1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2018 Joyent, Inc.
25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26 */
27
28 #include <sys/types.h>
29 #include <sys/conf.h>
30 #include <sys/id_space.h>
31 #include <sys/esunddi.h>
32 #include <sys/stat.h>
33 #include <sys/mkdev.h>
34 #include <sys/stream.h>
35 #include <sys/strsubr.h>
36 #include <sys/dlpi.h>
37 #include <sys/modhash.h>
38 #include <sys/mac.h>
39 #include <sys/mac_provider.h>
40 #include <sys/mac_impl.h>
41 #include <sys/mac_client_impl.h>
42 #include <sys/mac_client_priv.h>
43 #include <sys/mac_soft_ring.h>
44 #include <sys/mac_stat.h>
45 #include <sys/dld.h>
46 #include <sys/modctl.h>
47 #include <sys/fs/dv_node.h>
48 #include <sys/thread.h>
49 #include <sys/proc.h>
50 #include <sys/callb.h>
51 #include <sys/cpuvar.h>
52 #include <sys/atomic.h>
53 #include <sys/sdt.h>
54 #include <sys/mac_flow.h>
55 #include <sys/ddi_intr_impl.h>
56 #include <sys/disp.h>
57 #include <sys/sdt.h>
58 #include <sys/pattr.h>
59 #include <sys/strsun.h>
60 #include <sys/vlan.h>
61
62 /*
63 * MAC Provider Interface.
64 *
65 * Interface for GLDv3 compatible NIC drivers.
66 */
67
68 static void i_mac_notify_thread(void *);
69
70 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
71
72 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
73 mac_fanout_recompute, /* MAC_NOTE_LINK */
74 NULL, /* MAC_NOTE_UNICST */
75 NULL, /* MAC_NOTE_TX */
76 NULL, /* MAC_NOTE_DEVPROMISC */
77 NULL, /* MAC_NOTE_FASTPATH_FLUSH */
78 NULL, /* MAC_NOTE_SDU_SIZE */
79 NULL, /* MAC_NOTE_MARGIN */
80 NULL, /* MAC_NOTE_CAPAB_CHG */
81 NULL /* MAC_NOTE_LOWLINK */
82 };
83
84 /*
85 * Driver support functions.
86 */
87
88 /* REGISTRATION */
89
90 mac_register_t *
91 mac_alloc(uint_t mac_version)
92 {
93 mac_register_t *mregp;
94
95 /*
96 * Make sure there isn't a version mismatch between the driver and
97 * the framework. In the future, if multiple versions are
98 * supported, this check could become more sophisticated.
99 */
100 if (mac_version != MAC_VERSION)
101 return (NULL);
102
103 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
104 mregp->m_version = mac_version;
105 return (mregp);
106 }
107
108 void
109 mac_free(mac_register_t *mregp)
110 {
111 kmem_free(mregp, sizeof (mac_register_t));
112 }
113
114 /*
115 * mac_register() is how drivers register new MACs with the GLDv3
116 * framework. The mregp argument is allocated by drivers using the
117 * mac_alloc() function, and can be freed using mac_free() immediately upon
118 * return from mac_register(). Upon success (0 return value), the mhp
119 * opaque pointer becomes the driver's handle to its MAC interface, and is
120 * the argument to all other mac module entry points.
121 */
122 /* ARGSUSED */
123 int
124 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
125 {
126 mac_impl_t *mip;
127 mactype_t *mtype;
128 int err = EINVAL;
129 struct devnames *dnp = NULL;
130 uint_t instance;
131 boolean_t style1_created = B_FALSE;
132 boolean_t style2_created = B_FALSE;
133 char *driver;
134 minor_t minor = 0;
135
136 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
137 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
138 return (EINVAL);
139
140 /* Find the required MAC-Type plugin. */
141 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
142 return (EINVAL);
143
144 /* Create a mac_impl_t to represent this MAC. */
145 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
146
147 /*
148 * The mac is not ready for open yet.
149 */
150 mip->mi_state_flags |= MIS_DISABLED;
151
152 /*
153 * When a mac is registered, the m_instance field can be set to:
154 *
155 * 0: Get the mac's instance number from m_dip.
156 * This is usually used for physical device dips.
157 *
158 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
159 * For example, when an aggregation is created with the key option,
160 * "key" will be used as the instance number.
161 *
162 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
163 * This is often used when a MAC of a virtual link is registered
164 * (e.g., aggregation when "key" is not specified, or vnic).
165 *
166 * Note that the instance number is used to derive the mi_minor field
167 * of mac_impl_t, which will then be used to derive the name of kstats
168 * and the devfs nodes. The first 2 cases are needed to preserve
169 * backward compatibility.
