enter(&i_mactype_lock); 2996 2997 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2998 (mod_hash_val_t *)&mtp)) != 0) { 2999 /* A plugin is trying to unregister, but it never registered. */ 3000 err = ENXIO; 3001 goto done; 3002 } 3003 3004 if (mtp->mt_ref != 0) { 3005 err = EBUSY; 3006 goto done; 3007 } 3008 3009 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 3010 ASSERT(err == 0); 3011 if (err != 0) { 3012 /* This should never happen, thus the ASSERT() above. */ 3013 err = EINVAL; 3014 goto done; 3015 } 3016 ASSERT(mtp == (mactype_t *)val); 3017 3018 if (mtp->mt_brdcst_addr != NULL) 3019 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3020 kmem_free(mtp, sizeof (mactype_t)); 3021 done: 3022 mutex_exit(&i_mactype_lock); 3023 return (err); 3024 } 3025 3026 /* 3027 * Checks the size of the value size specified for a property as 3028 * part of a property operation. Returns B_TRUE if the size is 3029 * correct, B_FALSE otherwise. 3030 */ 3031 boolean_t 3032 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 3033 { 3034 uint_t minsize = 0; 3035 3036 if (is_range) 3037 return (valsize >= sizeof (mac_propval_range_t)); 3038 3039 switch (id) { 3040 case MAC_PROP_ZONE: 3041 minsize = sizeof (dld_ioc_zid_t); 3042 break; 3043 case MAC_PROP_AUTOPUSH: 3044 if (valsize != 0) 3045 minsize = sizeof (struct dlautopush); 3046 break; 3047 case MAC_PROP_TAGMODE: 3048 minsize = sizeof (link_tagmode_t); 3049 break; 3050 case MAC_PROP_RESOURCE: 3051 case MAC_PROP_RESOURCE_EFF: 3052 minsize = sizeof (mac_resource_props_t); 3053 break; 3054 case MAC_PROP_DUPLEX: 3055 minsize = sizeof (link_duplex_t); 3056 break; 3057 case MAC_PROP_SPEED: 3058 minsize = sizeof (uint64_t); 3059 break; 3060 case MAC_PROP_STATUS: 3061 minsize = sizeof (link_state_t); 3062 break; 3063 case MAC_PROP_AUTONEG: 3064 case MAC_PROP_EN_AUTONEG: 3065 minsize = sizeof (uint8_t); 3066 break; 3067 case MAC_PROP_MTU: 3068 case MAC_PROP_LLIMIT: 3069 case MAC_PROP_LDECAY: 3070 minsize = sizeof (uint32_t); 3071 break; 3072 case MAC_PROP_FLOWCTRL: 3073 minsize = sizeof (link_flowctrl_t); 3074 break; 3075 case MAC_PROP_ADV_5000FDX_CAP: 3076 case MAC_PROP_EN_5000FDX_CAP: 3077 case MAC_PROP_ADV_2500FDX_CAP: 3078 case MAC_PROP_EN_2500FDX_CAP: 3079 case MAC_PROP_ADV_100GFDX_CAP: 3080 case MAC_PROP_EN_100GFDX_CAP: 3081 case MAC_PROP_ADV_50GFDX_CAP: 3082 case MAC_PROP_EN_50GFDX_CAP: 3083 case MAC_PROP_ADV_40GFDX_CAP: 3084 case MAC_PROP_EN_40GFDX_CAP: 3085 case MAC_PROP_ADV_25GFDX_CAP: 3086 case MAC_PROP_EN_25GFDX_CAP: 3087 case MAC_PROP_ADV_10GFDX_CAP: 3088 case MAC_PROP_EN_10GFDX_CAP: 3089 case MAC_PROP_ADV_1000HDX_CAP: 3090 case MAC_PROP_EN_1000HDX_CAP: 3091 case MAC_PROP_ADV_100FDX_CAP: 3092 case MAC_PROP_EN_100FDX_CAP: 3093 case MAC_PROP_ADV_100HDX_CAP: 3094 case MAC_PROP_EN_100HDX_CAP: 3095 case MAC_PROP_ADV_10FDX_CAP: 3096 case MAC_PROP_EN_10FDX_CAP: 3097 case MAC_PROP_ADV_10HDX_CAP: 3098 case MAC_PROP_EN_10HDX_CAP: 3099 case MAC_PROP_ADV_100T4_CAP: 3100 case MAC_PROP_EN_100T4_CAP: 3101 minsize = sizeof (uint8_t); 3102 break; 3103 case MAC_PROP_PVID: 3104 minsize = sizeof (uint16_t); 3105 break; 3106 case MAC_PROP_IPTUN_HOPLIMIT: 3107 minsize = sizeof (uint32_t); 3108 break; 3109 case MAC_PROP_IPTUN_ENCAPLIMIT: 3110 minsize = sizeof (uint32_t); 3111 break; 3112 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3113 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3114 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3115 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3116 minsize = sizeof (uint_t); 3117 break; 3118 case MAC_PROP_WL_ESSID: 3119 minsize = sizeof (wl_linkstatus_t); 3120 break; 3121 case MAC_PROP_WL_BSSID: 3122 minsize = sizeof (wl_bssid_t); 3123 break; 3124 case MAC_PROP_WL_BSSTYPE: 3125 minsize = sizeof (wl_bss_type_t); 3126 break; 3127 case MAC_PROP_WL_LINKSTATUS: 3128 minsize = sizeof (wl_linkstatus_t); 3129 break; 3130 case MAC_PROP_WL_DESIRED_RATES: 3131 minsize = sizeof (wl_rates_t); 3132 break; 3133 case MAC_PROP_WL_SUPPORTED_RATES: 3134 minsize = sizeof (wl_rates_t); 3135 break; 3136 case MAC_PROP_WL_AUTH_MODE: 3137 minsize = sizeof (wl_authmode_t); 3138 break; 3139 case MAC_PROP_WL_ENCRYPTION: 3140 minsize = sizeof (wl_encryption_t); 3141 break; 3142 case MAC_PROP_WL_RSSI: 3143 minsize = sizeof (wl_rssi_t); 3144 break; 3145 case MAC_PROP_WL_PHY_CONFIG: 3146 minsize = sizeof (wl_phy_conf_t); 3147 break; 3148 case MAC_PROP_WL_CAPABILITY: 3149 minsize = sizeof (wl_capability_t); 3150 break; 3151 case MAC_PROP_WL_WPA: 3152 minsize = sizeof (wl_wpa_t); 3153 break; 3154 case MAC_PROP_WL_SCANRESULTS: 3155 minsize = sizeof (wl_wpa_ess_t); 3156 break; 3157 case MAC_PROP_WL_POWER_MODE: 3158 minsize = sizeof (wl_ps_mode_t); 3159 break; 3160 case MAC_PROP_WL_RADIO: 3161 minsize = sizeof (wl_radio_t); 3162 break; 3163 case MAC_PROP_WL_ESS_LIST: 3164 minsize = sizeof (wl_ess_list_t); 3165 break; 3166 case MAC_PROP_WL_KEY_TAB: 3167 minsize = sizeof (wl_wep_key_tab_t); 3168 break; 3169 case MAC_PROP_WL_CREATE_IBSS: 3170 minsize = sizeof (wl_create_ibss_t); 3171 break; 3172 case MAC_PROP_WL_SETOPTIE: 3173 minsize = sizeof (wl_wpa_ie_t); 3174 break; 3175 case MAC_PROP_WL_DELKEY: 3176 minsize = sizeof (wl_del_key_t); 3177 break; 3178 case MAC_PROP_WL_KEY: 3179 minsize = sizeof (wl_key_t); 3180 break; 3181 case MAC_PROP_WL_MLME: 3182 minsize = sizeof (wl_mlme_t); 3183 break; 3184 case MAC_PROP_VN_PROMISC_FILTERED: 3185 minsize = sizeof (boolean_t); 3186 break; 3187 } 3188 3189 return (valsize >= minsize); 3190 } 3191 3192 /* 3193 * mac_set_prop() sets MAC or hardware driver properties: 3194 * 3195 * - MAC-managed properties such as resource properties include maxbw, 3196 * priority, and cpu binding list, as well as the default port VID 3197 * used by bridging. These properties are consumed by the MAC layer 3198 * itself and not passed down to the driver. For resource control 3199 * properties, this function invokes mac_set_resources() which will 3200 * cache the property value in mac_impl_t and may call 3201 * mac_client_set_resource() to update property value of the primary 3202 * mac client, if it exists. 3203 * 3204 * - Properties which act on the hardware and must be passed to the 3205 * driver, such as MTU, through the driver's mc_setprop() entry point. 3206 */ 3207 int 3208 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3209 uint_t valsize) 3210 { 3211 int err = ENOTSUP; 3212 mac_impl_t *mip = (mac_impl_t *)mh; 3213 3214 ASSERT(MAC_PERIM_HELD(mh)); 3215 3216 switch (id) { 3217 case MAC_PROP_RESOURCE: { 3218 mac_resource_props_t *mrp; 3219 3220 /* call mac_set_resources() for MAC properties */ 3221 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3222 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3223 bcopy(val, mrp, sizeof (*mrp)); 3224 err = mac_set_resources(mh, mrp); 3225 kmem_free(mrp, sizeof (*mrp)); 3226 break; 3227 } 3228 3229 case MAC_PROP_PVID: 3230 ASSERT(valsize >= sizeof (uint16_t)); 3231 if (mip->mi_state_flags & MIS_IS_VNIC) 3232 return (EINVAL); 3233 err = mac_set_pvid(mh, *(uint16_t *)val); 3234 break; 3235 3236 case MAC_PROP_MTU: { 3237 uint32_t mtu; 3238 3239 ASSERT(valsize >= sizeof (uint32_t)); 3240 bcopy(val, &mtu, sizeof (mtu)); 3241 err = mac_set_mtu(mh, mtu, NULL); 3242 break; 3243 } 3244 3245 case MAC_PROP_LLIMIT: 3246 case MAC_PROP_LDECAY: { 3247 uint32_t learnval; 3248 3249 if (valsize < sizeof (learnval) || 3250 (mip->mi_state_flags & MIS_IS_VNIC)) 3251 return (EINVAL); 3252 bcopy(val, &learnval, sizeof (learnval)); 3253 if (learnval == 0 && id == MAC_PROP_LDECAY) 3254 return (EINVAL); 3255 if (id == MAC_PROP_LLIMIT) 3256 mip->mi_llimit = learnval; 3257 else 3258 mip->mi_ldecay = learnval; 3259 err = 0; 3260 break; 3261 } 3262 3263 default: 3264 /* For other driver properties, call driver's callback */ 3265 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3266 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3267 name, id, valsize, val); 3268 } 3269 } 3270 return (err); 3271 } 3272 3273 /* 3274 * mac_get_prop() gets MAC or device driver properties. 3275 * 3276 * If the property is a driver property, mac_get_prop() calls driver's callback 3277 * entry point to get it. 3278 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3279 * which returns the cached value in mac_impl_t. 3280 */ 3281 int 3282 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3283 uint_t valsize) 3284 { 3285 int err = ENOTSUP; 3286 mac_impl_t *mip = (mac_impl_t *)mh; 3287 uint_t rings; 3288 uint_t vlinks; 3289 3290 bzero(val, valsize); 3291 3292 switch (id) { 3293 case MAC_PROP_RESOURCE: { 3294 mac_resource_props_t *mrp; 3295 3296 /* If mac property, read from cache */ 3297 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3298 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3299 mac_get_resources(mh, mrp); 3300 bcopy(mrp, val, sizeof (*mrp)); 3301 kmem_free(mrp, sizeof (*mrp)); 3302 return (0); 3303 } 3304 case MAC_PROP_RESOURCE_EFF: { 3305 mac_resource_props_t *mrp; 3306 3307 /* If mac effective property, read from client */ 3308 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3309 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3310 mac_get_effective_resources(mh, mrp); 3311 bcopy(mrp, val, sizeof (*mrp)); 3312 kmem_free(mrp, sizeof (*mrp)); 3313 return (0); 3314 } 3315 3316 case MAC_PROP_PVID: 3317 ASSERT(valsize >= sizeof (uint16_t)); 3318 if (mip->mi_state_flags & MIS_IS_VNIC) 3319 return (EINVAL); 3320 *(uint16_t *)val = mac_get_pvid(mh); 3321 return (0); 3322 3323 case MAC_PROP_LLIMIT: 3324 case MAC_PROP_LDECAY: 3325 ASSERT(valsize >= sizeof (uint32_t)); 3326 if (mip->mi_state_flags & MIS_IS_VNIC) 3327 return (EINVAL); 3328 if (id == MAC_PROP_LLIMIT) 3329 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3330 else 3331 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3332 return (0); 3333 3334 case MAC_PROP_MTU: { 3335 uint32_t sdu; 3336 3337 ASSERT(valsize >= sizeof (uint32_t)); 3338 mac_sdu_get2(mh, NULL, &sdu, NULL); 3339 bcopy(&sdu, val, sizeof (sdu)); 3340 3341 return (0); 3342 } 3343 case MAC_PROP_STATUS: { 3344 link_state_t link_state; 3345 3346 if (valsize < sizeof (link_state)) 3347 return (EINVAL); 3348 link_state = mac_link_get(mh); 3349 bcopy(&link_state, val, sizeof (link_state)); 3350 3351 return (0); 3352 } 3353 3354 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3355 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3356 ASSERT(valsize >= sizeof (uint_t)); 3357 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3358 mac_rxavail_get(mh) : mac_txavail_get(mh); 3359 bcopy(&rings, val, sizeof (uint_t)); 3360 return (0); 3361 3362 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3363 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3364 ASSERT(valsize >= sizeof (uint_t)); 3365 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3366 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3367 bcopy(&vlinks, val, sizeof (uint_t)); 3368 return (0); 3369 3370 case MAC_PROP_RXRINGSRANGE: 3371 case MAC_PROP_TXRINGSRANGE: 3372 /* 3373 * The value for these properties are returned through 3374 * the MAC_PROP_RESOURCE property. 3375 */ 3376 return (0); 3377 3378 default: 3379 break; 3380 3381 } 3382 3383 /* If driver property, request from driver */ 3384 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3385 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3386 valsize, val); 3387 } 3388 3389 return (err); 3390 } 3391 3392 /* 3393 * Helper function to initialize the range structure for use in 3394 * mac_get_prop. If the type can be other than uint32, we can 3395 * pass that as an arg. 3396 */ 3397 static void 3398 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3399 { 3400 range->mpr_count = 1; 3401 range->mpr_type = MAC_PROPVAL_UINT32; 3402 range->mpr_range_uint32[0].mpur_min = min; 3403 range->mpr_range_uint32[0].mpur_max = max; 3404 } 3405 3406 /* 3407 * Returns information about the specified property, such as default 3408 * values or permissions. 3409 */ 3410 int 3411 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3412 void *default_val, uint_t default_size, mac_propval_range_t *range, 3413 uint_t *perm) 3414 { 3415 mac_prop_info_state_t state; 3416 mac_impl_t *mip = (mac_impl_t *)mh; 3417 uint_t max; 3418 3419 /* 3420 * A property is read/write by default unless the driver says 3421 * otherwise. 3422 */ 3423 if (perm != NULL) 3424 *perm = MAC_PROP_PERM_RW; 3425 3426 if (default_val != NULL) 3427 bzero(default_val, default_size); 3428 3429 /* 3430 * First, handle framework properties for which we don't need to 3431 * involve the driver. 3432 */ 3433 switch (id) { 3434 case MAC_PROP_RESOURCE: 3435 case MAC_PROP_PVID: 3436 case MAC_PROP_LLIMIT: 3437 case MAC_PROP_LDECAY: 3438 return (0); 3439 3440 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3441 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3442 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3443 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3444 if (perm != NULL) 3445 *perm = MAC_PROP_PERM_READ; 3446 return (0); 3447 3448 case MAC_PROP_RXRINGSRANGE: 3449 case MAC_PROP_TXRINGSRANGE: 3450 /* 3451 * Currently, we support range for RX and TX rings properties. 3452 * When we extend this support to maxbw, cpus and priority, 3453 * we should move this to mac_get_resources. 3454 * There is no default value for RX or TX rings. 3455 */ 3456 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3457 mac_is_vnic_primary(mh)) { 3458 /* 3459 * We don't support setting rings for a VLAN 3460 * data link because it shares its ring with the 3461 * primary MAC client. 3462 */ 3463 if (perm != NULL) 3464 *perm = MAC_PROP_PERM_READ; 3465 if (range != NULL) 3466 range->mpr_count = 0; 3467 } else if (range != NULL) { 3468 if (mip->mi_state_flags & MIS_IS_VNIC) 3469 mh = mac_get_lower_mac_handle(mh); 3470 mip = (mac_impl_t *)mh; 3471 if ((id == MAC_PROP_RXRINGSRANGE && 3472 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3473 (id == MAC_PROP_TXRINGSRANGE && 3474 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3475 if (id == MAC_PROP_RXRINGSRANGE) { 3476 if ((mac_rxhwlnksavail_get(mh) + 3477 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3478 /* 3479 * doesn't support groups or 3480 * rings 3481 */ 3482 range->mpr_count = 0; 3483 } else { 3484 /* 3485 * supports specifying groups, 3486 * but not rings 3487 */ 3488 _mac_set_range(range, 0, 0); 3489 } 3490 } else { 3491 if ((mac_txhwlnksavail_get(mh) + 3492 mac_txhwlnksrsvd_get(mh)) <= 1) { 3493 /* 3494 * doesn't support groups or 3495 * rings 3496 */ 3497 range->mpr_count = 0; 3498 } else { 3499 /* 3500 * supports specifying groups, 3501 * but not rings 3502 */ 3503 _mac_set_range(range, 0, 0); 3504 } 3505 } 3506 } else { 3507 max = id == MAC_PROP_RXRINGSRANGE ? 3508 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3509 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3510 if (max <= 1) { 3511 /* 3512 * doesn't support groups or 3513 * rings 3514 */ 3515 range->mpr_count = 0; 3516 } else { 3517 /* 3518 * -1 because we have to leave out the 3519 * default ring. 3520 */ 3521 _mac_set_range(range, 1, max - 1); 3522 } 3523 } 3524 } 3525 return (0); 3526 3527 case MAC_PROP_STATUS: 3528 if (perm != NULL) 3529 *perm = MAC_PROP_PERM_READ; 3530 return (0); 3531 } 3532 3533 /* 3534 * Get the property info from the driver if it implements the 3535 * property info entry point. 3536 */ 3537 bzero(&state, sizeof (state)); 3538 3539 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3540 state.pr_default = default_val; 3541 state.pr_default_size = default_size; 3542 3543 /* 3544 * The caller specifies the maximum number of ranges 3545 * it can accomodate using mpr_count. We don't touch 3546 * this value until the driver returns from its 3547 * mc_propinfo() callback, and ensure we don't exceed 3548 * this number of range as the driver defines 3549 * supported range from its mc_propinfo(). 3550 * 3551 * pr_range_cur_count keeps track of how many ranges 3552 * were defined by the driver from its mc_propinfo() 3553 * entry point. 3554 * 3555 * On exit, the user-specified range mpr_count returns 3556 * the number of ranges specified by the driver on 3557 * success, or the number of ranges it wanted to 3558 * define if that number of ranges could not be 3559 * accomodated by the specified range structure. In 3560 * the latter case, the caller will be able to 3561 * allocate a larger range structure, and query the 3562 * property again. 3563 */ 3564 state.pr_range_cur_count = 0; 3565 state.pr_range = range; 3566 3567 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3568 (mac_prop_info_handle_t)&state); 3569 3570 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3571 range->mpr_count = state.pr_range_cur_count; 3572 3573 /* 3574 * The operation could fail if the buffer supplied by 3575 * the user was too small for the range or default 3576 * value of the property. 3577 */ 3578 if (state.pr_errno != 0) 3579 return (state.pr_errno); 3580 3581 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3582 *perm = state.pr_perm; 3583 } 3584 3585 /* 3586 * The MAC layer may want to provide default values or allowed 3587 * ranges for properties if the driver does not provide a 3588 * property info entry point, or that entry point exists, but 3589 * it did not provide a default value or allowed ranges for 3590 * that property. 3591 */ 3592 switch (id) { 3593 case MAC_PROP_MTU: { 3594 uint32_t sdu; 3595 3596 mac_sdu_get2(mh, NULL, &sdu, NULL); 3597 3598 if (range != NULL && !(state.pr_flags & 3599 MAC_PROP_INFO_RANGE)) { 3600 /* MTU range */ 3601 _mac_set_range(range, sdu, sdu); 3602 } 3603 3604 if (default_val != NULL && !(state.pr_flags & 3605 MAC_PROP_INFO_DEFAULT)) { 3606 if (mip->mi_info.mi_media == DL_ETHER) 3607 sdu = ETHERMTU; 3608 /* default MTU value */ 3609 bcopy(&sdu, default_val, sizeof (sdu)); 3610 } 3611 } 3612 } 3613 3614 return (0); 3615 } 3616 3617 int 3618 mac_fastpath_disable(mac_handle_t mh) 3619 { 3620 mac_impl_t *mip = (mac_impl_t *)mh; 3621 3622 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3623 return (0); 3624 3625 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3626 } 3627 3628 void 3629 mac_fastpath_enable(mac_handle_t mh) 3630 { 3631 mac_impl_t *mip = (mac_impl_t *)mh; 3632 3633 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3634 return; 3635 3636 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3637 } 3638 3639 void 3640 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3641 { 3642 uint_t nprops, i; 3643 3644 if (priv_props == NULL) 3645 return; 3646 3647 nprops = 0; 3648 while (priv_props[nprops] != NULL) 3649 nprops++; 3650 if (nprops == 0) 3651 return; 3652 3653 3654 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3655 3656 for (i = 0; i < nprops; i++) { 3657 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3658 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3659 MAXLINKPROPNAME); 3660 } 3661 3662 mip->mi_priv_prop_count = nprops; 3663 } 3664 3665 void 3666 mac_unregister_priv_prop(mac_impl_t *mip) 3667 { 3668 uint_t i; 3669 3670 if (mip->mi_priv_prop_count == 0) { 3671 ASSERT(mip->mi_priv_prop == NULL); 3672 return; 3673 } 3674 3675 for (i = 0; i < mip->mi_priv_prop_count; i++) 3676 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3677 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3678 sizeof (char *)); 3679 3680 mip->mi_priv_prop = NULL; 3681 mip->mi_priv_prop_count = 0; 3682 } 3683 3684 /* 3685 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3686 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3687 * cases if MAC free's the ring structure after mac_stop_ring(), any 3688 * illegal access to the ring structure coming from the driver will panic 3689 * the system. In order to protect the system from such inadverent access, 3690 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3691 * When packets are received on free'd up rings, MAC (through the generation 3692 * count mechanism) will drop such packets. 