1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  * Copyright 2017 Joyent, Inc.
  25  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
  26  */
  27 
  28 /*
  29  * MAC data path
  30  *
  31  * The MAC data path is concerned with the flow of traffic from mac clients --
  32  * DLS, IP, etc. -- to various GLDv3 device drivers -- e1000g, vnic, aggr,
  33  * ixgbe, etc. -- and from the GLDv3 device drivers back to clients.
  34  *
  35  * -----------
  36  * Terminology
  37  * -----------
  38  *
  39  * MAC uses a lot of different, but related terms that are associated with the
  40  * design and structure of the data path. Before we cover other aspects, first
  41  * let's review the terminology that MAC uses.
  42  *
  43  * MAC
  44  *
  45  *      This driver. It interfaces with device drivers and provides abstractions
  46  *      that the rest of the system consumes. All data links -- things managed
  47  *      with dladm(1M), are accessed through MAC.
  48  *
  49  * GLDv3 DEVICE DRIVER
  50  *
  51  *      A GLDv3 device driver refers to a driver, both for pseudo-devices and
  52  *      real devices, which implement the GLDv3 driver API. Common examples of
  53  *      these are igb and ixgbe, which are drivers for various Intel networking
  54  *      cards. These devices may or may not have various features, such as
  55  *      hardware rings and checksum offloading. For MAC, a GLDv3 device is the
  56  *      final point for the transmission of a packet and the starting point for
  57  *      the receipt of a packet.
  58  *
  59  * FLOWS
  60  *
  61  *      At a high level, a flow refers to a series of packets that are related.
  62  *      Often times the term is used in the context of TCP to indicate a unique
  63  *      TCP connection and the traffic over it. However, a flow can exist at
  64  *      other levels of the system as well. MAC has a notion of a default flow
  65  *      which is used for all unicast traffic addressed to the address of a MAC
  66  *      device. For example, when a VNIC is created, a default flow is created
  67  *      for the VNIC's MAC address. In addition, flows are created for broadcast
  68  *      groups and a user may create a flow with flowadm(1M).
  69  *
  70  * CLASSIFICATION
  71  *
  72  *      Classification refers to the notion of identifying an incoming frame
  73  *      based on its destination address and optionally its source addresses and
  74  *      doing different processing based on that information. Classification can
  75  *      be done in both hardware and software. In general, we usually only
  76  *      classify based on the layer two destination, eg. for Ethernet, the
  77  *      destination MAC address.
  78  *
  79  *      The system also will do classification based on layer three and layer
  80  *      four properties. This is used to support things like flowadm(1M), which
  81  *      allows setting QoS and other properties on a per-flow basis.
  82  *
  83  * RING
  84  *
  85  *      Conceptually, a ring represents a series of framed messages, often in a
  86  *      contiguous chunk of memory that acts as a circular buffer. Rings come in
  87  *      a couple of forms. Generally they are either a hardware construct (hw
  88  *      ring) or they are a software construct (sw ring) maintained by MAC.
  89  *
  90  * HW RING
  91  *
  92  *      A hardware ring is a set of resources provided by a GLDv3 device driver
  93  *      (even if it is a pseudo-device). A hardware ring comes in two different
  94  *      forms: receive (rx) rings and transmit (tx) rings. An rx hw ring is
  95  *      something that has a unique DMA (direct memory access) region and
  96  *      generally supports some form of classification (though it isn't always
  97  *      used), as well as a means of generating an interrupt specific to that
  98  *      ring. For example, the device may generate a specific MSI-X for a PCI
  99  *      express device. A tx ring is similar, except that it is dedicated to
 100  *      transmission. It may also be a vector for enabling features such as VLAN
 101  *      tagging and large transmit offloading. It usually has its own dedicated
 102  *      interrupts for transmit being completed.
 103  *
 104  * SW RING
 105  *
 106  *      A software ring is a construction of MAC. It represents the same thing
 107  *      that a hardware ring generally does, a collection of frames. However,
 108  *      instead of being in a contiguous ring of memory, they're instead linked
 109  *      by using the mblk_t's b_next pointer. Each frame may itself be multiple
 110  *      mblk_t's linked together by the b_cont pointer. A software ring always
 111  *      represents a collection of classified packets; however, it varies as to
 112  *      whether it uses only layer two information, or a combination of that and
 113  *      additional layer three and layer four data.
 114  *
 115  * FANOUT
 116  *
 117  *      Fanout is the idea of spreading out the load of processing frames based
 118  *      on the source and destination information contained in the layer two,
 119  *      three, and four headers, such that the data can then be processed in
 120  *      parallel using multiple hardware threads.
 121  *
 122  *      A fanout algorithm hashes the headers and uses that to place different
 123  *      flows into a bucket. The most important thing is that packets that are
 124  *      in the same flow end up in the same bucket. If they do not, performance
 125  *      can be adversely affected. Consider the case of TCP.  TCP severely
 126  *      penalizes a connection if the data arrives out of order. If a given flow
 127  *      is processed on different CPUs, then the data will appear out of order,
 128  *      hence the invariant that fanout always hash a given flow to the same
 129  *      bucket and thus get processed on the same CPU.
 130  *
 131  * RECEIVE SIDE SCALING (RSS)
 132  *
 133  *
 134  *      Receive side scaling is a term that isn't common in illumos, but is used
 135  *      by vendors and was popularized by Microsoft. It refers to the idea of
 136  *      spreading the incoming receive load out across multiple interrupts which
 137  *      can be directed to different CPUs. This allows a device to leverage
 138  *      hardware rings even when it doesn't support hardware classification. The
 139  *      hardware uses an algorithm to perform fanout that ensures the flow
 140  *      invariant is maintained.
 141  *
 142  * SOFT RING SET
 143  *
 144  *      A soft ring set, commonly abbreviated SRS, is a collection of rings and
 145  *      is used for both transmitting and receiving. It is maintained in the
 146  *      structure mac_soft_ring_set_t. A soft ring set is usually associated
 147  *      with flows, and coordinates both the use of hardware and software rings.
 148  *      Because the use of hardware rings can change as devices such as VNICs
 149  *      come and go, we always ensure that the set has software classification
 150  *      rules that correspond to the hardware classification rules from rings.
 151  *
 152  *      Soft ring sets are also used for the enforcement of various QoS
 153  *      properties. For example, if a bandwidth limit has been placed on a
 154  *      specific flow or device, then that will be enforced by the soft ring
 155  *      set.
 156  *
 157  * SERVICE ATTACHMENT POINT (SAP)
 158  *
 159  *      The service attachment point is a DLPI (Data Link Provider Interface)
 160  *      concept; however, it comes up quite often in MAC. Most MAC devices speak
 161  *      a protocol that has some notion of different channels or message type
 162  *      identifiers. For example, Ethernet defines an EtherType which is a part
 163  *      of the Ethernet header and defines the particular protocol of the data
 164  *      payload. If the EtherType is set to 0x0800, then it defines that the
 165  *      contents of that Ethernet frame is IPv4 traffic. For Ethernet, the
 166  *      EtherType is the SAP.
 167  *
 168  *      In DLPI, a given consumer attaches to a specific SAP. In illumos, the ip
 169  *      and arp drivers attach to the EtherTypes for IPv4, IPv6, and ARP. Using
 170  *      libdlpi(3LIB) user software can attach to arbitrary SAPs. With the
 171  *      exception of 802.1Q VLAN tagged traffic, MAC itself does not directly
 172  *      consume the SAP; however, it uses that information as part of hashing
 173  *      and it may be used as part of the construction of flows.
 174  *
 175  * PRIMARY MAC CLIENT
 176  *
 177  *      The primary mac client refers to a mac client whose unicast address
 178  *      matches the address of the device itself. For example, if the system has
 179  *      instance of the e1000g driver such as e1000g0, e1000g1, etc., the
 180  *      primary mac client is the one named after the device itself. VNICs that
 181  *      are created on top of such devices are not the primary client.
 182  *
 183  * TRANSMIT DESCRIPTORS
 184  *
 185  *      Transmit descriptors are a resource that most GLDv3 device drivers have.
 186  *      Generally, a GLDv3 device driver takes a frame that's meant to be output
 187  *      and puts a copy of it into a region of memory. Each region of memory
 188  *      usually has an associated descriptor that the device uses to manage
 189  *      properties of the frames. Devices have a limited number of such
 190  *      descriptors. They get reclaimed once the device finishes putting the
 191  *      frame on the wire.
 192  *
 193  *      If the driver runs out of transmit descriptors, for example, the OS is
 194  *      generating more frames than it can put on the wire, then it will return
 195  *      them back to the MAC layer.
 196  *
 197  * ---------------------------------
 198  * Rings, Classification, and Fanout
 199  * ---------------------------------
 200  *
 201  * The heart of MAC is made up of rings, and not those that Elven-kings wear.
 202  * When receiving a packet, MAC breaks the work into two different, though
 203  * interrelated phases. The first phase is generally classification and then the
 204  * second phase is generally fanout. When a frame comes in from a GLDv3 Device,
 205  * MAC needs to determine where that frame should be delivered. If it's a
 206  * unicast frame (say a normal TCP/IP packet), then it will be delivered to a
 207  * single MAC client; however, if it's a broadcast or multicast frame, then MAC
 208  * may need to deliver it to multiple MAC clients.
 209  *
 210  * On transmit, classification isn't quite as important, but may still be used.
 211  * Unlike with the receive path, the classification is not used to determine
 212  * devices that should transmit something, but rather is used for special
 213  * properties of a flow, eg. bandwidth limits for a given IP address, device, or
 214  * connection.
 215  *
 216  * MAC employs a software classifier and leverages hardware classification as
 217  * well. The software classifier can leverage the full layer two information,
 218  * source, destination, VLAN, and SAP. If the SAP indicates that IP traffic is
 219  * being sent, it can classify based on the IP header, and finally, it also
 220  * knows how to classify based on the local and remote ports of TCP, UDP, and
 221  * SCTP.
 222  *
 223  * Hardware classifiers vary in capability. Generally all hardware classifiers
 224  * provide the capability to classify based on the destination MAC address. Some
 225  * hardware has additional filters built in for performing more in-depth
 226  * classification; however, it often has much more limited resources for these
 227  * activities as compared to the layer two destination address classification.
 228  *
 229  * The modus operandi in MAC is to always ensure that we have software-based
 230  * capabilities and rules in place and then to supplement that with hardware
 231  * resources when available. In general, simple layer two classification is
 232  * sufficient and nothing else is used, unless a specific flow is created with
 233  * tools such as flowadm(1M) or bandwidth limits are set on a device with
 234  * dladm(1M).
 235  *
 236  * RINGS AND GROUPS
 237  *
 238  * To get into how rings and classification play together, it's first important
 239  * to understand how hardware devices commonly associate rings and allow them to
 240  * be programmed. Recall that a hardware ring should be thought of as a DMA
 241  * buffer and an interrupt resource. Rings are then collected into groups. A
 242  * group itself has a series of classification rules. One or more MAC addresses
 243  * are assigned to a group.
 244  *
 245  * Hardware devices vary in terms of what capabilities they provide. Sometimes
 246  * they allow for a dynamic assignment of rings to a group and sometimes they
 247  * have a static assignment of rings to a group. For example, the ixgbe driver
 248  * has a static assignment of rings to groups such that every group has exactly
 249  * one ring and the number of groups is equal to the number of rings.
 250  *
 251  * Classification and receive side scaling both come into play with how a device
 252  * advertises itself to MAC and how MAC uses it. If a device supports layer two
 253  * classification of frames, then MAC will assign MAC addresses to a group as a
 254  * form of primary classification. If a single MAC address is assigned to a
 255  * group, a common case, then MAC will consider packets that come in from rings
 256  * on that group to be fully classified and will not need to do any software
 257  * classification unless a specific flow has been created.
 258  *
 259  * If a device supports receive side scaling, then it may advertise or support
 260  * groups with multiple rings. In those cases, then receive side scaling will
 261  * come into play and MAC will use that as a means of fanning out received
 262  * frames across multiple CPUs. This can also be combined with groups that
 263  * support layer two classification.
 264  *
 265  * If a device supports dynamic assignments of rings to groups, then MAC will
 266  * change around the way that rings are assigned to various groups as devices
 267  * come and go from the system. For example, when a VNIC is created, a new flow
 268  * will be created for the VNIC's MAC address. If a hardware ring is available,
 269  * MAC may opt to reassign it from one group to another.
 270  *
 271  * ASSIGNMENT OF HARDWARE RINGS
 272  *
 273  * This is a bit of a complicated subject that varies depending on the device,
 274  * the use of aggregations, the special nature of the primary mac client. This
 275  * section deserves being fleshed out.
 276  *
 277  * FANOUT
 278  *
 279  * illumos uses fanout to help spread out the incoming processing load of chains
 280  * of frames away from a single CPU. If a device supports receive side scaling,
 281  * then that provides an initial form of fanout; however, what we're concerned
 282  * with all happens after the context of a given set of frames being classified
 283  * to a soft ring set.
 284  *
 285  * After frames reach a soft ring set and account for any potential bandwidth
 286  * related accounting, they may be fanned out based on one of the following
 287  * three modes:
 288  *
 289  *     o No Fanout
 290  *     o Protocol level fanout
 291  *     o Full software ring protocol fanout
 292  *
 293  * MAC makes the determination as to which of these modes a given soft ring set
 294  * obtains based on parameters such as whether or not it's the primary mac
 295  * client, whether it's on a 10 GbE or faster device, user controlled dladm(1M)
 296  * properties, and the nature of the hardware and the resources that it has.
 297  *
 298  * When there is no fanout, MAC does not create any soft rings for a device and
 299  * the device has frames delivered directly to the MAC client.
 300  *
 301  * Otherwise, all fanout is performed by software. MAC divides incoming frames
 302  * into one of three buckets -- IPv4 TCP traffic, IPv4 UDP traffic, and
 303  * everything else. Note, VLAN tagged traffic is considered other, regardless of
 304  * the interior EtherType. Regardless of the type of fanout, these three
 305  * categories or buckets are always used.
 306  *
 307  * The difference between protocol level fanout and full software ring protocol
 308  * fanout is the number of software rings that end up getting created. The
 309  * system always uses the same number of software rings per protocol bucket. So
 310  * in the first case when we're just doing protocol level fanout, we just create
 311  * one software ring each for IPv4 TCP traffic, IPv4 UDP traffic, and everything
 312  * else.
 313  *
 314  * In the case where we do full software ring protocol fanout, we generally use
 315  * mac_compute_soft_ring_count() to determine the number of rings. There are
 316  * other combinations of properties and devices that may send us down other
 317  * paths, but this is a common starting point. If it's a non-bandwidth enforced
 318  * device and we're on at least a 10 GbE link, then we'll use eight soft rings
 319  * per protocol bucket as a starting point. See mac_compute_soft_ring_count()
 320  * for more information on the total number.
 321  *
 322  * For each of these rings, we create a mac_soft_ring_t and an associated worker
 323  * thread. Particularly when doing full software ring protocol fanout, we bind
 324  * each of the worker threads to individual CPUs.
 325  *
 326  * The other advantage of these software rings is that it allows upper layers to
 327  * optionally poll on them. For example, TCP can leverage an squeue to poll on
 328  * the software ring, see squeue.c for more information.
 329  *
 330  * DLS BYPASS
 331  *
 332  * DLS is the data link services module. It interfaces with DLPI, which is the
 333  * primary way that other parts of the system such as IP interface with the MAC
 334  * layer. While DLS is traditionally a STREAMS-based interface, it allows for
 335  * certain modules such as IP to negotiate various more modern interfaces to be
 336  * used, which are useful for higher performance and allow it to use direct
 337  * function calls to DLS instead of using STREAMS.
 338  *
 339  * When we have IPv4 TCP or UDP software rings, then traffic on those rings is
 340  * eligible for what we call the dls bypass. In those cases, rather than going
 341  * out mac_rx_deliver() to DLS, DLS instead registers them to go directly via
 342  * the direct callback registered with DLS, generally ip_input().
 343  *
 344  * HARDWARE RING POLLING
 345  *
 346  * GLDv3 devices with hardware rings generally deliver chains of messages
 347  * (mblk_t chain) during the context of a single interrupt. However, interrupts
 348  * are not the only way that these devices may be used. As part of implementing
 349  * ring support, a GLDv3 device driver must have a way to disable the generation
 350  * of that interrupt and allow for the operating system to poll on that ring.
 351  *
 352  * To implement this, every soft ring set has a worker thread and a polling
 353  * thread. If a sufficient packet rate comes into the system, MAC will 'blank'
 354  * (disable) interrupts on that specific ring and the polling thread will start
 355  * consuming packets from the hardware device and deliver them to the soft ring
 356  * set, where the worker thread will take over.
 357  *
 358  * Once the rate of packet intake drops down below a certain threshold, then
 359  * polling on the hardware ring will be quiesced and interrupts will be
 360  * re-enabled for the given ring. This effectively allows the system to shift
 361  * how it handles a ring based on its load. At high packet rates, polling on the
 362  * device as opposed to relying on interrupts can actually reduce overall system
 363  * load due to the minimization of interrupt activity.
 364  *
 365  * Note the importance of each ring having its own interrupt source. The whole
 366  * idea here is that we do not disable interrupts on the device as a whole, but
 367  * rather each ring can be independently toggled.