170 */
171 switch (mregp->m_instance) {
172 case 0:
173 instance = ddi_get_instance(mregp->m_dip);
174 break;
175 case ((uint_t)-1):
176 minor = mac_minor_hold(B_TRUE);
177 if (minor == 0) {
178 err = ENOSPC;
179 goto fail;
180 }
181 instance = minor - 1;
182 break;
183 default:
184 instance = mregp->m_instance;
185 if (instance >= MAC_MAX_MINOR) {
186 err = EINVAL;
187 goto fail;
188 }
189 break;
190 }
191
192 mip->mi_minor = (minor_t)(instance + 1);
193 mip->mi_dip = mregp->m_dip;
194 mip->mi_clients_list = NULL;
195 mip->mi_nclients = 0;
196
197 /* Set the default IEEE Port VLAN Identifier */
198 mip->mi_pvid = 1;
199
200 /* Default bridge link learning protection values */
201 mip->mi_llimit = 1000;
202 mip->mi_ldecay = 200;
203
204 driver = (char *)ddi_driver_name(mip->mi_dip);
205
206 /* Construct the MAC name as <drvname><instance> */
207 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
208 driver, instance);
209
210 mip->mi_driver = mregp->m_driver;
211
212 mip->mi_type = mtype;
213 mip->mi_margin = mregp->m_margin;
214 mip->mi_info.mi_media = mtype->mt_type;
215 mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
216 if (mregp->m_max_sdu <= mregp->m_min_sdu)
217 goto fail;
218 if (mregp->m_multicast_sdu == 0)
219 mregp->m_multicast_sdu = mregp->m_max_sdu;
220 if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
221 mregp->m_multicast_sdu > mregp->m_max_sdu)
222 goto fail;
223 mip->mi_sdu_min = mregp->m_min_sdu;
224 mip->mi_sdu_max = mregp->m_max_sdu;
225 mip->mi_sdu_multicast = mregp->m_multicast_sdu;
226 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
227 /*
228 * If the media supports a broadcast address, cache a pointer to it
229 * in the mac_info_t so that upper layers can use it.
230 */
231 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
232
233 mip->mi_v12n_level = mregp->m_v12n;
234
235 /*
236 * Copy the unicast source address into the mac_info_t, but only if
237 * the MAC-Type defines a non-zero address length. We need to
238 * handle MAC-Types that have an address length of 0
239 * (point-to-point protocol MACs for example).
240 */
241 if (mip->mi_type->mt_addr_length > 0) {
242 if (mregp->m_src_addr == NULL)
243 goto fail;
244 mip->mi_info.mi_unicst_addr =
245 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
246 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
247 mip->mi_type->mt_addr_length);
248
249 /*
250 * Copy the fixed 'factory' MAC address from the immutable
251 * info. This is taken to be the MAC address currently in
252 * use.
253 */
254 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
255 mip->mi_type->mt_addr_length);
256
257 /*
258 * At this point, we should set up the classification
259 * rules etc but we delay it till mac_open() so that
260 * the resource discovery has taken place and we
261 * know someone wants to use the device. Otherwise
262 * memory gets allocated for Rx ring structures even
263 * during probe.
264 */
265
266 /* Copy the destination address if one is provided. */
267 if (mregp->m_dst_addr != NULL) {
268 bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
269 mip->mi_type->mt_addr_length);
270 mip->mi_dstaddr_set = B_TRUE;
271 }
272 } else if (mregp->m_src_addr != NULL) {
273 goto fail;
274 }
275
276 /*
277 * The format of the m_pdata is specific to the plugin. It is
278 * passed in as an argument to all of the plugin callbacks. The
279 * driver can update this information by calling
280 * mac_pdata_update().
281 */
282 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
283 /*
284 * Verify if the supplied plugin data is valid. Note that
285 * even if the caller passed in a NULL pointer as plugin data,
286 * we still need to verify if that's valid as the plugin may
287 * require plugin data to function.
288 */
289 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
290 mregp->m_pdata_size)) {
291 goto fail;
292 }
293 if (mregp->m_pdata != NULL) {
294 mip->mi_pdata =
295 kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
296 bcopy(mregp->m_pdata, mip->mi_pdata,
297 mregp->m_pdata_size);
298 mip->mi_pdata_size = mregp->m_pdata_size;
299 }
300 } else if (mregp->m_pdata != NULL) {
301 /*
302 * The caller supplied non-NULL plugin data, but the plugin
303 * does not recognize plugin data.
304 */
305 err = EINVAL;
306 goto fail;
307 }
308
309 /*
310 * Register the private properties.
311 */
312 mac_register_priv_prop(mip, mregp->m_priv_props);
313
314 /*
315 * Stash the driver callbacks into the mac_impl_t, but first sanity
316 * check to make sure all mandatory callbacks are set.
317 */
318 if (mregp->m_callbacks->mc_getstat == NULL ||
319 mregp->m_callbacks->mc_start == NULL ||
320 mregp->m_callbacks->mc_stop == NULL ||
321 mregp->m_callbacks->mc_setpromisc == NULL ||
322 mregp->m_callbacks->mc_multicst == NULL) {
323 goto fail;
324 }
325 mip->mi_callbacks = mregp->m_callbacks;
326
327 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
328 &mip->mi_capab_legacy)) {
329 mip->mi_state_flags |= MIS_LEGACY;
330 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
331 } else {
332 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
333 mip->mi_minor);
334 }
335
336 /*
337 * Allocate a notification thread. thread_create blocks for memory
338 * if needed, it never fails.
339 */
340 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
341 mip, 0, &p0, TS_RUN, minclsyspri);
342
343 /*
344 * Initialize the capabilities
345 */
346
347 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
348 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
349
350 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
351 mip->mi_state_flags |= MIS_IS_VNIC;
352
353 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
354 mip->mi_state_flags |= MIS_IS_AGGR;
355
356 mac_addr_factory_init(mip);
357
358 mac_transceiver_init(mip);
359
360 mac_led_init(mip);
361
362 /*
363 * Enforce the virtrualization level registered.
364 */
365 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
366 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
367 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
368 goto fail;
369
370 /*
371 * The driver needs to register at least rx rings for this
372 * virtualization level.
373 */
374 if (mip->mi_rx_groups == NULL)
375 goto fail;
376 }
377
378 /*
379 * The driver must set mc_unicst entry point to NULL when it advertises
380 * CAP_RINGS for rx groups.