3693 */ 3694 static mac_ring_t * 3695 mac_ring_alloc(mac_impl_t *mip) 3696 { 3697 mac_ring_t *ring; 3698 3699 mutex_enter(&mip->mi_ring_lock); 3700 if (mip->mi_ring_freelist != NULL) { 3701 ring = mip->mi_ring_freelist; 3702 mip->mi_ring_freelist = ring->mr_next; 3703 bzero(ring, sizeof (mac_ring_t)); 3704 mutex_exit(&mip->mi_ring_lock); 3705 } else { 3706 mutex_exit(&mip->mi_ring_lock); 3707 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3708 } 3709 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3710 return (ring); 3711 } 3712 3713 static void 3714 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3715 { 3716 ASSERT(ring->mr_state == MR_FREE); 3717 3718 mutex_enter(&mip->mi_ring_lock); 3719 ring->mr_state = MR_FREE; 3720 ring->mr_flag = 0; 3721 ring->mr_next = mip->mi_ring_freelist; 3722 ring->mr_mip = NULL; 3723 mip->mi_ring_freelist = ring; 3724 mac_ring_stat_delete(ring); 3725 mutex_exit(&mip->mi_ring_lock); 3726 } 3727 3728 static void 3729 mac_ring_freeall(mac_impl_t *mip) 3730 { 3731 mac_ring_t *ring_next; 3732 mutex_enter(&mip->mi_ring_lock); 3733 mac_ring_t *ring = mip->mi_ring_freelist; 3734 while (ring != NULL) { 3735 ring_next = ring->mr_next; 3736 kmem_cache_free(mac_ring_cache, ring); 3737 ring = ring_next; 3738 } 3739 mip->mi_ring_freelist = NULL; 3740 mutex_exit(&mip->mi_ring_lock); 3741 } 3742 3743 int 3744 mac_start_ring(mac_ring_t *ring) 3745 { 3746 int rv = 0; 3747 3748 ASSERT(ring->mr_state == MR_FREE); 3749 3750 if (ring->mr_start != NULL) { 3751 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3752 if (rv != 0) 3753 return (rv); 3754 } 3755 3756 ring->mr_state = MR_INUSE; 3757 return (rv); 3758 } 3759 3760 void 3761 mac_stop_ring(mac_ring_t *ring) 3762 { 3763 ASSERT(ring->mr_state == MR_INUSE); 3764 3765 if (ring->mr_stop != NULL) 3766 ring->mr_stop(ring->mr_driver); 3767 3768 ring->mr_state = MR_FREE; 3769 3770 /* 3771 * Increment the ring generation number for this ring. 3772 */ 3773 ring->mr_gen_num++; 3774 } 3775 3776 int 3777 mac_start_group(mac_group_t *group) 3778 { 3779 int rv = 0; 3780 3781 if (group->mrg_start != NULL) 3782 rv = group->mrg_start(group->mrg_driver); 3783 3784 return (rv); 3785 } 3786 3787 void 3788 mac_stop_group(mac_group_t *group) 3789 { 3790 if (group->mrg_stop != NULL) 3791 group->mrg_stop(group->mrg_driver); 3792 } 3793 3794 /* 3795 * Called from mac_start() on the default Rx group. Broadcast and multicast 3796 * packets are received only on the default group. Hence the default group 3797 * needs to be up even if the primary client is not up, for the other groups 3798 * to be functional. We do this by calling this function at mac_start time 3799 * itself. However the broadcast packets that are received can't make their 3800 * way beyond mac_rx until a mac client creates a broadcast flow. 3801 */ 3802 static int 3803 mac_start_group_and_rings(mac_group_t *group) 3804 { 3805 mac_ring_t *ring; 3806 int rv = 0; 3807 3808 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3809 if ((rv = mac_start_group(group)) != 0) 3810 return (rv); 3811 3812 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3813 ASSERT(ring->mr_state == MR_FREE); 3814 if ((rv = mac_start_ring(ring)) != 0) 3815 goto error; 3816 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3817 } 3818 return (0); 3819 3820 error: 3821 mac_stop_group_and_rings(group); 3822 return (rv); 3823 } 3824 3825 /* Called from mac_stop on the default Rx group */ 3826 static void 3827 mac_stop_group_and_rings(mac_group_t *group) 3828 { 3829 mac_ring_t *ring; 3830 3831 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3832 if (ring->mr_state != MR_FREE) { 3833 mac_stop_ring(ring); 3834 ring->mr_flag = 0; 3835 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3836 } 3837 } 3838 mac_stop_group(group); 3839 } 3840 3841 3842 static mac_ring_t * 3843 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3844 mac_capab_rings_t *cap_rings) 3845 { 3846 mac_ring_t *ring, *rnext; 3847 mac_ring_info_t ring_info; 3848 ddi_intr_handle_t ddi_handle; 3849 3850 ring = mac_ring_alloc(mip); 3851 3852 /* Prepare basic information of ring */ 3853 3854 /* 3855 * Ring index is numbered to be unique across a particular device. 3856 * Ring index computation makes following assumptions: 3857 * - For drivers with static grouping (e.g. ixgbe, bge), 3858 * ring index exchanged with the driver (e.g. during mr_rget) 3859 * is unique only across the group the ring belongs to. 3860 * - Drivers with dynamic grouping (e.g. nxge), start 3861 * with single group (mrg_index = 0). 3862 */ 3863 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 3864 ring->mr_type = group->mrg_type; 3865 ring->mr_gh = (mac_group_handle_t)group; 3866 3867 /* Insert the new ring to the list. */ 3868 ring->mr_next = group->mrg_rings; 3869 group->mrg_rings = ring; 3870 3871 /* Zero to reuse the info data structure */ 3872 bzero(&ring_info, sizeof (ring_info)); 3873 3874 /* Query ring information from driver */ 3875 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3876 index, &ring_info, (mac_ring_handle_t)ring); 3877 3878 ring->mr_info = ring_info; 3879 3880 /* 3881 * The interrupt handle could be shared among multiple rings. 3882 * Thus if there is a bunch of rings that are sharing an 3883 * interrupt, then only one ring among the bunch will be made 3884 * available for interrupt re-targeting; the rest will have 3885 * ddi_shared flag set to TRUE and would not be available for 3886 * be interrupt re-targeting. 3887 */ 3888 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 3889 rnext = ring->mr_next; 3890 while (rnext != NULL) { 3891 if (rnext->mr_info.mri_intr.mi_ddi_handle == 3892 ddi_handle) { 3893 /* 3894 * If default ring (mr_index == 0) is part 3895 * of a group of rings sharing an 3896 * interrupt, then set ddi_shared flag for 3897 * the default ring and give another ring 3898 * the chance to be re-targeted. 3899 */ 3900 if (rnext->mr_index == 0 && 3901 !rnext->mr_info.mri_intr.mi_ddi_shared) { 3902 rnext->mr_info.mri_intr.mi_ddi_shared = 3903 B_TRUE; 3904 } else { 3905 ring->mr_info.mri_intr.mi_ddi_shared = 3906 B_TRUE; 3907 } 3908 break; 3909 } 3910 rnext = rnext->mr_next; 3911 } 3912 /* 3913 * If rnext is NULL, then no matching ddi_handle was found. 3914 * Rx rings get registered first. So if this is a Tx ring, 3915 * then go through all the Rx rings and see if there is a 3916 * matching ddi handle. 3917 */ 3918 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 3919 mac_compare_ddi_handle(mip->mi_rx_groups, 3920 mip->mi_rx_group_count, ring); 3921 } 3922 } 3923 3924 /* Update ring's status */ 3925 ring->mr_state = MR_FREE; 3926 ring->mr_flag = 0; 3927 3928 /* Update the ring count of the group */ 3929 group->mrg_cur_count++; 3930 3931 /* Create per ring kstats */ 3932 if (ring->mr_stat != NULL) { 3933 ring->mr_mip = mip; 3934 mac_ring_stat_create(ring); 3935 } 3936 3937 return (ring); 3938 } 3939 3940 /* 3941 * Rings are chained together for easy regrouping. 3942 */ 3943 static void 3944 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3945 mac_capab_rings_t *cap_rings) 3946 { 3947 int index; 3948 3949 /* 3950 * Initialize all ring members of this group. Size of zero will not 3951 * enter the loop, so it's safe for initializing an empty group. 3952 */ 3953 for (index = size - 1; index >= 0; index--) 3954 (void) mac_init_ring(mip, group, index, cap_rings); 3955 } 3956 3957 int 3958 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3959 { 3960 mac_capab_rings_t *cap_rings; 3961 mac_group_t *group; 3962 mac_group_t *groups; 3963 mac_group_info_t group_info; 3964 uint_t group_free = 0; 3965 uint_t ring_left; 3966 mac_ring_t *ring; 3967 int g; 3968 int err = 0; 3969 uint_t grpcnt; 3970 boolean_t pseudo_txgrp = B_FALSE; 3971 3972 switch (rtype) { 3973 case MAC_RING_TYPE_RX: 3974 ASSERT(mip->mi_rx_groups == NULL); 3975 3976 cap_rings = &mip->mi_rx_rings_cap; 3977 cap_rings->mr_type = MAC_RING_TYPE_RX; 3978 break; 3979 case MAC_RING_TYPE_TX: 3980 ASSERT(mip->mi_tx_groups == NULL); 3981 3982 cap_rings = &mip->mi_tx_rings_cap; 3983 cap_rings->mr_type = MAC_RING_TYPE_TX; 3984 break; 3985 default: 3986 ASSERT(B_FALSE); 3987 } 3988 3989 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 3990 return (0); 3991 grpcnt = cap_rings->mr_gnum; 3992 3993 /* 3994 * If we have multiple TX rings, but only one TX group, we can 3995 * create pseudo TX groups (one per TX ring) in the MAC layer, 3996 * except for an aggr. For an aggr currently we maintain only 3997 * one group with all the rings (for all its ports), going 3998 * forwards we might change this. 3999 */ 4000 if (rtype == MAC_RING_TYPE_TX && 4001 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 4002 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 4003 /* 4004 * The -1 here is because we create a default TX group 4005 * with all the rings in it. 4006 */ 4007 grpcnt = cap_rings->mr_rnum - 1; 4008 pseudo_txgrp = B_TRUE; 4009 } 4010 4011 /* 4012 * Allocate a contiguous buffer for all groups. 4013 */ 4014 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 4015 4016 ring_left = cap_rings->mr_rnum; 4017 4018 /* 4019 * Get all ring groups if any, and get their ring members 4020 * if any. 4021 */ 4022 for (g = 0; g < grpcnt; g++) { 4023 group = groups + g; 4024 4025 /* Prepare basic information of the group */ 4026 group->mrg_index = g; 4027 group->mrg_type = rtype; 4028 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4029 group->mrg_mh = (mac_handle_t)mip; 4030 group->mrg_next = group + 1; 4031 4032 /* Zero to reuse the info data structure */ 4033 bzero(&group_info, sizeof (group_info)); 4034 4035 if (pseudo_txgrp) { 4036 /* 4037 * This is a pseudo group that we created, apart 4038 * from setting the state there is nothing to be 4039 * done. 4040 */ 4041 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4042 group_free++; 4043 continue; 4044 } 4045 /* Query group information from driver */ 4046 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4047 (mac_group_handle_t)group); 4048 4049 switch (cap_rings->mr_group_type) { 4050 case MAC_GROUP_TYPE_DYNAMIC: 4051 if (cap_rings->mr_gaddring == NULL || 4052 cap_rings->mr_gremring == NULL) { 4053 DTRACE_PROBE3( 4054 mac__init__rings_no_addremring, 4055 char *, mip->mi_name, 4056 mac_group_add_ring_t, 4057 cap_rings->mr_gaddring, 4058 mac_group_add_ring_t, 4059 cap_rings->mr_gremring); 4060 err = EINVAL; 4061 goto bail; 4062 } 4063 4064 switch (rtype) { 4065 case MAC_RING_TYPE_RX: 4066 /* 4067 * The first RX group must have non-zero 4068 * rings, and the following groups must 4069 * have zero rings. 4070 */ 4071 if (g == 0 && group_info.mgi_count == 0) { 4072 DTRACE_PROBE1( 4073 mac__init__rings__rx__def__zero, 4074 char *, mip->mi_name); 4075 err = EINVAL; 4076 goto bail; 4077 } 4078 if (g > 0 && group_info.mgi_count != 0) { 4079 DTRACE_PROBE3( 4080 mac__init__rings__rx__nonzero, 4081 char *, mip->mi_name, 4082 int, g, int, group_info.mgi_count); 4083 err = EINVAL; 4084 goto bail; 4085 } 4086 break; 4087 case MAC_RING_TYPE_TX: 4088 /* 4089 * All TX ring groups must have zero rings. 4090 */ 4091 if (group_info.mgi_count != 0) { 4092 DTRACE_PROBE3( 4093 mac__init__rings__tx__nonzero, 4094 char *, mip->mi_name, 4095 int, g, int, group_info.mgi_count); 4096 err = EINVAL; 4097 goto bail; 4098 } 4099 break; 4100 } 4101 break; 4102 case MAC_GROUP_TYPE_STATIC: 4103 /* 4104 * Note that an empty group is allowed, e.g., an aggr 4105 * would start with an empty group. 4106 */ 4107 break; 4108 default: 4109 /* unknown group type */ 4110 DTRACE_PROBE2(mac__init__rings__unknown__type, 4111 char *, mip->mi_name, 4112 int, cap_rings->mr_group_type); 4113 err = EINVAL; 4114 goto bail; 4115 } 4116 4117 4118 /* 4119 * The driver must register some form of hardware MAC 4120 * filter in order for Rx groups to support multiple 4121 * MAC addresses. 4122 */ 4123 if (rtype == MAC_RING_TYPE_RX && 4124 (group_info.mgi_addmac == NULL || 4125 group_info.mgi_remmac == NULL)) { 4126 DTRACE_PROBE1(mac__init__rings__no__mac__filter, 4127 char *, mip->mi_name); 4128 err = EINVAL; 4129 goto bail; 4130 } 4131 4132 /* Cache driver-supplied information */ 4133 group->mrg_info = group_info; 4134 4135 /* Update the group's status and group count. */ 4136 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4137 group_free++; 4138 4139 group->mrg_rings = NULL; 4140 group->mrg_cur_count = 0; 4141 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4142 ring_left -= group_info.mgi_count; 4143 4144 /* The current group size should be equal to default value */ 4145 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4146 } 4147 4148 /* Build up a dummy group for free resources as a pool */ 4149 group = groups + grpcnt; 4150 4151 /* Prepare basic information of the group */ 4152 group->mrg_index = -1; 4153 group->mrg_type = rtype; 4154 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4155 group->mrg_mh = (mac_handle_t)mip; 4156 group->mrg_next = NULL; 4157 4158 /* 4159 * If there are ungrouped rings, allocate a continuous buffer for 4160 * remaining resources. 4161 */ 4162 if (ring_left != 0) { 4163 group->mrg_rings = NULL; 4164 group->mrg_cur_count = 0; 4165 mac_init_group(mip, group, ring_left, cap_rings); 4166 4167 /* The current group size should be equal to ring_left */ 4168 ASSERT(group->mrg_cur_count == ring_left); 4169 4170 ring_left = 0; 4171 4172 /* Update this group's status */ 4173 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4174 } else { 4175 group->mrg_rings = NULL; 4176 } 4177 4178 ASSERT(ring_left == 0); 4179 4180 bail: 4181 4182 /* Cache other important information to finalize the initialization */ 4183 switch (rtype) { 4184 case MAC_RING_TYPE_RX: 4185 mip->mi_rx_group_type = cap_rings->mr_group_type; 4186 mip->mi_rx_group_count = cap_rings->mr_gnum; 4187 mip->mi_rx_groups = groups; 4188 mip->mi_rx_donor_grp = groups; 4189 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4190 /* 4191 * The default ring is reserved since it is 4192 * used for sending the broadcast etc. packets. 4193 */ 4194 mip->mi_rxrings_avail = 4195 mip->mi_rx_groups->mrg_cur_count - 1; 4196 mip->mi_rxrings_rsvd = 1; 4197 } 4198 /* 4199 * The default group cannot be reserved. It is used by 4200 * all the clients that do not have an exclusive group. 4201 */ 4202 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4203 mip->mi_rxhwclnt_used = 1; 4204 break; 4205 case MAC_RING_TYPE_TX: 4206 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4207 cap_rings->mr_group_type; 4208 mip->mi_tx_group_count = grpcnt; 4209 mip->mi_tx_group_free = group_free; 4210 mip->mi_tx_groups = groups; 4211 4212 group = groups + grpcnt; 4213 ring = group->mrg_rings; 4214 /* 4215 * The ring can be NULL in the case of aggr. Aggr will 4216 * have an empty Tx group which will get populated 4217 * later when pseudo Tx rings are added after 4218 * mac_register() is done. 4219 */ 4220 if (ring == NULL) { 4221 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4222 /* 4223 * pass the group to aggr so it can add Tx 4224 * rings to the group later. 4225 */ 4226 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4227 (mac_group_handle_t)group); 4228 /* 4229 * Even though there are no rings at this time 4230 * (rings will come later), set the group 4231 * state to registered. 4232 */ 4233 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4234 } else { 4235 /* 4236 * Ring 0 is used as the default one and it could be 4237 * assigned to a client as well. 4238 */ 4239 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4240 ring = ring->mr_next; 4241 ASSERT(ring->mr_index == 0); 4242 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4243 } 4244 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4245 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4246 /* 4247 * The default ring cannot be reserved. 4248 */ 4249 mip->mi_txrings_rsvd = 1; 4250 } 4251 /* 4252 * The default group cannot be reserved. It will be shared 4253 * by clients that do not have an exclusive group. 4254 */ 4255 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4256 mip->mi_txhwclnt_used = 1; 4257 break; 4258 default: 4259 ASSERT(B_FALSE); 4260 } 4261 4262 if (err != 0) 4263 mac_free_rings(mip, rtype); 4264 4265 return (err); 4266 } 4267 4268 /* 4269 * The ddi interrupt handle could be shared amoung rings. If so, compare 4270 * the new ring's ddi handle with the existing ones and set ddi_shared 4271 * flag. 4272 */ 4273 void 4274 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4275 { 4276 mac_group_t *group; 4277 mac_ring_t *ring; 4278 ddi_intr_handle_t ddi_handle; 4279 int g; 4280 4281 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4282 for (g = 0; g < grpcnt; g++) { 4283 group = groups + g; 4284 for (ring = group->mrg_rings; ring != NULL; 4285 ring = ring->mr_next) { 4286 if (ring == cring) 4287 continue; 4288 if (ring->mr_info.mri_intr.mi_ddi_handle == 4289 ddi_handle) { 4290 if (cring->mr_type == MAC_RING_TYPE_RX && 4291 ring->mr_index == 0 && 4292 !ring->mr_info.mri_intr.mi_ddi_shared) { 4293 ring->mr_info.mri_intr.mi_ddi_shared = 4294 B_TRUE; 4295 } else { 4296 cring->mr_info.mri_intr.mi_ddi_shared = 4297 B_TRUE; 4298 } 4299 return; 4300 } 4301 } 4302 } 4303 } 4304 4305 /* 4306 * Called to free all groups of particular type (RX or TX). It's assumed that 4307 * no clients are using these groups. 4308 */ 4309 void 4310 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4311 { 4312 mac_group_t *group, *groups; 4313 uint_t group_count; 4314 4315 switch (rtype) { 4316 case MAC_RING_TYPE_RX: 4317 if (mip->mi_rx_groups == NULL) 4318 return; 4319 4320 groups = mip->mi_rx_groups; 4321 group_count = mip->mi_rx_group_count; 4322 4323 mip->mi_rx_groups = NULL; 4324 mip->mi_rx_donor_grp = NULL; 4325 mip->mi_rx_group_count = 0; 4326 break; 4327 case MAC_RING_TYPE_TX: 4328 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4329 4330 if (mip->mi_tx_groups == NULL) 4331 return; 4332 4333 groups = mip->mi_tx_groups; 4334 group_count = mip->mi_tx_group_count; 4335 4336 mip->mi_tx_groups = NULL; 4337 mip->mi_tx_group_count = 0; 4338 mip->mi_tx_group_free = 0; 4339 mip->mi_default_tx_ring = NULL; 4340 break; 4341 default: 4342 ASSERT(B_FALSE); 4343 } 4344 4345 for (group = groups; group != NULL; group = group->mrg_next) { 4346 mac_ring_t *ring; 4347 4348 if (group->mrg_cur_count == 0) 4349 continue; 4350 4351 ASSERT(group->mrg_rings != NULL); 4352 4353 while ((ring = group->mrg_rings) != NULL) { 4354 group->mrg_rings = ring->mr_next; 4355 mac_ring_free(mip, ring); 4356 } 4357 } 4358 4359 /* Free all the cached rings */ 4360 mac_ring_freeall(mip); 4361 /* Free the block of group data strutures */ 4362 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4363 } 4364 4365 /* 4366 * Associate the VLAN filter to the receive group. 4367 */ 4368 int 4369 mac_group_addvlan(mac_group_t *group, uint16_t vlan) 4370 { 4371 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4372 VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL); 4373 4374 if (vlan > VLAN_ID_MAX) 4375 return (EINVAL); 4376 4377 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4378 return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan)); 4379 } 4380 4381 /* 4382 * Dissociate the VLAN from the receive group. 4383 */ 4384 int 4385 mac_group_remvlan(mac_group_t *group, uint16_t vlan) 4386 { 4387 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4388 VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL); 4389 4390 if (vlan > VLAN_ID_MAX) 4391 return (EINVAL); 4392 4393 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4394 return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan)); 4395 } 4396 4397 /* 4398 * Associate a MAC address with a receive group. 4399 * 4400 * The return value of this function should always be checked properly, because 4401 * any type of failure could cause unexpected results. A group can be added 4402 * or removed with a MAC address only after it has been reserved. Ideally, 4403 * a successful reservation always leads to calling mac_group_addmac() to 4404 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4405 * always imply that the group is functioning abnormally. 4406 * 4407 * Currently this function is called everywhere, and it reflects assumptions 4408 * about MAC addresses in the implementation. CR 6735196. 