 368  *
 369  * USE OF WORKER THREADS
 370  *
 371  * Both the soft ring set and individual soft rings have a worker thread
 372  * associated with them that may be bound to a specific CPU in the system. Any
 373  * such assignment will get reassessed as part of dynamic reconfiguration events
 374  * in the system such as the onlining and offlining of CPUs and the creation of
 375  * CPU partitions.
 376  *
 377  * In many cases, while in an interrupt, we try to deliver a frame all the way
 378  * through the stack in the context of the interrupt itself. However, if the
 379  * amount of queued frames has exceeded a threshold, then we instead defer to
 380  * the worker thread to do this work and signal it. This is particularly useful
 381  * when you have the soft ring set delivering frames into multiple software
 382  * rings. If it was only delivering frames into a single software ring then
 383  * there'd be no need to have another thread take over. However, if it's
 384  * delivering chains of frames to multiple rings, then it's worthwhile to have
 385  * the worker for the software ring take over so that the different software
 386  * rings can be processed in parallel.
 387  *
 388  * In a similar fashion to the hardware polling thread, if we don't have a
 389  * backlog or there's nothing to do, then the worker thread will go back to
 390  * sleep and frames can be delivered all the way from an interrupt. This
 391  * behavior is useful as it's designed to minimize latency and the default
 392  * disposition of MAC is to optimize for latency.
 393  *
 394  * MAINTAINING CHAINS
 395  *
 396  * Another useful idea that MAC uses is to try and maintain frames in chains for
 397  * as long as possible. The idea is that all of MAC can handle chains of frames
 398  * structured as a series of mblk_t structures linked with the b_next pointer.
 399  * When performing software classification and software fanout, MAC does not
 400  * simply determine the destination and send the frame along. Instead, in the
 401  * case of classification, it tries to maintain a chain for as long as possible
 402  * before passing it along and performing additional processing.
 403  *
 404  * In the case of fanout, MAC first determines what the target software ring is
 405  * for every frame in the original chain and constructs a new chain for each
 406  * target. MAC then delivers the new chain to each software ring in succession.
 407  *
 408  * The whole rationale for doing this is that we want to try and maintain the
 409  * pipe as much as possible and deliver as many frames through the stack at once
 410  * that we can, rather than just pushing a single frame through. This can often
 411  * help bring down latency and allows MAC to get a better sense of the overall
 412  * activity in the system and properly engage worker threads.
 413  *
 414  * --------------------
 415  * Bandwidth Management
 416  * --------------------
 417  *
 418  * Bandwidth management is something that's built into the soft ring set itself.
 419  * When bandwidth limits are placed on a flow, a corresponding soft ring set is
 420  * toggled into bandwidth mode. This changes how we transmit and receive the
 421  * frames in question.
 422  *
 423  * Bandwidth management is done on a per-tick basis. We translate the user's
 424  * requested bandwidth from a quantity per-second into a quantity per-tick. MAC
 425  * cannot process a frame across more than one tick, thus it sets a lower bound
 426  * for the bandwidth cap to be a single MTU. This also means that when
 427  * hires ticks are enabled (hz is set to 1000), that the minimum amount of
 428  * bandwidth is higher, because the number of ticks has increased and MAC has to
 429  * go from accepting 100 packets / sec to 1000 / sec.
 430  *
 431  * The bandwidth counter is reset by either the soft ring set's worker thread or
 432  * a thread that is doing an inline transmit or receive if they discover that
 433  * the current tick is in the future from the recorded tick.
 434  *
 435  * Whenever we're receiving or transmitting data, we end up leaving most of the
 436  * work to the soft ring set's worker thread. This forces data inserted into the
 437  * soft ring set to be effectively serialized and allows us to exhume bandwidth
 438  * at a reasonable rate. If there is nothing in the soft ring set at the moment
 439  * and the set has available bandwidth, then it may processed inline.
 440  * Otherwise, the worker is responsible for taking care of the soft ring set.
 441  *
 442  * ---------------------
 443  * The Receive Data Path
 444  * ---------------------
 445  *
 446  * The following series of ASCII art images breaks apart the way that a frame
 447  * comes in and is processed in MAC.
 448  *
 449  * Part 1 -- Initial frame receipt, SRS classification
 450  *
 451  * Here, a frame is received by a GLDv3 driver, generally in the context of an
 452  * interrupt, and it ends up in mac_rx_common(). A driver calls either mac_rx or
 453  * mac_rx_ring, depending on whether or not it supports rings and can identify
 454  * the interrupt as having come from a specific ring. Here we determine whether
 455  * or not it's fully classified and perform software classification as
 456  * appropriate. From here, everything always ends up going to either entry [A]
 457  * or entry [B] based on whether or not they have subflow processing needed. We
 458  * leave via fanout or delivery.
 459  *
 460  *           +===========+
 461  *           v hardware  v
 462  *           v interrupt v
 463  *           +===========+
 464  *                 |
 465  *                 * . . appropriate
 466  *                 |     upcall made
 467  *                 |     by GLDv3 driver  . . always
 468  *                 |                      .
 469  *  +--------+     |     +----------+     .    +---------------+
 470  *  | GLDv3  |     +---->| mac_rx   |-----*--->| mac_rx_common |
 471  *  | Driver |-->--+     +----------+          +---------------+
 472  *  +--------+     |        ^                         |
 473  *      |          |        ^                         v
 474  *      ^          |        * . . always   +----------------------+
 475  *      |          |        |              | mac_promisc_dispatch |
 476  *      |          |    +-------------+    +----------------------+
 477  *      |          +--->| mac_rx_ring |               |
 478  *      |               +-------------+               * . . hw classified
 479  *      |                                             v     or single flow?
 480  *      |                                             |
 481  *      |                                   +--------++--------------+
 482  *      |                                   |        |               * hw class,
 483  *      |                                   |        * hw classified | subflows
 484  *      |                 no hw class and . *        | or single     | exist
 485  *      |                 subflows          |        | flow          |
 486  *      |                                   |        v               v
 487  *      |                                   |   +-----------+   +-----------+
 488  *      |                                   |   |   goto    |   |  goto     |
 489  *      |                                   |   | entry [A] |   | entry [B] |
 490  *      |                                   |   +-----------+   +-----------+
 491  *      |                                   v          ^
 492  *      |                            +-------------+   |
 493  *      |                            | mac_rx_flow |   * SRS and flow found,
 494  *      |                            +-------------+   | call flow cb
 495  *      |                                   |          +------+
 496  *      |                                   v                 |
 497  *      v                             +==========+    +-----------------+
 498  *      |                             v For each v--->| mac_rx_classify |
 499  * +----------+                       v  mblk_t  v    +-----------------+
 500  * |   srs    |                       +==========+
 501  * | pollling |
 502  * |  thread  |->------------------------------------------+
 503  * +----------+                                            |
 504  *                                                         v       . inline
 505  *            +--------------------+   +----------+   +---------+  .
 506  *    [A]---->| mac_rx_srs_process |-->| check bw |-->| enqueue |--*---------+
 507  *            +--------------------+   |  limits  |   | frames  |            |
 508  *               ^                     +----------+   | to SRS  |            |
 509  *               |                                    +---------+            |
 510  *               |  send chain              +--------+    |                  |
 511  *               *  when clasified          | signal |    * BW limits,       |
 512  *               |  flow changes            |  srs   |<---+ loopback,        |
 513  *               |                          | worker |      stack too        |
 514  *               |                          +--------+      deep             |
 515  *      +-----------------+        +--------+                                |
 516  *      | mac_flow_lookup |        |  srs   |     +---------------------+    |
 517  *      +-----------------+        | worker |---->| mac_rx_srs_drain    |<---+
 518  *               ^                 | thread |     | mac_rx_srs_drain_bw |
 519  *               |                 +--------+     +---------------------+
 520  *               |                                          |
 521  *         +----------------------------+                   * software rings
 522  *   [B]-->| mac_rx_srs_subflow_process |                   | for fanout?
 523  *         +----------------------------+                   |
 524  *                                               +----------+-----------+
 525  *                                               |                      |
 526  *                                               v                      v
 527  *                                          +--------+             +--------+
 528  *                                          |  goto  |             |  goto  |
 529  *                                          | Part 2 |             | Part 3 |
 530  *                                          +--------+             +--------+
 531  *
 532  * Part 2 -- Fanout
 533  *
 534  * This part is concerned with using software fanout to assign frames to
 535  * software rings and then deliver them to MAC clients or allow those rings to
 536  * be polled upon. While there are two different primary fanout entry points,
 537  * mac_rx_fanout and mac_rx_proto_fanout, they behave in similar ways, and aside
 538  * from some of the individual hashing techniques used, most of the general
 539  * flow is the same.
 540  *
 541  *  +--------+              +-------------------+
 542  *  |  From  |---+--------->| mac_rx_srs_fanout |----+
 543  *  | Part 1 |   |          +-------------------+    |    +=================+
 544  *  +--------+   |                                   |    v for each mblk_t v
 545  *               * . . protocol only                 +--->v assign to new   v
 546  *               |     fanout                        |    v chain based on  v
 547  *               |                                   |    v hash % nrings   v
 548  *               |    +-------------------------+    |    +=================+
 549  *               +--->| mac_rx_srs_proto_fanout |----+             |
 550  *                    +-------------------------+                  |
 551  *                                                                 v
 552  *    +------------+    +--------------------------+       +================+
 553  *    | enqueue in |<---| mac_rx_soft_ring_process |<------v for each chain v
 554  *    | soft ring  |    +--------------------------+       +================+
 555  *    +------------+
 556  *         |                                    +-----------+
 557  *         * soft ring set                      | soft ring |
 558  *         | empty and no                       |  worker   |
 559  *         | worker?                            |  thread   |
 560  *         |                                    +-----------+
 561  *         +------*----------------+                  |
 562  *         |      .                |                  v
 563  *    No . *      . Yes            |       +------------------------+
 564  *         |                       +----<--| mac_rx_soft_ring_drain |
 565  *         |                       |       +------------------------+
 566  *         v                       |
 567  *   +-----------+                 v
 568  *   |   signal  |         +---------------+
 569  *   | soft ring |         | Deliver chain |
 570  *   |   worker  |         | goto Part 3   |
 571  *   +-----------+         +---------------+
 572  *
 573  *
 574  * Part 3 -- Packet Delivery
 575  *
 576  * Here, we go through and deliver the mblk_t chain directly to a given
 577  * processing function. In a lot of cases this is mac_rx_deliver(). In the case
 578  * of DLS bypass being used, then instead we end up going ahead and deliver it
 579  * to the direct callback registered with DLS, generally ip_input.
 580  *
 581  *
 582  *   +---------+            +----------------+    +------------------+
 583  *   |  From   |---+------->| mac_rx_deliver |--->| Off to DLS, or   |
 584  *   | Parts 1 |   |        +----------------+    | other MAC client |
 585  *   |  and 2  |   * DLS bypass                   +------------------+
 586  *   +---------+   | enabled   +----------+    +-------------+
 587  *                 +---------->| ip_input |--->|    To IP    |
 588  *                             +----------+    | and beyond! |
 589  *                                             +-------------+
 590  *
 591  * ----------------------
 592  * The Transmit Data Path
 593  * ----------------------
 594  *
 595  * Before we go into the images, it's worth talking about a problem that is a
 596  * bit different from the receive data path. GLDv3 device drivers have a finite
 597  * amount of transmit descriptors. When they run out, they return unused frames
 598  * back to MAC. MAC, at this point has several options about what it will do,
 599  * which vary based upon the settings that the client uses.
 600  *
 601  * When a device runs out of descriptors, the next thing that MAC does is
 602  * enqueue them off of the soft ring set or a software ring, depending on the
 603  * configuration of the soft ring set. MAC will enqueue up to a high watermark
 604  * of mblk_t chains, at which point it will indicate flow control back to the
 605  * client. Once this condition is reached, any mblk_t chains that were not
 606  * enqueued will be returned to the caller and they will have to decide what to
 607  * do with them. There are various flags that control this behavior that a
 608  * client may pass, which are discussed below.
 609  *
 610  * When this condition is hit, MAC also returns a cookie to the client in
 611  * addition to unconsumed frames. Clients can poll on that cookie and register a
 612  * callback with MAC to be notified when they are no longer subject to flow
 613  * control, at which point they may continue to call mac_tx(). This flow control
 614  * actually manages to work itself all the way up the stack, back through dls,
 615  * to ip, through the various protocols, and to sockfs.
 616  *
 617  * While the behavior described above is the default, this behavior can be
 618  * modified. There are two alternate modes, described below, which are
 619  * controlled with flags.
 620  *
 621  * DROP MODE
 622  *
 623  * This mode is controlled by having the client pass the MAC_DROP_ON_NO_DESC
 624  * flag. When this is passed, if a device driver runs out of transmit
 625  * descriptors, then the MAC layer will drop any unsent traffic. The client in
 626  * this case will never have any frames returned to it.
 627  *
 628  * DON'T ENQUEUE
 629  *
 630  * This mode is controlled by having the client pass the MAC_TX_NO_ENQUEUE flag.
 631  * If the MAC_DROP_ON_NO_DESC flag is also passed, it takes precedence. In this
 632  * mode, when we hit a case where a driver runs out of transmit descriptors,
 633  * then instead of enqueuing packets in a soft ring set or software ring, we
 634  * instead return the mblk_t chain back to the caller and immediately put the
 635  * soft ring set into flow control mode.
 636  *
 637  * The following series of ASCII art images describe the transmit data path that
 638  * MAC clients enter into based on calling into mac_tx(). A soft ring set has a
 639  * transmission function associated with it. There are seven possible
 640  * transmission modes, some of which share function entry points. The one that a
 641  * soft ring set gets depends on properties such as whether there are
 642  * transmission rings for fanout, whether the device involves aggregations,
 643  * whether any bandwidth limits exist, etc.
 644  *
 645  *
 646  * Part 1 -- Initial checks
 647  *
 648  *      * . called by
 649  *      |   MAC clients
 650  *      v                     . . No
 651  *  +--------+  +-----------+ .   +-------------------+  +====================+
 652  *  | mac_tx |->| device    |-*-->| mac_protect_check |->v Is this the simple v
 653  *  +--------+  | quiesced? |     +-------------------+  v case? See [1]      v
 654  *              +-----------+            |               +====================+
 655  *                  * . Yes              * failed                 |
 656  *                  v                    | frames                 |
 657  *             +--------------+          |                +-------+---------+
 658  *             | freemsgchain |<---------+          Yes . *            No . *
 659  *             +--------------+                           v                 v
 660  *                                                  +-----------+     +--------+
 661  *                                                  |   goto    |     |  goto  |
 662  *                                                  |  Part 2   |     | SRS TX |
 663  *                                                  | Entry [A] |     |  func  |
 664  *                                                  +-----------+     +--------+
 665  *                                                        |                 |
 666  *                                                        |                 v
 667  *                                                        |           +--------+
 668  *                                                        +---------->| return |
 669  *                                                                    | cookie |
 670  *                                                                    +--------+
 671  *
 672  * [1] The simple case refers to the SRS being configured with the
 673  * SRS_TX_DEFAULT transmission mode, having a single mblk_t (not a chain), their
 674  * being only a single active client, and not having a backlog in the srs.
 675  *
 676  *
 677  * Part 2 -- The SRS transmission functions
 678  *
 679  * This part is a bit more complicated. The different transmission paths often
 680  * leverage one another. In this case, we'll draw out the more common ones
 681  * before the parts that depend upon them. Here, we're going to start with the
 682  * workings of mac_tx_send() a common function that most of the others end up
 683  * calling.
 684  *
 685  *      +-------------+
 686  *      | mac_tx_send |
 687  *      +-------------+
 688  *            |
 689  *            v
 690  *      +=============+    +==============+
 691  *      v  more than  v--->v    check     v
 692  *      v one client? v    v VLAN and add v
 693  *      +=============+    v  VLAN tags   v
 694  *            |            +==============+
 695  *            |                  |
 696  *            +------------------+
 697  *            |
 698  *            |                 [A]
 699  *            v                  |
 700  *       +============+ . No     v
 701  *       v more than  v .     +==========+     +--------------------------+
 702  *       v one active v-*---->v for each v---->| mac_promisc_dispatch_one |---+
 703  *       v  client?   v       v mblk_t   v     +--------------------------+   |
 704  *       +============+       +==========+        ^                           |
 705  *            |                                   |       +==========+        |
 706  *            * . Yes                             |       v hardware v<-------+
 707  *            v                      +------------+       v  rings?  v
 708  *       +==========+                |                    +==========+
 709  *       v for each v       No . . . *                         |
 710  *       v mblk_t   v       specific |                         |
 711  *       +==========+       flow     |                   +-----+-----+
 712  *            |                      |                   |           |
 713  *            v                      |                   v           v
 714  *    +-----------------+            |               +-------+  +---------+
 715  *    | mac_tx_classify |------------+               | GLDv3 |  |  GLDv3  |
 716  *    +-----------------+                            |TX func|  | ring tx |
 717  *            |                                      +-------+  |  func   |
 718  *            * Specific flow, generally                 |      +---------+
 719  *            | bcast, mcast, loopback                   |           |
 720  *            v                                          +-----+-----+
 721  *      +==========+       +---------+                         |
 722  *      v valid L2 v--*--->| freemsg |                         v
 723  *      v  header  v  . No +---------+               +-------------------+
 724  *      +==========+                                 | return unconsumed |
 725  *            * . Yes                                |   frames to the   |
 726  *            v                                      |      caller       |
 727  *      +===========+                                +-------------------+
 728  *      v braodcast v      +----------------+                  ^
 729  *      v   flow?   v--*-->| mac_bcast_send |------------------+
 730  *      +===========+  .   +----------------+                  |
 731  *            |        . . Yes                                 |
 732  *       No . *                                                v
 733  *            |  +---------------------+  +---------------+  +----------+
 734  *            +->|mac_promisc_dispatch |->| mac_fix_cksum |->|   flow   |
 735  *               +---------------------+  +---------------+  | callback |
 736  *                                                           +----------+
 737  *
 738  *
 739  * In addition, many but not all of the routines, all rely on
 740  * mac_tx_softring_process as an entry point.