381 */
382 if (mip->mi_rx_groups != NULL) {
383 if (mregp->m_callbacks->mc_unicst != NULL)
384 goto fail;
385 } else {
386 if (mregp->m_callbacks->mc_unicst == NULL)
387 goto fail;
388 }
389
390 /*
391 * Initialize MAC addresses. Must be called after mac_init_rings().
392 */
393 mac_init_macaddr(mip);
394
395 mip->mi_share_capab.ms_snum = 0;
396 if (mip->mi_v12n_level & MAC_VIRT_HIO) {
397 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
398 &mip->mi_share_capab);
399 }
400
401 /*
402 * Initialize the kstats for this device.
403 */
404 mac_driver_stat_create(mip);
405
406 /* Zero out any properties. */
407 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
408
409 if (mip->mi_minor <= MAC_MAX_MINOR) {
410 /* Create a style-2 DLPI device */
411 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
412 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
413 goto fail;
414 style2_created = B_TRUE;
415
416 /* Create a style-1 DLPI device */
417 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
418 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
419 goto fail;
420 style1_created = B_TRUE;
421 }
422
423 mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
424
425 rw_enter(&i_mac_impl_lock, RW_WRITER);
426 if (mod_hash_insert(i_mac_impl_hash,
427 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
428 rw_exit(&i_mac_impl_lock);
429 err = EEXIST;
430 goto fail;
431 }
432
433 DTRACE_PROBE2(mac__register, struct devnames *, dnp,
434 (mac_impl_t *), mip);
435
436 /*
437 * Mark the MAC to be ready for open.
438 */
439 mip->mi_state_flags &= ~MIS_DISABLED;
440 rw_exit(&i_mac_impl_lock);
441
442 atomic_inc_32(&i_mac_impl_count);
443
444 cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
445 *mhp = (mac_handle_t)mip;
446 return (0);
447
448 fail:
449 if (style1_created)
450 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
451
452 if (style2_created)
453 ddi_remove_minor_node(mip->mi_dip, driver);
454
455 mac_addr_factory_fini(mip);
456
457 /* Clean up registered MAC addresses */
458 mac_fini_macaddr(mip);
459
460 /* Clean up registered rings */
461 mac_free_rings(mip, MAC_RING_TYPE_RX);
462 mac_free_rings(mip, MAC_RING_TYPE_TX);
463
464 /* Clean up notification thread */
465 if (mip->mi_notify_thread != NULL)
466 i_mac_notify_exit(mip);
467
468 if (mip->mi_info.mi_unicst_addr != NULL) {
469 kmem_free(mip->mi_info.mi_unicst_addr,
470 mip->mi_type->mt_addr_length);
471 mip->mi_info.mi_unicst_addr = NULL;
472 }
473
474 mac_driver_stat_delete(mip);
475
476 if (mip->mi_type != NULL) {
477 atomic_dec_32(&mip->mi_type->mt_ref);
478 mip->mi_type = NULL;
479 }
480
481 if (mip->mi_pdata != NULL) {
482 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
483 mip->mi_pdata = NULL;
484 mip->mi_pdata_size = 0;
485 }
486
487 if (minor != 0) {
488 ASSERT(minor > MAC_MAX_MINOR);
489 mac_minor_rele(minor);
490 }
491
492 mip->mi_state_flags = 0;
493 mac_unregister_priv_prop(mip);
494
495 /*
496 * Clear the state before destroying the mac_impl_t
497 */
498 mip->mi_state_flags = 0;
499
500 kmem_cache_free(i_mac_impl_cachep, mip);
501 return (err);
502 }
503
504 /*
505 * Unregister from the GLDv3 framework
506 */
507 int
508 mac_unregister(mac_handle_t mh)
509 {
510 int err;
511 mac_impl_t *mip = (mac_impl_t *)mh;
512 mod_hash_val_t val;
513 mac_margin_req_t *mmr, *nextmmr;
514
515 /* Fail the unregister if there are any open references to this mac. */
516 if ((err = mac_disable_nowait(mh)) != 0)
517 return (err);
518
519 /*
520 * Clean up notification thread and wait for it to exit.
521 */
522 i_mac_notify_exit(mip);
523
524 /*
525 * Prior to acquiring the MAC perimeter, remove the MAC instance from
526 * the internal hash table. Such removal means table-walkers that
527 * acquire the perimeter will not do so on behalf of what we are
528 * unregistering, which prevents a deadlock.
529 */
530 rw_enter(&i_mac_impl_lock, RW_WRITER);
531 (void) mod_hash_remove(i_mac_impl_hash,
532 (mod_hash_key_t)mip->mi_name, &val);
533 rw_exit(&i_mac_impl_lock);
534 ASSERT(mip == (mac_impl_t *)val);
535
536 i_mac_perim_enter(mip);
537
538 /*
539 * There is still resource properties configured over this mac.
540 */
541 if (mip->mi_resource_props.mrp_mask != 0)
542 mac_fastpath_enable((mac_handle_t)mip);
543
544 if (mip->mi_minor < MAC_MAX_MINOR + 1) {
545 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
546 ddi_remove_minor_node(mip->mi_dip,
547 (char *)ddi_driver_name(mip->mi_dip));
548 }
549
550 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
551 MIS_EXCLUSIVE));
552
553 mac_driver_stat_delete(mip);
554
555 ASSERT(i_mac_impl_count > 0);
556 atomic_dec_32(&i_mac_impl_count);
557
558 if (mip->mi_pdata != NULL)
559 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
560 mip->mi_pdata = NULL;
561 mip->mi_pdata_size = 0;
562
563 /*
564 * Free the list of margin request.