4409 */ 4410 int 4411 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4412 { 4413 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4414 VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL); 4415 4416 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4417 } 4418 4419 /* 4420 * Remove the association between MAC address and receive group. 4421 */ 4422 int 4423 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4424 { 4425 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4426 VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL); 4427 4428 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4429 } 4430 4431 /* 4432 * This is the entry point for packets transmitted through the bridging code. 4433 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4434 * pointer may be NULL to select the default ring. 4435 */ 4436 mblk_t * 4437 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4438 { 4439 mac_handle_t mh; 4440 4441 /* 4442 * Once we take a reference on the bridge link, the bridge 4443 * module itself can't unload, so the callback pointers are 4444 * stable. 4445 */ 4446 mutex_enter(&mip->mi_bridge_lock); 4447 if ((mh = mip->mi_bridge_link) != NULL) 4448 mac_bridge_ref_cb(mh, B_TRUE); 4449 mutex_exit(&mip->mi_bridge_lock); 4450 if (mh == NULL) { 4451 MAC_RING_TX(mip, rh, mp, mp); 4452 } else { 4453 mp = mac_bridge_tx_cb(mh, rh, mp); 4454 mac_bridge_ref_cb(mh, B_FALSE); 4455 } 4456 4457 return (mp); 4458 } 4459 4460 /* 4461 * Find a ring from its index. 4462 */ 4463 mac_ring_handle_t 4464 mac_find_ring(mac_group_handle_t gh, int index) 4465 { 4466 mac_group_t *group = (mac_group_t *)gh; 4467 mac_ring_t *ring = group->mrg_rings; 4468 4469 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4470 if (ring->mr_index == index) 4471 break; 4472 4473 return ((mac_ring_handle_t)ring); 4474 } 4475 /* 4476 * Add a ring to an existing group. 4477 * 4478 * The ring must be either passed directly (for example if the ring 4479 * movement is initiated by the framework), or specified through a driver 4480 * index (for example when the ring is added by the driver. 4481 * 4482 * The caller needs to call mac_perim_enter() before calling this function. 4483 */ 4484 int 4485 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4486 { 4487 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4488 mac_capab_rings_t *cap_rings; 4489 boolean_t driver_call = (ring == NULL); 4490 mac_group_type_t group_type; 4491 int ret = 0; 4492 flow_entry_t *flent; 4493 4494 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4495 4496 switch (group->mrg_type) { 4497 case MAC_RING_TYPE_RX: 4498 cap_rings = &mip->mi_rx_rings_cap; 4499 group_type = mip->mi_rx_group_type; 4500 break; 4501 case MAC_RING_TYPE_TX: 4502 cap_rings = &mip->mi_tx_rings_cap; 4503 group_type = mip->mi_tx_group_type; 4504 break; 4505 default: 4506 ASSERT(B_FALSE); 4507 } 4508 4509 /* 4510 * There should be no ring with the same ring index in the target 4511 * group. 4512 */ 4513 ASSERT(mac_find_ring((mac_group_handle_t)group, 4514 driver_call ? index : ring->mr_index) == NULL); 4515 4516 if (driver_call) { 4517 /* 4518 * The function is called as a result of a request from 4519 * a driver to add a ring to an existing group, for example 4520 * from the aggregation driver. Allocate a new mac_ring_t 4521 * for that ring. 4522 */ 4523 ring = mac_init_ring(mip, group, index, cap_rings); 4524 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4525 } else { 4526 /* 4527 * The function is called as a result of a MAC layer request 4528 * to add a ring to an existing group. In this case the 4529 * ring is being moved between groups, which requires 4530 * the underlying driver to support dynamic grouping, 4531 * and the mac_ring_t already exists. 4532 */ 4533 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4534 ASSERT(group->mrg_driver == NULL || 4535 cap_rings->mr_gaddring != NULL); 4536 ASSERT(ring->mr_gh == NULL); 4537 } 4538 4539 /* 4540 * At this point the ring should not be in use, and it should be 4541 * of the right for the target group. 4542 */ 4543 ASSERT(ring->mr_state < MR_INUSE); 4544 ASSERT(ring->mr_srs == NULL); 4545 ASSERT(ring->mr_type == group->mrg_type); 4546 4547 if (!driver_call) { 4548 /* 4549 * Add the driver level hardware ring if the process was not 4550 * initiated by the driver, and the target group is not the 4551 * group. 4552 */ 4553 if (group->mrg_driver != NULL) { 4554 cap_rings->mr_gaddring(group->mrg_driver, 4555 ring->mr_driver, ring->mr_type); 4556 } 4557 4558 /* 4559 * Insert the ring ahead existing rings. 4560 */ 4561 ring->mr_next = group->mrg_rings; 4562 group->mrg_rings = ring; 4563 ring->mr_gh = (mac_group_handle_t)group; 4564 group->mrg_cur_count++; 4565 } 4566 4567 /* 4568 * If the group has not been actively used, we're done. 4569 */ 4570 if (group->mrg_index != -1 && 4571 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4572 return (0); 4573 4574 /* 4575 * Start the ring if needed. Failure causes to undo the grouping action. 4576 */ 4577 if (ring->mr_state != MR_INUSE) { 4578 if ((ret = mac_start_ring(ring)) != 0) { 4579 if (!driver_call) { 4580 cap_rings->mr_gremring(group->mrg_driver, 4581 ring->mr_driver, ring->mr_type); 4582 } 4583 group->mrg_cur_count--; 4584 group->mrg_rings = ring->mr_next; 4585 4586 ring->mr_gh = NULL; 4587 4588 if (driver_call) 4589 mac_ring_free(mip, ring); 4590 4591 return (ret); 4592 } 4593 } 4594 4595 /* 4596 * Set up SRS/SR according to the ring type. 4597 */ 4598 switch (ring->mr_type) { 4599 case MAC_RING_TYPE_RX: 4600 /* 4601 * Setup an SRS on top of the new ring if the group is 4602 * reserved for someone's exclusive use. 4603 */ 4604 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4605 mac_client_impl_t *mcip = MAC_GROUP_ONLY_CLIENT(group); 4606 4607 VERIFY3P(mcip, !=, NULL); 4608 flent = mcip->mci_flent; 4609 VERIFY3S(flent->fe_rx_srs_cnt, >, 0); 4610 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4611 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4612 mac_rx_deliver, mcip, NULL, NULL); 4613 } else { 4614 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4615 } 4616 break; 4617 case MAC_RING_TYPE_TX: 4618 { 4619 mac_grp_client_t *mgcp = group->mrg_clients; 4620 mac_client_impl_t *mcip; 4621 mac_soft_ring_set_t *mac_srs; 4622 mac_srs_tx_t *tx; 4623 4624 if (MAC_GROUP_NO_CLIENT(group)) { 4625 if (ring->mr_state == MR_INUSE) 4626 mac_stop_ring(ring); 4627 ring->mr_flag = 0; 4628 break; 4629 } 4630 /* 4631 * If the rings are being moved to a group that has 4632 * clients using it, then add the new rings to the 4633 * clients SRS. 4634 */ 4635 while (mgcp != NULL) { 4636 boolean_t is_aggr; 4637 4638 mcip = mgcp->mgc_client; 4639 flent = mcip->mci_flent; 4640 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4641 mac_srs = MCIP_TX_SRS(mcip); 4642 tx = &mac_srs->srs_tx; 4643 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4644 /* 4645 * If we are growing from 1 to multiple rings. 4646 */ 4647 if (tx->st_mode == SRS_TX_BW || 4648 tx->st_mode == SRS_TX_SERIALIZE || 4649 tx->st_mode == SRS_TX_DEFAULT) { 4650 mac_ring_t *tx_ring = tx->st_arg2; 4651 4652 tx->st_arg2 = NULL; 4653 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4654 mac_tx_srs_add_ring(mac_srs, tx_ring); 4655 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4656 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4657 SRS_TX_BW_FANOUT; 4658 } else { 4659 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4660 SRS_TX_FANOUT; 4661 } 4662 tx->st_func = mac_tx_get_func(tx->st_mode); 4663 } 4664 mac_tx_srs_add_ring(mac_srs, ring); 4665 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4666 mac_rx_deliver, mcip, NULL, NULL); 4667 mac_tx_client_restart((mac_client_handle_t)mcip); 4668 mgcp = mgcp->mgc_next; 4669 } 4670 break; 4671 } 4672 default: 4673 ASSERT(B_FALSE); 4674 } 4675 /* 4676 * For aggr, the default ring will be NULL to begin with. If it 4677 * is NULL, then pick the first ring that gets added as the 4678 * default ring. Any ring in an aggregation can be removed at 4679 * any time (by the user action of removing a link) and if the 4680 * current default ring gets removed, then a new one gets 4681 * picked (see i_mac_group_rem_ring()). 4682 */ 4683 if (mip->mi_state_flags & MIS_IS_AGGR && 4684 mip->mi_default_tx_ring == NULL && 4685 ring->mr_type == MAC_RING_TYPE_TX) { 4686 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4687 } 4688 4689 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4690 return (0); 4691 } 4692 4693 /* 4694 * Remove a ring from it's current group. MAC internal function for dynamic 4695 * grouping. 4696 * 4697 * The caller needs to call mac_perim_enter() before calling this function. 4698 */ 4699 void 4700 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4701 boolean_t driver_call) 4702 { 4703 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4704 mac_capab_rings_t *cap_rings = NULL; 4705 mac_group_type_t group_type; 4706 4707 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4708 4709 ASSERT(mac_find_ring((mac_group_handle_t)group, 4710 ring->mr_index) == (mac_ring_handle_t)ring); 4711 ASSERT((mac_group_t *)ring->mr_gh == group); 4712 ASSERT(ring->mr_type == group->mrg_type); 4713 4714 if (ring->mr_state == MR_INUSE) 4715 mac_stop_ring(ring); 4716 switch (ring->mr_type) { 4717 case MAC_RING_TYPE_RX: 4718 group_type = mip->mi_rx_group_type; 4719 cap_rings = &mip->mi_rx_rings_cap; 4720 4721 /* 4722 * Only hardware classified packets hold a reference to the 4723 * ring all the way up the Rx path. mac_rx_srs_remove() 4724 * will take care of quiescing the Rx path and removing the 4725 * SRS. The software classified path neither holds a reference 4726 * nor any association with the ring in mac_rx. 4727 */ 4728 if (ring->mr_srs != NULL) { 4729 mac_rx_srs_remove(ring->mr_srs); 4730 ring->mr_srs = NULL; 4731 } 4732 4733 break; 4734 case MAC_RING_TYPE_TX: 4735 { 4736 mac_grp_client_t *mgcp; 4737 mac_client_impl_t *mcip; 4738 mac_soft_ring_set_t *mac_srs; 4739 mac_srs_tx_t *tx; 4740 mac_ring_t *rem_ring; 4741 mac_group_t *defgrp; 4742 uint_t ring_info = 0; 4743 4744 /* 4745 * For TX this function is invoked in three 4746 * cases: 4747 * 4748 * 1) In the case of a failure during the 4749 * initial creation of a group when a share is 4750 * associated with a MAC client. So the SRS is not 4751 * yet setup, and will be setup later after the 4752 * group has been reserved and populated. 4753 * 4754 * 2) From mac_release_tx_group() when freeing 4755 * a TX SRS. 4756 * 4757 * 3) In the case of aggr, when a port gets removed, 4758 * the pseudo Tx rings that it exposed gets removed. 4759 * 4760 * In the first two cases the SRS and its soft 4761 * rings are already quiesced. 4762 */ 4763 if (driver_call) { 4764 mac_client_impl_t *mcip; 4765 mac_soft_ring_set_t *mac_srs; 4766 mac_soft_ring_t *sringp; 4767 mac_srs_tx_t *srs_tx; 4768 4769 if (mip->mi_state_flags & MIS_IS_AGGR && 4770 mip->mi_default_tx_ring == 4771 (mac_ring_handle_t)ring) { 4772 /* pick a new default Tx ring */ 4773 mip->mi_default_tx_ring = 4774 (group->mrg_rings != ring) ? 4775 (mac_ring_handle_t)group->mrg_rings : 4776 (mac_ring_handle_t)(ring->mr_next); 4777 } 4778 /* Presently only aggr case comes here */ 4779 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4780 break; 4781 4782 mcip = MAC_GROUP_ONLY_CLIENT(group); 4783 ASSERT(mcip != NULL); 4784 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4785 mac_srs = MCIP_TX_SRS(mcip); 4786 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4787 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4788 srs_tx = &mac_srs->srs_tx; 4789 /* 4790 * Wakeup any callers blocked on this 4791 * Tx ring due to flow control. 4792 */ 4793 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4794 ASSERT(sringp != NULL); 4795 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4796 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4797 mac_tx_srs_del_ring(mac_srs, ring); 4798 mac_tx_client_restart((mac_client_handle_t)mcip); 4799 break; 4800 } 4801 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 4802 group_type = mip->mi_tx_group_type; 4803 cap_rings = &mip->mi_tx_rings_cap; 4804 /* 4805 * See if we need to take it out of the MAC clients using 4806 * this group 4807 */ 4808 if (MAC_GROUP_NO_CLIENT(group)) 4809 break; 4810 mgcp = group->mrg_clients; 4811 defgrp = MAC_DEFAULT_TX_GROUP(mip); 4812 while (mgcp != NULL) { 4813 mcip = mgcp->mgc_client; 4814 mac_srs = MCIP_TX_SRS(mcip); 4815 tx = &mac_srs->srs_tx; 4816 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4817 /* 4818 * If we are here when removing rings from the 4819 * defgroup, mac_reserve_tx_ring would have 4820 * already deleted the ring from the MAC 4821 * clients in the group. 4822 */ 4823 if (group != defgrp) { 4824 mac_tx_invoke_callbacks(mcip, 4825 (mac_tx_cookie_t) 4826 mac_tx_srs_get_soft_ring(mac_srs, ring)); 4827 mac_tx_srs_del_ring(mac_srs, ring); 4828 } 4829 /* 4830 * Additionally, if we are left with only 4831 * one ring in the group after this, we need 4832 * to modify the mode etc. to. (We haven't 4833 * yet taken the ring out, so we check with 2). 4834 */ 4835 if (group->mrg_cur_count == 2) { 4836 if (ring->mr_next == NULL) 4837 rem_ring = group->mrg_rings; 4838 else 4839 rem_ring = ring->mr_next; 4840 mac_tx_invoke_callbacks(mcip, 4841 (mac_tx_cookie_t) 4842 mac_tx_srs_get_soft_ring(mac_srs, 4843 rem_ring)); 4844 mac_tx_srs_del_ring(mac_srs, rem_ring); 4845 if (rem_ring->mr_state != MR_INUSE) { 4846 (void) mac_start_ring(rem_ring); 4847 } 4848 tx->st_arg2 = (void *)rem_ring; 4849 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 4850 ring_info = mac_hwring_getinfo( 4851 (mac_ring_handle_t)rem_ring); 4852 /* 4853 * We are shrinking from multiple 4854 * to 1 ring. 4855 */ 4856 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4857 tx->st_mode = SRS_TX_BW; 4858 } else if (mac_tx_serialize || 4859 (ring_info & MAC_RING_TX_SERIALIZE)) { 4860 tx->st_mode = SRS_TX_SERIALIZE; 4861 } else { 4862 tx->st_mode = SRS_TX_DEFAULT; 4863 } 4864 tx->st_func = mac_tx_get_func(tx->st_mode); 4865 } 4866 mac_tx_client_restart((mac_client_handle_t)mcip); 4867 mgcp = mgcp->mgc_next; 4868 } 4869 break; 4870 } 4871 default: 4872 ASSERT(B_FALSE); 4873 } 4874 4875 /* 4876 * Remove the ring from the group. 4877 */ 4878 if (ring == group->mrg_rings) 4879 group->mrg_rings = ring->mr_next; 4880 else { 4881 mac_ring_t *pre; 4882 4883 pre = group->mrg_rings; 4884 while (pre->mr_next != ring) 4885 pre = pre->mr_next; 4886 pre->mr_next = ring->mr_next; 4887 } 4888 group->mrg_cur_count--; 4889 4890 if (!driver_call) { 4891 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4892 ASSERT(group->mrg_driver == NULL || 4893 cap_rings->mr_gremring != NULL); 4894 4895 /* 4896 * Remove the driver level hardware ring. 4897 */ 4898 if (group->mrg_driver != NULL) { 4899 cap_rings->mr_gremring(group->mrg_driver, 4900 ring->mr_driver, ring->mr_type); 4901 } 4902 } 4903 4904 ring->mr_gh = NULL; 4905 if (driver_call) 4906 mac_ring_free(mip, ring); 4907 else 4908 ring->mr_flag = 0; 4909 } 4910 4911 /* 4912 * Move a ring to the target group. If needed, remove the ring from the group 4913 * that it currently belongs to. 4914 * 4915 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 4916 */ 4917 static int 4918 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 4919 { 4920 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 4921 int rv; 4922 4923 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4924 ASSERT(d_group != NULL); 4925 ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh); 4926 4927 if (s_group == d_group) 4928 return (0); 4929 4930 /* 4931 * Remove it from current group first. 4932 */ 4933 if (s_group != NULL) 4934 i_mac_group_rem_ring(s_group, ring, B_FALSE); 4935 4936 /* 4937 * Add it to the new group. 4938 */ 4939 rv = i_mac_group_add_ring(d_group, ring, 0); 4940 if (rv != 0) { 4941 /* 4942 * Failed to add ring back to source group. If 4943 * that fails, the ring is stuck in limbo, log message. 4944 */ 4945 if (i_mac_group_add_ring(s_group, ring, 0)) { 4946 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 4947 mip->mi_name, (void *)ring); 4948 } 4949 } 4950 4951 return (rv); 4952 } 4953 4954 /* 4955 * Find a MAC address according to its value. 4956 */ 4957 mac_address_t * 4958 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 4959 { 4960 mac_address_t *map; 4961 4962 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4963 4964 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 4965 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 4966 break; 4967 } 4968 4969 return (map); 4970 } 4971 4972 /* 4973 * Check whether the MAC address is shared by multiple clients. 4974 */ 4975 boolean_t 4976 mac_check_macaddr_shared(mac_address_t *map) 4977 { 4978 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 4979 4980 return (map->ma_nusers > 1); 4981 } 4982 4983 /* 4984 * Remove the specified MAC address from the MAC address list and free it. 4985 */ 4986 static void 4987 mac_free_macaddr(mac_address_t *map) 4988 { 4989 mac_impl_t *mip = map->ma_mip; 4990 4991 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4992 VERIFY3P(mip->mi_addresses, !=, NULL); 4993 4994 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 4995 VERIFY3P(map, !=, NULL); 4996 VERIFY3S(map->ma_nusers, ==, 0); 4997 VERIFY3P(map->ma_vlans, ==, NULL); 4998 4999 if (map == mip->mi_addresses) { 5000 mip->mi_addresses = map->ma_next; 5001 } else { 5002 mac_address_t *pre; 5003 5004 pre = mip->mi_addresses; 5005 while (pre->ma_next != map) 5006 pre = pre->ma_next; 5007 pre->ma_next = map->ma_next; 5008 } 5009 5010 kmem_free(map, sizeof (mac_address_t)); 5011 } 5012 5013 static mac_vlan_t * 5014 mac_find_vlan(mac_address_t *map, uint16_t vid) 5015 { 5016 mac_vlan_t *mvp; 5017 5018 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) { 5019 if (mvp->mv_vid == vid) 5020 return (mvp); 5021 } 5022 5023 return (NULL); 5024 } 5025 5026 static mac_vlan_t * 5027 mac_add_vlan(mac_address_t *map, uint16_t vid) 5028 { 5029 mac_vlan_t *mvp; 5030 5031 /* 5032 * We should never add the same {addr, VID} tuple more 5033 * than once, but let's be sure. 5034 */ 5035 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) 5036 VERIFY3U(mvp->mv_vid, !=, vid); 5037 5038 /* Add the VLAN to the head of the VLAN list. */ 5039 mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP); 5040 mvp->mv_vid = vid; 5041 mvp->mv_next = map->ma_vlans; 5042 map->ma_vlans = mvp; 5043 5044 return (mvp); 5045 } 5046 5047 static void 5048 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp) 5049 { 5050 mac_vlan_t *pre; 5051 5052 if (map->ma_vlans == mvp) { 5053 map->ma_vlans = mvp->mv_next; 5054 } else { 5055 pre = map->ma_vlans; 5056 while (pre->mv_next != mvp) { 5057 pre = pre->mv_next; 5058 5059 /* 5060 * We've reached the end of the list without 5061 * finding mvp. 5062 */ 5063 VERIFY3P(pre, !=, NULL); 5064 } 5065 pre->mv_next = mvp->mv_next; 5066 } 5067 5068 kmem_free(mvp, sizeof (mac_vlan_t)); 5069 } 5070 5071 /* 5072 * Create a new mac_address_t if this is the first use of the address 5073 * or add a VID to an existing address. In either case, the 5074 * mac_address_t acts as a list of {addr, VID} tuples where each tuple 5075 * shares the same addr. If group is non-NULL then attempt to program 5076 * the MAC's HW filters for this group. Otherwise, if group is NULL, 5077 * then the MAC has no rings and there is nothing to program. 5078 */ 5079 int 5080 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr, 5081 uint16_t vid, boolean_t use_hw) 5082 { 5083 mac_address_t *map; 5084 mac_vlan_t *mvp; 5085 int err = 0; 5086 boolean_t allocated_map = B_FALSE; 5087 boolean_t hw_mac = B_FALSE; 5088 boolean_t hw_vlan = B_FALSE; 5089 5090 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5091 5092 map = mac_find_macaddr(mip, addr); 5093 5094 /* 5095 * If this is the first use of this MAC address then allocate 5096 * and initialize a new structure. 