 741  *
 742  *
 743  *                                           . No             . No
 744  * +--------------------------+   +========+ .  +===========+ .  +-------------+
 745  * | mac_tx_soft_ring_process |-->v worker v-*->v out of tx v-*->|    goto     |
 746  * +--------------------------+   v only?  v    v  descr.?  v    | mac_tx_send |
 747  *                                +========+    +===========+    +-------------+
 748  *                              Yes . *               * . Yes           |
 749  *                   . No             v               |                 v
 750  *     v=========+   .          +===========+ . Yes   |     Yes .  +==========+
 751  *     v apppend v<--*----------v out of tx v-*-------+---------*--v returned v
 752  *     v mblk_t  v              v  descr.?  v         |            v frames?  v
 753  *     v chain   v              +===========+         |            +==========+
 754  *     +=========+                                    |                 *. No
 755  *         |                                          |                 v
 756  *         v                                          v           +------------+
 757  * +===================+           +----------------------+       |   done     |
 758  * v worker scheduled? v           | mac_tx_sring_enqueue |       | processing |
 759  * v Out of tx descr?  v           +----------------------+       +------------+
 760  * +===================+                      |
 761  *    |           |           . Yes           v
 762  *    * Yes       * No        .         +============+
 763  *    |           v         +-*---------v drop on no v
 764  *    |      +========+     v           v  TX desc?  v
 765  *    |      v  wake  v  +----------+   +============+
 766  *    |      v worker v  | mac_pkt_ |         * . No
 767  *    |      +========+  | drop     |         |         . Yes         . No
 768  *    |           |      +----------+         v         .             .
 769  *    |           |         v   ^     +===============+ .  +========+ .
 770  *    +--+--------+---------+   |     v Don't enqueue v-*->v ring   v-*----+
 771  *       |                      |     v     Set?      v    v empty? v      |
 772  *       |      +---------------+     +===============+    +========+      |
 773  *       |      |                            |                |            |
 774  *       |      |        +-------------------+                |            |
 775  *       |      *. Yes   |                          +---------+            |
 776  *       |      |        v                          v                      v
 777  *       |      |  +===========+               +========+      +--------------+
 778  *       |      +<-v At hiwat? v               v append v      |    return    |
 779  *       |         +===========+               v mblk_t v      | mblk_t chain |
 780  *       |                  * No               v chain  v      |   and flow   |
 781  *       |                  v                  +========+      |    control   |
 782  *       |               +=========+                |          |    cookie    |
 783  *       |               v  append v                v          +--------------+
 784  *       |               v  mblk_t v           +========+
 785  *       |               v  chain  v           v  wake  v   +------------+
 786  *       |               +=========+           v worker v-->|    done    |
 787  *       |                    |                +========+   | processing |
 788  *       |                    v       .. Yes                +------------+
 789  *       |               +=========+  .   +========+
 790  *       |               v  first  v--*-->v  wake  v
 791  *       |               v append? v      v worker v
 792  *       |               +=========+      +========+
 793  *       |                   |                |
 794  *       |              No . *                |
 795  *       |                   v                |
 796  *       |       +--------------+             |
 797  *       +------>|   Return     |             |
 798  *               | flow control |<------------+
 799  *               |   cookie     |
 800  *               +--------------+
 801  *
 802  *
 803  * The remaining images are all specific to each of the different transmission
 804  * modes.
 805  *
 806  * SRS TX DEFAULT
 807  *
 808  *      [ From Part 1 ]
 809  *             |
 810  *             v
 811  * +-------------------------+
 812  * | mac_tx_single_ring_mode |
 813  * +-------------------------+
 814  *            |
 815  *            |       . Yes
 816  *            v       .
 817  *       +==========+ .  +============+
 818  *       v   SRS    v-*->v   Try to   v---->---------------------+
 819  *       v backlog? v    v enqueue in v                          |
 820  *       +==========+    v     SRS    v-->------+                * . . Queue too
 821  *            |          +============+         * don't enqueue  |     deep or
 822  *            * . No         ^     |            | flag or at     |     drop flag
 823  *            |              |     v            | hiwat,         |
 824  *            v              |     |            | return    +---------+
 825  *     +-------------+       |     |            | cookie    | freemsg |
 826  *     |    goto     |-*-----+     |            |           +---------+
 827  *     | mac_tx_send | . returned  |            |                |
 828  *     +-------------+   mblk_t    |            |                |
 829  *            |                    |            |                |
 830  *            |                    |            |                |
 831  *            * . . all mblk_t     * queued,    |                |
 832  *            v     consumed       | may return |                |
 833  *     +-------------+             | tx cookie  |                |
 834  *     | SRS TX func |<------------+------------+----------------+
 835  *     |  completed  |
 836  *     +-------------+
 837  *
 838  * SRS_TX_SERIALIZE
 839  *
 840  *   +------------------------+
 841  *   | mac_tx_serializer_mode |
 842  *   +------------------------+
 843  *               |
 844  *               |        . No
 845  *               v        .
 846  *         +============+ .  +============+    +-------------+   +============+
 847  *         v srs being  v-*->v  set SRS   v--->|    goto     |-->v remove SRS v
 848  *         v processed? v    v proc flags v    | mac_tx_send |   v proc flag  v
 849  *         +============+    +============+    +-------------+   +============+
 850  *               |                                                     |
 851  *               * Yes                                                 |
 852  *               v                                       . No          v
 853  *      +--------------------+                           .        +==========+
 854  *      | mac_tx_srs_enqueue |  +------------------------*-----<--v returned v
 855  *      +--------------------+  |                                 v frames?  v
 856  *               |              |   . Yes                         +==========+
 857  *               |              |   .                                  |
 858  *               |              |   . +=========+                      v
 859  *               v              +-<-*-v queued  v     +--------------------+
 860  *        +-------------+       |     v frames? v<----| mac_tx_srs_enqueue |
 861  *        | SRS TX func |       |     +=========+     +--------------------+
 862  *        | completed,  |<------+         * . Yes
 863  *        | may return  |       |         v
 864  *        |   cookie    |       |     +========+
 865  *        +-------------+       +-<---v  wake  v
 866  *                                    v worker v
 867  *                                    +========+
 868  *
 869  *
 870  * SRS_TX_FANOUT
 871  *
 872  *                                             . Yes
 873  *   +--------------------+    +=============+ .   +--------------------------+
 874  *   | mac_tx_fanout_mode |--->v Have fanout v-*-->|           goto           |
 875  *   +--------------------+    v   hint?     v     | mac_rx_soft_ring_process |
 876  *                             +=============+     +--------------------------+
 877  *                                   * . No                    |
 878  *                                   v                         ^
 879  *                             +===========+                   |
 880  *                        +--->v for each  v           +===============+
 881  *                        |    v   mblk_t  v           v pick softring v
 882  *                 same   *    +===========+           v   from hash   v
 883  *                 hash   |          |                 +===============+
 884  *                        |          v                         |
 885  *                        |   +--------------+                 |
 886  *                        +---| mac_pkt_hash |--->*------------+
 887  *                            +--------------+    . different
 888  *                                                  hash or
 889  *                                                  done proc.
 890  * SRS_TX_AGGR                                      chain
 891  *
 892  *   +------------------+    +================================+
 893  *   | mac_tx_aggr_mode |--->v Use aggr capab function to     v
 894  *   +------------------+    v find appropriate tx ring.      v
 895  *                           v Applies hash based on aggr     v
 896  *                           v policy, see mac_tx_aggr_mode() v
 897  *                           +================================+
 898  *                                          |
 899  *                                          v
 900  *                           +-------------------------------+
 901  *                           |            goto               |
 902  *                           |  mac_rx_srs_soft_ring_process |
 903  *                           +-------------------------------+
 904  *
 905  *
 906  * SRS_TX_BW, SRS_TX_BW_FANOUT, SRS_TX_BW_AGGR
 907  *
 908  * Note, all three of these tx functions start from the same place --
 909  * mac_tx_bw_mode().
 910  *
 911  *  +----------------+
 912  *  | mac_tx_bw_mode |
 913  *  +----------------+
 914  *         |
 915  *         v          . No               . No               . Yes
 916  *  +==============+  .  +============+  .  +=============+ .  +=========+
 917  *  v  Out of BW?  v--*->v SRS empty? v--*->v  reset BW   v-*->v Bump BW v
 918  *  +==============+     +============+     v tick count? v    v Usage   v
 919  *         |                   |            +=============+    +=========+
 920  *         |         +---------+                   |                |
 921  *         |         |        +--------------------+                |
 922  *         |         |        |              +----------------------+
 923  *         v         |        v              v
 924  * +===============+ |  +==========+   +==========+      +------------------+
 925  * v Don't enqueue v |  v  set bw  v   v Is aggr? v--*-->|       goto       |
 926  * v   flag set?   v |  v enforced v   +==========+  .   | mac_tx_aggr_mode |-+
 927  * +===============+ |  +==========+         |       .   +------------------+ |
 928  *   |    Yes .*     |        |         No . *       .                        |
 929  *   |         |     |        |              |       . Yes                    |
 930  *   * . No    |     |        v              |                                |
 931  *   |  +---------+  |   +========+          v              +======+          |
 932  *   |  | freemsg |  |   v append v   +============+  . Yes v pick v          |
 933  *   |  +---------+  |   v mblk_t v   v Is fanout? v--*---->v ring v          |
 934  *   |      |        |   v chain  v   +============+        +======+          |
 935  *   +------+        |   +========+          |                  |             |
 936  *          v        |        |              v                  v             |
 937  *    +---------+    |        v       +-------------+ +--------------------+  |
 938  *    | return  |    |   +========+   |    goto     | |       goto         |  |
 939  *    |  flow   |    |   v wakeup v   | mac_tx_send | | mac_tx_fanout_mode |  |
 940  *    | control |    |   v worker v   +-------------+ +--------------------+  |
 941  *    | cookie  |    |   +========+          |                  |             |
 942  *    +---------+    |        |              |                  +------+------+
 943  *                   |        v              |                         |
 944  *                   |   +---------+         |                         v
 945  *                   |   | return  |   +============+           +------------+
 946  *                   |   |  flow   |   v unconsumed v-------+   |   done     |
 947  *                   |   | control |   v   frames?  v       |   | processing |
 948  *                   |   | cookie  |   +============+       |   +------------+
 949  *                   |   +---------+         |              |
 950  *                   |                  Yes  *              |
 951  *                   |                       |              |
 952  *                   |                 +===========+        |
 953  *                   |                 v subtract  v        |
 954  *                   |                 v unused bw v        |
 955  *                   |                 +===========+        |
 956  *                   |                       |              |
 957  *                   |                       v              |
 958  *                   |              +--------------------+  |
 959  *                   +------------->| mac_tx_srs_enqueue |  |
 960  *                                  +--------------------+  |
 961  *                                           |              |
 962  *                                           |              |
 963  *                                     +------------+       |
 964  *                                     |  return fc |       |
 965  *                                     | cookie and |<------+
 966  *                                     |    mblk_t  |
 967  *                                     +------------+
 968  */
 969 
 970 #include <sys/types.h>
 971 #include <sys/callb.h>
 972 #include <sys/sdt.h>
 973 #include <sys/strsubr.h>
 974 #include <sys/strsun.h>
 975 #include <sys/vlan.h>
 976 #include <sys/stack.h>
 977 #include <sys/archsystm.h>
 978 #include <inet/ipsec_impl.h>
 979 #include <inet/ip_impl.h>
 980 #include <inet/sadb.h>
 981 #include <inet/ipsecesp.h>
 982 #include <inet/ipsecah.h>
 983 #include <inet/ip6.h>
 984 
 985 #include <sys/mac_impl.h>
 986 #include <sys/mac_client_impl.h>
 987 #include <sys/mac_client_priv.h>
 988 #include <sys/mac_soft_ring.h>
 989 #include <sys/mac_flow_impl.h>
 990 
 991 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *,
 992     uintptr_t, uint16_t, mblk_t **);
 993 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *,
 994     uintptr_t, uint16_t, mblk_t **);
 995 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *,
 996     uintptr_t, uint16_t, mblk_t **);
 997 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *,
 998     uintptr_t, uint16_t, mblk_t **);
 999 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *,
1000     uintptr_t, uint16_t, mblk_t **);
1001 
1002 typedef struct mac_tx_mode_s {
1003         mac_tx_srs_mode_t       mac_tx_mode;
1004         mac_tx_func_t           mac_tx_func;
1005 } mac_tx_mode_t;
1006 
1007 /*
1008  * There are seven modes of operation on the Tx side. These modes get set
1009  * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode,
1010  * none of the other modes are user configurable. They get selected by
1011  * the system depending upon whether the link (or flow) has multiple Tx
1012  * rings or a bandwidth configured, or if the link is an aggr, etc.
1013  *
1014  * When the Tx SRS is operating in aggr mode (st_mode) or if there are
1015  * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or
1016  * otherwise) will have a soft ring associated with it. These soft rings
1017  * are stored in srs_tx_soft_rings[] array.
1018  *
1019  * Additionally in the case of aggr, there is the st_soft_rings[] array
1020  * in the mac_srs_tx_t structure. This array is used to store the same
1021  * set of soft rings that are present in srs_tx_soft_rings[] array but
1022  * in a different manner. The soft ring associated with the pseudo Tx
1023  * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[]
1024  * array. This helps in quickly getting the soft ring associated with the
1025  * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to
1026  * be used for transmit.
1027  */
1028 mac_tx_mode_t mac_tx_mode_list[] = {
1029         {SRS_TX_DEFAULT,        mac_tx_single_ring_mode},
1030         {SRS_TX_SERIALIZE,      mac_tx_serializer_mode},
1031         {SRS_TX_FANOUT,         mac_tx_fanout_mode},
1032         {SRS_TX_BW,             mac_tx_bw_mode},
1033         {SRS_TX_BW_FANOUT,      mac_tx_bw_mode},
1034         {SRS_TX_AGGR,           mac_tx_aggr_mode},
1035         {SRS_TX_BW_AGGR,        mac_tx_bw_mode}
1036 };
1037 
1038 /*
1039  * Soft Ring Set (SRS) - The Run time code that deals with
1040  * dynamic polling from the hardware, bandwidth enforcement,
1041  * fanout etc.
1042  *
1043  * We try to use H/W classification on NIC and assign traffic for
1044  * a MAC address to a particular Rx ring or ring group. There is a
1045  * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically
1046  * switches the underlying Rx ring between interrupt and
1047  * polling mode and enforces any specified B/W control.
1048  *
1049  * There is always a SRS created and tied to each H/W and S/W rule.
1050  * Whenever we create a H/W rule, we always add the the same rule to
1051  * S/W classifier and tie a SRS to it.
1052  *
1053  * In case a B/W control is specified, it is broken into bytes
1054  * per ticks and as soon as the quota for a tick is exhausted,
1055  * the underlying Rx ring is forced into poll mode for remainder of
1056  * the tick. The SRS poll thread only polls for bytes that are
1057  * allowed to come in the SRS. We typically let 4x the configured
1058  * B/W worth of packets to come in the SRS (to prevent unnecessary
1059  * drops due to bursts) but only process the specified amount.
1060  *
1061  * A MAC client (e.g. a VNIC or aggr) can have 1 or more
1062  * Rx rings (and corresponding SRSs) assigned to it. The SRS
1063  * in turn can have softrings to do protocol level fanout or
1064  * softrings to do S/W based fanout or both. In case the NIC
1065  * has no Rx rings, we do S/W classification to respective SRS.
1066  * The S/W classification rule is always setup and ready. This
1067  * allows the MAC layer to reassign Rx rings whenever needed
1068  * but packets still continue to flow via the default path and
1069  * getting S/W classified to correct SRS.
1070  *
1071  * The SRS's are used on both Tx and Rx side. They use the same
1072  * data structure but the processing routines have slightly different
1073  * semantics due to the fact that Rx side needs to do dynamic
1074  * polling etc.
1075  *
1076  * Dynamic Polling Notes
1077  * =====================
1078  *
1079  * Each Soft ring set is capable of switching its Rx ring between
1080  * interrupt and poll mode and actively 'polls' for packets in
1081  * poll mode. If the SRS is implementing a B/W limit, it makes
1082  * sure that only Max allowed packets are pulled in poll mode
1083  * and goes to poll mode as soon as B/W limit is exceeded. As
1084  * such, there are no overheads to implement B/W limits.
1085  *
1086  * In poll mode, its better to keep the pipeline going where the
1087  * SRS worker thread keeps processing packets and poll thread
1088  * keeps bringing more packets (specially if they get to run
1089  * on different CPUs). This also prevents the overheads associated
1090  * by excessive signalling (on NUMA machines, this can be
1091  * pretty devastating). The exception is latency optimized case
1092  * where worker thread does no work and interrupt and poll thread
1093  * are allowed to do their own drain.