565 */
566 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
567 nextmmr = mmr->mmr_nextp;
568 kmem_free(mmr, sizeof (mac_margin_req_t));
569 }
570 mip->mi_mmrp = NULL;
571
572 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
573 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
574 mip->mi_info.mi_unicst_addr = NULL;
575
576 atomic_dec_32(&mip->mi_type->mt_ref);
577 mip->mi_type = NULL;
578
579 /*
580 * Free the primary MAC address.
581 */
582 mac_fini_macaddr(mip);
583
584 /*
585 * free all rings
586 */
587 mac_free_rings(mip, MAC_RING_TYPE_RX);
588 mac_free_rings(mip, MAC_RING_TYPE_TX);
589
590 mac_addr_factory_fini(mip);
591
592 bzero(mip->mi_addr, MAXMACADDRLEN);
593 bzero(mip->mi_dstaddr, MAXMACADDRLEN);
594 mip->mi_dstaddr_set = B_FALSE;
595
596 /* and the flows */
597 mac_flow_tab_destroy(mip->mi_flow_tab);
598 mip->mi_flow_tab = NULL;
599
600 if (mip->mi_minor > MAC_MAX_MINOR)
601 mac_minor_rele(mip->mi_minor);
602
603 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
604
605 /*
606 * Reset the perim related fields to default values before
607 * kmem_cache_free
608 */
609 i_mac_perim_exit(mip);
610 mip->mi_state_flags = 0;
611
612 mac_unregister_priv_prop(mip);
613
614 ASSERT(mip->mi_bridge_link == NULL);
615 kmem_cache_free(i_mac_impl_cachep, mip);
616
617 return (0);
618 }
619
620 /* DATA RECEPTION */
621
622 /*
623 * This function is invoked for packets received by the MAC driver in
624 * interrupt context. The ring generation number provided by the driver
625 * is matched with the ring generation number held in MAC. If they do not
626 * match, received packets are considered stale packets coming from an older
627 * assignment of the ring. Drop them.
628 */
629 void
630 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
631 uint64_t mr_gen_num)
632 {
633 mac_ring_t *mr = (mac_ring_t *)mrh;
634
635 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
636 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
637 mr->mr_gen_num, uint64_t, mr_gen_num);
638 freemsgchain(mp_chain);
639 return;
640 }
641 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
642 }
643
644 /*
645 * This function is invoked for each packet received by the underlying driver.
646 */
647 void
648 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
649 {
650 mac_impl_t *mip = (mac_impl_t *)mh;
651
652 /*
653 * Check if the link is part of a bridge. If not, then we don't need
654 * to take the lock to remain consistent. Make this common case
655 * lock-free and tail-call optimized.
656 */
657 if (mip->mi_bridge_link == NULL) {
658 mac_rx_common(mh, mrh, mp_chain);
659 } else {
660 /*
661 * Once we take a reference on the bridge link, the bridge
662 * module itself can't unload, so the callback pointers are
663 * stable.
664 */
665 mutex_enter(&mip->mi_bridge_lock);
666 if ((mh = mip->mi_bridge_link) != NULL)
667 mac_bridge_ref_cb(mh, B_TRUE);
668 mutex_exit(&mip->mi_bridge_lock);
669 if (mh == NULL) {
670 mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
671 } else {
672 mac_bridge_rx_cb(mh, mrh, mp_chain);
673 mac_bridge_ref_cb(mh, B_FALSE);
674 }
675 }
676 }
677
678 /*
679 * Special case function: this allows snooping of packets transmitted and
680 * received by TRILL. By design, they go directly into the TRILL module.
681 */
682 void
683 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
684 {
685 mac_impl_t *mip = (mac_impl_t *)mh;
686
687 if (mip->mi_promisc_list != NULL)
688 mac_promisc_dispatch(mip, mp, NULL);
689 }
690
691 /*
692 * This is the upward reentry point for packets arriving from the bridging
693 * module and from mac_rx for links not part of a bridge.
694 */
695 void
696 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
697 {
698 mac_impl_t *mip = (mac_impl_t *)mh;
699 mac_ring_t *mr = (mac_ring_t *)mrh;
700 mac_soft_ring_set_t *mac_srs;
701 mblk_t *bp = mp_chain;
702 boolean_t hw_classified = B_FALSE;
703
704 /*
705 * If there are any promiscuous mode callbacks defined for
706 * this MAC, pass them a copy if appropriate.
707 */
708 if (mip->mi_promisc_list != NULL)
709 mac_promisc_dispatch(mip, mp_chain, NULL);
710
711 if (mr != NULL) {
712 /*
713 * If the SRS teardown has started, just return. The 'mr'
714 * continues to be valid until the driver unregisters the mac.
715 * Hardware classified packets will not make their way up
716 * beyond this point once the teardown has started. The driver
717 * is never passed a pointer to a flow entry or SRS or any
718 * structure that can be freed much before mac_unregister.
719 */
720 mutex_enter(&mr->mr_lock);
721 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
722 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
723 mutex_exit(&mr->mr_lock);
724 freemsgchain(mp_chain);
725 return;
726 }
727 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
728 hw_classified = B_TRUE;
729 MR_REFHOLD_LOCKED(mr);
730 }
731 mutex_exit(&mr->mr_lock);
732
733 /*
734 * We check if an SRS is controlling this ring.
735 * If so, we can directly call the srs_lower_proc
736 * routine otherwise we need to go through mac_rx_classify
737 * to reach the right place.
738 */
739 if (hw_classified) {
740 mac_srs = mr->mr_srs;
741 /*
742 * This is supposed to be the fast path.
743 * All packets received though here were steered by
744 * the hardware classifier, and share the same
745 * MAC header info.