5097 */ 5098 if (map == NULL) { 5099 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5100 map->ma_len = mip->mi_type->mt_addr_length; 5101 bcopy(addr, map->ma_addr, map->ma_len); 5102 map->ma_nusers = 0; 5103 map->ma_group = group; 5104 map->ma_mip = mip; 5105 map->ma_untagged = B_FALSE; 5106 5107 /* Add the new MAC address to the head of the address list. */ 5108 map->ma_next = mip->mi_addresses; 5109 mip->mi_addresses = map; 5110 5111 allocated_map = B_TRUE; 5112 } 5113 5114 VERIFY(map->ma_group == NULL || map->ma_group == group); 5115 if (map->ma_group == NULL) 5116 map->ma_group = group; 5117 5118 if (vid == VLAN_ID_NONE) { 5119 map->ma_untagged = B_TRUE; 5120 mvp = NULL; 5121 } else { 5122 mvp = mac_add_vlan(map, vid); 5123 } 5124 5125 /* 5126 * Set the VLAN HW filter if: 5127 * 5128 * o the MAC's VLAN HW filtering is enabled, and 5129 * o the address does not currently rely on promisc mode. 5130 * 5131 * This is called even when the client specifies an untagged 5132 * address (VLAN_ID_NONE) because some MAC providers require 5133 * setting additional bits to accept untagged traffic when 5134 * VLAN HW filtering is enabled. 5135 */ 5136 if (MAC_GROUP_HW_VLAN(group) && 5137 map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) { 5138 if ((err = mac_group_addvlan(group, vid)) != 0) 5139 goto bail; 5140 5141 hw_vlan = B_TRUE; 5142 } 5143 5144 VERIFY3S(map->ma_nusers, >=, 0); 5145 map->ma_nusers++; 5146 5147 /* 5148 * If this MAC address already has a HW filter then simply 5149 * increment the counter. 5150 */ 5151 if (map->ma_nusers > 1) 5152 return (0); 5153 5154 /* 5155 * All logic from here on out is executed during initial 5156 * creation only. 5157 */ 5158 VERIFY3S(map->ma_nusers, ==, 1); 5159 5160 /* 5161 * Activate this MAC address by adding it to the reserved group. 5162 */ 5163 if (group != NULL) { 5164 err = mac_group_addmac(group, (const uint8_t *)addr); 5165 5166 /* 5167 * If the driver is out of filters then we can 5168 * continue and use promisc mode. For any other error, 5169 * assume the driver is in a state where we can't 5170 * program the filters or use promisc mode; so we must 5171 * bail. 5172 */ 5173 if (err != 0 && err != ENOSPC) { 5174 map->ma_nusers--; 5175 goto bail; 5176 } 5177 5178 hw_mac = (err == 0); 5179 } 5180 5181 if (hw_mac) { 5182 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5183 return (0); 5184 } 5185 5186 /* 5187 * The MAC address addition failed. If the client requires a 5188 * hardware classified MAC address, fail the operation. This 5189 * feature is only used by sun4v vsw. 5190 */ 5191 if (use_hw && !hw_mac) { 5192 err = ENOSPC; 5193 map->ma_nusers--; 5194 goto bail; 5195 } 5196 5197 /* 5198 * If we reach this point then either the MAC doesn't have 5199 * RINGS capability or we are out of MAC address HW filters. 5200 * In any case we must put the MAC into promiscuous mode. 5201 */ 5202 VERIFY(group == NULL || !hw_mac); 5203 5204 /* 5205 * The one exception is the primary address. A non-RINGS 5206 * driver filters the primary address by default; promisc mode 5207 * is not needed. 5208 */ 5209 if ((group == NULL) && 5210 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5211 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5212 return (0); 5213 } 5214 5215 /* 5216 * Enable promiscuous mode in order to receive traffic to the 5217 * new MAC address. All existing HW filters still send their 5218 * traffic to their respective group/SRSes. But with promisc 5219 * enabled all unknown traffic is delivered to the default 5220 * group where it is SW classified via mac_rx_classify(). 5221 */ 5222 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5223 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5224 return (0); 5225 } 5226 5227 bail: 5228 if (hw_vlan) { 5229 int err2 = mac_group_remvlan(group, vid); 5230 5231 if (err2 != 0) { 5232 cmn_err(CE_WARN, "Failed to remove VLAN %u from group" 5233 " %d on MAC %s: %d.", vid, group->mrg_index, 5234 mip->mi_name, err2); 5235 } 5236 } 5237 5238 if (mvp != NULL) 5239 mac_rem_vlan(map, mvp); 5240 5241 if (allocated_map) 5242 mac_free_macaddr(map); 5243 5244 return (err); 5245 } 5246 5247 int 5248 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid) 5249 { 5250 mac_vlan_t *mvp; 5251 mac_impl_t *mip = map->ma_mip; 5252 mac_group_t *group = map->ma_group; 5253 int err = 0; 5254 5255 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5256 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5257 5258 if (vid == VLAN_ID_NONE) { 5259 map->ma_untagged = B_FALSE; 5260 mvp = NULL; 5261 } else { 5262 mvp = mac_find_vlan(map, vid); 5263 VERIFY3P(mvp, !=, NULL); 5264 } 5265 5266 if (MAC_GROUP_HW_VLAN(group) && 5267 map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED && 5268 ((err = mac_group_remvlan(group, vid)) != 0)) 5269 return (err); 5270 5271 if (mvp != NULL) 5272 mac_rem_vlan(map, mvp); 5273 5274 /* 5275 * If it's not the last client using this MAC address, only update 5276 * the MAC clients count. 5277 */ 5278 map->ma_nusers--; 5279 if (map->ma_nusers > 0) 5280 return (0); 5281 5282 /* 5283 * The MAC address is no longer used by any MAC client, so 5284 * remove it from its associated group. Turn off promiscuous 5285 * mode if this is the last address relying on it. 5286 */ 5287 switch (map->ma_type) { 5288 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5289 /* 5290 * Don't free the preset primary address for drivers that 5291 * don't advertise RINGS capability. 5292 */ 5293 if (group == NULL) 5294 return (0); 5295 5296 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) { 5297 if (vid == VLAN_ID_NONE) 5298 map->ma_untagged = B_TRUE; 5299 else 5300 (void) mac_add_vlan(map, vid); 5301 5302 /* 5303 * If we fail to remove the MAC address HW 5304 * filter but then also fail to re-add the 5305 * VLAN HW filter then we are in a busted 5306 * state and should just crash. 5307 */ 5308 if (MAC_GROUP_HW_VLAN(group)) { 5309 int err2; 5310 5311 err2 = mac_group_addvlan(group, vid); 5312 if (err2 != 0) { 5313 cmn_err(CE_WARN, "Failed to readd VLAN" 5314 " %u to group %d on MAC %s: %d.", 5315 vid, group->mrg_index, mip->mi_name, 5316 err2); 5317 } 5318 } 5319 5320 return (err); 5321 } 5322 5323 map->ma_group = NULL; 5324 break; 5325 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5326 err = i_mac_promisc_set(mip, B_FALSE); 5327 break; 5328 default: 5329 panic("Unexpected ma_type 0x%x, file: %s, line %d", 5330 map->ma_type, __FILE__, __LINE__); 5331 } 5332 5333 if (err != 0) 5334 return (err); 5335 5336 /* 5337 * We created MAC address for the primary one at registration, so we 5338 * won't free it here. mac_fini_macaddr() will take care of it. 5339 */ 5340 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5341 mac_free_macaddr(map); 5342 5343 return (0); 5344 } 5345 5346 /* 5347 * Update an existing MAC address. The caller need to make sure that the new 5348 * value has not been used. 5349 */ 5350 int 5351 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5352 { 5353 mac_impl_t *mip = map->ma_mip; 5354 int err = 0; 5355 5356 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5357 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5358 5359 switch (map->ma_type) { 5360 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5361 /* 5362 * Update the primary address for drivers that are not 5363 * RINGS capable. 5364 */ 5365 if (mip->mi_rx_groups == NULL) { 5366 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5367 mac_addr); 5368 if (err != 0) 5369 return (err); 5370 break; 5371 } 5372 5373 /* 5374 * If this MAC address is not currently in use, 5375 * simply break out and update the value. 5376 */ 5377 if (map->ma_nusers == 0) 5378 break; 5379 5380 /* 5381 * Need to replace the MAC address associated with a group. 5382 */ 5383 err = mac_group_remmac(map->ma_group, map->ma_addr); 5384 if (err != 0) 5385 return (err); 5386 5387 err = mac_group_addmac(map->ma_group, mac_addr); 5388 5389 /* 5390 * Failure hints hardware error. The MAC layer needs to 5391 * have error notification facility to handle this. 5392 * Now, simply try to restore the value. 5393 */ 5394 if (err != 0) 5395 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5396 5397 break; 5398 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5399 /* 5400 * Need to do nothing more if in promiscuous mode. 5401 */ 5402 break; 5403 default: 5404 ASSERT(B_FALSE); 5405 } 5406 5407 /* 5408 * Successfully replaced the MAC address. 5409 */ 5410 if (err == 0) 5411 bcopy(mac_addr, map->ma_addr, map->ma_len); 5412 5413 return (err); 5414 } 5415 5416 /* 5417 * Freshen the MAC address with new value. Its caller must have updated the 5418 * hardware MAC address before calling this function. 5419 * This funcitons is supposed to be used to handle the MAC address change 5420 * notification from underlying drivers. 5421 */ 5422 void 5423 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5424 { 5425 mac_impl_t *mip = map->ma_mip; 5426 5427 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5428 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5429 5430 /* 5431 * Freshen the MAC address with new value. 5432 */ 5433 bcopy(mac_addr, map->ma_addr, map->ma_len); 5434 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5435 5436 /* 5437 * Update all MAC clients that share this MAC address. 5438 */ 5439 mac_unicast_update_clients(mip, map); 5440 } 5441 5442 /* 5443 * Set up the primary MAC address. 5444 */ 5445 void 5446 mac_init_macaddr(mac_impl_t *mip) 5447 { 5448 mac_address_t *map; 5449 5450 /* 5451 * The reference count is initialized to zero, until it's really 5452 * activated. 5453 */ 5454 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5455 map->ma_len = mip->mi_type->mt_addr_length; 5456 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5457 5458 /* 5459 * If driver advertises RINGS capability, it shouldn't have initialized 5460 * its primary MAC address. For other drivers, including VNIC, the 5461 * primary address must work after registration. 5462 */ 5463 if (mip->mi_rx_groups == NULL) 5464 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5465 5466 map->ma_mip = mip; 5467 5468 mip->mi_addresses = map; 5469 } 5470 5471 /* 5472 * Clean up the primary MAC address. Note, only one primary MAC address 5473 * is allowed. All other MAC addresses must have been freed appropriately. 5474 */ 5475 void 5476 mac_fini_macaddr(mac_impl_t *mip) 5477 { 5478 mac_address_t *map = mip->mi_addresses; 5479 5480 if (map == NULL) 5481 return; 5482 5483 /* 5484 * If mi_addresses is initialized, there should be exactly one 5485 * entry left on the list with no users. 5486 */ 5487 VERIFY3S(map->ma_nusers, ==, 0); 5488 VERIFY3P(map->ma_next, ==, NULL); 5489 VERIFY3P(map->ma_vlans, ==, NULL); 5490 5491 kmem_free(map, sizeof (mac_address_t)); 5492 mip->mi_addresses = NULL; 5493 } 5494 5495 /* 5496 * Logging related functions. 5497 * 5498 * Note that Kernel statistics have been extended to maintain fine 5499 * granularity of statistics viz. hardware lane, software lane, fanout 5500 * stats etc. However, extended accounting continues to support only 5501 * aggregate statistics like before. 5502 */ 5503 5504 /* Write the flow description to a netinfo_t record */ 5505 static netinfo_t * 5506 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5507 { 5508 netinfo_t *ninfo; 5509 net_desc_t *ndesc; 5510 flow_desc_t *fdesc; 5511 mac_resource_props_t *mrp; 5512 5513 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5514 if (ninfo == NULL) 5515 return (NULL); 5516 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5517 if (ndesc == NULL) { 5518 kmem_free(ninfo, sizeof (netinfo_t)); 5519 return (NULL); 5520 } 5521 5522 /* 5523 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5524 * Updates to the fe_flow_desc are done under the fe_lock 5525 */ 5526 mutex_enter(&flent->fe_lock); 5527 fdesc = &flent->fe_flow_desc; 5528 mrp = &flent->fe_resource_props; 5529 5530 ndesc->nd_name = flent->fe_flow_name; 5531 ndesc->nd_devname = mcip->mci_name; 5532 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5533 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5534 ndesc->nd_sap = htonl(fdesc->fd_sap); 5535 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5536 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5537 if (ndesc->nd_isv4) { 5538 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5539 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5540 } else { 5541 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5542 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5543 } 5544 ndesc->nd_sport = htons(fdesc->fd_local_port); 5545 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5546 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5547 mutex_exit(&flent->fe_lock); 5548 5549 ninfo->ni_record = ndesc; 5550 ninfo->ni_size = sizeof (net_desc_t); 5551 ninfo->ni_type = EX_NET_FLDESC_REC; 5552 5553 return (ninfo); 5554 } 5555 5556 /* Write the flow statistics to a netinfo_t record */ 5557 static netinfo_t * 5558 mac_write_flow_stats(flow_entry_t *flent) 5559 { 5560 netinfo_t *ninfo; 5561 net_stat_t *nstat; 5562 mac_soft_ring_set_t *mac_srs; 5563 mac_rx_stats_t *mac_rx_stat; 5564 mac_tx_stats_t *mac_tx_stat; 5565 int i; 5566 5567 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5568 if (ninfo == NULL) 5569 return (NULL); 5570 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5571 if (nstat == NULL) { 5572 kmem_free(ninfo, sizeof (netinfo_t)); 5573 return (NULL); 5574 } 5575 5576 nstat->ns_name = flent->fe_flow_name; 5577 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5578 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5579 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5580 5581 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5582 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5583 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5584 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5585 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5586 } 5587 5588 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5589 if (mac_srs != NULL) { 5590 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5591 5592 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5593 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5594 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5595 } 5596 5597 ninfo->ni_record = nstat; 5598 ninfo->ni_size = sizeof (net_stat_t); 5599 ninfo->ni_type = EX_NET_FLSTAT_REC; 5600 5601 return (ninfo); 5602 } 5603 5604 /* Write the link description to a netinfo_t record */ 5605 static netinfo_t * 5606 mac_write_link_desc(mac_client_impl_t *mcip) 5607 { 5608 netinfo_t *ninfo; 5609 net_desc_t *ndesc; 5610 flow_entry_t *flent = mcip->mci_flent; 5611 5612 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5613 if (ninfo == NULL) 5614 return (NULL); 5615 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5616 if (ndesc == NULL) { 5617 kmem_free(ninfo, sizeof (netinfo_t)); 5618 return (NULL); 5619 } 5620 5621 ndesc->nd_name = mcip->mci_name; 5622 ndesc->nd_devname = mcip->mci_name; 5623 ndesc->nd_isv4 = B_TRUE; 5624 /* 5625 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5626 * Updates to the fe_flow_desc are done under the fe_lock 5627 * after removing the flent from the flow table. 5628 */ 5629 mutex_enter(&flent->fe_lock); 5630 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5631 mutex_exit(&flent->fe_lock); 5632 5633 ninfo->ni_record = ndesc; 5634 ninfo->ni_size = sizeof (net_desc_t); 5635 ninfo->ni_type = EX_NET_LNDESC_REC; 5636 5637 return (ninfo); 5638 } 5639 5640 /* Write the link statistics to a netinfo_t record */ 5641 static netinfo_t * 5642 mac_write_link_stats(mac_client_impl_t *mcip) 5643 { 5644 netinfo_t *ninfo; 5645 net_stat_t *nstat; 5646 flow_entry_t *flent; 5647 mac_soft_ring_set_t *mac_srs; 5648 mac_rx_stats_t *mac_rx_stat; 5649 mac_tx_stats_t *mac_tx_stat; 5650 int i; 5651 5652 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5653 if (ninfo == NULL) 5654 return (NULL); 5655 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5656 if (nstat == NULL) { 5657 kmem_free(ninfo, sizeof (netinfo_t)); 5658 return (NULL); 5659 } 5660 5661 nstat->ns_name = mcip->mci_name; 5662 flent = mcip->mci_flent; 5663 if (flent != NULL) { 5664 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5665 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5666 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5667 5668 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5669 mac_rx_stat->mrs_pollbytes + 5670 mac_rx_stat->mrs_lclbytes; 5671 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5672 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5673 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5674 } 5675 } 5676 5677 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5678 if (mac_srs != NULL) { 5679 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5680 5681 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5682 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5683 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5684 } 5685 5686 ninfo->ni_record = nstat; 5687 ninfo->ni_size = sizeof (net_stat_t); 5688 ninfo->ni_type = EX_NET_LNSTAT_REC; 5689 5690 return (ninfo); 5691 } 5692 5693 typedef struct i_mac_log_state_s { 5694 boolean_t mi_last; 5695 int mi_fenable; 5696 int mi_lenable; 5697 list_t *mi_list; 5698 } i_mac_log_state_t; 5699 5700 /* 5701 * For a given flow, if the description has not been logged before, do it now. 5702 * If it is a VNIC, then we have collected information about it from the MAC 5703 * table, so skip it. 5704 * 5705 * Called through mac_flow_walk_nolock() 5706 * 5707 * Return 0 if successful. 5708 */ 5709 static int 5710 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5711 { 5712 mac_client_impl_t *mcip = flent->fe_mcip; 5713 i_mac_log_state_t *lstate = arg; 5714 netinfo_t *ninfo; 5715 5716 if (mcip == NULL) 5717 return (0); 5718 5719 /* 5720 * If the name starts with "vnic", and fe_user_generated is true (to 5721 * exclude the mcast and active flow entries created implicitly for 5722 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5723 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5724 */ 5725 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5726 (flent->fe_type & FLOW_USER) != 0) { 5727 return (0); 5728 } 5729 5730 if (!flent->fe_desc_logged) { 5731 /* 5732 * We don't return error because we want to continue the 5733 * walk in case this is the last walk which means we 5734 * need to reset fe_desc_logged in all the flows. 5735 */ 5736 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5737 return (0); 5738 list_insert_tail(lstate->mi_list, ninfo); 5739 flent->fe_desc_logged = B_TRUE; 5740 } 5741 5742 /* 5743 * Regardless of the error, we want to proceed in case we have to 5744 * reset fe_desc_logged. 5745 */ 5746 ninfo = mac_write_flow_stats(flent); 5747 if (ninfo == NULL) 5748 return (-1); 5749 5750 list_insert_tail(lstate->mi_list, ninfo); 5751 5752 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5753 flent->fe_desc_logged = B_FALSE; 5754 5755 return (0); 5756 } 5757 5758 /* 5759 * Log the description for each mac client of this mac_impl_t, if it 5760 * hasn't already been done. Additionally, log statistics for the link as 5761 * well. Walk the flow table and log information for each flow as well. 5762 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5763 * also fe_desc_logged, if flow logging is on) since we want to log the 5764 * description if and when logging is restarted. 5765 * 5766 * Return 0 upon success or -1 upon failure 5767 */ 5768 static int 5769 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5770 { 5771 mac_client_impl_t *mcip; 5772 netinfo_t *ninfo; 5773 5774 i_mac_perim_enter(mip); 5775 /* 5776 * Only walk the client list for NIC and etherstub 5777 */ 5778 if ((mip->mi_state_flags & MIS_DISABLED) || 5779 ((mip->mi_state_flags & MIS_IS_VNIC) && 5780 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5781 i_mac_perim_exit(mip); 5782 return (0); 5783 } 5784 5785 for (mcip = mip->mi_clients_list; mcip != NULL; 5786 mcip = mcip->mci_client_next) { 5787 if (!MCIP_DATAPATH_SETUP(mcip)) 5788 continue; 5789 if (lstate->mi_lenable) { 5790 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5791 ninfo = mac_write_link_desc(mcip); 5792 if (ninfo == NULL) { 5793 /* 5794 * We can't terminate it if this is the last 5795 * walk, else there might be some links with 5796 * mi_desc_logged set to true, which means 5797 * their description won't be logged the next 5798 * time logging is started (similarly for the 5799 * flows within such links). We can continue 5800 * without walking the flow table (i.e. to 5801 * set fe_desc_logged to false) because we 5802 * won't have written any flow stuff for this 5803 * link as we haven't logged the link itself. 