1094  *
1095  * We use the following policy to control Dynamic Polling:
1096  * 1) We switch to poll mode anytime the processing
1097  *    thread causes a backlog to build up in SRS and
1098  *    its associated Soft Rings (sr_poll_pkt_cnt > 0).
1099  * 2) As long as the backlog stays under the low water
1100  *    mark (sr_lowat), we poll the H/W for more packets.
1101  * 3) If the backlog (sr_poll_pkt_cnt) exceeds low
1102  *    water mark, we stay in poll mode but don't poll
1103  *    the H/W for more packets.
1104  * 4) Anytime in polling mode, if we poll the H/W for
1105  *    packets and find nothing plus we have an existing
1106  *    backlog (sr_poll_pkt_cnt > 0), we stay in polling
1107  *    mode but don't poll the H/W for packets anymore
1108  *    (let the polling thread go to sleep).
1109  * 5) Once the backlog is relived (packets are processed)
1110  *    we reenable polling (by signalling the poll thread)
1111  *    only when the backlog dips below sr_poll_thres.
1112  * 6) sr_hiwat is used exclusively when we are not
1113  *    polling capable and is used to decide when to
1114  *    drop packets so the SRS queue length doesn't grow
1115  *    infinitely.
1116  *
1117  * NOTE: Also see the block level comment on top of mac_soft_ring.c
1118  */
1119 
1120 /*
1121  * mac_latency_optimize
1122  *
1123  * Controls whether the poll thread can process the packets inline
1124  * or let the SRS worker thread do the processing. This applies if
1125  * the SRS was not being processed. For latency sensitive traffic,
1126  * this needs to be true to allow inline processing. For throughput
1127  * under load, this should be false.
1128  *
1129  * This (and other similar) tunable should be rolled into a link
1130  * or flow specific workload hint that can be set using dladm
1131  * linkprop (instead of multiple such tunables).
1132  */
1133 boolean_t mac_latency_optimize = B_TRUE;
1134 
1135 /*
1136  * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN
1137  *
1138  * queue a mp or chain in soft ring set and increment the
1139  * local count (srs_count) for the SRS and the shared counter
1140  * (srs_poll_pkt_cnt - shared between SRS and its soft rings
1141  * to track the total unprocessed packets for polling to work
1142  * correctly).
1143  *
1144  * The size (total bytes queued) counters are incremented only
1145  * if we are doing B/W control.
1146  */
1147 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {         \
1148         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1149         if ((mac_srs)->srs_last != NULL)                             \
1150                 (mac_srs)->srs_last->b_next = (head);                     \
1151         else                                                            \
1152                 (mac_srs)->srs_first = (head);                               \
1153         (mac_srs)->srs_last = (tail);                                        \
1154         (mac_srs)->srs_count += count;                                       \
1155 }
1156 
1157 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {      \
1158         mac_srs_rx_t    *srs_rx = &(mac_srs)->srs_rx;                    \
1159                                                                         \
1160         MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz);          \
1161         srs_rx->sr_poll_pkt_cnt += count;                            \
1162         ASSERT(srs_rx->sr_poll_pkt_cnt > 0);                              \
1163         if ((mac_srs)->srs_type & SRST_BW_CONTROL) {                     \
1164                 (mac_srs)->srs_size += (sz);                         \
1165                 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock);         \
1166                 (mac_srs)->srs_bw->mac_bw_sz += (sz);                     \
1167                 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock);          \
1168         }                                                               \
1169 }
1170 
1171 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {      \
1172         mac_srs->srs_state |= SRS_ENQUEUED;                          \
1173         MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz);          \
1174         if ((mac_srs)->srs_type & SRST_BW_CONTROL) {                     \
1175                 (mac_srs)->srs_size += (sz);                         \
1176                 (mac_srs)->srs_bw->mac_bw_sz += (sz);                     \
1177         }                                                               \
1178 }
1179 
1180 /*
1181  * Turn polling on routines
1182  */
1183 #define MAC_SRS_POLLING_ON(mac_srs) {                                   \
1184         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1185         if (((mac_srs)->srs_state &                                      \
1186             (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) {    \
1187                 (mac_srs)->srs_state |= SRS_POLLING;                 \
1188                 (void) mac_hwring_disable_intr((mac_ring_handle_t)      \
1189                     (mac_srs)->srs_ring);                            \
1190                 (mac_srs)->srs_rx.sr_poll_on++;                              \
1191         }                                                               \
1192 }
1193 
1194 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) {                            \
1195         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1196         if (((mac_srs)->srs_state &                                      \
1197             (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) ==              \
1198             (SRS_POLLING_CAPAB|SRS_WORKER)) {                           \
1199                 (mac_srs)->srs_state |= SRS_POLLING;                 \
1200                 (void) mac_hwring_disable_intr((mac_ring_handle_t)      \
1201                     (mac_srs)->srs_ring);                            \
1202                 (mac_srs)->srs_rx.sr_worker_poll_on++;                       \
1203         }                                                               \
1204 }
1205 
1206 /*
1207  * MAC_SRS_POLL_RING
1208  *
1209  * Signal the SRS poll thread to poll the underlying H/W ring
1210  * provided it wasn't already polling (SRS_GET_PKTS was set).
1211  *
1212  * Poll thread gets to run only from mac_rx_srs_drain() and only
1213  * if the drain was being done by the worker thread.
1214  */
1215 #define MAC_SRS_POLL_RING(mac_srs) {                                    \
1216         mac_srs_rx_t    *srs_rx = &(mac_srs)->srs_rx;                    \
1217                                                                         \
1218         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1219         srs_rx->sr_poll_thr_sig++;                                   \
1220         if (((mac_srs)->srs_state &                                      \
1221             (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) ==             \
1222                 (SRS_WORKER|SRS_POLLING_CAPAB)) {                       \
1223                 (mac_srs)->srs_state |= SRS_GET_PKTS;                        \
1224                 cv_signal(&(mac_srs)->srs_cv);                           \
1225         } else {                                                        \
1226                 srs_rx->sr_poll_thr_busy++;                          \
1227         }                                                               \
1228 }
1229 
1230 /*
1231  * MAC_SRS_CHECK_BW_CONTROL
1232  *
1233  * Check to see if next tick has started so we can reset the
1234  * SRS_BW_ENFORCED flag and allow more packets to come in the
1235  * system.
1236  */
1237 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) {                             \
1238         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1239         ASSERT(((mac_srs)->srs_type & SRST_TX) ||                        \
1240             MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock));             \
1241         clock_t now = ddi_get_lbolt();                                  \
1242         if ((mac_srs)->srs_bw->mac_bw_curr_time != now) {         \
1243                 (mac_srs)->srs_bw->mac_bw_curr_time = now;                \
1244                 (mac_srs)->srs_bw->mac_bw_used = 0;                       \
1245                 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED)        \
1246                         (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \
1247         }                                                               \
1248 }
1249 
1250 /*
1251  * MAC_SRS_WORKER_WAKEUP
1252  *
1253  * Wake up the SRS worker thread to process the queue as long as
1254  * no one else is processing the queue. If we are optimizing for
1255  * latency, we wake up the worker thread immediately or else we
1256  * wait mac_srs_worker_wakeup_ticks before worker thread gets
1257  * woken up.
1258  */
1259 int mac_srs_worker_wakeup_ticks = 0;
1260 #define MAC_SRS_WORKER_WAKEUP(mac_srs) {                                \
1261         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1262         if (!((mac_srs)->srs_state & SRS_PROC) &&                        \
1263                 (mac_srs)->srs_tid == NULL) {                                \
1264                 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) ||          \
1265                         (mac_srs_worker_wakeup_ticks == 0))             \
1266                         cv_signal(&(mac_srs)->srs_async);                \
1267                 else                                                    \
1268                         (mac_srs)->srs_tid =                         \
1269                                 timeout(mac_srs_fire, (mac_srs),        \
1270                                         mac_srs_worker_wakeup_ticks);   \
1271         }                                                               \
1272 }
1273 
1274 #define TX_BANDWIDTH_MODE(mac_srs)                              \
1275         ((mac_srs)->srs_tx.st_mode == SRS_TX_BW ||           \
1276             (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \
1277             (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR)
1278 
1279 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) {                      \
1280         if (tx_mode == SRS_TX_BW_FANOUT)                                \
1281                 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\
1282         else                                                            \
1283                 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL);  \
1284 }
1285 
1286 /*
1287  * MAC_TX_SRS_BLOCK
1288  *
1289  * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED
1290  * will be set only if srs_tx_woken_up is FALSE. If
1291  * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived
1292  * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to
1293  * attempt to transmit again and not setting SRS_TX_BLOCKED does
1294  * that.
1295  */
1296 #define MAC_TX_SRS_BLOCK(srs, mp)       {                       \
1297         ASSERT(MUTEX_HELD(&(srs)->srs_lock));                    \
1298         if ((srs)->srs_tx.st_woken_up) {                     \
1299                 (srs)->srs_tx.st_woken_up = B_FALSE;         \
1300         } else {                                                \
1301                 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED));    \
1302                 (srs)->srs_state |= SRS_TX_BLOCKED;          \
1303                 (srs)->srs_tx.st_stat.mts_blockcnt++;                \
1304         }                                                       \
1305 }
1306 
1307 /*
1308  * MAC_TX_SRS_TEST_HIWAT
1309  *
1310  * Called before queueing a packet onto Tx SRS to test and set
1311  * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat.
1312  */
1313 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) {         \
1314         boolean_t enqueue = 1;                                          \
1315                                                                         \
1316         if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) {               \
1317                 /*                                                      \
1318                  * flow-controlled. Store srs in cookie so that it      \
1319                  * can be returned as mac_tx_cookie_t to client         \
1320                  */                                                     \
1321                 (srs)->srs_state |= SRS_TX_HIWAT;                    \
1322                 cookie = (mac_tx_cookie_t)srs;                          \
1323                 (srs)->srs_tx.st_hiwat_cnt++;                                \
1324                 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) {   \
1325                         /* increment freed stats */                     \
1326                         (srs)->srs_tx.st_stat.mts_sdrops += cnt;     \
1327                         /*                                              \
1328                          * b_prev may be set to the fanout hint         \
1329                          * hence can't use freemsg directly             \
1330                          */                                             \
1331                         mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);    \
1332                         DTRACE_PROBE1(tx_queued_hiwat,                  \
1333                             mac_soft_ring_set_t *, srs);                \
1334                         enqueue = 0;                                    \
1335                 }                                                       \
1336         }                                                               \
1337         if (enqueue)                                                    \
1338                 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz);       \
1339 }
1340 
1341 /* Some utility macros */
1342 #define MAC_SRS_BW_LOCK(srs)                                            \
1343         if (!(srs->srs_type & SRST_TX))                                  \
1344                 mutex_enter(&srs->srs_bw->mac_bw_lock);
1345 
1346 #define MAC_SRS_BW_UNLOCK(srs)                                          \
1347         if (!(srs->srs_type & SRST_TX))                                  \
1348                 mutex_exit(&srs->srs_bw->mac_bw_lock);
1349 
1350 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) {              \
1351         mac_pkt_drop(NULL, NULL, mp, B_FALSE);                  \
1352         /* increment freed stats */                             \
1353         mac_srs->srs_tx.st_stat.mts_sdrops++;                        \
1354         cookie = (mac_tx_cookie_t)srs;                          \
1355 }
1356 
1357 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) {          \
1358         mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT;                  \
1359         cookie = (mac_tx_cookie_t)srs;                                  \
1360         *ret_mp = mp_chain;                                             \
1361 }
1362 
1363 /*
1364  * MAC_RX_SRS_TOODEEP
1365  *
1366  * Macro called as part of receive-side processing to determine if handling
1367  * can occur in situ (in the interrupt thread) or if it should be left to a
1368  * worker thread.  Note that the constant used to make this determination is
1369  * not entirely made-up, and is a result of some emprical validation. That
1370  * said, the constant is left as a static variable to allow it to be
1371  * dynamically tuned in the field if and as needed.
1372  */
1373 static uintptr_t mac_rx_srs_stack_needed = 10240;
1374 static uint_t mac_rx_srs_stack_toodeep;
1375 
1376 #ifndef STACK_GROWTH_DOWN
1377 #error Downward stack growth assumed.
1378 #endif
1379 
1380 #define MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \
1381         (uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \
1382         ++mac_rx_srs_stack_toodeep)
1383 
1384 
1385 /*
1386  * Drop the rx packet and advance to the next one in the chain.
1387  */
1388 static void
1389 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp)
1390 {
1391         mac_srs_rx_t    *srs_rx = &srs->srs_rx;
1392 
1393         ASSERT(mp->b_next == NULL);
1394         mutex_enter(&srs->srs_lock);
1395         MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1);
1396         MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp));
1397         mutex_exit(&srs->srs_lock);
1398 
1399         srs_rx->sr_stat.mrs_sdrops++;
1400         freemsg(mp);
1401 }
1402 
1403 /* DATAPATH RUNTIME ROUTINES */
1404 
1405 /*
1406  * mac_srs_fire
1407  *
1408  * Timer callback routine for waking up the SRS worker thread.
1409  */
1410 static void
1411 mac_srs_fire(void *arg)
1412 {
1413         mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg;
1414 
1415         mutex_enter(&mac_srs->srs_lock);
1416         if (mac_srs->srs_tid == NULL) {
1417                 mutex_exit(&mac_srs->srs_lock);
1418                 return;
1419         }
1420 
1421         mac_srs->srs_tid = NULL;
1422         if (!(mac_srs->srs_state & SRS_PROC))
1423                 cv_signal(&mac_srs->srs_async);
1424 
1425         mutex_exit(&mac_srs->srs_lock);
1426 }
1427 
1428 /*
1429  * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack,
1430  * and it is used on the TX path.
1431  */
1432 #define HASH_HINT(hint) \
1433         ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8))
1434 
1435 
1436 /*
1437  * hash based on the src address, dst address and the port information.
1438  */
1439 #define HASH_ADDR(src, dst, ports)                                      \
1440         (ntohl((src) + (dst)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
1441         ((ports) >> 8) ^ (ports))
1442 
1443 #define COMPUTE_INDEX(key, sz)  (key % sz)
1444 
1445 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) {       \
1446         if ((tail) != NULL) {                                           \
1447                 ASSERT((tail)->b_next == NULL);                              \
1448                 (tail)->b_next = (mp);                                       \
1449         } else {                                                        \
1450                 ASSERT((head) == NULL);                                 \
1451                 (head) = (mp);                                          \
1452         }                                                               \
1453         (tail) = (mp);                                                  \
1454         (cnt)++;                                                        \
1455         if ((bw_ctl))                                                   \
1456                 (sz) += (sz0);                                          \
1457 }
1458 
1459 #define MAC_FANOUT_DEFAULT      0
1460 #define MAC_FANOUT_RND_ROBIN    1
1461 int mac_fanout_type = MAC_FANOUT_DEFAULT;
1462 
1463 #define MAX_SR_TYPES    3
1464 /* fanout types for port based hashing */
1465 enum pkt_type {
1466         V4_TCP = 0,
1467         V4_UDP,
1468         OTH,
1469         UNDEF
1470 };
1471 
1472 /*
1473  * Pair of local and remote ports in the transport header
1474  */
1475 #define PORTS_SIZE 4
1476 
1477 /*
1478  * mac_rx_srs_proto_fanout
1479  *
1480  * This routine delivers packets destined to an SRS into one of the
1481  * protocol soft rings.
1482  *
1483  * Given a chain of packets we need to split it up into multiple sub chains
1484  * destined into TCP, UDP or OTH soft ring. Instead of entering
1485  * the soft ring one packet at a time, we want to enter it in the form of a
1486  * chain otherwise we get this start/stop behaviour where the worker thread
1487  * goes to sleep and then next packets comes in forcing it to wake up etc.
1488  */
1489 static void
1490 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1491 {
1492         struct ether_header             *ehp;
1493         struct ether_vlan_header        *evhp;
1494         uint32_t                        sap;
1495         ipha_t                          *ipha;
1496         uint8_t                         *dstaddr;
1497         size_t                          hdrsize;
1498         mblk_t                          *mp;
1499         mblk_t                          *headmp[MAX_SR_TYPES];
1500         mblk_t                          *tailmp[MAX_SR_TYPES];
1501         int                             cnt[MAX_SR_TYPES];
1502         size_t                          sz[MAX_SR_TYPES];
1503         size_t                          sz1;
1504         boolean_t                       bw_ctl;
1505         boolean_t                       hw_classified;
1506         boolean_t                       dls_bypass;
1507         boolean_t                       is_ether;
1508         boolean_t                       is_unicast;
1509         enum pkt_type                   type;
1510         mac_client_impl_t               *mcip = mac_srs->srs_mcip;
1511 
1512         is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1513         bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1514 
1515         /*
1516          * If we don't have a Rx ring, S/W classification would have done
1517          * its job and its a packet meant for us. If we were polling on
1518          * the default ring (i.e. there was a ring assigned to this SRS),
1519          * then we need to make sure that the mac address really belongs
1520          * to us.
1521          */
1522         hw_classified = mac_srs->srs_ring != NULL &&
1523             mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1524 
1525         /*
1526          * Special clients (eg. VLAN, non ether, etc) need DLS
1527          * processing in the Rx path. SRST_DLS_BYPASS will be clear for
1528          * such SRSs. Another way of disabling bypass is to set the
1529          * MCIS_RX_BYPASS_DISABLE flag.