746 */
747 mac_srs->srs_rx.sr_lower_proc(mh,
748 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
749 MR_REFRELE(mr);
750 return;
751 }
752 /* We'll fall through to software classification */
753 } else {
754 flow_entry_t *flent;
755 int err;
756
757 rw_enter(&mip->mi_rw_lock, RW_READER);
758 if (mip->mi_single_active_client != NULL) {
759 flent = mip->mi_single_active_client->mci_flent_list;
760 FLOW_TRY_REFHOLD(flent, err);
761 rw_exit(&mip->mi_rw_lock);
762 if (err == 0) {
763 (flent->fe_cb_fn)(flent->fe_cb_arg1,
764 flent->fe_cb_arg2, mp_chain, B_FALSE);
765 FLOW_REFRELE(flent);
766 return;
767 }
768 } else {
769 rw_exit(&mip->mi_rw_lock);
770 }
771 }
772
773 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
774 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
775 return;
776 }
777
778 freemsgchain(bp);
779 }
780
781 /* DATA TRANSMISSION */
782
783 /*
784 * A driver's notification to resume transmission, in case of a provider
785 * without TX rings.
786 */
787 void
788 mac_tx_update(mac_handle_t mh)
789 {
790 mac_tx_ring_update(mh, NULL);
791 }
792
793 /*
794 * A driver's notification to resume transmission on the specified TX ring.
795 */
796 void
797 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
798 {
799 i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
800 }
801
802 /* LINK STATE */
803 /*
804 * Notify the MAC layer about a link state change
805 */
806 void
807 mac_link_update(mac_handle_t mh, link_state_t link)
808 {
809 mac_impl_t *mip = (mac_impl_t *)mh;
810
811 /*
812 * Save the link state.
813 */
814 mip->mi_lowlinkstate = link;
815
816 /*
817 * Send a MAC_NOTE_LOWLINK notification. This tells the notification
818 * thread to deliver both lower and upper notifications.
819 */
820 i_mac_notify(mip, MAC_NOTE_LOWLINK);
821 }
822
823 /*
824 * Notify the MAC layer about a link state change due to bridging.
825 */
826 void
827 mac_link_redo(mac_handle_t mh, link_state_t link)
828 {
829 mac_impl_t *mip = (mac_impl_t *)mh;
830
831 /*
832 * Save the link state.
833 */
834 mip->mi_linkstate = link;
835
836 /*
837 * Send a MAC_NOTE_LINK notification. Only upper notifications are
838 * made.
839 */
840 i_mac_notify(mip, MAC_NOTE_LINK);
841 }
842
843 /* MINOR NODE HANDLING */
844
845 /*
846 * Given a dev_t, return the instance number (PPA) associated with it.
847 * Drivers can use this in their getinfo(9e) implementation to lookup
848 * the instance number (i.e. PPA) of the device, to use as an index to
849 * their own array of soft state structures.
850 *
851 * Returns -1 on error.
852 */
853 int
854 mac_devt_to_instance(dev_t devt)
855 {
856 return (dld_devt_to_instance(devt));
857 }
858
859 /*
860 * This function returns the first minor number that is available for
861 * driver private use. All minor numbers smaller than this are
862 * reserved for GLDv3 use.
863 */
864 minor_t
865 mac_private_minor(void)
866 {
867 return (MAC_PRIVATE_MINOR);
868 }
869
870 /* OTHER CONTROL INFORMATION */
871
872 /*
873 * A driver notified us that its primary MAC address has changed.
874 */
875 void
876 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
877 {
878 mac_impl_t *mip = (mac_impl_t *)mh;
879
880 if (mip->mi_type->mt_addr_length == 0)
881 return;
882
883 i_mac_perim_enter(mip);
884
885 /*
886 * If address changes, freshen the MAC address value and update
887 * all MAC clients that share this MAC address.
888 */
889 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
890 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
891 (uint8_t *)addr);
892 }
893
894 i_mac_perim_exit(mip);
895
896 /*
897 * Send a MAC_NOTE_UNICST notification.
898 */
899 i_mac_notify(mip, MAC_NOTE_UNICST);
900 }
901
902 void
903 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
904 {
905 mac_impl_t *mip = (mac_impl_t *)mh;
906
907 if (mip->mi_type->mt_addr_length == 0)
908 return;
909
910 i_mac_perim_enter(mip);
911 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
912 i_mac_perim_exit(mip);
913 i_mac_notify(mip, MAC_NOTE_DEST);
914 }
915
916 /*
917 * MAC plugin information changed.
918 */
919 int
920 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
921 {
922 mac_impl_t *mip = (mac_impl_t *)mh;
923
924 /*
925 * Verify that the plugin supports MAC plugin data and that the
926 * supplied data is valid.
927 */
928 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
929 return (EINVAL);
930 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
931 return (EINVAL);
932
933 if (mip->mi_pdata != NULL)
934 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
935
936 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
937 bcopy(mac_pdata, mip->mi_pdata, dsize);
938 mip->mi_pdata_size = dsize;
939
940 /*
941 * Since the MAC plugin data is used to construct MAC headers that
942 * were cached in fast-path headers, we need to flush fast-path
943 * information for links associated with this mac.
944 */
945 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
946 return (0);
947 }
948
949 /*
950 * Invoked by driver as well as the framework to notify its capability change.
951 */
952 void
953 mac_capab_update(mac_handle_t mh)
954 {
955 /* Send MAC_NOTE_CAPAB_CHG notification */
956 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
957 }
958
959 /*
960 * Used by normal drivers to update the max sdu size.
961 * We need to handle the case of a smaller mi_sdu_multicast
962 * since this is called by mac_set_mtu() even for drivers that
963 * have differing unicast and multicast mtu and we don't want to
964 * increase the multicast mtu by accident in that case.