5804 */ 5805 i_mac_perim_exit(mip); 5806 if (lstate->mi_last) 5807 return (0); 5808 else 5809 return (-1); 5810 } 5811 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 5812 list_insert_tail(lstate->mi_list, ninfo); 5813 } 5814 } 5815 5816 ninfo = mac_write_link_stats(mcip); 5817 if (ninfo == NULL && !lstate->mi_last) { 5818 i_mac_perim_exit(mip); 5819 return (-1); 5820 } 5821 list_insert_tail(lstate->mi_list, ninfo); 5822 5823 if (lstate->mi_last) 5824 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 5825 5826 if (lstate->mi_fenable) { 5827 if (mcip->mci_subflow_tab != NULL) { 5828 (void) mac_flow_walk_nolock( 5829 mcip->mci_subflow_tab, mac_log_flowinfo, 5830 lstate); 5831 } 5832 } 5833 } 5834 i_mac_perim_exit(mip); 5835 return (0); 5836 } 5837 5838 /* 5839 * modhash walker function to add a mac_impl_t to a list 5840 */ 5841 /*ARGSUSED*/ 5842 static uint_t 5843 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5844 { 5845 list_t *list = (list_t *)arg; 5846 mac_impl_t *mip = (mac_impl_t *)val; 5847 5848 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 5849 list_insert_tail(list, mip); 5850 mip->mi_ref++; 5851 } 5852 5853 return (MH_WALK_CONTINUE); 5854 } 5855 5856 void 5857 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 5858 { 5859 list_t mac_impl_list; 5860 mac_impl_t *mip; 5861 netinfo_t *ninfo; 5862 5863 /* Create list of mac_impls */ 5864 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 5865 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 5866 mi_node)); 5867 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 5868 rw_exit(&i_mac_impl_lock); 5869 5870 /* Create log entries for each mac_impl */ 5871 for (mip = list_head(&mac_impl_list); mip != NULL; 5872 mip = list_next(&mac_impl_list, mip)) { 5873 if (i_mac_impl_log(mip, lstate) != 0) 5874 continue; 5875 } 5876 5877 /* Remove elements and destroy list of mac_impls */ 5878 rw_enter(&i_mac_impl_lock, RW_WRITER); 5879 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 5880 mip->mi_ref--; 5881 } 5882 rw_exit(&i_mac_impl_lock); 5883 list_destroy(&mac_impl_list); 5884 5885 /* 5886 * Write log entries to files outside of locks, free associated 5887 * structures, and remove entries from the list. 5888 */ 5889 while ((ninfo = list_head(net_log_list)) != NULL) { 5890 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 5891 list_remove(net_log_list, ninfo); 5892 kmem_free(ninfo->ni_record, ninfo->ni_size); 5893 kmem_free(ninfo, sizeof (*ninfo)); 5894 } 5895 list_destroy(net_log_list); 5896 } 5897 5898 /* 5899 * The timer thread that runs every mac_logging_interval seconds and logs 5900 * link and/or flow information. 5901 */ 5902 /* ARGSUSED */ 5903 void 5904 mac_log_linkinfo(void *arg) 5905 { 5906 i_mac_log_state_t lstate; 5907 list_t net_log_list; 5908 5909 list_create(&net_log_list, sizeof (netinfo_t), 5910 offsetof(netinfo_t, ni_link)); 5911 5912 rw_enter(&i_mac_impl_lock, RW_READER); 5913 if (!mac_flow_log_enable && !mac_link_log_enable) { 5914 rw_exit(&i_mac_impl_lock); 5915 return; 5916 } 5917 lstate.mi_fenable = mac_flow_log_enable; 5918 lstate.mi_lenable = mac_link_log_enable; 5919 lstate.mi_last = B_FALSE; 5920 lstate.mi_list = &net_log_list; 5921 5922 /* Write log entries for each mac_impl in the list */ 5923 i_mac_log_info(&net_log_list, &lstate); 5924 5925 if (mac_flow_log_enable || mac_link_log_enable) { 5926 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 5927 SEC_TO_TICK(mac_logging_interval)); 5928 } 5929 } 5930 5931 typedef struct i_mac_fastpath_state_s { 5932 boolean_t mf_disable; 5933 int mf_err; 5934 } i_mac_fastpath_state_t; 5935 5936 /* modhash walker function to enable or disable fastpath */ 5937 /*ARGSUSED*/ 5938 static uint_t 5939 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 5940 void *arg) 5941 { 5942 i_mac_fastpath_state_t *state = arg; 5943 mac_handle_t mh = (mac_handle_t)val; 5944 5945 if (state->mf_disable) 5946 state->mf_err = mac_fastpath_disable(mh); 5947 else 5948 mac_fastpath_enable(mh); 5949 5950 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 5951 } 5952 5953 /* 5954 * Start the logging timer. 5955 */ 5956 int 5957 mac_start_logusage(mac_logtype_t type, uint_t interval) 5958 { 5959 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 5960 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 5961 int err; 5962 5963 rw_enter(&i_mac_impl_lock, RW_WRITER); 5964 switch (type) { 5965 case MAC_LOGTYPE_FLOW: 5966 if (mac_flow_log_enable) { 5967 rw_exit(&i_mac_impl_lock); 5968 return (0); 5969 } 5970 /* FALLTHRU */ 5971 case MAC_LOGTYPE_LINK: 5972 if (mac_link_log_enable) { 5973 rw_exit(&i_mac_impl_lock); 5974 return (0); 5975 } 5976 break; 5977 default: 5978 ASSERT(0); 5979 } 5980 5981 /* Disable fastpath */ 5982 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 5983 if ((err = dstate.mf_err) != 0) { 5984 /* Reenable fastpath */ 5985 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 5986 rw_exit(&i_mac_impl_lock); 5987 return (err); 5988 } 5989 5990 switch (type) { 5991 case MAC_LOGTYPE_FLOW: 5992 mac_flow_log_enable = B_TRUE; 5993 /* FALLTHRU */ 5994 case MAC_LOGTYPE_LINK: 5995 mac_link_log_enable = B_TRUE; 5996 break; 5997 } 5998 5999 mac_logging_interval = interval; 6000 rw_exit(&i_mac_impl_lock); 6001 mac_log_linkinfo(NULL); 6002 return (0); 6003 } 6004 6005 /* 6006 * Stop the logging timer if both link and flow logging are turned off. 6007 */ 6008 void 6009 mac_stop_logusage(mac_logtype_t type) 6010 { 6011 i_mac_log_state_t lstate; 6012 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6013 list_t net_log_list; 6014 6015 list_create(&net_log_list, sizeof (netinfo_t), 6016 offsetof(netinfo_t, ni_link)); 6017 6018 rw_enter(&i_mac_impl_lock, RW_WRITER); 6019 6020 lstate.mi_fenable = mac_flow_log_enable; 6021 lstate.mi_lenable = mac_link_log_enable; 6022 lstate.mi_list = &net_log_list; 6023 6024 /* Last walk */ 6025 lstate.mi_last = B_TRUE; 6026 6027 switch (type) { 6028 case MAC_LOGTYPE_FLOW: 6029 if (lstate.mi_fenable) { 6030 ASSERT(mac_link_log_enable); 6031 mac_flow_log_enable = B_FALSE; 6032 mac_link_log_enable = B_FALSE; 6033 break; 6034 } 6035 /* FALLTHRU */ 6036 case MAC_LOGTYPE_LINK: 6037 if (!lstate.mi_lenable || mac_flow_log_enable) { 6038 rw_exit(&i_mac_impl_lock); 6039 return; 6040 } 6041 mac_link_log_enable = B_FALSE; 6042 break; 6043 default: 6044 ASSERT(0); 6045 } 6046 6047 /* Reenable fastpath */ 6048 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6049 6050 (void) untimeout(mac_logging_timer); 6051 mac_logging_timer = NULL; 6052 6053 /* Write log entries for each mac_impl in the list */ 6054 i_mac_log_info(&net_log_list, &lstate); 6055 } 6056 6057 /* 6058 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 6059 */ 6060 void 6061 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 6062 { 6063 pri_t pri; 6064 int count; 6065 mac_soft_ring_set_t *mac_srs; 6066 6067 if (flent->fe_rx_srs_cnt <= 0) 6068 return; 6069 6070 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 6071 SRST_FLOW) { 6072 pri = FLOW_PRIORITY(mcip->mci_min_pri, 6073 mcip->mci_max_pri, 6074 flent->fe_resource_props.mrp_priority); 6075 } else { 6076 pri = mcip->mci_max_pri; 6077 } 6078 6079 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 6080 mac_srs = flent->fe_rx_srs[count]; 6081 mac_update_srs_priority(mac_srs, pri); 6082 } 6083 /* 6084 * If we have a Tx SRS, we need to modify all the threads associated 6085 * with it. 6086 */ 6087 if (flent->fe_tx_srs != NULL) 6088 mac_update_srs_priority(flent->fe_tx_srs, pri); 6089 } 6090 6091 /* 6092 * RX and TX rings are reserved according to different semantics depending 6093 * on the requests from the MAC clients and type of rings: 6094 * 6095 * On the Tx side, by default we reserve individual rings, independently from 6096 * the groups. 6097 * 6098 * On the Rx side, the reservation is at the granularity of the group 6099 * of rings, and used for v12n level 1 only. It has a special case for the 6100 * primary client. 6101 * 6102 * If a share is allocated to a MAC client, we allocate a TX group and an 6103 * RX group to the client, and assign TX rings and RX rings to these 6104 * groups according to information gathered from the driver through 6105 * the share capability. 6106 * 6107 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 6108 * to allocate individual rings out of a group and program the hw classifier 6109 * based on IP address or higher level criteria. 6110 */ 6111 6112 /* 6113 * mac_reserve_tx_ring() 6114 * Reserve a unused ring by marking it with MR_INUSE state. 6115 * As reserved, the ring is ready to function. 6116 * 6117 * Notes for Hybrid I/O: 6118 * 6119 * If a specific ring is needed, it is specified through the desired_ring 6120 * argument. Otherwise that argument is set to NULL. 6121 * If the desired ring was previous allocated to another client, this 6122 * function swaps it with a new ring from the group of unassigned rings. 6123 */ 6124 mac_ring_t * 6125 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 6126 { 6127 mac_group_t *group; 6128 mac_grp_client_t *mgcp; 6129 mac_client_impl_t *mcip; 6130 mac_soft_ring_set_t *srs; 6131 6132 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6133 6134 /* 6135 * Find an available ring and start it before changing its status. 6136 * The unassigned rings are at the end of the mi_tx_groups 6137 * array. 6138 */ 6139 group = MAC_DEFAULT_TX_GROUP(mip); 6140 6141 /* Can't take the default ring out of the default group */ 6142 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 6143 6144 if (desired_ring->mr_state == MR_FREE) { 6145 ASSERT(MAC_GROUP_NO_CLIENT(group)); 6146 if (mac_start_ring(desired_ring) != 0) 6147 return (NULL); 6148 return (desired_ring); 6149 } 6150 /* 6151 * There are clients using this ring, so let's move the clients 6152 * away from using this ring. 6153 */ 6154 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6155 mcip = mgcp->mgc_client; 6156 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6157 srs = MCIP_TX_SRS(mcip); 6158 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 6159 mac_tx_invoke_callbacks(mcip, 6160 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 6161 desired_ring)); 6162 mac_tx_srs_del_ring(srs, desired_ring); 6163 mac_tx_client_restart((mac_client_handle_t)mcip); 6164 } 6165 return (desired_ring); 6166 } 6167 6168 /* 6169 * For a non-default group with multiple clients, return the primary client. 6170 */ 6171 static mac_client_impl_t * 6172 mac_get_grp_primary(mac_group_t *grp) 6173 { 6174 mac_grp_client_t *mgcp = grp->mrg_clients; 6175 mac_client_impl_t *mcip; 6176 6177 while (mgcp != NULL) { 6178 mcip = mgcp->mgc_client; 6179 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 6180 return (mcip); 6181 mgcp = mgcp->mgc_next; 6182 } 6183 return (NULL); 6184 } 6185 6186 /* 6187 * Hybrid I/O specifies the ring that should be given to a share. 6188 * If the ring is already used by clients, then we need to release 6189 * the ring back to the default group so that we can give it to 6190 * the share. This means the clients using this ring now get a 6191 * replacement ring. If there aren't any replacement rings, this 6192 * function returns a failure. 6193 */ 6194 static int 6195 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 6196 mac_ring_t *ring, mac_ring_t **rings, int nrings) 6197 { 6198 mac_group_t *group = (mac_group_t *)ring->mr_gh; 6199 mac_resource_props_t *mrp; 6200 mac_client_impl_t *mcip; 6201 mac_group_t *defgrp; 6202 mac_ring_t *tring; 6203 mac_group_t *tgrp; 6204 int i; 6205 int j; 6206 6207 mcip = MAC_GROUP_ONLY_CLIENT(group); 6208 if (mcip == NULL) 6209 mcip = mac_get_grp_primary(group); 6210 ASSERT(mcip != NULL); 6211 ASSERT(mcip->mci_share == 0); 6212 6213 mrp = MCIP_RESOURCE_PROPS(mcip); 6214 if (ring_type == MAC_RING_TYPE_RX) { 6215 defgrp = mip->mi_rx_donor_grp; 6216 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 6217 /* Need to put this mac client in the default group */ 6218 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 6219 return (ENOSPC); 6220 } else { 6221 /* 6222 * Switch this ring with some other ring from 6223 * the default group. 6224 */ 6225 for (tring = defgrp->mrg_rings; tring != NULL; 6226 tring = tring->mr_next) { 6227 if (tring->mr_index == 0) 6228 continue; 6229 for (j = 0; j < nrings; j++) { 6230 if (rings[j] == tring) 6231 break; 6232 } 6233 if (j >= nrings) 6234 break; 6235 } 6236 if (tring == NULL) 6237 return (ENOSPC); 6238 if (mac_group_mov_ring(mip, group, tring) != 0) 6239 return (ENOSPC); 6240 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6241 (void) mac_group_mov_ring(mip, defgrp, tring); 6242 return (ENOSPC); 6243 } 6244 } 6245 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6246 return (0); 6247 } 6248 6249 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6250 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6251 /* 6252 * See if we can get a spare ring to replace the default 6253 * ring. 6254 */ 6255 if (defgrp->mrg_cur_count == 1) { 6256 /* 6257 * Need to get a ring from another client, see if 6258 * there are any clients that can be moved to 6259 * the default group, thereby freeing some rings. 6260 */ 6261 for (i = 0; i < mip->mi_tx_group_count; i++) { 6262 tgrp = &mip->mi_tx_groups[i]; 6263 if (tgrp->mrg_state == 6264 MAC_GROUP_STATE_REGISTERED) { 6265 continue; 6266 } 6267 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6268 if (mcip == NULL) 6269 mcip = mac_get_grp_primary(tgrp); 6270 ASSERT(mcip != NULL); 6271 mrp = MCIP_RESOURCE_PROPS(mcip); 6272 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6273 ASSERT(tgrp->mrg_cur_count == 1); 6274 /* 6275 * If this ring is part of the 6276 * rings asked by the share we cannot 6277 * use it as the default ring. 6278 */ 6279 for (j = 0; j < nrings; j++) { 6280 if (rings[j] == tgrp->mrg_rings) 6281 break; 6282 } 6283 if (j < nrings) 6284 continue; 6285 mac_tx_client_quiesce( 6286 (mac_client_handle_t)mcip); 6287 mac_tx_switch_group(mcip, tgrp, 6288 defgrp); 6289 mac_tx_client_restart( 6290 (mac_client_handle_t)mcip); 6291 break; 6292 } 6293 } 6294 /* 6295 * All the rings are reserved, can't give up the 6296 * default ring. 6297 */ 6298 if (defgrp->mrg_cur_count <= 1) 6299 return (ENOSPC); 6300 } 6301 /* 6302 * Swap the default ring with another. 6303 */ 6304 for (tring = defgrp->mrg_rings; tring != NULL; 6305 tring = tring->mr_next) { 6306 /* 6307 * If this ring is part of the rings asked by the 6308 * share we cannot use it as the default ring. 6309 */ 6310 for (j = 0; j < nrings; j++) { 6311 if (rings[j] == tring) 6312 break; 6313 } 6314 if (j >= nrings) 6315 break; 6316 } 6317 ASSERT(tring != NULL); 6318 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6319 return (0); 6320 } 6321 /* 6322 * The Tx ring is with a group reserved by a MAC client. See if 6323 * we can swap it. 6324 */ 6325 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6326 mcip = MAC_GROUP_ONLY_CLIENT(group); 6327 if (mcip == NULL) 6328 mcip = mac_get_grp_primary(group); 6329 ASSERT(mcip != NULL); 6330 mrp = MCIP_RESOURCE_PROPS(mcip); 6331 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6332 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6333 ASSERT(group->mrg_cur_count == 1); 6334 /* Put this mac client in the default group */ 6335 mac_tx_switch_group(mcip, group, defgrp); 6336 } else { 6337 /* 6338 * Switch this ring with some other ring from 6339 * the default group. 6340 */ 6341 for (tring = defgrp->mrg_rings; tring != NULL; 6342 tring = tring->mr_next) { 6343 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6344 continue; 6345 /* 6346 * If this ring is part of the rings asked by the 6347 * share we cannot use it for swapping. 6348 */ 6349 for (j = 0; j < nrings; j++) { 6350 if (rings[j] == tring) 6351 break; 6352 } 6353 if (j >= nrings) 6354 break; 6355 } 6356 if (tring == NULL) { 6357 mac_tx_client_restart((mac_client_handle_t)mcip); 6358 return (ENOSPC); 6359 } 6360 if (mac_group_mov_ring(mip, group, tring) != 0) { 6361 mac_tx_client_restart((mac_client_handle_t)mcip); 6362 return (ENOSPC); 6363 } 6364 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6365 (void) mac_group_mov_ring(mip, defgrp, tring); 6366 mac_tx_client_restart((mac_client_handle_t)mcip); 6367 return (ENOSPC); 6368 } 6369 } 6370 mac_tx_client_restart((mac_client_handle_t)mcip); 6371 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6372 return (0); 6373 } 6374 6375 /* 6376 * Populate a zero-ring group with rings. If the share is non-NULL, 6377 * the rings are chosen according to that share. 6378 * Invoked after allocating a new RX or TX group through 6379 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6380 * Returns zero on success, an errno otherwise. 6381 */ 6382 int 6383 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6384 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6385 uint32_t ringcnt) 6386 { 6387 mac_ring_t **rings, *ring; 6388 uint_t nrings; 6389 int rv = 0, i = 0, j; 6390 6391 ASSERT((ring_type == MAC_RING_TYPE_RX && 6392 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6393 (ring_type == MAC_RING_TYPE_TX && 6394 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6395 6396 /* 6397 * First find the rings to allocate to the group. 6398 */ 6399 if (share != 0) { 6400 /* get rings through ms_squery() */ 6401 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6402 ASSERT(nrings != 0); 6403 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6404 KM_SLEEP); 6405 mip->mi_share_capab.ms_squery(share, ring_type, 6406 (mac_ring_handle_t *)rings, &nrings); 6407 for (i = 0; i < nrings; i++) { 6408 /* 6409 * If we have given this ring to a non-default 6410 * group, we need to check if we can get this 6411 * ring. 6412 */ 6413 ring = rings[i]; 6414 if (ring->mr_gh != (mac_group_handle_t)src_group || 6415 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6416 if (mac_reclaim_ring_from_grp(mip, ring_type, 6417 ring, rings, nrings) != 0) { 6418 rv = ENOSPC; 6419 goto bail; 6420 } 6421 } 6422 } 6423 } else { 6424 /* 6425 * Pick one ring from default group. 6426 * 6427 * for now pick the second ring which requires the first ring 6428 * at index 0 to stay in the default group, since it is the 6429 * ring which carries the multicast traffic. 6430 * We need a better way for a driver to indicate this, 6431 * for example a per-ring flag. 6432 */ 6433 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6434 KM_SLEEP); 6435 for (ring = src_group->mrg_rings; ring != NULL; 6436 ring = ring->mr_next) { 6437 if (ring_type == MAC_RING_TYPE_RX && 6438 ring->mr_index == 0) { 6439 continue; 6440 } 6441 if (ring_type == MAC_RING_TYPE_TX && 6442 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6443 continue; 6444 } 6445 rings[i++] = ring; 6446 if (i == ringcnt) 6447 break; 6448 } 6449 ASSERT(ring != NULL); 6450 nrings = i; 6451 /* Not enough rings as required */ 6452 if (nrings != ringcnt) { 6453 rv = ENOSPC; 6454 goto bail; 6455 } 6456 } 6457 6458 switch (ring_type) { 6459 case MAC_RING_TYPE_RX: 6460 if (src_group->mrg_cur_count - nrings < 1) { 6461 /* we ran out of rings */ 6462 rv = ENOSPC; 6463 goto bail; 6464 } 6465 6466 /* move receive rings to new group */ 6467 for (i = 0; i < nrings; i++) { 6468 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6469 if (rv != 0) { 6470 /* move rings back on failure */ 6471 for (j = 0; j < i; j++) { 6472 (void) mac_group_mov_ring(mip, 6473 src_group, rings[j]); 6474 } 6475 goto bail; 6476 } 6477 } 6478 break; 6479 6480 case MAC_RING_TYPE_TX: { 6481 mac_ring_t *tmp_ring; 6482 6483 /* move the TX rings to the new group */ 6484 for (i = 0; i < nrings; i++) { 6485 /* get the desired ring */ 6486 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6487 if (tmp_ring == NULL) { 6488 rv = ENOSPC; 6489 goto bail; 6490 } 6491 ASSERT(tmp_ring == rings[i]); 6492 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6493 if (rv != 0) { 6494 /* cleanup on failure */ 6495 for (j = 0; j < i; j++) { 6496 (void) mac_group_mov_ring(mip, 6497 MAC_DEFAULT_TX_GROUP(mip), 6498 rings[j]); 6499 } 6500 goto bail; 6501 } 6502 } 6503 break; 6504 } 6505 } 6506 6507 /* add group to share */ 6508 if (share != 0) 6509 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6510 6511 bail: 6512 /* free temporary array of rings */ 6513 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6514 6515 return (rv); 6516 } 6517 6518 void 6519 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6520 { 6521 mac_grp_client_t *mgcp; 6522 6523 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6524 if (mgcp->mgc_client == mcip) 6525 break; 6526 } 6527 6528 ASSERT(mgcp == NULL); 6529 6530 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6531 mgcp->mgc_client = mcip; 6532 mgcp->mgc_next = grp->mrg_clients; 6533 grp->mrg_clients = mgcp; 6534 } 6535 6536 void 6537 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6538 { 6539 mac_grp_client_t *mgcp, **pprev; 6540 6541 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6542 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6543 if (mgcp->mgc_client == mcip) 6544 break; 6545 } 6546 6547 ASSERT(mgcp != NULL); 6548 6549 *pprev = mgcp->mgc_next; 6550 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6551 } 6552 6553 /* 6554 * Return true if any client on this group explicitly asked for HW 6555 * rings (of type mask) or have a bound share. 