1530          */
1531         dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1532             ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1533 
1534         bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *));
1535         bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *));
1536         bzero(cnt, MAX_SR_TYPES * sizeof (int));
1537         bzero(sz, MAX_SR_TYPES * sizeof (size_t));
1538 
1539         /*
1540          * We got a chain from SRS that we need to send to the soft rings.
1541          * Since squeues for TCP & IPv4 sap poll their soft rings (for
1542          * performance reasons), we need to separate out v4_tcp, v4_udp
1543          * and the rest goes in other.
1544          */
1545         while (head != NULL) {
1546                 mp = head;
1547                 head = head->b_next;
1548                 mp->b_next = NULL;
1549 
1550                 type = OTH;
1551                 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1552 
1553                 if (is_ether) {
1554                         /*
1555                          * At this point we can be sure the packet at least
1556                          * has an ether header.
1557                          */
1558                         if (sz1 < sizeof (struct ether_header)) {
1559                                 mac_rx_drop_pkt(mac_srs, mp);
1560                                 continue;
1561                         }
1562                         ehp = (struct ether_header *)mp->b_rptr;
1563 
1564                         /*
1565                          * Determine if this is a VLAN or non-VLAN packet.
1566                          */
1567                         if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1568                                 evhp = (struct ether_vlan_header *)mp->b_rptr;
1569                                 sap = ntohs(evhp->ether_type);
1570                                 hdrsize = sizeof (struct ether_vlan_header);
1571                                 /*
1572                                  * Check if the VID of the packet, if any,
1573                                  * belongs to this client.
1574                                  */
1575                                 if (!mac_client_check_flow_vid(mcip,
1576                                     VLAN_ID(ntohs(evhp->ether_tci)))) {
1577                                         mac_rx_drop_pkt(mac_srs, mp);
1578                                         continue;
1579                                 }
1580                         } else {
1581                                 hdrsize = sizeof (struct ether_header);
1582                         }
1583                         is_unicast =
1584                             ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
1585                         dstaddr = (uint8_t *)&ehp->ether_dhost;
1586                 } else {
1587                         mac_header_info_t               mhi;
1588 
1589                         if (mac_header_info((mac_handle_t)mcip->mci_mip,
1590                             mp, &mhi) != 0) {
1591                                 mac_rx_drop_pkt(mac_srs, mp);
1592                                 continue;
1593                         }
1594                         hdrsize = mhi.mhi_hdrsize;
1595                         sap = mhi.mhi_bindsap;
1596                         is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
1597                         dstaddr = (uint8_t *)mhi.mhi_daddr;
1598                 }
1599 
1600                 if (!dls_bypass) {
1601                         FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1602                             cnt[type], bw_ctl, sz[type], sz1, mp);
1603                         continue;
1604                 }
1605 
1606                 if (sap == ETHERTYPE_IP) {
1607                         /*
1608                          * If we are H/W classified, but we have promisc
1609                          * on, then we need to check for the unicast address.
1610                          */
1611                         if (hw_classified && mcip->mci_promisc_list != NULL) {
1612                                 mac_address_t           *map;
1613 
1614                                 rw_enter(&mcip->mci_rw_lock, RW_READER);
1615                                 map = mcip->mci_unicast;
1616                                 if (bcmp(dstaddr, map->ma_addr,
1617                                     map->ma_len) == 0)
1618                                         type = UNDEF;
1619                                 rw_exit(&mcip->mci_rw_lock);
1620                         } else if (is_unicast) {
1621                                 type = UNDEF;
1622                         }
1623                 }
1624 
1625                 /*
1626                  * This needs to become a contract with the driver for
1627                  * the fast path.
1628                  *
1629                  * In the normal case the packet will have at least the L2
1630                  * header and the IP + Transport header in the same mblk.
1631                  * This is usually the case when the NIC driver sends up
1632                  * the packet. This is also true when the stack generates
1633                  * a packet that is looped back and when the stack uses the
1634                  * fastpath mechanism. The normal case is optimized for
1635                  * performance and may bypass DLS. All other cases go through
1636                  * the 'OTH' type path without DLS bypass.
1637                  */
1638 
1639                 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
1640                 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha))
1641                         type = OTH;
1642 
1643                 if (type == OTH) {
1644                         FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1645                             cnt[type], bw_ctl, sz[type], sz1, mp);
1646                         continue;
1647                 }
1648 
1649                 ASSERT(type == UNDEF);
1650                 /*
1651                  * We look for at least 4 bytes past the IP header to get
1652                  * the port information. If we get an IP fragment, we don't
1653                  * have the port information, and we use just the protocol
1654                  * information.
1655                  */
1656                 switch (ipha->ipha_protocol) {
1657                 case IPPROTO_TCP:
1658                         type = V4_TCP;
1659                         mp->b_rptr += hdrsize;
1660                         break;
1661                 case IPPROTO_UDP:
1662                         type = V4_UDP;
1663                         mp->b_rptr += hdrsize;
1664                         break;
1665                 default:
1666                         type = OTH;
1667                         break;
1668                 }
1669 
1670                 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type],
1671                     bw_ctl, sz[type], sz1, mp);
1672         }
1673 
1674         for (type = V4_TCP; type < UNDEF; type++) {
1675                 if (headmp[type] != NULL) {
1676                         mac_soft_ring_t                 *softring;
1677 
1678                         ASSERT(tailmp[type]->b_next == NULL);
1679                         switch (type) {
1680                         case V4_TCP:
1681                                 softring = mac_srs->srs_tcp_soft_rings[0];
1682                                 break;
1683                         case V4_UDP:
1684                                 softring = mac_srs->srs_udp_soft_rings[0];
1685                                 break;
1686                         case OTH:
1687                                 softring = mac_srs->srs_oth_soft_rings[0];
1688                         }
1689                         mac_rx_soft_ring_process(mcip, softring,
1690                             headmp[type], tailmp[type], cnt[type], sz[type]);
1691                 }
1692         }
1693 }
1694 
1695 int     fanout_unaligned = 0;
1696 
1697 /*
1698  * mac_rx_srs_long_fanout
1699  *
1700  * The fanout routine for VLANs, and for anything else that isn't performing
1701  * explicit dls bypass.  Returns -1 on an error (drop the packet due to a
1702  * malformed packet), 0 on success, with values written in *indx and *type.
1703  */
1704 static int
1705 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp,
1706     uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx)
1707 {
1708         ip6_t           *ip6h;
1709         ipha_t          *ipha;
1710         uint8_t         *whereptr;
1711         uint_t          hash;
1712         uint16_t        remlen;
1713         uint8_t         nexthdr;
1714         uint16_t        hdr_len;
1715         uint32_t        src_val, dst_val;
1716         boolean_t       modifiable = B_TRUE;
1717         boolean_t       v6;
1718 
1719         ASSERT(MBLKL(mp) >= hdrsize);
1720 
1721         if (sap == ETHERTYPE_IPV6) {
1722                 v6 = B_TRUE;
1723                 hdr_len = IPV6_HDR_LEN;
1724         } else if (sap == ETHERTYPE_IP) {
1725                 v6 = B_FALSE;
1726                 hdr_len = IP_SIMPLE_HDR_LENGTH;
1727         } else {
1728                 *indx = 0;
1729                 *type = OTH;
1730                 return (0);
1731         }
1732 
1733         ip6h = (ip6_t *)(mp->b_rptr + hdrsize);
1734         ipha = (ipha_t *)ip6h;
1735 
1736         if ((uint8_t *)ip6h == mp->b_wptr) {
1737                 /*
1738                  * The first mblk_t only includes the mac header.
1739                  * Note that it is safe to change the mp pointer here,
1740                  * as the subsequent operation does not assume mp
1741                  * points to the start of the mac header.
1742                  */
1743                 mp = mp->b_cont;
1744 
1745                 /*
1746                  * Make sure the IP header points to an entire one.
1747                  */
1748                 if (mp == NULL)
1749                         return (-1);
1750 
1751                 if (MBLKL(mp) < hdr_len) {
1752                         modifiable = (DB_REF(mp) == 1);
1753 
1754                         if (modifiable && !pullupmsg(mp, hdr_len))
1755                                 return (-1);
1756                 }
1757 
1758                 ip6h = (ip6_t *)mp->b_rptr;
1759                 ipha = (ipha_t *)ip6h;
1760         }
1761 
1762         if (!modifiable || !(OK_32PTR((char *)ip6h)) ||
1763             ((uint8_t *)ip6h + hdr_len > mp->b_wptr)) {
1764                 /*
1765                  * If either the IP header is not aligned, or it does not hold
1766                  * the complete simple structure (a pullupmsg() is not an
1767                  * option since it would result in an unaligned IP header),
1768                  * fanout to the default ring.
1769                  *
1770                  * Note that this may cause packet reordering.
1771                  */
1772                 *indx = 0;
1773                 *type = OTH;
1774                 fanout_unaligned++;
1775                 return (0);
1776         }
1777 
1778         /*
1779          * Extract next-header, full header length, and source-hash value
1780          * using v4/v6 specific fields.
1781          */
1782         if (v6) {
1783                 remlen = ntohs(ip6h->ip6_plen);
1784                 nexthdr = ip6h->ip6_nxt;
1785                 src_val = V4_PART_OF_V6(ip6h->ip6_src);
1786                 dst_val = V4_PART_OF_V6(ip6h->ip6_dst);
1787                 /*
1788                  * Do src based fanout if below tunable is set to B_TRUE or
1789                  * when mac_ip_hdr_length_v6() fails because of malformed
1790                  * packets or because mblks need to be concatenated using
1791                  * pullupmsg().
1792                  *
1793                  * Perform a version check to prevent parsing weirdness...
1794                  */
1795                 if (IPH_HDR_VERSION(ip6h) != IPV6_VERSION ||
1796                     !mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len, &nexthdr,
1797                     NULL)) {
1798                         goto src_dst_based_fanout;
1799                 }
1800         } else {
1801                 hdr_len = IPH_HDR_LENGTH(ipha);
1802                 remlen = ntohs(ipha->ipha_length) - hdr_len;
1803                 nexthdr = ipha->ipha_protocol;
1804                 src_val = (uint32_t)ipha->ipha_src;
1805                 dst_val = (uint32_t)ipha->ipha_dst;
1806                 /*
1807                  * Catch IPv4 fragment case here.  IPv6 has nexthdr == FRAG
1808                  * for its equivalent case.
1809                  */
1810                 if ((ntohs(ipha->ipha_fragment_offset_and_flags) &
1811                     (IPH_MF | IPH_OFFSET)) != 0) {
1812                         goto src_dst_based_fanout;
1813                 }
1814         }
1815         if (remlen < MIN_EHDR_LEN)
1816                 return (-1);
1817         whereptr = (uint8_t *)ip6h + hdr_len;
1818 
1819         /* If the transport is one of below, we do port/SPI based fanout */
1820         switch (nexthdr) {
1821         case IPPROTO_TCP:
1822         case IPPROTO_UDP:
1823         case IPPROTO_SCTP:
1824         case IPPROTO_ESP:
1825                 /*
1826                  * If the ports or SPI in the transport header is not part of
1827                  * the mblk, do src_based_fanout, instead of calling
1828                  * pullupmsg().
1829                  */
1830                 if (mp->b_cont == NULL || whereptr + PORTS_SIZE <= mp->b_wptr)
1831                         break;  /* out of switch... */
1832                 /* FALLTHRU */
1833         default:
1834                 goto src_dst_based_fanout;
1835         }
1836 
1837         switch (nexthdr) {
1838         case IPPROTO_TCP:
1839                 hash = HASH_ADDR(src_val, dst_val, *(uint32_t *)whereptr);
1840                 *indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
1841                 *type = OTH;
1842                 break;
1843         case IPPROTO_UDP:
1844         case IPPROTO_SCTP:
1845         case IPPROTO_ESP:
1846                 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
1847                         hash = HASH_ADDR(src_val, dst_val,
1848                             *(uint32_t *)whereptr);
1849                         *indx = COMPUTE_INDEX(hash,
1850                             mac_srs->srs_udp_ring_count);
1851                 } else {
1852                         *indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count;
1853                         mac_srs->srs_ind++;
1854                 }
1855                 *type = OTH;
1856                 break;
1857         }
1858         return (0);
1859 
1860 src_dst_based_fanout:
1861         hash = HASH_ADDR(src_val, dst_val, (uint32_t)0);
1862         *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count);
1863         *type = OTH;
1864         return (0);
1865 }
1866 
1867 /*
1868  * mac_rx_srs_fanout
1869  *
1870  * This routine delivers packets destined to an SRS into a soft ring member
1871  * of the set.
1872  *
1873  * Given a chain of packets we need to split it up into multiple sub chains
1874  * destined for one of the TCP, UDP or OTH soft rings. Instead of entering
1875  * the soft ring one packet at a time, we want to enter it in the form of a
1876  * chain otherwise we get this start/stop behaviour where the worker thread
1877  * goes to sleep and then next packets comes in forcing it to wake up etc.
1878  *
1879  * Note:
1880  * Since we know what is the maximum fanout possible, we create a 2D array
1881  * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz
1882  * variables so that we can enter the softrings with chain. We need the
1883  * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc
1884  * for each packet would be expensive). If we ever want to have the
1885  * ability to have unlimited fanout, we should probably declare a head,
1886  * tail, cnt, sz with each soft ring (a data struct which contains a softring
1887  * along with these members) and create an array of this uber struct so we
1888  * don't have to do kmem_alloc.
1889  */
1890 int     fanout_oth1 = 0;
1891 int     fanout_oth2 = 0;
1892 int     fanout_oth3 = 0;
1893 int     fanout_oth4 = 0;
1894 int     fanout_oth5 = 0;
1895 
1896 static void
1897 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1898 {
1899         struct ether_header             *ehp;
1900         struct ether_vlan_header        *evhp;
1901         uint32_t                        sap;
1902         ipha_t                          *ipha;
1903         uint8_t                         *dstaddr;
1904         uint_t                          indx;
1905         size_t                          ports_offset;
1906         size_t                          ipha_len;
1907         size_t                          hdrsize;
1908         uint_t                          hash;
1909         mblk_t                          *mp;
1910         mblk_t                          *headmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1911         mblk_t                          *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1912         int                             cnt[MAX_SR_TYPES][MAX_SR_FANOUT];
1913         size_t                          sz[MAX_SR_TYPES][MAX_SR_FANOUT];
1914         size_t                          sz1;
1915         boolean_t                       bw_ctl;
1916         boolean_t                       hw_classified;
1917         boolean_t                       dls_bypass;
1918         boolean_t                       is_ether;
1919         boolean_t                       is_unicast;
1920         int                             fanout_cnt;
1921         enum pkt_type                   type;
1922         mac_client_impl_t               *mcip = mac_srs->srs_mcip;
1923 
1924         is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1925         bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1926 
1927         /*
1928          * If we don't have a Rx ring, S/W classification would have done
1929          * its job and its a packet meant for us. If we were polling on
1930          * the default ring (i.e. there was a ring assigned to this SRS),
1931          * then we need to make sure that the mac address really belongs
1932          * to us.
1933          */
1934         hw_classified = mac_srs->srs_ring != NULL &&
1935             mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1936 
1937         /*
1938          * Special clients (eg. VLAN, non ether, etc) need DLS
1939          * processing in the Rx path. SRST_DLS_BYPASS will be clear for
1940          * such SRSs. Another way of disabling bypass is to set the
1941          * MCIS_RX_BYPASS_DISABLE flag.
1942          */
1943         dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1944             ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1945 
1946         /*
1947          * Since the softrings are never destroyed and we always
1948          * create equal number of softrings for TCP, UDP and rest,
1949          * its OK to check one of them for count and use it without
1950          * any lock. In future, if soft rings get destroyed because
1951          * of reduction in fanout, we will need to ensure that happens
1952          * behind the SRS_PROC.
1953          */
1954         fanout_cnt = mac_srs->srs_tcp_ring_count;
1955 
1956         bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1957         bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1958         bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int));
1959         bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t));
1960 
1961         /*
1962          * We got a chain from SRS that we need to send to the soft rings.
1963          * Since squeues for TCP & IPv4 sap poll their soft rings (for
1964          * performance reasons), we need to separate out v4_tcp, v4_udp
1965          * and the rest goes in other.
1966          */
1967         while (head != NULL) {
1968                 mp = head;
1969                 head = head->b_next;
1970                 mp->b_next = NULL;
1971 
1972                 type = OTH;
1973                 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1974 
1975                 if (is_ether) {
1976                         /*
1977                          * At this point we can be sure the packet at least
1978                          * has an ether header.
1979                          */
1980                         if (sz1 < sizeof (struct ether_header)) {
1981                                 mac_rx_drop_pkt(mac_srs, mp);
1982                                 continue;
1983                         }
1984                         ehp = (struct ether_header *)mp->b_rptr;
1985 
1986                         /*
1987                          * Determine if this is a VLAN or non-VLAN packet.
1988                          */
1989                         if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1990                                 evhp = (struct ether_vlan_header *)mp->b_rptr;
1991                                 sap = ntohs(evhp->ether_type);
1992                                 hdrsize = sizeof (struct ether_vlan_header);
1993                                 /*
1994                                  * Check if the VID of the packet, if any,
1995                                  * belongs to this client.