965 */
966 int
967 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
968 {
969 mac_impl_t *mip = (mac_impl_t *)mh;
970
971 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
972 return (EINVAL);
973 mip->mi_sdu_max = sdu_max;
974 if (mip->mi_sdu_multicast > mip->mi_sdu_max)
975 mip->mi_sdu_multicast = mip->mi_sdu_max;
976
977 /* Send a MAC_NOTE_SDU_SIZE notification. */
978 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
979 return (0);
980 }
981
982 /*
983 * Version of the above function that is used by drivers that have a different
984 * max sdu size for multicast/broadcast vs. unicast.
985 */
986 int
987 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
988 {
989 mac_impl_t *mip = (mac_impl_t *)mh;
990
991 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
992 return (EINVAL);
993 if (sdu_multicast == 0)
994 sdu_multicast = sdu_max;
995 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
996 return (EINVAL);
997 mip->mi_sdu_max = sdu_max;
998 mip->mi_sdu_multicast = sdu_multicast;
999
1000 /* Send a MAC_NOTE_SDU_SIZE notification. */
1001 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1002 return (0);
1003 }
1004
1005 static void
1006 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
1007 {
1008 mac_client_impl_t *mcip;
1009 flow_entry_t *flent;
1010 mac_soft_ring_set_t *mac_rx_srs;
1011 mac_cpus_t *srs_cpu;
1012 int i;
1013
1014 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1015 (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1016 /* interrupt can be re-targeted */
1017 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1018 flent = mcip->mci_flent;
1019 if (ring->mr_type == MAC_RING_TYPE_RX) {
1020 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1021 mac_rx_srs = flent->fe_rx_srs[i];
1022 if (mac_rx_srs->srs_ring != ring)
1023 continue;
1024 srs_cpu = &mac_rx_srs->srs_cpu;
1025 mutex_enter(&cpu_lock);
1026 mac_rx_srs_retarget_intr(mac_rx_srs,
1027 srs_cpu->mc_rx_intr_cpu);
1028 mutex_exit(&cpu_lock);
1029 break;
1030 }
1031 } else {
1032 if (flent->fe_tx_srs != NULL) {
1033 mutex_enter(&cpu_lock);
1034 mac_tx_srs_retarget_intr(
1035 flent->fe_tx_srs);
1036 mutex_exit(&cpu_lock);
1037 }
1038 }
1039 }
1040 }
1041
1042 /*
1043 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1044 * their clients. There is a 1-1 mapping pseudo ring and the hardware
1045 * ring. ddi interrupt handles are exported from the hardware ring to
1046 * the pseudo ring. Thus when the interrupt handle changes, clients of
1047 * aggr that are using the handle need to use the new handle and
1048 * re-target their interrupts.
1049 */
1050 static void
1051 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1052 ddi_intr_handle_t ddh)
1053 {
1054 mac_ring_t *pring;
1055 mac_group_t *pgroup;
1056 mac_impl_t *pmip;
1057 char macname[MAXNAMELEN];
1058 mac_perim_handle_t p_mph;
1059 uint64_t saved_gen_num;
1060
1061 again:
1062 pring = (mac_ring_t *)ring->mr_prh;
1063 pgroup = (mac_group_t *)pring->mr_gh;
1064 pmip = (mac_impl_t *)pgroup->mrg_mh;
1065 saved_gen_num = ring->mr_gen_num;
1066 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1067 /*
1068 * We need to enter aggr's perimeter. The locking hierarchy
1069 * dictates that aggr's perimeter should be entered first
1070 * and then the port's perimeter. So drop the port's
1071 * perimeter, enter aggr's and then re-enter port's
1072 * perimeter.
1073 */
1074 i_mac_perim_exit(mip);
1075 /*
1076 * While we know pmip is the aggr's mip, there is a
1077 * possibility that aggr could have unregistered by
1078 * the time we exit port's perimeter (mip) and
1079 * enter aggr's perimeter (pmip). To avoid that
1080 * scenario, enter aggr's perimeter using its name.
1081 */
1082 if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1083 return;
1084 i_mac_perim_enter(mip);
1085 /*
1086 * Check if the ring got assigned to another aggregation before
1087 * be could enter aggr's and the port's perimeter. When a ring
1088 * gets deleted from an aggregation, it calls mac_stop_ring()
1089 * which increments the generation number. So checking
1090 * generation number will be enough.
1091 */
1092 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1093 i_mac_perim_exit(mip);
1094 mac_perim_exit(p_mph);
1095 i_mac_perim_enter(mip);
1096 goto again;
1097 }
1098
1099 /* Check if pseudo ring is still present */
1100 if (ring->mr_prh != NULL) {
1101 pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1102 pring->mr_info.mri_intr.mi_ddi_shared =
1103 ring->mr_info.mri_intr.mi_ddi_shared;
1104 if (ddh != NULL)
1105 mac_ring_intr_retarget(pgroup, pring);
1106 }
1107 i_mac_perim_exit(mip);
1108 mac_perim_exit(p_mph);
1109 }
1110 /*
1111 * API called by driver to provide new interrupt handle for TX/RX rings.
1112 * This usually happens when IRM (Interrupt Resource Manangement)
1113 * framework either gives the driver more MSI-x interrupts or takes
1114 * away MSI-x interrupts from the driver.