6556 */ 6557 static boolean_t 6558 i_mac_clients_hw(mac_group_t *grp, uint32_t mask) 6559 { 6560 mac_grp_client_t *mgcip; 6561 mac_client_impl_t *mcip; 6562 mac_resource_props_t *mrp; 6563 6564 for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) { 6565 mcip = mgcip->mgc_client; 6566 mrp = MCIP_RESOURCE_PROPS(mcip); 6567 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0) 6568 return (B_TRUE); 6569 } 6570 6571 return (B_FALSE); 6572 } 6573 6574 /* 6575 * Finds an available group and exclusively reserves it for a client. 6576 * The group is chosen to suit the flow's resource controls (bandwidth and 6577 * fanout requirements) and the address type. 6578 * If the requestor is the pimary MAC then return the group with the 6579 * largest number of rings, otherwise the default ring when available. 6580 */ 6581 mac_group_t * 6582 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6583 { 6584 mac_share_handle_t share = mcip->mci_share; 6585 mac_impl_t *mip = mcip->mci_mip; 6586 mac_group_t *grp = NULL; 6587 int i; 6588 int err = 0; 6589 mac_address_t *map; 6590 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6591 int nrings; 6592 int donor_grp_rcnt; 6593 boolean_t need_exclgrp = B_FALSE; 6594 int need_rings = 0; 6595 mac_group_t *candidate_grp = NULL; 6596 mac_client_impl_t *gclient; 6597 mac_group_t *donorgrp = NULL; 6598 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6599 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6600 boolean_t isprimary; 6601 6602 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6603 6604 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6605 6606 /* 6607 * Check if a group already has this MAC address (case of VLANs) 6608 * unless we are moving this MAC client from one group to another. 6609 */ 6610 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6611 if (map->ma_group != NULL) 6612 return (map->ma_group); 6613 } 6614 6615 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6616 return (NULL); 6617 6618 /* 6619 * If this client is requesting exclusive MAC access then 6620 * return NULL to ensure the client uses the default group. 6621 */ 6622 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6623 return (NULL); 6624 6625 /* For dynamic groups default unspecified to 1 */ 6626 if (rxhw && unspec && 6627 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6628 mrp->mrp_nrxrings = 1; 6629 } 6630 6631 /* 6632 * For static grouping we allow only specifying rings=0 and 6633 * unspecified 6634 */ 6635 if (rxhw && mrp->mrp_nrxrings > 0 && 6636 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6637 return (NULL); 6638 } 6639 6640 if (rxhw) { 6641 /* 6642 * We have explicitly asked for a group (with nrxrings, 6643 * if unspec). 6644 */ 6645 if (unspec || mrp->mrp_nrxrings > 0) { 6646 need_exclgrp = B_TRUE; 6647 need_rings = mrp->mrp_nrxrings; 6648 } else if (mrp->mrp_nrxrings == 0) { 6649 /* 6650 * We have asked for a software group. 6651 */ 6652 return (NULL); 6653 } 6654 } else if (isprimary && mip->mi_nactiveclients == 1 && 6655 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6656 /* 6657 * If the primary is the only active client on this 6658 * mip and we have not asked for any rings, we give 6659 * it the default group so that the primary gets to 6660 * use all the rings. 6661 */ 6662 return (NULL); 6663 } 6664 6665 /* The group that can donate rings */ 6666 donorgrp = mip->mi_rx_donor_grp; 6667 6668 /* 6669 * The number of rings that the default group can donate. 6670 * We need to leave at least one ring. 6671 */ 6672 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6673 6674 /* 6675 * Try to exclusively reserve a RX group. 6676 * 6677 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6678 * client), try to reserve the a non-default RX group and give 6679 * it all the rings from the donor group, except the default ring 6680 * 6681 * For flows requiring HW_RING (unicast flow of other clients), try 6682 * to reserve non-default RX group with the specified number of 6683 * rings, if available. 6684 * 6685 * For flows that have not asked for software or hardware ring, 6686 * try to reserve a non-default group with 1 ring, if available. 6687 */ 6688 for (i = 1; i < mip->mi_rx_group_count; i++) { 6689 grp = &mip->mi_rx_groups[i]; 6690 6691 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6692 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6693 6694 /* 6695 * Check if this group could be a candidate group for 6696 * eviction if we need a group for this MAC client, 6697 * but there aren't any. A candidate group is one 6698 * that didn't ask for an exclusive group, but got 6699 * one and it has enough rings (combined with what 6700 * the donor group can donate) for the new MAC 6701 * client. 6702 */ 6703 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6704 /* 6705 * If the donor group is not the default 6706 * group, don't bother looking for a candidate 6707 * group. If we don't have enough rings we 6708 * will check if the primary group can be 6709 * vacated. 6710 */ 6711 if (candidate_grp == NULL && 6712 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6713 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) && 6714 (unspec || 6715 (grp->mrg_cur_count + donor_grp_rcnt >= 6716 need_rings))) { 6717 candidate_grp = grp; 6718 } 6719 } 6720 continue; 6721 } 6722 /* 6723 * This group could already be SHARED by other multicast 6724 * flows on this client. In that case, the group would 6725 * be shared and has already been started. 6726 */ 6727 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6728 6729 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6730 (mac_start_group(grp) != 0)) { 6731 continue; 6732 } 6733 6734 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6735 break; 6736 ASSERT(grp->mrg_cur_count == 0); 6737 6738 /* 6739 * Populate the group. Rings should be taken 6740 * from the donor group. 6741 */ 6742 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6743 6744 /* 6745 * If the donor group can't donate, let's just walk and 6746 * see if someone can vacate a group, so that we have 6747 * enough rings for this, unless we already have 6748 * identified a candiate group.. 6749 */ 6750 if (nrings <= donor_grp_rcnt) { 6751 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6752 donorgrp, grp, share, nrings); 6753 if (err == 0) { 6754 /* 6755 * For a share i_mac_group_allocate_rings gets 6756 * the rings from the driver, let's populate 6757 * the property for the client now. 6758 */ 6759 if (share != 0) { 6760 mac_client_set_rings( 6761 (mac_client_handle_t)mcip, 6762 grp->mrg_cur_count, -1); 6763 } 6764 if (mac_is_primary_client(mcip) && !rxhw) 6765 mip->mi_rx_donor_grp = grp; 6766 break; 6767 } 6768 } 6769 6770 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6771 mip->mi_name, int, grp->mrg_index, int, err); 6772 6773 /* 6774 * It's a dynamic group but the grouping operation 6775 * failed. 6776 */ 6777 mac_stop_group(grp); 6778 } 6779 6780 /* We didn't find an exclusive group for this MAC client */ 6781 if (i >= mip->mi_rx_group_count) { 6782 6783 if (!need_exclgrp) 6784 return (NULL); 6785 6786 /* 6787 * If we found a candidate group then move the 6788 * existing MAC client from the candidate_group to the 6789 * default group and give the candidate_group to the 6790 * new MAC client. If we didn't find a candidate 6791 * group, then check if the primary is in its own 6792 * group and if it can make way for this MAC client. 6793 */ 6794 if (candidate_grp == NULL && 6795 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6796 donorgrp->mrg_cur_count >= need_rings) { 6797 candidate_grp = donorgrp; 6798 } 6799 if (candidate_grp != NULL) { 6800 boolean_t prim_grp = B_FALSE; 6801 6802 /* 6803 * Switch the existing MAC client from the 6804 * candidate group to the default group. If 6805 * the candidate group is the donor group, 6806 * then after the switch we need to update the 6807 * donor group too. 6808 */ 6809 grp = candidate_grp; 6810 gclient = grp->mrg_clients->mgc_client; 6811 VERIFY3P(gclient, !=, NULL); 6812 if (grp == mip->mi_rx_donor_grp) 6813 prim_grp = B_TRUE; 6814 if (mac_rx_switch_group(gclient, grp, 6815 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 6816 return (NULL); 6817 } 6818 if (prim_grp) { 6819 mip->mi_rx_donor_grp = 6820 MAC_DEFAULT_RX_GROUP(mip); 6821 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 6822 } 6823 6824 /* 6825 * Now give this group with the required rings 6826 * to this MAC client. 6827 */ 6828 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 6829 if (mac_start_group(grp) != 0) 6830 return (NULL); 6831 6832 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6833 return (grp); 6834 6835 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6836 ASSERT(grp->mrg_cur_count == 0); 6837 ASSERT(donor_grp_rcnt >= need_rings); 6838 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6839 donorgrp, grp, share, need_rings); 6840 if (err == 0) { 6841 /* 6842 * For a share i_mac_group_allocate_rings gets 6843 * the rings from the driver, let's populate 6844 * the property for the client now. 6845 */ 6846 if (share != 0) { 6847 mac_client_set_rings( 6848 (mac_client_handle_t)mcip, 6849 grp->mrg_cur_count, -1); 6850 } 6851 DTRACE_PROBE2(rx__group__reserved, 6852 char *, mip->mi_name, int, grp->mrg_index); 6853 return (grp); 6854 } 6855 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6856 mip->mi_name, int, grp->mrg_index, int, err); 6857 mac_stop_group(grp); 6858 } 6859 return (NULL); 6860 } 6861 ASSERT(grp != NULL); 6862 6863 DTRACE_PROBE2(rx__group__reserved, 6864 char *, mip->mi_name, int, grp->mrg_index); 6865 return (grp); 6866 } 6867 6868 /* 6869 * mac_rx_release_group() 6870 * 6871 * Release the group when it has no remaining clients. The group is 6872 * stopped and its shares are removed and all rings are assigned back 6873 * to default group. This should never be called against the default 6874 * group. 6875 */ 6876 void 6877 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 6878 { 6879 mac_impl_t *mip = mcip->mci_mip; 6880 mac_ring_t *ring; 6881 6882 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 6883 ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE); 6884 6885 if (mip->mi_rx_donor_grp == group) 6886 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 6887 6888 /* 6889 * This is the case where there are no clients left. Any 6890 * SRS etc on this group have also be quiesced. 6891 */ 6892 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 6893 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 6894 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6895 /* 6896 * Remove the SRS associated with the HW ring. 6897 * As a result, polling will be disabled. 6898 */ 6899 ring->mr_srs = NULL; 6900 } 6901 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 6902 ring->mr_state == MR_INUSE); 6903 if (ring->mr_state == MR_INUSE) { 6904 mac_stop_ring(ring); 6905 ring->mr_flag = 0; 6906 } 6907 } 6908 6909 /* remove group from share */ 6910 if (mcip->mci_share != 0) { 6911 mip->mi_share_capab.ms_sremove(mcip->mci_share, 6912 group->mrg_driver); 6913 } 6914 6915 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6916 mac_ring_t *ring; 6917 6918 /* 6919 * Rings were dynamically allocated to group. 6920 * Move rings back to default group. 6921 */ 6922 while ((ring = group->mrg_rings) != NULL) { 6923 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 6924 ring); 6925 } 6926 } 6927 mac_stop_group(group); 6928 /* 6929 * Possible improvement: See if we can assign the group just released 6930 * to a another client of the mip 6931 */ 6932 } 6933 6934 /* 6935 * Move the MAC address from fgrp to tgrp. 6936 */ 6937 static int 6938 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 6939 mac_group_t *tgrp) 6940 { 6941 mac_impl_t *mip = mcip->mci_mip; 6942 uint8_t maddr[MAXMACADDRLEN]; 6943 int err = 0; 6944 uint16_t vid; 6945 mac_unicast_impl_t *muip; 6946 boolean_t use_hw; 6947 6948 mac_rx_client_quiesce((mac_client_handle_t)mcip); 6949 VERIFY3P(mcip->mci_unicast, !=, NULL); 6950 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 6951 6952 /* 6953 * Does the client require MAC address hardware classifiction? 6954 */ 6955 use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 6956 vid = i_mac_flow_vid(mcip->mci_flent); 6957 6958 /* 6959 * You can never move an address that is shared by multiple 6960 * clients. mac_datapath_setup() ensures that clients sharing 6961 * an address are placed on the default group. This guarantees 6962 * that a non-default group will only ever have one client and 6963 * thus make full use of HW filters. 6964 */ 6965 if (mac_check_macaddr_shared(mcip->mci_unicast)) 6966 return (EINVAL); 6967 6968 err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid); 6969 6970 if (err != 0) { 6971 mac_rx_client_restart((mac_client_handle_t)mcip); 6972 return (err); 6973 } 6974 6975 /* 6976 * If this isn't the primary MAC address then the 6977 * mac_address_t has been freed by the last call to 6978 * mac_remove_macaddr_vlan(). In any case, NULL the reference 6979 * to avoid a dangling pointer. 6980 */ 6981 mcip->mci_unicast = NULL; 6982 6983 /* 6984 * We also have to NULL all the mui_map references -- sun4v 6985 * strikes again! 6986 */ 6987 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 6988 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 6989 muip->mui_map = NULL; 6990 rw_exit(&mcip->mci_rw_lock); 6991 6992 /* 6993 * Program the H/W Classifier first, if this fails we need not 6994 * proceed with the other stuff. 6995 */ 6996 if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) { 6997 int err2; 6998 6999 /* Revert back the H/W Classifier */ 7000 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw); 7001 7002 if (err2 != 0) { 7003 cmn_err(CE_WARN, "Failed to revert HW classification" 7004 " on MAC %s, for client %s: %d.", mip->mi_name, 7005 mcip->mci_name, err2); 7006 } 7007 7008 mac_rx_client_restart((mac_client_handle_t)mcip); 7009 return (err); 7010 } 7011 7012 /* 7013 * Get a reference to the new mac_address_t and update the 7014 * client's reference. Then restart the client and add the 7015 * other clients of this MAC addr (if they exsit). 7016 */ 7017 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 7018 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7019 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7020 muip->mui_map = mcip->mci_unicast; 7021 rw_exit(&mcip->mci_rw_lock); 7022 mac_rx_client_restart((mac_client_handle_t)mcip); 7023 return (0); 7024 } 7025 7026 /* 7027 * Switch the MAC client from one group to another. This means we need 7028 * to remove the MAC address from the group, remove the MAC client, 7029 * teardown the SRSs and revert the group state. Then, we add the client 7030 * to the destination group, set the SRSs, and add the MAC address to the 7031 * group. 7032 */ 7033 int 7034 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7035 mac_group_t *tgrp) 7036 { 7037 int err; 7038 mac_group_state_t next_state; 7039 mac_client_impl_t *group_only_mcip; 7040 mac_client_impl_t *gmcip; 7041 mac_impl_t *mip = mcip->mci_mip; 7042 mac_grp_client_t *mgcp; 7043 7044 VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group); 7045 7046 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 7047 return (err); 7048 7049 /* 7050 * If the group is marked as reserved and in use by a single 7051 * client, then there is an SRS to teardown. 7052 */ 7053 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 7054 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7055 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 7056 } 7057 7058 /* 7059 * If we are moving the client from a non-default group, then 7060 * we know that any additional clients on this group share the 7061 * same MAC address. Since we moved the MAC address filter, we 7062 * need to move these clients too. 7063 * 7064 * If we are moving the client from the default group and its 7065 * MAC address has VLAN clients, then we must move those 7066 * clients as well. 7067 * 7068 * In both cases the idea is the same: we moved the MAC 7069 * address filter to the tgrp, so we must move all clients 7070 * using that MAC address to tgrp as well. 7071 */ 7072 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 7073 mgcp = fgrp->mrg_clients; 7074 while (mgcp != NULL) { 7075 gmcip = mgcp->mgc_client; 7076 mgcp = mgcp->mgc_next; 7077 mac_group_remove_client(fgrp, gmcip); 7078 mac_group_add_client(tgrp, gmcip); 7079 gmcip->mci_flent->fe_rx_ring_group = tgrp; 7080 } 7081 mac_release_rx_group(mcip, fgrp); 7082 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE); 7083 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 7084 } else { 7085 mac_group_remove_client(fgrp, mcip); 7086 mac_group_add_client(tgrp, mcip); 7087 mcip->mci_flent->fe_rx_ring_group = tgrp; 7088 7089 /* 7090 * If there are other clients (VLANs) sharing this address 7091 * then move them too. 7092 */ 7093 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7094 /* 7095 * We need to move all the clients that are using 7096 * this MAC address. 7097 */ 7098 mgcp = fgrp->mrg_clients; 7099 while (mgcp != NULL) { 7100 gmcip = mgcp->mgc_client; 7101 mgcp = mgcp->mgc_next; 7102 if (mcip->mci_unicast == gmcip->mci_unicast) { 7103 mac_group_remove_client(fgrp, gmcip); 7104 mac_group_add_client(tgrp, gmcip); 7105 gmcip->mci_flent->fe_rx_ring_group = 7106 tgrp; 7107 } 7108 } 7109 } 7110 7111 /* 7112 * The default group still handles multicast and 7113 * broadcast traffic; it won't transition to 7114 * MAC_GROUP_STATE_REGISTERED. 7115 */ 7116 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 7117 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 7118 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 7119 } 7120 7121 next_state = mac_group_next_state(tgrp, &group_only_mcip, 7122 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 7123 mac_set_group_state(tgrp, next_state); 7124 7125 /* 7126 * If the destination group is reserved, then setup the SRSes. 7127 * Otherwise make sure to use SW classification. 7128 */ 7129 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7130 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 7131 mac_fanout_setup(mcip, mcip->mci_flent, 7132 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 7133 NULL); 7134 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 7135 } else { 7136 mac_rx_switch_grp_to_sw(tgrp); 7137 } 7138 7139 return (0); 7140 } 7141 7142 /* 7143 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 7144 * when a share was allocated to the client. 