1996                                  */
1997                                 if (!mac_client_check_flow_vid(mcip,
1998                                     VLAN_ID(ntohs(evhp->ether_tci)))) {
1999                                         mac_rx_drop_pkt(mac_srs, mp);
2000                                         continue;
2001                                 }
2002                         } else {
2003                                 hdrsize = sizeof (struct ether_header);
2004                         }
2005                         is_unicast =
2006                             ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
2007                         dstaddr = (uint8_t *)&ehp->ether_dhost;
2008                 } else {
2009                         mac_header_info_t               mhi;
2010 
2011                         if (mac_header_info((mac_handle_t)mcip->mci_mip,
2012                             mp, &mhi) != 0) {
2013                                 mac_rx_drop_pkt(mac_srs, mp);
2014                                 continue;
2015                         }
2016                         hdrsize = mhi.mhi_hdrsize;
2017                         sap = mhi.mhi_bindsap;
2018                         is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
2019                         dstaddr = (uint8_t *)mhi.mhi_daddr;
2020                 }
2021 
2022                 if (!dls_bypass) {
2023                         if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2024                             hdrsize, &type, &indx) == -1) {
2025                                 mac_rx_drop_pkt(mac_srs, mp);
2026                                 continue;
2027                         }
2028 
2029                         FANOUT_ENQUEUE_MP(headmp[type][indx],
2030                             tailmp[type][indx], cnt[type][indx], bw_ctl,
2031                             sz[type][indx], sz1, mp);
2032                         continue;
2033                 }
2034 
2035 
2036                 /*
2037                  * If we are using the default Rx ring where H/W or S/W
2038                  * classification has not happened, we need to verify if
2039                  * this unicast packet really belongs to us.
2040                  */
2041                 if (sap == ETHERTYPE_IP) {
2042                         /*
2043                          * If we are H/W classified, but we have promisc
2044                          * on, then we need to check for the unicast address.
2045                          */
2046                         if (hw_classified && mcip->mci_promisc_list != NULL) {
2047                                 mac_address_t           *map;
2048 
2049                                 rw_enter(&mcip->mci_rw_lock, RW_READER);
2050                                 map = mcip->mci_unicast;
2051                                 if (bcmp(dstaddr, map->ma_addr,
2052                                     map->ma_len) == 0)
2053                                         type = UNDEF;
2054                                 rw_exit(&mcip->mci_rw_lock);
2055                         } else if (is_unicast) {
2056                                 type = UNDEF;
2057                         }
2058                 }
2059 
2060                 /*
2061                  * This needs to become a contract with the driver for
2062                  * the fast path.
2063                  */
2064 
2065                 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
2066                 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) {
2067                         type = OTH;
2068                         fanout_oth1++;
2069                 }
2070 
2071                 if (type != OTH) {
2072                         uint16_t        frag_offset_flags;
2073 
2074                         switch (ipha->ipha_protocol) {
2075                         case IPPROTO_TCP:
2076                         case IPPROTO_UDP:
2077                         case IPPROTO_SCTP:
2078                         case IPPROTO_ESP:
2079                                 ipha_len = IPH_HDR_LENGTH(ipha);
2080                                 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE >
2081                                     mp->b_wptr) {
2082                                         type = OTH;
2083                                         break;
2084                                 }
2085                                 frag_offset_flags =
2086                                     ntohs(ipha->ipha_fragment_offset_and_flags);
2087                                 if ((frag_offset_flags &
2088                                     (IPH_MF | IPH_OFFSET)) != 0) {
2089                                         type = OTH;
2090                                         fanout_oth3++;
2091                                         break;
2092                                 }
2093                                 ports_offset = hdrsize + ipha_len;
2094                                 break;
2095                         default:
2096                                 type = OTH;
2097                                 fanout_oth4++;
2098                                 break;
2099                         }
2100                 }
2101 
2102                 if (type == OTH) {
2103                         if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2104                             hdrsize, &type, &indx) == -1) {
2105                                 mac_rx_drop_pkt(mac_srs, mp);
2106                                 continue;
2107                         }
2108 
2109                         FANOUT_ENQUEUE_MP(headmp[type][indx],
2110                             tailmp[type][indx], cnt[type][indx], bw_ctl,
2111                             sz[type][indx], sz1, mp);
2112                         continue;
2113                 }
2114 
2115                 ASSERT(type == UNDEF);
2116 
2117                 /*
2118                  * XXX-Sunay: We should hold srs_lock since ring_count
2119                  * below can change. But if we are always called from
2120                  * mac_rx_srs_drain and SRS_PROC is set, then we can
2121                  * enforce that ring_count can't be changed i.e.
2122                  * to change fanout type or ring count, the calling
2123                  * thread needs to be behind SRS_PROC.
2124                  */
2125                 switch (ipha->ipha_protocol) {
2126                 case IPPROTO_TCP:
2127                         /*
2128                          * Note that for ESP, we fanout on SPI and it is at the
2129                          * same offset as the 2x16-bit ports. So it is clumped
2130                          * along with TCP, UDP and SCTP.
2131                          */
2132                         hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2133                             *(uint32_t *)(mp->b_rptr + ports_offset));
2134                         indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
2135                         type = V4_TCP;
2136                         mp->b_rptr += hdrsize;
2137                         break;
2138                 case IPPROTO_UDP:
2139                 case IPPROTO_SCTP:
2140                 case IPPROTO_ESP:
2141                         if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
2142                                 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2143                                     *(uint32_t *)(mp->b_rptr + ports_offset));
2144                                 indx = COMPUTE_INDEX(hash,
2145                                     mac_srs->srs_udp_ring_count);
2146                         } else {
2147                                 indx = mac_srs->srs_ind %
2148                                     mac_srs->srs_udp_ring_count;
2149                                 mac_srs->srs_ind++;
2150                         }
2151                         type = V4_UDP;
2152                         mp->b_rptr += hdrsize;
2153                         break;
2154                 default:
2155                         indx = 0;
2156                         type = OTH;
2157                 }
2158 
2159                 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx],
2160                     cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp);
2161         }
2162 
2163         for (type = V4_TCP; type < UNDEF; type++) {
2164                 int     i;
2165 
2166                 for (i = 0; i < fanout_cnt; i++) {
2167                         if (headmp[type][i] != NULL) {
2168                                 mac_soft_ring_t *softring;
2169 
2170                                 ASSERT(tailmp[type][i]->b_next == NULL);
2171                                 switch (type) {
2172                                 case V4_TCP:
2173                                         softring =
2174                                             mac_srs->srs_tcp_soft_rings[i];
2175                                         break;
2176                                 case V4_UDP:
2177                                         softring =
2178                                             mac_srs->srs_udp_soft_rings[i];
2179                                         break;
2180                                 case OTH:
2181                                         softring =
2182                                             mac_srs->srs_oth_soft_rings[i];
2183                                         break;
2184                                 }
2185                                 mac_rx_soft_ring_process(mcip,
2186                                     softring, headmp[type][i], tailmp[type][i],
2187                                     cnt[type][i], sz[type][i]);
2188                         }
2189                 }
2190         }
2191 }
2192 
2193 #define SRS_BYTES_TO_PICKUP     150000
2194 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP;
2195 
2196 /*
2197  * mac_rx_srs_poll_ring
2198  *
2199  * This SRS Poll thread uses this routine to poll the underlying hardware
2200  * Rx ring to get a chain of packets. It can inline process that chain
2201  * if mac_latency_optimize is set (default) or signal the SRS worker thread
2202  * to do the remaining processing.
2203  *
2204  * Since packets come in the system via interrupt or poll path, we also
2205  * update the stats and deal with promiscous clients here.
2206  */
2207 void
2208 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs)
2209 {
2210         kmutex_t                *lock = &mac_srs->srs_lock;
2211         kcondvar_t              *async = &mac_srs->srs_cv;
2212         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
2213         mblk_t                  *head, *tail, *mp;
2214         callb_cpr_t             cprinfo;
2215         ssize_t                 bytes_to_pickup;
2216         size_t                  sz;
2217         int                     count;
2218         mac_client_impl_t       *smcip;
2219 
2220         CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll");
2221         mutex_enter(lock);
2222 
2223 start:
2224         for (;;) {
2225                 if (mac_srs->srs_state & SRS_PAUSE)
2226                         goto done;
2227 
2228                 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2229                 cv_wait(async, lock);
2230                 CALLB_CPR_SAFE_END(&cprinfo, lock);
2231 
2232                 if (mac_srs->srs_state & SRS_PAUSE)
2233                         goto done;
2234 
2235 check_again:
2236                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2237                         /*
2238                          * We pick as many bytes as we are allowed to queue.
2239                          * Its possible that we will exceed the total
2240                          * packets queued in case this SRS is part of the
2241                          * Rx ring group since > 1 poll thread can be pulling
2242                          * upto the max allowed packets at the same time
2243                          * but that should be OK.
2244                          */
2245                         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2246                         bytes_to_pickup =
2247                             mac_srs->srs_bw->mac_bw_drop_threshold -
2248                             mac_srs->srs_bw->mac_bw_sz;
2249                         /*
2250                          * We shouldn't have been signalled if we
2251                          * have 0 or less bytes to pick but since
2252                          * some of the bytes accounting is driver
2253                          * dependant, we do the safety check.
2254                          */
2255                         if (bytes_to_pickup < 0)
2256                                 bytes_to_pickup = 0;
2257                         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2258                 } else {
2259                         /*
2260                          * ToDO: Need to change the polling API
2261                          * to add a packet count and a flag which
2262                          * tells the driver whether we want packets
2263                          * based on a count, or bytes, or all the
2264                          * packets queued in the driver/HW. This
2265                          * way, we never have to check the limits
2266                          * on poll path. We truly let only as many
2267                          * packets enter the system as we are willing
2268                          * to process or queue.
2269                          *
2270                          * Something along the lines of
2271                          * pkts_to_pickup = mac_soft_ring_max_q_cnt -
2272                          *      mac_srs->srs_poll_pkt_cnt
2273                          */
2274 
2275                         /*
2276                          * Since we are not doing B/W control, pick
2277                          * as many packets as allowed.
2278                          */
2279                         bytes_to_pickup = max_bytes_to_pickup;
2280                 }
2281 
2282                 /* Poll the underlying Hardware */
2283                 mutex_exit(lock);
2284                 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup);
2285                 mutex_enter(lock);
2286 
2287                 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
2288                     SRS_POLL_THR_OWNER);
2289 
2290                 mp = tail = head;
2291                 count = 0;
2292                 sz = 0;
2293                 while (mp != NULL) {
2294                         tail = mp;
2295                         sz += msgdsize(mp);
2296                         mp = mp->b_next;
2297                         count++;
2298                 }
2299 
2300                 if (head != NULL) {
2301                         tail->b_next = NULL;
2302                         smcip = mac_srs->srs_mcip;
2303 
2304                         SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz);
2305                         SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count);
2306 
2307                         /*
2308                          * If there are any promiscuous mode callbacks
2309                          * defined for this MAC client, pass them a copy
2310                          * if appropriate and also update the counters.
2311                          */
2312                         if (smcip != NULL) {
2313                                 if (smcip->mci_mip->mi_promisc_list != NULL) {
2314                                         mutex_exit(lock);
2315                                         mac_promisc_dispatch(smcip->mci_mip,
2316                                             head, NULL);
2317                                         mutex_enter(lock);
2318                                 }
2319                         }
2320                         if (mac_srs->srs_type & SRST_BW_CONTROL) {
2321                                 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2322                                 mac_srs->srs_bw->mac_bw_polled += sz;
2323                                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2324                         }
2325                         MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail,
2326                             count, sz);
2327                         if (count <= 10)
2328                                 srs_rx->sr_stat.mrs_chaincntundr10++;
2329                         else if (count > 10 && count <= 50)
2330                                 srs_rx->sr_stat.mrs_chaincnt10to50++;
2331                         else
2332                                 srs_rx->sr_stat.mrs_chaincntover50++;
2333                 }
2334 
2335                 /*
2336                  * We are guaranteed that SRS_PROC will be set if we
2337                  * are here. Also, poll thread gets to run only if
2338                  * the drain was being done by a worker thread although
2339                  * its possible that worker thread is still running
2340                  * and poll thread was sent down to keep the pipeline
2341                  * going instead of doing a complete drain and then
2342                  * trying to poll the NIC.
2343                  *
2344                  * So we need to check SRS_WORKER flag to make sure
2345                  * that the worker thread is not processing the queue
2346                  * in parallel to us. The flags and conditions are
2347                  * protected by the srs_lock to prevent any race. We
2348                  * ensure that we don't drop the srs_lock from now
2349                  * till the end and similarly we don't drop the srs_lock
2350                  * in mac_rx_srs_drain() till similar condition check
2351                  * are complete. The mac_rx_srs_drain() needs to ensure
2352                  * that SRS_WORKER flag remains set as long as its
2353                  * processing the queue.
2354                  */
2355                 if (!(mac_srs->srs_state & SRS_WORKER) &&
2356                     (mac_srs->srs_first != NULL)) {
2357                         /*
2358                          * We have packets to process and worker thread
2359                          * is not running. Check to see if poll thread is
2360                          * allowed to process.
2361                          */
2362                         if (mac_srs->srs_state & SRS_LATENCY_OPT) {
2363                                 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC);
2364                                 if (!(mac_srs->srs_state & SRS_PAUSE) &&
2365                                     srs_rx->sr_poll_pkt_cnt <=
2366                                     srs_rx->sr_lowat) {
2367                                         srs_rx->sr_poll_again++;
2368                                         goto check_again;
2369                                 }
2370                                 /*
2371                                  * We are already above low water mark
2372                                  * so stay in the polling mode but no
2373                                  * need to poll. Once we dip below
2374                                  * the polling threshold, the processing
2375                                  * thread (soft ring) will signal us
2376                                  * to poll again (MAC_UPDATE_SRS_COUNT)
2377                                  */
2378                                 srs_rx->sr_poll_drain_no_poll++;
2379                                 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2380                                 /*
2381                                  * In B/W control case, its possible
2382                                  * that the backlog built up due to
2383                                  * B/W limit being reached and packets
2384                                  * are queued only in SRS. In this case,
2385                                  * we should schedule worker thread
2386                                  * since no one else will wake us up.
2387                                  */
2388                                 if ((mac_srs->srs_type & SRST_BW_CONTROL) &&
2389                                     (mac_srs->srs_tid == NULL)) {
2390                                         mac_srs->srs_tid =
2391                                             timeout(mac_srs_fire, mac_srs, 1);
2392                                         srs_rx->sr_poll_worker_wakeup++;
2393                                 }
2394                         } else {
2395                                 /*
2396                                  * Wakeup the worker thread for more processing.
2397                                  * We optimize for throughput in this case.
2398                                  */
2399                                 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2400                                 MAC_SRS_WORKER_WAKEUP(mac_srs);
2401                                 srs_rx->sr_poll_sig_worker++;
2402                         }
2403                 } else if ((mac_srs->srs_first == NULL) &&
2404                     !(mac_srs->srs_state & SRS_WORKER)) {
2405                         /*
2406                          * There is nothing queued in SRS and
2407                          * no worker thread running. Plus we
2408                          * didn't get anything from the H/W
2409                          * as well (head == NULL);
2410                          */
2411                         ASSERT(head == NULL);
2412                         mac_srs->srs_state &=
2413                             ~(SRS_PROC|SRS_GET_PKTS);
2414 
2415                         /*
2416                          * If we have a packets in soft ring, don't allow
2417                          * more packets to come into this SRS by keeping the
2418                          * interrupts off but not polling the H/W. The
2419                          * poll thread will get signaled as soon as
2420                          * srs_poll_pkt_cnt dips below poll threshold.
2421                          */
2422                         if (srs_rx->sr_poll_pkt_cnt == 0) {
2423                                 srs_rx->sr_poll_intr_enable++;
2424                                 MAC_SRS_POLLING_OFF(mac_srs);
2425                         } else {
2426                                 /*
2427                                  * We know nothing is queued in SRS
2428                                  * since we are here after checking
2429                                  * srs_first is NULL. The backlog
2430                                  * is entirely due to packets queued
2431                                  * in Soft ring which will wake us up
2432                                  * and get the interface out of polling
2433                                  * mode once the backlog dips below
2434                                  * sr_poll_thres.
2435                                  */
2436                                 srs_rx->sr_poll_no_poll++;
2437                         }
2438                 } else {
2439                         /*
2440                          * Worker thread is already running.
2441                          * Nothing much to do. If the polling
2442                          * was enabled, worker thread will deal
2443                          * with that.
2444                          */
2445                         mac_srs->srs_state &= ~SRS_GET_PKTS;
2446                         srs_rx->sr_poll_goto_sleep++;
2447                 }
2448         }
2449 done:
2450         mac_srs->srs_state |= SRS_POLL_THR_QUIESCED;
2451         cv_signal(&mac_srs->srs_async);
2452         /*
2453          * If this is a temporary quiesce then wait for the restart signal
2454          * from the srs worker. Then clear the flags and signal the srs worker
2455          * to ensure a positive handshake and go back to start.
2456          */
2457         while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART)))
2458                 cv_wait(async, lock);
2459         if (mac_srs->srs_state & SRS_POLL_THR_RESTART) {
2460                 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
2461                 mac_srs->srs_state &=
2462                     ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART);
2463                 cv_signal(&mac_srs->srs_async);
2464                 goto start;
2465         } else {
2466                 mac_srs->srs_state |= SRS_POLL_THR_EXITED;
2467                 cv_signal(&mac_srs->srs_async);
2468                 CALLB_CPR_EXIT(&cprinfo);
2469                 thread_exit();
2470         }
2471 }
2472 
2473 /*
2474  * mac_srs_pick_chain
2475  *
2476  * In Bandwidth control case, checks how many packets can be processed
2477  * and return them in a sub chain.