1115 */
1116 void
1117 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1118 {
1119 mac_ring_t *ring = (mac_ring_t *)mrh;
1120 mac_group_t *group = (mac_group_t *)ring->mr_gh;
1121 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1122
1123 i_mac_perim_enter(mip);
1124 ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1125 if (ddh == NULL) {
1126 /* Interrupts being reset */
1127 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1128 if (ring->mr_prh != NULL) {
1129 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1130 return;
1131 }
1132 } else {
1133 /* New interrupt handle */
1134 mac_compare_ddi_handle(mip->mi_rx_groups,
1135 mip->mi_rx_group_count, ring);
1136 if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1137 mac_compare_ddi_handle(mip->mi_tx_groups,
1138 mip->mi_tx_group_count, ring);
1139 }
1140 if (ring->mr_prh != NULL) {
1141 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1142 return;
1143 } else {
1144 mac_ring_intr_retarget(group, ring);
1145 }
1146 }
1147 i_mac_perim_exit(mip);
1148 }
1149
1150 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1151
1152 /*
1153 * Updates the mac_impl structure with the current state of the link
1154 */
1155 static void
1156 i_mac_log_link_state(mac_impl_t *mip)
1157 {
1158 /*
1159 * If no change, then it is not interesting.
1160 */
1161 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1162 return;
1163
1164 switch (mip->mi_lowlinkstate) {
1165 case LINK_STATE_UP:
1166 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1167 char det[200];
1168
1169 mip->mi_type->mt_ops.mtops_link_details(det,
1170 sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1171
1172 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1173 } else {
1174 cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1175 }
1176 break;
1177
1178 case LINK_STATE_DOWN:
1179 /*
1180 * Only transitions from UP to DOWN are interesting
1181 */
1182 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1183 cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1184 break;
1185
1186 case LINK_STATE_UNKNOWN:
1187 /*
1188 * This case is normally not interesting.
1189 */
1190 break;
1191 }
1192 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1193 }
1194
1195 /*
1196 * Main routine for the callbacks notifications thread
1197 */
1198 static void
1199 i_mac_notify_thread(void *arg)
1200 {
1201 mac_impl_t *mip = arg;
1202 callb_cpr_t cprinfo;
1203 mac_cb_t *mcb;
1204 mac_cb_info_t *mcbi;
1205 mac_notify_cb_t *mncb;
1206
1207 mcbi = &mip->mi_notify_cb_info;
1208 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1209 "i_mac_notify_thread");
1210
1211 mutex_enter(mcbi->mcbi_lockp);
1212
1213 for (;;) {
1214 uint32_t bits;
1215 uint32_t type;
1216
1217 bits = mip->mi_notify_bits;
1218 if (bits == 0) {
1219 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1220 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1221 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1222 continue;
1223 }
1224 mip->mi_notify_bits = 0;
1225 if ((bits & (1 << MAC_NNOTE)) != 0) {
1226 /* request to quit */
1227 ASSERT(mip->mi_state_flags & MIS_DISABLED);
1228 break;
1229 }
1230
1231 mutex_exit(mcbi->mcbi_lockp);
1232
1233 /*
1234 * Log link changes on the actual link, but then do reports on
1235 * synthetic state (if part of a bridge).
1236 */
1237 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1238 link_state_t newstate;
1239 mac_handle_t mh;
1240
1241 i_mac_log_link_state(mip);
1242 newstate = mip->mi_lowlinkstate;
1243 if (mip->mi_bridge_link != NULL) {
1244 mutex_enter(&mip->mi_bridge_lock);
1245 if ((mh = mip->mi_bridge_link) != NULL) {
1246 newstate = mac_bridge_ls_cb(mh,
1247 newstate);
1248 }
1249 mutex_exit(&mip->mi_bridge_lock);
1250 }
1251 if (newstate != mip->mi_linkstate) {
1252 mip->mi_linkstate = newstate;
1253 bits |= 1 << MAC_NOTE_LINK;
1254 }
1255 }
1256
1257 /*
1258 * Do notification callbacks for each notification type.
1259 */
1260 for (type = 0; type < MAC_NNOTE; type++) {
1261 if ((bits & (1 << type)) == 0) {
1262 continue;
1263 }
1264
1265 if (mac_notify_cb_list[type] != NULL)
1266 (*mac_notify_cb_list[type])(mip);
1267
1268 /*
1269 * Walk the list of notifications.
1270 */
1271 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1272 for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1273 mcb = mcb->mcb_nextp) {
1274 mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1275 mncb->mncb_fn(mncb->mncb_arg, type);
1276 }
1277 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1278 &mip->mi_notify_cb_list);
1279 }
1280
1281 mutex_enter(mcbi->mcbi_lockp);
1282 }
1283
1284 mip->mi_state_flags |= MIS_NOTIFY_DONE;
1285 cv_broadcast(&mcbi->mcbi_cv);
1286
1287 /* CALLB_CPR_EXIT drops the lock */
1288 CALLB_CPR_EXIT(&cprinfo);
1289 thread_exit();
1290 }
1291
1292 /*
1293 * Signal the i_mac_notify_thread asking it to quit.
1294 * Then wait till it is done.
1295 */
1296 void
1297 i_mac_notify_exit(mac_impl_t *mip)
1298 {
1299 mac_cb_info_t *mcbi;
1300
1301 mcbi = &mip->mi_notify_cb_info;
1302
1303 mutex_enter(mcbi->mcbi_lockp);
1304 mip->mi_notify_bits = (1 << MAC_NNOTE);
1305 cv_broadcast(&mcbi->mcbi_cv);
1306
1307
1308 while ((mip->mi_notify_thread != NULL) &&
1309 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1310 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1311 }
1312
1313 /* Necessary clean up before doing kmem_cache_free */
1314 mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1315 mip->mi_notify_bits = 0;
1316 mip->mi_notify_thread = NULL;
1317 mutex_exit(mcbi->mcbi_lockp);
1318 }
1319
1320 /*
1321 * Entry point invoked by drivers to dynamically add a ring to an
1322 * existing group.