7145 */ 7146 mac_group_t * 7147 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 7148 { 7149 mac_impl_t *mip = mcip->mci_mip; 7150 mac_group_t *grp = NULL; 7151 int rv; 7152 int i; 7153 int err; 7154 mac_group_t *defgrp; 7155 mac_share_handle_t share = mcip->mci_share; 7156 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7157 int nrings; 7158 int defnrings; 7159 boolean_t need_exclgrp = B_FALSE; 7160 int need_rings = 0; 7161 mac_group_t *candidate_grp = NULL; 7162 mac_client_impl_t *gclient; 7163 mac_resource_props_t *gmrp; 7164 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 7165 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 7166 boolean_t isprimary; 7167 7168 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 7169 7170 /* 7171 * When we come here for a VLAN on the primary (dladm create-vlan), 7172 * we need to pair it along with the primary (to keep it consistent 7173 * with the RX side). So, we check if the primary is already assigned 7174 * to a group and return the group if so. The other way is also 7175 * true, i.e. the VLAN is already created and now we are plumbing 7176 * the primary. 7177 */ 7178 if (!move && isprimary) { 7179 for (gclient = mip->mi_clients_list; gclient != NULL; 7180 gclient = gclient->mci_client_next) { 7181 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 7182 gclient->mci_flent->fe_tx_ring_group != NULL) { 7183 return (gclient->mci_flent->fe_tx_ring_group); 7184 } 7185 } 7186 } 7187 7188 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 7189 return (NULL); 7190 7191 /* For dynamic groups, default unspec to 1 */ 7192 if (txhw && unspec && 7193 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7194 mrp->mrp_ntxrings = 1; 7195 } 7196 /* 7197 * For static grouping we allow only specifying rings=0 and 7198 * unspecified 7199 */ 7200 if (txhw && mrp->mrp_ntxrings > 0 && 7201 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 7202 return (NULL); 7203 } 7204 7205 if (txhw) { 7206 /* 7207 * We have explicitly asked for a group (with ntxrings, 7208 * if unspec). 7209 */ 7210 if (unspec || mrp->mrp_ntxrings > 0) { 7211 need_exclgrp = B_TRUE; 7212 need_rings = mrp->mrp_ntxrings; 7213 } else if (mrp->mrp_ntxrings == 0) { 7214 /* 7215 * We have asked for a software group. 7216 */ 7217 return (NULL); 7218 } 7219 } 7220 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7221 /* 7222 * The number of rings that the default group can donate. 7223 * We need to leave at least one ring - the default ring - in 7224 * this group. 7225 */ 7226 defnrings = defgrp->mrg_cur_count - 1; 7227 7228 /* 7229 * Primary gets default group unless explicitly told not 7230 * to (i.e. rings > 0). 7231 */ 7232 if (isprimary && !need_exclgrp) 7233 return (NULL); 7234 7235 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 7236 for (i = 0; i < mip->mi_tx_group_count; i++) { 7237 grp = &mip->mi_tx_groups[i]; 7238 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 7239 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 7240 /* 7241 * Select a candidate for replacement if we don't 7242 * get an exclusive group. A candidate group is one 7243 * that didn't ask for an exclusive group, but got 7244 * one and it has enough rings (combined with what 7245 * the default group can donate) for the new MAC 7246 * client. 7247 */ 7248 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 7249 candidate_grp == NULL) { 7250 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7251 VERIFY3P(gclient, !=, NULL); 7252 gmrp = MCIP_RESOURCE_PROPS(gclient); 7253 if (gclient->mci_share == 0 && 7254 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7255 (unspec || 7256 (grp->mrg_cur_count + defnrings) >= 7257 need_rings)) { 7258 candidate_grp = grp; 7259 } 7260 } 7261 continue; 7262 } 7263 /* 7264 * If the default can't donate let's just walk and 7265 * see if someone can vacate a group, so that we have 7266 * enough rings for this. 7267 */ 7268 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7269 nrings <= defnrings) { 7270 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7271 rv = mac_start_group(grp); 7272 ASSERT(rv == 0); 7273 } 7274 break; 7275 } 7276 } 7277 7278 /* The default group */ 7279 if (i >= mip->mi_tx_group_count) { 7280 /* 7281 * If we need an exclusive group and have identified a 7282 * candidate group we switch the MAC client from the 7283 * candidate group to the default group and give the 7284 * candidate group to this client. 7285 */ 7286 if (need_exclgrp && candidate_grp != NULL) { 7287 /* 7288 * Switch the MAC client from the candidate 7289 * group to the default group. We know the 7290 * candidate_grp came from a reserved group 7291 * and thus only has one client. 7292 */ 7293 grp = candidate_grp; 7294 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7295 VERIFY3P(gclient, !=, NULL); 7296 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7297 mac_tx_switch_group(gclient, grp, defgrp); 7298 mac_tx_client_restart((mac_client_handle_t)gclient); 7299 7300 /* 7301 * Give the candidate group with the specified number 7302 * of rings to this MAC client. 7303 */ 7304 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7305 rv = mac_start_group(grp); 7306 ASSERT(rv == 0); 7307 7308 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7309 return (grp); 7310 7311 ASSERT(grp->mrg_cur_count == 0); 7312 ASSERT(defgrp->mrg_cur_count > need_rings); 7313 7314 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7315 defgrp, grp, share, need_rings); 7316 if (err == 0) { 7317 /* 7318 * For a share i_mac_group_allocate_rings gets 7319 * the rings from the driver, let's populate 7320 * the property for the client now. 7321 */ 7322 if (share != 0) { 7323 mac_client_set_rings( 7324 (mac_client_handle_t)mcip, -1, 7325 grp->mrg_cur_count); 7326 } 7327 mip->mi_tx_group_free--; 7328 return (grp); 7329 } 7330 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7331 mip->mi_name, int, grp->mrg_index, int, err); 7332 mac_stop_group(grp); 7333 } 7334 return (NULL); 7335 } 7336 /* 7337 * We got an exclusive group, but it is not dynamic. 7338 */ 7339 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7340 mip->mi_tx_group_free--; 7341 return (grp); 7342 } 7343 7344 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7345 share, nrings); 7346 if (rv != 0) { 7347 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7348 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7349 mac_stop_group(grp); 7350 return (NULL); 7351 } 7352 /* 7353 * For a share i_mac_group_allocate_rings gets the rings from the 7354 * driver, let's populate the property for the client now. 7355 */ 7356 if (share != 0) { 7357 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7358 grp->mrg_cur_count); 7359 } 7360 mip->mi_tx_group_free--; 7361 return (grp); 7362 } 7363 7364 void 7365 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7366 { 7367 mac_impl_t *mip = mcip->mci_mip; 7368 mac_share_handle_t share = mcip->mci_share; 7369 mac_ring_t *ring; 7370 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7371 mac_group_t *defgrp; 7372 7373 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7374 if (srs != NULL) { 7375 if (srs->srs_soft_ring_count > 0) { 7376 for (ring = grp->mrg_rings; ring != NULL; 7377 ring = ring->mr_next) { 7378 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7379 mac_tx_invoke_callbacks(mcip, 7380 (mac_tx_cookie_t) 7381 mac_tx_srs_get_soft_ring(srs, ring)); 7382 mac_tx_srs_del_ring(srs, ring); 7383 } 7384 } else { 7385 ASSERT(srs->srs_tx.st_arg2 != NULL); 7386 srs->srs_tx.st_arg2 = NULL; 7387 mac_srs_stat_delete(srs); 7388 } 7389 } 7390 if (share != 0) 7391 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7392 7393 /* move the ring back to the pool */ 7394 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7395 while ((ring = grp->mrg_rings) != NULL) 7396 (void) mac_group_mov_ring(mip, defgrp, ring); 7397 } 7398 mac_stop_group(grp); 7399 mip->mi_tx_group_free++; 7400 } 7401 7402 /* 7403 * Disassociate a MAC client from a group, i.e go through the rings in the 7404 * group and delete all the soft rings tied to them. 7405 */ 7406 static void 7407 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7408 { 7409 mac_client_impl_t *mcip = flent->fe_mcip; 7410 mac_soft_ring_set_t *tx_srs; 7411 mac_srs_tx_t *tx; 7412 mac_ring_t *ring; 7413 7414 tx_srs = flent->fe_tx_srs; 7415 tx = &tx_srs->srs_tx; 7416 7417 /* Single ring case we haven't created any soft rings */ 7418 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7419 tx->st_mode == SRS_TX_DEFAULT) { 7420 tx->st_arg2 = NULL; 7421 mac_srs_stat_delete(tx_srs); 7422 /* Fanout case, where we have to dismantle the soft rings */ 7423 } else { 7424 for (ring = fgrp->mrg_rings; ring != NULL; 7425 ring = ring->mr_next) { 7426 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7427 mac_tx_invoke_callbacks(mcip, 7428 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7429 ring)); 7430 mac_tx_srs_del_ring(tx_srs, ring); 7431 } 7432 ASSERT(tx->st_arg2 == NULL); 7433 } 7434 } 7435 7436 /* 7437 * Switch the MAC client from one group to another. This means we need 7438 * to remove the MAC client, teardown the SRSs and revert the group state. 7439 * Then, we add the client to the destination roup, set the SRSs etc. 7440 */ 7441 void 7442 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7443 mac_group_t *tgrp) 7444 { 7445 mac_client_impl_t *group_only_mcip; 7446 mac_impl_t *mip = mcip->mci_mip; 7447 flow_entry_t *flent = mcip->mci_flent; 7448 mac_group_t *defgrp; 7449 mac_grp_client_t *mgcp; 7450 mac_client_impl_t *gmcip; 7451 flow_entry_t *gflent; 7452 7453 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7454 ASSERT(fgrp == flent->fe_tx_ring_group); 7455 7456 if (fgrp == defgrp) { 7457 /* 7458 * If this is the primary we need to find any VLANs on 7459 * the primary and move them too. 7460 */ 7461 mac_group_remove_client(fgrp, mcip); 7462 mac_tx_dismantle_soft_rings(fgrp, flent); 7463 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7464 mgcp = fgrp->mrg_clients; 7465 while (mgcp != NULL) { 7466 gmcip = mgcp->mgc_client; 7467 mgcp = mgcp->mgc_next; 7468 if (mcip->mci_unicast != gmcip->mci_unicast) 7469 continue; 7470 mac_tx_client_quiesce( 7471 (mac_client_handle_t)gmcip); 7472 7473 gflent = gmcip->mci_flent; 7474 mac_group_remove_client(fgrp, gmcip); 7475 mac_tx_dismantle_soft_rings(fgrp, gflent); 7476 7477 mac_group_add_client(tgrp, gmcip); 7478 gflent->fe_tx_ring_group = tgrp; 7479 /* We could directly set this to SHARED */ 7480 tgrp->mrg_state = mac_group_next_state(tgrp, 7481 &group_only_mcip, defgrp, B_FALSE); 7482 7483 mac_tx_srs_group_setup(gmcip, gflent, 7484 SRST_LINK); 7485 mac_fanout_setup(gmcip, gflent, 7486 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7487 gmcip, NULL, NULL); 7488 7489 mac_tx_client_restart( 7490 (mac_client_handle_t)gmcip); 7491 } 7492 } 7493 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7494 mac_ring_t *ring; 7495 int cnt; 7496 int ringcnt; 7497 7498 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7499 /* 7500 * Additionally, we also need to stop all 7501 * the rings in the default group, except 7502 * the default ring. The reason being 7503 * this group won't be released since it is 7504 * the default group, so the rings won't 7505 * be stopped otherwise. 7506 */ 7507 ringcnt = fgrp->mrg_cur_count; 7508 ring = fgrp->mrg_rings; 7509 for (cnt = 0; cnt < ringcnt; cnt++) { 7510 if (ring->mr_state == MR_INUSE && 7511 ring != 7512 (mac_ring_t *)mip->mi_default_tx_ring) { 7513 mac_stop_ring(ring); 7514 ring->mr_flag = 0; 7515 } 7516 ring = ring->mr_next; 7517 } 7518 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7519 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7520 } else { 7521 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7522 } 7523 } else { 7524 /* 7525 * We could have VLANs sharing the non-default group with 7526 * the primary. 7527 */ 7528 mgcp = fgrp->mrg_clients; 7529 while (mgcp != NULL) { 7530 gmcip = mgcp->mgc_client; 7531 mgcp = mgcp->mgc_next; 7532 if (gmcip == mcip) 7533 continue; 7534 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7535 gflent = gmcip->mci_flent; 7536 7537 mac_group_remove_client(fgrp, gmcip); 7538 mac_tx_dismantle_soft_rings(fgrp, gflent); 7539 7540 mac_group_add_client(tgrp, gmcip); 7541 gflent->fe_tx_ring_group = tgrp; 7542 /* We could directly set this to SHARED */ 7543 tgrp->mrg_state = mac_group_next_state(tgrp, 7544 &group_only_mcip, defgrp, B_FALSE); 7545 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7546 mac_fanout_setup(gmcip, gflent, 7547 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7548 gmcip, NULL, NULL); 7549 7550 mac_tx_client_restart((mac_client_handle_t)gmcip); 7551 } 7552 mac_group_remove_client(fgrp, mcip); 7553 mac_release_tx_group(mcip, fgrp); 7554 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7555 } 7556 7557 /* Add it to the tgroup */ 7558 mac_group_add_client(tgrp, mcip); 7559 flent->fe_tx_ring_group = tgrp; 7560 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7561 defgrp, B_FALSE); 7562 7563 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7564 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7565 mac_rx_deliver, mcip, NULL, NULL); 7566 } 7567 7568 /* 7569 * This is a 1-time control path activity initiated by the client (IP). 7570 * The mac perimeter protects against other simultaneous control activities, 7571 * for example an ioctl that attempts to change the degree of fanout and 7572 * increase or decrease the number of softrings associated with this Tx SRS. 7573 */ 7574 static mac_tx_notify_cb_t * 7575 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7576 mac_tx_notify_t notify, void *arg) 7577 { 7578 mac_cb_info_t *mcbi; 7579 mac_tx_notify_cb_t *mtnfp; 7580 7581 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7582 7583 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7584 mtnfp->mtnf_fn = notify; 7585 mtnfp->mtnf_arg = arg; 7586 mtnfp->mtnf_link.mcb_objp = mtnfp; 7587 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7588 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7589 7590 mcbi = &mcip->mci_tx_notify_cb_info; 7591 mutex_enter(mcbi->mcbi_lockp); 7592 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7593 mutex_exit(mcbi->mcbi_lockp); 7594 return (mtnfp); 7595 } 7596 7597 static void 7598 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7599 { 7600 mac_cb_info_t *mcbi; 7601 mac_cb_t **cblist; 7602 7603 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7604 7605 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7606 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7607 cmn_err(CE_WARN, 7608 "mac_client_tx_notify_remove: callback not " 7609 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7610 return; 7611 } 7612 7613 mcbi = &mcip->mci_tx_notify_cb_info; 7614 cblist = &mcip->mci_tx_notify_cb_list; 7615 mutex_enter(mcbi->mcbi_lockp); 7616 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7617 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7618 else 7619 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7620 mutex_exit(mcbi->mcbi_lockp); 7621 } 7622 7623 /* 7624 * mac_client_tx_notify(): 7625 * call to add and remove flow control callback routine. 7626 */ 7627 mac_tx_notify_handle_t 7628 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7629 void *ptr) 7630 { 7631 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7632 mac_tx_notify_cb_t *mtnfp = NULL; 7633 7634 i_mac_perim_enter(mcip->mci_mip); 7635 7636 if (callb_func != NULL) { 7637 /* Add a notify callback */ 7638 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7639 } else { 7640 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7641 } 7642 i_mac_perim_exit(mcip->mci_mip); 7643 7644 return ((mac_tx_notify_handle_t)mtnfp); 7645 } 7646 7647 void 7648 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7649 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7650 { 7651 mac_bridge_tx_cb = txf; 7652 mac_bridge_rx_cb = rxf; 7653 mac_bridge_ref_cb = reff; 7654 mac_bridge_ls_cb = lsf; 7655 } 7656 7657 int 7658 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7659 { 7660 mac_impl_t *mip = (mac_impl_t *)mh; 7661 int retv; 7662 7663 mutex_enter(&mip->mi_bridge_lock); 7664 if (mip->mi_bridge_link == NULL) { 7665 mip->mi_bridge_link = link; 7666 retv = 0; 7667 } else { 7668 retv = EBUSY; 7669 } 7670 mutex_exit(&mip->mi_bridge_lock); 7671 if (retv == 0) { 7672 mac_poll_state_change(mh, B_FALSE); 7673 mac_capab_update(mh); 7674 } 7675 return (retv); 7676 } 7677 7678 /* 7679 * Disable bridging on the indicated link. 7680 */ 7681 void 7682 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7683 { 7684 mac_impl_t *mip = (mac_impl_t *)mh; 7685 7686 mutex_enter(&mip->mi_bridge_lock); 7687 ASSERT(mip->mi_bridge_link == link); 7688 mip->mi_bridge_link = NULL; 7689 mutex_exit(&mip->mi_bridge_lock); 7690 mac_poll_state_change(mh, B_TRUE); 7691 mac_capab_update(mh); 7692 } 7693 7694 void 7695 mac_no_active(mac_handle_t mh) 7696 { 7697 mac_impl_t *mip = (mac_impl_t *)mh; 7698 7699 i_mac_perim_enter(mip); 7700 mip->mi_state_flags |= MIS_NO_ACTIVE; 7701 i_mac_perim_exit(mip); 7702 } 7703 7704 /* 7705 * Walk the primary VLAN clients whenever the primary's rings property 7706 * changes and update the mac_resource_props_t for the VLAN's client. 7707 * We need to do this since we don't support setting these properties 7708 * on the primary's VLAN clients, but the VLAN clients have to 7709 * follow the primary w.r.t the rings property. 7710 */ 7711 void 7712 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7713 { 7714 mac_client_impl_t *vmcip; 7715 mac_resource_props_t *vmrp; 7716 7717 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7718 vmcip = vmcip->mci_client_next) { 7719 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7720 mac_client_vid((mac_client_handle_t)vmcip) == 7721 VLAN_ID_NONE) { 7722 continue; 7723 } 7724 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7725 7726 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7727 if (mrp->mrp_mask & MRP_RX_RINGS) 7728 vmrp->mrp_mask |= MRP_RX_RINGS; 7729 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7730 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7731 7732 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7733 if (mrp->mrp_mask & MRP_TX_RINGS) 7734 vmrp->mrp_mask |= MRP_TX_RINGS; 7735 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7736 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7737 7738 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7739 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7740 else 7741 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7742 7743 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7744 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7745 else 7746 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7747 } 7748 } 7749 7750 /* 7751 * We are adding or removing ring(s) from a group. The source for taking 7752 * rings is the default group. The destination for giving rings back is 7753 * the default group. 7754 */ 7755 int 7756 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7757 mac_group_t *defgrp) 7758 { 7759 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7760 uint_t modify; 7761 int count; 7762 mac_ring_t *ring; 7763 mac_ring_t *next; 7764 mac_impl_t *mip = mcip->mci_mip; 7765 mac_ring_t **rings; 7766 uint_t ringcnt; 7767 int i = 0; 7768 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7769 int start; 7770 int end; 7771 mac_group_t *tgrp; 7772 int j; 7773 int rv = 0; 7774 7775 /* 7776 * If we are asked for just a group, we give 1 ring, else 7777 * the specified number of rings. 