2478  */
2479 static mblk_t *
2480 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail,
2481     size_t *chain_sz, int *chain_cnt)
2482 {
2483         mblk_t                  *head = NULL;
2484         mblk_t                  *tail = NULL;
2485         size_t                  sz;
2486         size_t                  tsz = 0;
2487         int                     cnt = 0;
2488         mblk_t                  *mp;
2489 
2490         ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2491         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2492         if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <=
2493             mac_srs->srs_bw->mac_bw_limit) ||
2494             (mac_srs->srs_bw->mac_bw_limit == 0)) {
2495                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2496                 head = mac_srs->srs_first;
2497                 mac_srs->srs_first = NULL;
2498                 *chain_tail = mac_srs->srs_last;
2499                 mac_srs->srs_last = NULL;
2500                 *chain_sz = mac_srs->srs_size;
2501                 *chain_cnt = mac_srs->srs_count;
2502                 mac_srs->srs_count = 0;
2503                 mac_srs->srs_size = 0;
2504                 return (head);
2505         }
2506 
2507         /*
2508          * Can't clear the entire backlog.
2509          * Need to find how many packets to pick
2510          */
2511         ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock));
2512         while ((mp = mac_srs->srs_first) != NULL) {
2513                 sz = msgdsize(mp);
2514                 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) >
2515                     mac_srs->srs_bw->mac_bw_limit) {
2516                         if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED))
2517                                 mac_srs->srs_bw->mac_bw_state |=
2518                                     SRS_BW_ENFORCED;
2519                         break;
2520                 }
2521 
2522                 /*
2523                  * The _size & cnt is  decremented from the softrings
2524                  * when they send up the packet for polling to work
2525                  * properly.
2526                  */
2527                 tsz += sz;
2528                 cnt++;
2529                 mac_srs->srs_count--;
2530                 mac_srs->srs_size -= sz;
2531                 if (tail != NULL)
2532                         tail->b_next = mp;
2533                 else
2534                         head = mp;
2535                 tail = mp;
2536                 mac_srs->srs_first = mac_srs->srs_first->b_next;
2537         }
2538         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2539         if (mac_srs->srs_first == NULL)
2540                 mac_srs->srs_last = NULL;
2541 
2542         if (tail != NULL)
2543                 tail->b_next = NULL;
2544         *chain_tail = tail;
2545         *chain_cnt = cnt;
2546         *chain_sz = tsz;
2547 
2548         return (head);
2549 }
2550 
2551 /*
2552  * mac_rx_srs_drain
2553  *
2554  * The SRS drain routine. Gets to run to clear the queue. Any thread
2555  * (worker, interrupt, poll) can call this based on processing model.
2556  * The first thing we do is disable interrupts if possible and then
2557  * drain the queue. we also try to poll the underlying hardware if
2558  * there is a dedicated hardware Rx ring assigned to this SRS.
2559  *
2560  * There is a equivalent drain routine in bandwidth control mode
2561  * mac_rx_srs_drain_bw. There is some code duplication between the two
2562  * routines but they are highly performance sensitive and are easier
2563  * to read/debug if they stay separate. Any code changes here might
2564  * also apply to mac_rx_srs_drain_bw as well.
2565  */
2566 void
2567 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2568 {
2569         mblk_t                  *head;
2570         mblk_t                  *tail;
2571         timeout_id_t            tid;
2572         int                     cnt = 0;
2573         mac_client_impl_t       *mcip = mac_srs->srs_mcip;
2574         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
2575 
2576         ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2577         ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL));
2578 
2579         /* If we are blanked i.e. can't do upcalls, then we are done */
2580         if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2581                 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2582                     (mac_srs->srs_state & SRS_PAUSE));
2583                 goto out;
2584         }
2585 
2586         if (mac_srs->srs_first == NULL)
2587                 goto out;
2588 
2589         if (!(mac_srs->srs_state & SRS_LATENCY_OPT) &&
2590             (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) {
2591                 /*
2592                  * In the normal case, the SRS worker thread does no
2593                  * work and we wait for a backlog to build up before
2594                  * we switch into polling mode. In case we are
2595                  * optimizing for throughput, we use the worker thread
2596                  * as well. The goal is to let worker thread process
2597                  * the queue and poll thread to feed packets into
2598                  * the queue. As such, we should signal the poll
2599                  * thread to try and get more packets.
2600                  *
2601                  * We could have pulled this check in the POLL_RING
2602                  * macro itself but keeping it explicit here makes
2603                  * the architecture more human understandable.
2604                  */
2605                 MAC_SRS_POLL_RING(mac_srs);
2606         }
2607 
2608 again:
2609         head = mac_srs->srs_first;
2610         mac_srs->srs_first = NULL;
2611         tail = mac_srs->srs_last;
2612         mac_srs->srs_last = NULL;
2613         cnt = mac_srs->srs_count;
2614         mac_srs->srs_count = 0;
2615 
2616         ASSERT(head != NULL);
2617         ASSERT(tail != NULL);
2618 
2619         if ((tid = mac_srs->srs_tid) != NULL)
2620                 mac_srs->srs_tid = NULL;
2621 
2622         mac_srs->srs_state |= (SRS_PROC|proc_type);
2623 
2624 
2625         /*
2626          * mcip is NULL for broadcast and multicast flows. The promisc
2627          * callbacks for broadcast and multicast packets are delivered from
2628          * mac_rx() and we don't need to worry about that case in this path
2629          */
2630         if (mcip != NULL) {
2631                 if (mcip->mci_promisc_list != NULL) {
2632                         mutex_exit(&mac_srs->srs_lock);
2633                         mac_promisc_client_dispatch(mcip, head);
2634                         mutex_enter(&mac_srs->srs_lock);
2635                 }
2636                 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2637                         mutex_exit(&mac_srs->srs_lock);
2638                         mac_protect_intercept_dynamic(mcip, head);
2639                         mutex_enter(&mac_srs->srs_lock);
2640                 }
2641         }
2642 
2643         /*
2644          * Check if SRS itself is doing the processing
2645          * This direct path does not apply when subflows are present. In this
2646          * case, packets need to be dispatched to a soft ring according to the
2647          * flow's bandwidth and other resources contraints.
2648          */
2649         if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2650                 mac_direct_rx_t         proc;
2651                 void                    *arg1;
2652                 mac_resource_handle_t   arg2;
2653 
2654                 /*
2655                  * This is the case when a Rx is directly
2656                  * assigned and we have a fully classified
2657                  * protocol chain. We can deal with it in
2658                  * one shot.
2659                  */
2660                 proc = srs_rx->sr_func;
2661                 arg1 = srs_rx->sr_arg1;
2662                 arg2 = srs_rx->sr_arg2;
2663 
2664                 mac_srs->srs_state |= SRS_CLIENT_PROC;
2665                 mutex_exit(&mac_srs->srs_lock);
2666                 if (tid != NULL) {
2667                         (void) untimeout(tid);
2668                         tid = NULL;
2669                 }
2670 
2671                 proc(arg1, arg2, head, NULL);
2672                 /*
2673                  * Decrement the size and count here itelf
2674                  * since the packet has been processed.
2675                  */
2676                 mutex_enter(&mac_srs->srs_lock);
2677                 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2678                 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2679                         cv_signal(&mac_srs->srs_client_cv);
2680                 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2681         } else {
2682                 /* Some kind of softrings based fanout is required */
2683                 mutex_exit(&mac_srs->srs_lock);
2684                 if (tid != NULL) {
2685                         (void) untimeout(tid);
2686                         tid = NULL;
2687                 }
2688 
2689                 /*
2690                  * Since the fanout routines can deal with chains,
2691                  * shoot the entire chain up.
2692                  */
2693                 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2694                         mac_rx_srs_fanout(mac_srs, head);
2695                 else
2696                         mac_rx_srs_proto_fanout(mac_srs, head);
2697                 mutex_enter(&mac_srs->srs_lock);
2698         }
2699 
2700         if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) &&
2701             (mac_srs->srs_first != NULL)) {
2702                 /*
2703                  * More packets arrived while we were clearing the
2704                  * SRS. This can be possible because of one of
2705                  * three conditions below:
2706                  * 1) The driver is using multiple worker threads
2707                  *    to send the packets to us.
2708                  * 2) The driver has a race in switching
2709                  *    between interrupt and polling mode or
2710                  * 3) Packets are arriving in this SRS via the
2711                  *    S/W classification as well.
2712                  *
2713                  * We should switch to polling mode and see if we
2714                  * need to send the poll thread down. Also, signal
2715                  * the worker thread to process whats just arrived.
2716                  */
2717                 MAC_SRS_POLLING_ON(mac_srs);
2718                 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) {
2719                         srs_rx->sr_drain_poll_sig++;
2720                         MAC_SRS_POLL_RING(mac_srs);
2721                 }
2722 
2723                 /*
2724                  * If we didn't signal the poll thread, we need
2725                  * to deal with the pending packets ourselves.
2726                  */
2727                 if (proc_type == SRS_WORKER) {
2728                         srs_rx->sr_drain_again++;
2729                         goto again;
2730                 } else {
2731                         srs_rx->sr_drain_worker_sig++;
2732                         cv_signal(&mac_srs->srs_async);
2733                 }
2734         }
2735 
2736 out:
2737         if (mac_srs->srs_state & SRS_GET_PKTS) {
2738                 /*
2739                  * Poll thread is already running. Leave the
2740                  * SRS_RPOC set and hand over the control to
2741                  * poll thread.
2742                  */
2743                 mac_srs->srs_state &= ~proc_type;
2744                 srs_rx->sr_drain_poll_running++;
2745                 return;
2746         }
2747 
2748         /*
2749          * Even if there are no packets queued in SRS, we
2750          * need to make sure that the shared counter is
2751          * clear and any associated softrings have cleared
2752          * all the backlog. Otherwise, leave the interface
2753          * in polling mode and the poll thread will get
2754          * signalled once the count goes down to zero.
2755          *
2756          * If someone is already draining the queue (SRS_PROC is
2757          * set) when the srs_poll_pkt_cnt goes down to zero,
2758          * then it means that drain is already running and we
2759          * will turn off polling at that time if there is
2760          * no backlog.
2761          *
2762          * As long as there are packets queued either
2763          * in soft ring set or its soft rings, we will leave
2764          * the interface in polling mode (even if the drain
2765          * was done being the interrupt thread). We signal
2766          * the poll thread as well if we have dipped below
2767          * low water mark.
2768          *
2769          * NOTE: We can't use the MAC_SRS_POLLING_ON macro
2770          * since that turn polling on only for worker thread.
2771          * Its not worth turning polling on for interrupt
2772          * thread (since NIC will not issue another interrupt)
2773          * unless a backlog builds up.
2774          */
2775         if ((srs_rx->sr_poll_pkt_cnt > 0) &&
2776             (mac_srs->srs_state & SRS_POLLING_CAPAB)) {
2777                 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2778                 srs_rx->sr_drain_keep_polling++;
2779                 MAC_SRS_POLLING_ON(mac_srs);
2780                 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)
2781                         MAC_SRS_POLL_RING(mac_srs);
2782                 return;
2783         }
2784 
2785         /* Nothing else to do. Get out of poll mode */
2786         MAC_SRS_POLLING_OFF(mac_srs);
2787         mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2788         srs_rx->sr_drain_finish_intr++;
2789 }
2790 
2791 /*
2792  * mac_rx_srs_drain_bw
2793  *
2794  * The SRS BW drain routine. Gets to run to clear the queue. Any thread
2795  * (worker, interrupt, poll) can call this based on processing model.
2796  * The first thing we do is disable interrupts if possible and then
2797  * drain the queue. we also try to poll the underlying hardware if
2798  * there is a dedicated hardware Rx ring assigned to this SRS.
2799  *
2800  * There is a equivalent drain routine in non bandwidth control mode
2801  * mac_rx_srs_drain. There is some code duplication between the two
2802  * routines but they are highly performance sensitive and are easier
2803  * to read/debug if they stay separate. Any code changes here might
2804  * also apply to mac_rx_srs_drain as well.
2805  */
2806 void
2807 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2808 {
2809         mblk_t                  *head;
2810         mblk_t                  *tail;
2811         timeout_id_t            tid;
2812         size_t                  sz = 0;
2813         int                     cnt = 0;
2814         mac_client_impl_t       *mcip = mac_srs->srs_mcip;
2815         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
2816         clock_t                 now;
2817 
2818         ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2819         ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
2820 again:
2821         /* Check if we are doing B/W control */
2822         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2823         now = ddi_get_lbolt();
2824         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
2825                 mac_srs->srs_bw->mac_bw_curr_time = now;
2826                 mac_srs->srs_bw->mac_bw_used = 0;
2827                 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
2828                         mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED;
2829         } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) {
2830                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2831                 goto done;
2832         } else if (mac_srs->srs_bw->mac_bw_used >
2833             mac_srs->srs_bw->mac_bw_limit) {
2834                 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
2835                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2836                 goto done;
2837         }
2838         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2839 
2840         /* If we are blanked i.e. can't do upcalls, then we are done */
2841         if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2842                 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2843                     (mac_srs->srs_state & SRS_PAUSE));
2844                 goto done;
2845         }
2846 
2847         sz = 0;
2848         cnt = 0;
2849         if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) {
2850                 /*
2851                  * We couldn't pick up a single packet.
2852                  */
2853                 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2854                 if ((mac_srs->srs_bw->mac_bw_used == 0) &&
2855                     (mac_srs->srs_size != 0) &&
2856                     !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2857                         /*
2858                          * Seems like configured B/W doesn't
2859                          * even allow processing of 1 packet
2860                          * per tick.
2861                          *
2862                          * XXX: raise the limit to processing
2863                          * at least 1 packet per tick.
2864                          */
2865                         mac_srs->srs_bw->mac_bw_limit +=
2866                             mac_srs->srs_bw->mac_bw_limit;
2867                         mac_srs->srs_bw->mac_bw_drop_threshold +=
2868                             mac_srs->srs_bw->mac_bw_drop_threshold;
2869                         cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) "
2870                             "raised B/W limit to %d since not even a "
2871                             "single packet can be processed per "
2872                             "tick %d\n", (void *)mac_srs,
2873                             (int)mac_srs->srs_bw->mac_bw_limit,
2874                             (int)msgdsize(mac_srs->srs_first));
2875                 }
2876                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2877                 goto done;
2878         }
2879 
2880         ASSERT(head != NULL);
2881         ASSERT(tail != NULL);
2882 
2883         /* zero bandwidth: drop all and return to interrupt mode */
2884         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2885         if (mac_srs->srs_bw->mac_bw_limit == 0) {
2886                 srs_rx->sr_stat.mrs_sdrops += cnt;
2887                 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz);
2888                 mac_srs->srs_bw->mac_bw_sz -= sz;
2889                 mac_srs->srs_bw->mac_bw_drop_bytes += sz;
2890                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2891                 mac_pkt_drop(NULL, NULL, head, B_FALSE);
2892                 goto leave_poll;
2893         } else {
2894                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2895         }
2896 
2897         if ((tid = mac_srs->srs_tid) != NULL)
2898                 mac_srs->srs_tid = NULL;
2899 
2900         mac_srs->srs_state |= (SRS_PROC|proc_type);
2901         MAC_SRS_WORKER_POLLING_ON(mac_srs);
2902 
2903         /*
2904          * mcip is NULL for broadcast and multicast flows. The promisc
2905          * callbacks for broadcast and multicast packets are delivered from
2906          * mac_rx() and we don't need to worry about that case in this path
2907          */
2908         if (mcip != NULL) {
2909                 if (mcip->mci_promisc_list != NULL) {
2910                         mutex_exit(&mac_srs->srs_lock);
2911                         mac_promisc_client_dispatch(mcip, head);
2912                         mutex_enter(&mac_srs->srs_lock);
2913                 }
2914                 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2915                         mutex_exit(&mac_srs->srs_lock);
2916                         mac_protect_intercept_dynamic(mcip, head);
2917                         mutex_enter(&mac_srs->srs_lock);
2918                 }
2919         }
2920 
2921         /*
2922          * Check if SRS itself is doing the processing
2923          * This direct path does not apply when subflows are present. In this
2924          * case, packets need to be dispatched to a soft ring according to the
2925          * flow's bandwidth and other resources contraints.
2926          */
2927         if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2928                 mac_direct_rx_t         proc;
2929                 void                    *arg1;
2930                 mac_resource_handle_t   arg2;
2931 
2932                 /*
2933                  * This is the case when a Rx is directly
2934                  * assigned and we have a fully classified
2935                  * protocol chain. We can deal with it in
2936                  * one shot.
2937                  */
2938                 proc = srs_rx->sr_func;
2939                 arg1 = srs_rx->sr_arg1;
2940                 arg2 = srs_rx->sr_arg2;
2941 
2942                 mac_srs->srs_state |= SRS_CLIENT_PROC;
2943                 mutex_exit(&mac_srs->srs_lock);
2944                 if (tid != NULL) {
2945                         (void) untimeout(tid);
2946                         tid = NULL;
2947                 }
2948 
2949                 proc(arg1, arg2, head, NULL);
2950                 /*
2951                  * Decrement the size and count here itelf
2952                  * since the packet has been processed.