1323 */
1324 int
1325 mac_group_add_ring(mac_group_handle_t gh, int index)
1326 {
1327 mac_group_t *group = (mac_group_t *)gh;
1328 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1329 int ret;
1330
1331 i_mac_perim_enter(mip);
1332 ret = i_mac_group_add_ring(group, NULL, index);
1333 i_mac_perim_exit(mip);
1334 return (ret);
1335 }
1336
1337 /*
1338 * Entry point invoked by drivers to dynamically remove a ring
1339 * from an existing group. The specified ring handle must no longer
1340 * be used by the driver after a call to this function.
1341 */
1342 void
1343 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1344 {
1345 mac_group_t *group = (mac_group_t *)gh;
1346 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1347
1348 i_mac_perim_enter(mip);
1349 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1350 i_mac_perim_exit(mip);
1351 }
1352
1353 /*
1354 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1355 * entry points.
1356 */
1357
1358 void
1359 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1360 {
1361 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1362
1363 /* nothing to do if the caller doesn't want the default value */
1364 if (pr->pr_default == NULL)
1365 return;
1366
1367 ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1368
1369 *(uint8_t *)(pr->pr_default) = val;
1370 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1371 }
1372
1373 void
1374 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1375 {
1376 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1377
1378 /* nothing to do if the caller doesn't want the default value */
1379 if (pr->pr_default == NULL)
1380 return;
1381
1382 ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1383
1384 bcopy(&val, pr->pr_default, sizeof (val));
1385
1386 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1387 }
1388
1389 void
1390 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1391 {
1392 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1393
1394 /* nothing to do if the caller doesn't want the default value */
1395 if (pr->pr_default == NULL)
1396 return;
1397
1398 ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1399
1400 bcopy(&val, pr->pr_default, sizeof (val));
1401
1402 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1403 }
1404
1405 void
1406 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1407 {
1408 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1409
1410 /* nothing to do if the caller doesn't want the default value */
1411 if (pr->pr_default == NULL)
1412 return;
1413
1414 if (strlen(str) >= pr->pr_default_size)
1415 pr->pr_errno = ENOBUFS;
1416 else
1417 (void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1418 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1419 }
1420
1421 void
1422 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1423 link_flowctrl_t val)
1424 {
1425 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1426
1427 /* nothing to do if the caller doesn't want the default value */
1428 if (pr->pr_default == NULL)
1429 return;
1430
1431 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1432
1433 bcopy(&val, pr->pr_default, sizeof (val));
1434
1435 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1436 }
1437
1438 void
1439 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1440 uint32_t max)
1441 {
1442 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1443 mac_propval_range_t *range = pr->pr_range;
1444 mac_propval_uint32_range_t *range32;
1445
1446 /* nothing to do if the caller doesn't want the range info */
1447 if (range == NULL)
1448 return;
1449
1450 if (pr->pr_range_cur_count++ == 0) {
1451 /* first range */
1452 pr->pr_flags |= MAC_PROP_INFO_RANGE;
1453 range->mpr_type = MAC_PROPVAL_UINT32;
1454 } else {
1455 /* all ranges of a property should be of the same type */
1456 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1457 if (pr->pr_range_cur_count > range->mpr_count) {
1458 pr->pr_errno = ENOSPC;
1459 return;
1460 }
1461 }
1462
1463 range32 = range->mpr_range_uint32;
1464 range32[pr->pr_range_cur_count - 1].mpur_min = min;
1465 range32[pr->pr_range_cur_count - 1].mpur_max = max;
1466 }
1467
1468 void
1469 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1470 {
1471 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1472
1473 pr->pr_perm = perm;
1474 pr->pr_flags |= MAC_PROP_INFO_PERM;
1475 }
1476
1477 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff,
1478 uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1479 {
1480 uint32_t flags;
1481
1482 ASSERT(DB_TYPE(mp) == M_DATA);
1483
1484 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1485 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1486 if (value != NULL)
1487 *value = (uint32_t)DB_CKSUM16(mp);
1488 if ((flags & HCK_PARTIALCKSUM) != 0) {
1489 if (start != NULL)
1490 *start = (uint32_t)DB_CKSUMSTART(mp);
1491 if (stuff != NULL)
1492 *stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1493 if (end != NULL)
1494 *end = (uint32_t)DB_CKSUMEND(mp);
1495 }
1496 }
1497
1498 if (flags_ptr != NULL)
1499 *flags_ptr = flags;
1500 }
1501
1502 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff,
1503 uint32_t end, uint32_t value, uint32_t flags)
1504 {
1505 ASSERT(DB_TYPE(mp) == M_DATA);
1506
1507 DB_CKSUMSTART(mp) = (intptr_t)start;
1508 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1509 DB_CKSUMEND(mp) = (intptr_t)end;
1510 DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1511 DB_CKSUM16(mp) = (uint16_t)value;
1512 }
1513
1514 void
1515 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1516 {
1517 ASSERT(DB_TYPE(mp) == M_DATA);
1518
1519 if (flags != NULL) {
1520 *flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1521 if ((*flags != 0) && (mss != NULL))
1522 *mss = (uint32_t)DB_LSOMSS(mp);
1523 }
1524 }
1525
1526 void
1527 mac_transceiver_info_set_present(mac_transceiver_info_t *infop,
1528 boolean_t present)
1529 {
1530 infop->mti_present = present;
1531 }
1532
1533 void
1534 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop,
1535 boolean_t usable)
1536 {
1537 infop->mti_usable = usable;
1538 }