7778 */ 7779 if (rx_group) { 7780 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7781 mrp->mrp_nrxrings; 7782 } else { 7783 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7784 mrp->mrp_ntxrings; 7785 } 7786 7787 /* don't allow modifying rings for a share for now. */ 7788 ASSERT(mcip->mci_share == 0); 7789 7790 if (ringcnt == group->mrg_cur_count) 7791 return (0); 7792 7793 if (group->mrg_cur_count > ringcnt) { 7794 modify = group->mrg_cur_count - ringcnt; 7795 if (rx_group) { 7796 if (mip->mi_rx_donor_grp == group) { 7797 ASSERT(mac_is_primary_client(mcip)); 7798 mip->mi_rx_donor_grp = defgrp; 7799 } else { 7800 defgrp = mip->mi_rx_donor_grp; 7801 } 7802 } 7803 ring = group->mrg_rings; 7804 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 7805 KM_SLEEP); 7806 j = 0; 7807 for (count = 0; count < modify; count++) { 7808 next = ring->mr_next; 7809 rv = mac_group_mov_ring(mip, defgrp, ring); 7810 if (rv != 0) { 7811 /* cleanup on failure */ 7812 for (j = 0; j < count; j++) { 7813 (void) mac_group_mov_ring(mip, group, 7814 rings[j]); 7815 } 7816 break; 7817 } 7818 rings[j++] = ring; 7819 ring = next; 7820 } 7821 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 7822 return (rv); 7823 } 7824 if (ringcnt >= MAX_RINGS_PER_GROUP) 7825 return (EINVAL); 7826 7827 modify = ringcnt - group->mrg_cur_count; 7828 7829 if (rx_group) { 7830 if (group != mip->mi_rx_donor_grp) 7831 defgrp = mip->mi_rx_donor_grp; 7832 else 7833 /* 7834 * This is the donor group with all the remaining 7835 * rings. Default group now gets to be the donor 7836 */ 7837 mip->mi_rx_donor_grp = defgrp; 7838 start = 1; 7839 end = mip->mi_rx_group_count; 7840 } else { 7841 start = 0; 7842 end = mip->mi_tx_group_count - 1; 7843 } 7844 /* 7845 * If the default doesn't have any rings, lets see if we can 7846 * take rings given to an h/w client that doesn't need it. 7847 * For now, we just see if there is any one client that can donate 7848 * all the required rings. 7849 */ 7850 if (defgrp->mrg_cur_count < (modify + 1)) { 7851 for (i = start; i < end; i++) { 7852 if (rx_group) { 7853 tgrp = &mip->mi_rx_groups[i]; 7854 if (tgrp == group || tgrp->mrg_state < 7855 MAC_GROUP_STATE_RESERVED) { 7856 continue; 7857 } 7858 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS)) 7859 continue; 7860 mcip = tgrp->mrg_clients->mgc_client; 7861 VERIFY3P(mcip, !=, NULL); 7862 if ((tgrp->mrg_cur_count + 7863 defgrp->mrg_cur_count) < (modify + 1)) { 7864 continue; 7865 } 7866 if (mac_rx_switch_group(mcip, tgrp, 7867 defgrp) != 0) { 7868 return (ENOSPC); 7869 } 7870 } else { 7871 tgrp = &mip->mi_tx_groups[i]; 7872 if (tgrp == group || tgrp->mrg_state < 7873 MAC_GROUP_STATE_RESERVED) { 7874 continue; 7875 } 7876 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS)) 7877 continue; 7878 mcip = tgrp->mrg_clients->mgc_client; 7879 VERIFY3P(mcip, !=, NULL); 7880 if ((tgrp->mrg_cur_count + 7881 defgrp->mrg_cur_count) < (modify + 1)) { 7882 continue; 7883 } 7884 /* OK, we can switch this to s/w */ 7885 mac_tx_client_quiesce( 7886 (mac_client_handle_t)mcip); 7887 mac_tx_switch_group(mcip, tgrp, defgrp); 7888 mac_tx_client_restart( 7889 (mac_client_handle_t)mcip); 7890 } 7891 } 7892 if (defgrp->mrg_cur_count < (modify + 1)) 7893 return (ENOSPC); 7894 } 7895 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 7896 group, mcip->mci_share, modify)) != 0) { 7897 return (rv); 7898 } 7899 return (0); 7900 } 7901 7902 /* 7903 * Given the poolname in mac_resource_props, find the cpupart 7904 * that is associated with this pool. The cpupart will be used 7905 * later for finding the cpus to be bound to the networking threads. 7906 * 7907 * use_default is set B_TRUE if pools are enabled and pool_default 7908 * is returned. This avoids a 2nd lookup to set the poolname 7909 * for pool-effective. 7910 * 7911 * returns: 7912 * 7913 * NULL - pools are disabled or if the 'cpus' property is set. 7914 * cpupart of pool_default - pools are enabled and the pool 7915 * is not available or poolname is blank 7916 * cpupart of named pool - pools are enabled and the pool 7917 * is available. 7918 */ 7919 cpupart_t * 7920 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 7921 { 7922 pool_t *pool; 7923 cpupart_t *cpupart; 7924 7925 *use_default = B_FALSE; 7926 7927 /* CPUs property is set */ 7928 if (mrp->mrp_mask & MRP_CPUS) 7929 return (NULL); 7930 7931 ASSERT(pool_lock_held()); 7932 7933 /* Pools are disabled, no pset */ 7934 if (pool_state == POOL_DISABLED) 7935 return (NULL); 7936 7937 /* Pools property is set */ 7938 if (mrp->mrp_mask & MRP_POOL) { 7939 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 7940 /* Pool not found */ 7941 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 7942 mrp->mrp_pool); 7943 *use_default = B_TRUE; 7944 pool = pool_default; 7945 } 7946 /* Pools property is not set */ 7947 } else { 7948 *use_default = B_TRUE; 7949 pool = pool_default; 7950 } 7951 7952 /* Find the CPU pset that corresponds to the pool */ 7953 mutex_enter(&cpu_lock); 7954 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 7955 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 7956 pool->pool_pset->pset_id); 7957 } 7958 mutex_exit(&cpu_lock); 7959 7960 return (cpupart); 7961 } 7962 7963 void 7964 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 7965 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 7966 { 7967 ASSERT(pool_lock_held()); 7968 7969 if (cpupart != NULL) { 7970 emrp->mrp_mask |= MRP_POOL; 7971 if (use_default) { 7972 (void) strcpy(emrp->mrp_pool, 7973 "pool_default"); 7974 } else { 7975 ASSERT(strlen(mrp->mrp_pool) != 0); 7976 (void) strcpy(emrp->mrp_pool, 7977 mrp->mrp_pool); 7978 } 7979 } else { 7980 emrp->mrp_mask &= ~MRP_POOL; 7981 bzero(emrp->mrp_pool, MAXPATHLEN); 7982 } 7983 } 7984 7985 struct mac_pool_arg { 7986 char mpa_poolname[MAXPATHLEN]; 7987 pool_event_t mpa_what; 7988 }; 7989 7990 /*ARGSUSED*/ 7991 static uint_t 7992 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 7993 { 7994 struct mac_pool_arg *mpa = arg; 7995 mac_impl_t *mip = (mac_impl_t *)val; 7996 mac_client_impl_t *mcip; 7997 mac_resource_props_t *mrp, *emrp; 7998 boolean_t pool_update = B_FALSE; 7999 boolean_t pool_clear = B_FALSE; 8000 boolean_t use_default = B_FALSE; 8001 cpupart_t *cpupart = NULL; 8002 8003 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 8004 i_mac_perim_enter(mip); 8005 for (mcip = mip->mi_clients_list; mcip != NULL; 8006 mcip = mcip->mci_client_next) { 8007 pool_update = B_FALSE; 8008 pool_clear = B_FALSE; 8009 use_default = B_FALSE; 8010 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 8011 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8012 8013 /* 8014 * When pools are enabled 8015 */ 8016 if ((mpa->mpa_what == POOL_E_ENABLE) && 8017 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8018 mrp->mrp_mask |= MRP_POOL; 8019 pool_update = B_TRUE; 8020 } 8021 8022 /* 8023 * When pools are disabled 8024 */ 8025 if ((mpa->mpa_what == POOL_E_DISABLE) && 8026 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8027 mrp->mrp_mask |= MRP_POOL; 8028 pool_clear = B_TRUE; 8029 } 8030 8031 /* 8032 * Look for links with the pool property set and the poolname 8033 * matching the one which is changing. 8034 */ 8035 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 8036 /* 8037 * The pool associated with the link has changed. 8038 */ 8039 if (mpa->mpa_what == POOL_E_CHANGE) { 8040 mrp->mrp_mask |= MRP_POOL; 8041 pool_update = B_TRUE; 8042 } 8043 } 8044 8045 /* 8046 * This link is associated with pool_default and 8047 * pool_default has changed. 8048 */ 8049 if ((mpa->mpa_what == POOL_E_CHANGE) && 8050 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 8051 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 8052 mrp->mrp_mask |= MRP_POOL; 8053 pool_update = B_TRUE; 8054 } 8055 8056 /* 8057 * Get new list of cpus for the pool, bind network 8058 * threads to new list of cpus and update resources. 8059 */ 8060 if (pool_update) { 8061 if (MCIP_DATAPATH_SETUP(mcip)) { 8062 pool_lock(); 8063 cpupart = mac_pset_find(mrp, &use_default); 8064 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8065 mac_rx_deliver, mcip, NULL, cpupart); 8066 mac_set_pool_effective(use_default, cpupart, 8067 mrp, emrp); 8068 pool_unlock(); 8069 } 8070 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8071 B_FALSE); 8072 } 8073 8074 /* 8075 * Clear the effective pool and bind network threads 8076 * to any available CPU. 8077 */ 8078 if (pool_clear) { 8079 if (MCIP_DATAPATH_SETUP(mcip)) { 8080 emrp->mrp_mask &= ~MRP_POOL; 8081 bzero(emrp->mrp_pool, MAXPATHLEN); 8082 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8083 mac_rx_deliver, mcip, NULL, NULL); 8084 } 8085 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8086 B_FALSE); 8087 } 8088 } 8089 i_mac_perim_exit(mip); 8090 kmem_free(mrp, sizeof (*mrp)); 8091 return (MH_WALK_CONTINUE); 8092 } 8093 8094 static void 8095 mac_pool_update(void *arg) 8096 { 8097 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 8098 kmem_free(arg, sizeof (struct mac_pool_arg)); 8099 } 8100 8101 /* 8102 * Callback function to be executed when a noteworthy pool event 8103 * takes place. 8104 */ 8105 /* ARGSUSED */ 8106 static void 8107 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 8108 { 8109 pool_t *pool; 8110 char *poolname = NULL; 8111 struct mac_pool_arg *mpa; 8112 8113 pool_lock(); 8114 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 8115 8116 switch (what) { 8117 case POOL_E_ENABLE: 8118 case POOL_E_DISABLE: 8119 break; 8120 8121 case POOL_E_CHANGE: 8122 pool = pool_lookup_pool_by_id(id); 8123 if (pool == NULL) { 8124 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8125 pool_unlock(); 8126 return; 8127 } 8128 pool_get_name(pool, &poolname); 8129 (void) strlcpy(mpa->mpa_poolname, poolname, 8130 sizeof (mpa->mpa_poolname)); 8131 break; 8132 8133 default: 8134 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8135 pool_unlock(); 8136 return; 8137 } 8138 pool_unlock(); 8139 8140 mpa->mpa_what = what; 8141 8142 mac_pool_update(mpa); 8143 } 8144 8145 /* 8146 * Set effective rings property. This could be called from datapath_setup/ 8147 * datapath_teardown or set-linkprop. 8148 * If the group is reserved we just go ahead and set the effective rings. 8149 * Additionally, for TX this could mean the default group has lost/gained 8150 * some rings, so if the default group is reserved, we need to adjust the 8151 * effective rings for the default group clients. For RX, if we are working 8152 * with the non-default group, we just need to reset the effective props 8153 * for the default group clients. 8154 */ 8155 void 8156 mac_set_rings_effective(mac_client_impl_t *mcip) 8157 { 8158 mac_impl_t *mip = mcip->mci_mip; 8159 mac_group_t *grp; 8160 mac_group_t *defgrp; 8161 flow_entry_t *flent = mcip->mci_flent; 8162 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 8163 mac_grp_client_t *mgcp; 8164 mac_client_impl_t *gmcip; 8165 8166 grp = flent->fe_rx_ring_group; 8167 if (grp != NULL) { 8168 defgrp = MAC_DEFAULT_RX_GROUP(mip); 8169 /* 8170 * If we have reserved a group, set the effective rings 8171 * to the ring count in the group. 8172 */ 8173 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8174 emrp->mrp_mask |= MRP_RX_RINGS; 8175 emrp->mrp_nrxrings = grp->mrg_cur_count; 8176 } 8177 8178 /* 8179 * We go through the clients in the shared group and 8180 * reset the effective properties. It is possible this 8181 * might have already been done for some client (i.e. 8182 * if some client is being moved to a group that is 8183 * already shared). The case where the default group is 8184 * RESERVED is taken care of above (note in the RX side if 8185 * there is a non-default group, the default group is always 8186 * SHARED). 8187 */ 8188 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8189 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 8190 mgcp = grp->mrg_clients; 8191 else 8192 mgcp = defgrp->mrg_clients; 8193 while (mgcp != NULL) { 8194 gmcip = mgcp->mgc_client; 8195 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8196 if (emrp->mrp_mask & MRP_RX_RINGS) { 8197 emrp->mrp_mask &= ~MRP_RX_RINGS; 8198 emrp->mrp_nrxrings = 0; 8199 } 8200 mgcp = mgcp->mgc_next; 8201 } 8202 } 8203 } 8204 8205 /* Now the TX side */ 8206 grp = flent->fe_tx_ring_group; 8207 if (grp != NULL) { 8208 defgrp = MAC_DEFAULT_TX_GROUP(mip); 8209 8210 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8211 emrp->mrp_mask |= MRP_TX_RINGS; 8212 emrp->mrp_ntxrings = grp->mrg_cur_count; 8213 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8214 mgcp = grp->mrg_clients; 8215 while (mgcp != NULL) { 8216 gmcip = mgcp->mgc_client; 8217 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8218 if (emrp->mrp_mask & MRP_TX_RINGS) { 8219 emrp->mrp_mask &= ~MRP_TX_RINGS; 8220 emrp->mrp_ntxrings = 0; 8221 } 8222 mgcp = mgcp->mgc_next; 8223 } 8224 } 8225 8226 /* 8227 * If the group is not the default group and the default 8228 * group is reserved, the ring count in the default group 8229 * might have changed, update it. 8230 */ 8231 if (grp != defgrp && 8232 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8233 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 8234 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8235 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 8236 } 8237 } 8238 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8239 } 8240 8241 /* 8242 * Check if the primary is in the default group. If so, see if we 8243 * can give it a an exclusive group now that another client is 8244 * being configured. We take the primary out of the default group 8245 * because the multicast/broadcast packets for the all the clients 8246 * will land in the default ring in the default group which means 8247 * any client in the default group, even if it is the only on in 8248 * the group, will lose exclusive access to the rings, hence 8249 * polling. 8250 */ 8251 mac_client_impl_t * 8252 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8253 { 8254 mac_impl_t *mip = mcip->mci_mip; 8255 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8256 flow_entry_t *flent = mcip->mci_flent; 8257 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8258 uint8_t *mac_addr; 8259 mac_group_t *ngrp; 8260 8261 /* 8262 * Check if the primary is in the default group, if not 8263 * or if it is explicitly configured to be in the default 8264 * group OR set the RX rings property, return. 8265 */ 8266 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8267 return (NULL); 8268 8269 /* 8270 * If the new client needs an exclusive group and we 8271 * don't have another for the primary, return. 8272 */ 8273 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8274 return (NULL); 8275 8276 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8277 /* 8278 * We call this when we are setting up the datapath for 8279 * the first non-primary. 8280 */ 8281 ASSERT(mip->mi_nactiveclients == 2); 8282 8283 /* 8284 * OK, now we have the primary that needs to be relocated. 8285 */ 8286 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8287 if (ngrp == NULL) 8288 return (NULL); 8289 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8290 mac_stop_group(ngrp); 8291 return (NULL); 8292 } 8293 return (mcip); 8294 } 8295 8296 void 8297 mac_transceiver_init(mac_impl_t *mip) 8298 { 8299 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8300 &mip->mi_transceiver)) { 8301 /* 8302 * The driver set a flag that we don't know about. In this case, 8303 * we need to warn about that case and ignore this capability. 8304 */ 8305 if (mip->mi_transceiver.mct_flags != 0) { 8306 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8307 "flags to invalid value: 0x%x, ignoring " 8308 "capability", mip->mi_transceiver.mct_flags); 8309 bzero(&mip->mi_transceiver, 8310 sizeof (mac_capab_transceiver_t)); 8311 } 8312 } else { 8313 bzero(&mip->mi_transceiver, 8314 sizeof (mac_capab_transceiver_t)); 8315 } 8316 } 8317 8318 int 8319 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8320 { 8321 mac_impl_t *mip = (mac_impl_t *)mh; 8322 8323 ASSERT(MAC_PERIM_HELD(mh)); 8324 8325 if (mip->mi_transceiver.mct_ntransceivers == 0) 8326 return (ENOTSUP); 8327 8328 *countp = mip->mi_transceiver.mct_ntransceivers; 8329 return (0); 8330 } 8331 8332 int 8333 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8334 boolean_t *usable) 8335 { 8336 int ret; 8337 mac_transceiver_info_t info; 8338 8339 mac_impl_t *mip = (mac_impl_t *)mh; 8340 8341 ASSERT(MAC_PERIM_HELD(mh)); 8342 8343 if (mip->mi_transceiver.mct_info == NULL || 8344 mip->mi_transceiver.mct_ntransceivers == 0) 8345 return (ENOTSUP); 8346 8347 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8348 return (EINVAL); 8349 8350 bzero(&info, sizeof (mac_transceiver_info_t)); 8351 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8352 &info)) != 0) { 8353 return (ret); 8354 } 8355 8356 *present = info.mti_present; 8357 *usable = info.mti_usable; 8358 return (0); 8359 } 8360 8361 int 8362 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8363 size_t nbytes, off_t offset, size_t *nread) 8364 { 8365 int ret; 8366 size_t nr; 8367 mac_impl_t *mip = (mac_impl_t *)mh; 8368 8369 ASSERT(MAC_PERIM_HELD(mh)); 8370 8371 if (mip->mi_transceiver.mct_read == NULL) 8372 return (ENOTSUP); 8373 8374 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8375 return (EINVAL); 8376 8377 /* 8378 * All supported pages today are 256 bytes wide. Make sure offset + 8379 * nbytes never exceeds that. 8380 */ 8381 if (offset < 0 || offset >= 256 || nbytes > 256 || 8382 offset + nbytes > 256) 8383 return (EINVAL); 8384 8385 if (nread == NULL) 8386 nread = &nr; 8387 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8388 nbytes, offset, nread); 8389 if (ret == 0 && *nread > nbytes) { 8390 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8391 "%lu byte sized buffer, possible memory corruption", 8392 *nread, nbytes); 8393 } 8394 8395 return (ret); 8396 } 8397 8398 void 8399 mac_led_init(mac_impl_t *mip) 8400 { 8401 mip->mi_led_modes = MAC_LED_DEFAULT; 8402 8403 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) { 8404 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8405 return; 8406 } 8407 8408 if (mip->mi_led.mcl_flags != 0) { 8409 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8410 "flags to invalid value: 0x%x, ignoring " 8411 "capability", mip->mi_transceiver.mct_flags); 8412 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8413 return; 8414 } 8415 8416 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) { 8417 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8418 "supported modes to invalid value: 0x%x, ignoring " 8419 "capability", mip->mi_transceiver.mct_flags); 8420 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8421 return; 8422 } 8423 } 8424 8425 int 8426 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active) 8427 { 8428 mac_impl_t *mip = (mac_impl_t *)mh; 8429 8430 ASSERT(MAC_PERIM_HELD(mh)); 8431 8432 if (mip->mi_led.mcl_set == NULL) 8433 return (ENOTSUP); 8434 8435 *supported = mip->mi_led.mcl_modes; 8436 *active = mip->mi_led_modes; 8437 8438 return (0); 8439 } 8440 8441 /* 8442 * Update and multiplex the various LED requests. We only ever send one LED to 8443 * the underlying driver at a time. As such, we end up multiplexing all 8444 * requested states and picking one to send down to the driver. 8445 */ 8446 int 8447 mac_led_set(mac_handle_t mh, mac_led_mode_t desired) 8448 { 8449 int ret; 8450 mac_led_mode_t driver; 8451 8452 mac_impl_t *mip = (mac_impl_t *)mh; 8453 8454 ASSERT(MAC_PERIM_HELD(mh)); 8455 8456 /* 8457 * If we've been passed a desired value of zero, that indicates that 8458 * we're basically resetting to the value of zero, which is our default 8459 * value. 8460 */ 8461 if (desired == 0) 8462 desired = MAC_LED_DEFAULT; 8463 8464 if (mip->mi_led.mcl_set == NULL) 8465 return (ENOTSUP); 8466 8467 /* 8468 * Catch both values that we don't know about and those that the driver 8469 * doesn't support. 8470 */ 8471 if ((desired & ~MAC_LED_ALL) != 0) 8472 return (EINVAL); 8473 8474 if ((desired & ~mip->mi_led.mcl_modes) != 0) 8475 return (ENOTSUP); 8476 8477 /* 8478 * If we have the same value, then there is nothing to do. 8479 */ 8480 if (desired == mip->mi_led_modes) 8481 return (0); 8482 8483 /* 8484 * Based on the desired value, determine what to send to the driver. We 8485 * only will send a single bit to the driver at any given time. IDENT 8486 * takes priority over OFF or ON. We also let OFF take priority over the 8487 * rest. 8488 */ 8489 if (desired & MAC_LED_IDENT) { 8490 driver = MAC_LED_IDENT; 8491 } else if (desired & MAC_LED_OFF) { 8492 driver = MAC_LED_OFF; 8493 } else if (desired & MAC_LED_ON) { 8494 driver = MAC_LED_ON; 8495 } else { 8496 driver = MAC_LED_DEFAULT; 8497 } 8498 8499 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) { 8500 mip->mi_led_modes = desired; 8501 } 8502 8503 return (ret); 8504 }