2953                  */
2954                 mutex_enter(&mac_srs->srs_lock);
2955                 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2956                 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
2957 
2958                 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2959                         cv_signal(&mac_srs->srs_client_cv);
2960                 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2961         } else {
2962                 /* Some kind of softrings based fanout is required */
2963                 mutex_exit(&mac_srs->srs_lock);
2964                 if (tid != NULL) {
2965                         (void) untimeout(tid);
2966                         tid = NULL;
2967                 }
2968 
2969                 /*
2970                  * Since the fanout routines can deal with chains,
2971                  * shoot the entire chain up.
2972                  */
2973                 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2974                         mac_rx_srs_fanout(mac_srs, head);
2975                 else
2976                         mac_rx_srs_proto_fanout(mac_srs, head);
2977                 mutex_enter(&mac_srs->srs_lock);
2978         }
2979 
2980         /*
2981          * Send the poll thread to pick up any packets arrived
2982          * so far. This also serves as the last check in case
2983          * nothing else is queued in the SRS. The poll thread
2984          * is signalled only in the case the drain was done
2985          * by the worker thread and SRS_WORKER is set. The
2986          * worker thread can run in parallel as long as the
2987          * SRS_WORKER flag is set. We we have nothing else to
2988          * process, we can exit while leaving SRS_PROC set
2989          * which gives the poll thread control to process and
2990          * cleanup once it returns from the NIC.
2991          *
2992          * If we have nothing else to process, we need to
2993          * ensure that we keep holding the srs_lock till
2994          * all the checks below are done and control is
2995          * handed to the poll thread if it was running.
2996          */
2997         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2998         if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2999                 if (mac_srs->srs_first != NULL) {
3000                         if (proc_type == SRS_WORKER) {
3001                                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3002                                 if (srs_rx->sr_poll_pkt_cnt <=
3003                                     srs_rx->sr_lowat)
3004                                         MAC_SRS_POLL_RING(mac_srs);
3005                                 goto again;
3006                         } else {
3007                                 cv_signal(&mac_srs->srs_async);
3008                         }
3009                 }
3010         }
3011         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3012 
3013 done:
3014 
3015         if (mac_srs->srs_state & SRS_GET_PKTS) {
3016                 /*
3017                  * Poll thread is already running. Leave the
3018                  * SRS_RPOC set and hand over the control to
3019                  * poll thread.
3020                  */
3021                 mac_srs->srs_state &= ~proc_type;
3022                 return;
3023         }
3024 
3025         /*
3026          * If we can't process packets because we have exceeded
3027          * B/W limit for this tick, just set the timeout
3028          * and leave.
3029          *
3030          * Even if there are no packets queued in SRS, we
3031          * need to make sure that the shared counter is
3032          * clear and any associated softrings have cleared
3033          * all the backlog. Otherwise, leave the interface
3034          * in polling mode and the poll thread will get
3035          * signalled once the count goes down to zero.
3036          *
3037          * If someone is already draining the queue (SRS_PROC is
3038          * set) when the srs_poll_pkt_cnt goes down to zero,
3039          * then it means that drain is already running and we
3040          * will turn off polling at that time if there is
3041          * no backlog. As long as there are packets queued either
3042          * is soft ring set or its soft rings, we will leave
3043          * the interface in polling mode.
3044          */
3045         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
3046         if ((mac_srs->srs_state & SRS_POLLING_CAPAB) &&
3047             ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) ||
3048             (srs_rx->sr_poll_pkt_cnt > 0))) {
3049                 MAC_SRS_POLLING_ON(mac_srs);
3050                 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3051                 if ((mac_srs->srs_first != NULL) &&
3052                     (mac_srs->srs_tid == NULL))
3053                         mac_srs->srs_tid = timeout(mac_srs_fire,
3054                             mac_srs, 1);
3055                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3056                 return;
3057         }
3058         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3059 
3060 leave_poll:
3061 
3062         /* Nothing else to do. Get out of poll mode */
3063         MAC_SRS_POLLING_OFF(mac_srs);
3064         mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3065 }
3066 
3067 /*
3068  * mac_srs_worker
3069  *
3070  * The SRS worker routine. Drains the queue when no one else is
3071  * processing it.
3072  */
3073 void
3074 mac_srs_worker(mac_soft_ring_set_t *mac_srs)
3075 {
3076         kmutex_t                *lock = &mac_srs->srs_lock;
3077         kcondvar_t              *async = &mac_srs->srs_async;
3078         callb_cpr_t             cprinfo;
3079         boolean_t               bw_ctl_flag;
3080 
3081         CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker");
3082         mutex_enter(lock);
3083 
3084 start:
3085         for (;;) {
3086                 bw_ctl_flag = B_FALSE;
3087                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
3088                         MAC_SRS_BW_LOCK(mac_srs);
3089                         MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3090                         if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
3091                                 bw_ctl_flag = B_TRUE;
3092                         MAC_SRS_BW_UNLOCK(mac_srs);
3093                 }
3094                 /*
3095                  * The SRS_BW_ENFORCED flag may change since we have dropped
3096                  * the mac_bw_lock. However the drain function can handle both
3097                  * a drainable SRS or a bandwidth controlled SRS, and the
3098                  * effect of scheduling a timeout is to wakeup the worker
3099                  * thread which in turn will call the drain function. Since
3100                  * we release the srs_lock atomically only in the cv_wait there
3101                  * isn't a fear of waiting for ever.
3102                  */
3103                 while (((mac_srs->srs_state & SRS_PROC) ||
3104                     (mac_srs->srs_first == NULL) || bw_ctl_flag ||
3105                     (mac_srs->srs_state & SRS_TX_BLOCKED)) &&
3106                     !(mac_srs->srs_state & SRS_PAUSE)) {
3107                         /*
3108                          * If we have packets queued and we are here
3109                          * because B/W control is in place, we better
3110                          * schedule the worker wakeup after 1 tick
3111                          * to see if bandwidth control can be relaxed.
3112                          */
3113                         if (bw_ctl_flag && mac_srs->srs_tid == NULL) {
3114                                 /*
3115                                  * We need to ensure that a timer  is already
3116                                  * scheduled or we force  schedule one for
3117                                  * later so that we can continue processing
3118                                  * after this  quanta is over.
3119                                  */
3120                                 mac_srs->srs_tid = timeout(mac_srs_fire,
3121                                     mac_srs, 1);
3122                         }
3123 wait:
3124                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
3125                         cv_wait(async, lock);
3126                         CALLB_CPR_SAFE_END(&cprinfo, lock);
3127 
3128                         if (mac_srs->srs_state & SRS_PAUSE)
3129                                 goto done;
3130                         if (mac_srs->srs_state & SRS_PROC)
3131                                 goto wait;
3132 
3133                         if (mac_srs->srs_first != NULL &&
3134                             mac_srs->srs_type & SRST_BW_CONTROL) {
3135                                 MAC_SRS_BW_LOCK(mac_srs);
3136                                 if (mac_srs->srs_bw->mac_bw_state &
3137                                     SRS_BW_ENFORCED) {
3138                                         MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3139                                 }
3140                                 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state &
3141                                     SRS_BW_ENFORCED;
3142                                 MAC_SRS_BW_UNLOCK(mac_srs);
3143                         }
3144                 }
3145 
3146                 if (mac_srs->srs_state & SRS_PAUSE)
3147                         goto done;
3148                 mac_srs->srs_drain_func(mac_srs, SRS_WORKER);
3149         }
3150 done:
3151         /*
3152          * The Rx SRS quiesce logic first cuts off packet supply to the SRS
3153          * from both hard and soft classifications and waits for such threads
3154          * to finish before signaling the worker. So at this point the only
3155          * thread left that could be competing with the worker is the poll
3156          * thread. In the case of Tx, there shouldn't be any thread holding
3157          * SRS_PROC at this point.
3158          */
3159         if (!(mac_srs->srs_state & SRS_PROC)) {
3160                 mac_srs->srs_state |= SRS_PROC;
3161         } else {
3162                 ASSERT((mac_srs->srs_type & SRST_TX) == 0);
3163                 /*
3164                  * Poll thread still owns the SRS and is still running
3165                  */
3166                 ASSERT((mac_srs->srs_poll_thr == NULL) ||
3167                     ((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
3168                     SRS_POLL_THR_OWNER));
3169         }
3170         mac_srs_worker_quiesce(mac_srs);
3171         /*
3172          * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator
3173          * of the quiesce operation
3174          */
3175         while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART)))
3176                 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock);
3177 
3178         if (mac_srs->srs_state & SRS_RESTART) {
3179                 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
3180                 mac_srs_worker_restart(mac_srs);
3181                 mac_srs->srs_state &= ~SRS_PROC;
3182                 goto start;
3183         }
3184 
3185         if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE))
3186                 mac_srs_worker_quiesce(mac_srs);
3187 
3188         mac_srs->srs_state &= ~SRS_PROC;
3189         /* The macro drops the srs_lock */
3190         CALLB_CPR_EXIT(&cprinfo);
3191         thread_exit();
3192 }
3193 
3194 /*
3195  * mac_rx_srs_subflow_process
3196  *
3197  * Receive side routine called from interrupt path when there are
3198  * sub flows present on this SRS.
3199  */
3200 /* ARGSUSED */
3201 void
3202 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs,
3203     mblk_t *mp_chain, boolean_t loopback)
3204 {
3205         flow_entry_t            *flent = NULL;
3206         flow_entry_t            *prev_flent = NULL;
3207         mblk_t                  *mp = NULL;
3208         mblk_t                  *tail = NULL;
3209         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
3210         mac_client_impl_t       *mcip;
3211 
3212         mcip = mac_srs->srs_mcip;
3213         ASSERT(mcip != NULL);
3214 
3215         /*
3216          * We need to determine the SRS for every packet
3217          * by walking the flow table, if we don't get any,
3218          * then we proceed using the SRS we came with.
3219          */
3220         mp = tail = mp_chain;
3221         while (mp != NULL) {
3222 
3223                 /*
3224                  * We will increment the stats for the mactching subflow.
3225                  * when we get the bytes/pkt count for the classified packets
3226                  * later in mac_rx_srs_process.
3227                  */
3228                 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp,
3229                     FLOW_INBOUND, &flent);
3230 
3231                 if (mp == mp_chain || flent == prev_flent) {
3232                         if (prev_flent != NULL)
3233                                 FLOW_REFRELE(prev_flent);
3234                         prev_flent = flent;
3235                         flent = NULL;
3236                         tail = mp;
3237                         mp = mp->b_next;
3238                         continue;
3239                 }
3240                 tail->b_next = NULL;
3241                 /*
3242                  * A null indicates, this is for the mac_srs itself.
3243                  * XXX-venu : probably assert for fe_rx_srs_cnt == 0.
3244                  */
3245                 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3246                         mac_rx_srs_process(arg,
3247                             (mac_resource_handle_t)mac_srs, mp_chain,
3248                             loopback);
3249                 } else {
3250                         (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3251                             prev_flent->fe_cb_arg2, mp_chain, loopback);
3252                         FLOW_REFRELE(prev_flent);
3253                 }
3254                 prev_flent = flent;
3255                 flent = NULL;
3256                 mp_chain = mp;
3257                 tail = mp;
3258                 mp = mp->b_next;
3259         }
3260         /* Last chain */
3261         ASSERT(mp_chain != NULL);
3262         if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3263                 mac_rx_srs_process(arg,
3264                     (mac_resource_handle_t)mac_srs, mp_chain, loopback);
3265         } else {
3266                 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3267                     prev_flent->fe_cb_arg2, mp_chain, loopback);
3268                 FLOW_REFRELE(prev_flent);
3269         }
3270 }
3271 
3272 /*
3273  * mac_rx_srs_process
3274  *
3275  * Receive side routine called from the interrupt path.
3276  *
3277  * loopback is set to force a context switch on the loopback
3278  * path between MAC clients.
3279  */
3280 /* ARGSUSED */
3281 void
3282 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain,
3283     boolean_t loopback)
3284 {
3285         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
3286         mblk_t                  *mp, *tail, *head;
3287         int                     count = 0;
3288         int                     count1;
3289         size_t                  sz = 0;
3290         size_t                  chain_sz, sz1;
3291         mac_bw_ctl_t            *mac_bw;
3292         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
3293 
3294         /*
3295          * Set the tail, count and sz. We set the sz irrespective
3296          * of whether we are doing B/W control or not for the
3297          * purpose of updating the stats.
3298          */
3299         mp = tail = mp_chain;
3300         while (mp != NULL) {
3301                 tail = mp;
3302                 count++;
3303                 sz += msgdsize(mp);
3304                 mp = mp->b_next;
3305         }
3306 
3307         mutex_enter(&mac_srs->srs_lock);
3308 
3309         if (loopback) {
3310                 SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz);
3311                 SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count);
3312 
3313         } else {
3314                 SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz);
3315                 SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count);
3316         }
3317 
3318         /*
3319          * If the SRS in already being processed; has been blanked;
3320          * can be processed by worker thread only; or the B/W limit
3321          * has been reached, then queue the chain and check if
3322          * worker thread needs to be awakend.
3323          */
3324         if (mac_srs->srs_type & SRST_BW_CONTROL) {
3325                 mac_bw = mac_srs->srs_bw;
3326                 ASSERT(mac_bw != NULL);
3327                 mutex_enter(&mac_bw->mac_bw_lock);
3328                 mac_bw->mac_bw_intr += sz;
3329                 if (mac_bw->mac_bw_limit == 0) {
3330                         /* zero bandwidth: drop all */
3331                         srs_rx->sr_stat.mrs_sdrops += count;
3332                         mac_bw->mac_bw_drop_bytes += sz;
3333                         mutex_exit(&mac_bw->mac_bw_lock);
3334                         mutex_exit(&mac_srs->srs_lock);
3335                         mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
3336                         return;
3337                 } else {
3338                         if ((mac_bw->mac_bw_sz + sz) <=
3339                             mac_bw->mac_bw_drop_threshold) {
3340                                 mutex_exit(&mac_bw->mac_bw_lock);
3341                                 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain,
3342                                     tail, count, sz);
3343                         } else {
3344                                 mp = mp_chain;
3345                                 chain_sz = 0;
3346                                 count1 = 0;
3347                                 tail = NULL;
3348                                 head = NULL;
3349                                 while (mp != NULL) {
3350                                         sz1 = msgdsize(mp);
3351                                         if (mac_bw->mac_bw_sz + chain_sz + sz1 >
3352                                             mac_bw->mac_bw_drop_threshold)
3353                                                 break;
3354                                         chain_sz += sz1;
3355                                         count1++;
3356                                         tail = mp;
3357                                         mp = mp->b_next;
3358                                 }
3359                                 mutex_exit(&mac_bw->mac_bw_lock);
3360                                 if (tail != NULL) {
3361                                         head = tail->b_next;
3362                                         tail->b_next = NULL;
3363                                         MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs,
3364                                             mp_chain, tail, count1, chain_sz);
3365                                         sz -= chain_sz;
3366                                         count -= count1;
3367                                 } else {
3368                                         /* Can't pick up any */
3369                                         head = mp_chain;
3370                                 }
3371                                 if (head != NULL) {
3372                                         /* Drop any packet over the threshold */
3373                                         srs_rx->sr_stat.mrs_sdrops += count;
3374                                         mutex_enter(&mac_bw->mac_bw_lock);
3375                                         mac_bw->mac_bw_drop_bytes += sz;
3376                                         mutex_exit(&mac_bw->mac_bw_lock);
3377                                         freemsgchain(head);
3378                                 }
3379                         }
3380                         MAC_SRS_WORKER_WAKEUP(mac_srs);
3381                         mutex_exit(&mac_srs->srs_lock);
3382                         return;
3383                 }
3384         }
3385 
3386         /*
3387          * If the total number of packets queued in the SRS and
3388          * its associated soft rings exceeds the max allowed,
3389          * then drop the chain. If we are polling capable, this
3390          * shouldn't be happening.
3391          */
3392         if (!(mac_srs->srs_type & SRST_BW_CONTROL) &&
3393             (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) {
3394                 mac_bw = mac_srs->srs_bw;
3395                 srs_rx->sr_stat.mrs_sdrops += count;
3396                 mutex_enter(&mac_bw->mac_bw_lock);
3397                 mac_bw->mac_bw_drop_bytes += sz;
3398                 mutex_exit(&mac_bw->mac_bw_lock);
3399                 freemsgchain(mp_chain);
3400                 mutex_exit(&mac_srs->srs_lock);
3401                 return;
3402         }
3403 
3404         MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz);
3405 
3406         if (!(mac_srs->srs_state & SRS_PROC)) {
3407                 /*
3408                  * If we are coming via loopback, if we are not optimizing for
3409                  * latency, or if our stack is running deep, we should signal
3410                  * the worker thread.
3411                  */
3412                 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT) ||
3413                     MAC_RX_SRS_TOODEEP()) {
3414                         /*
3415                          * For loopback, We need to let the worker take
3416                          * over as we don't want to continue in the same
3417                          * thread even if we can. This could lead to stack
3418                          * overflows and may also end up using
3419                          * resources (cpu) incorrectly.
3420                          */
3421                         cv_signal(&mac_srs->srs_async);
3422                 } else {
3423                         /*
3424                          * Seems like no one is processing the SRS and
3425                          * there is no backlog. We also inline process
3426                          * our packet if its a single packet in non
3427                          * latency optimized case (in latency optimized
3428                          * case, we inline process chains of any size).
3429                          */
3430                         mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST);
3431                 }
3432         }
3433         mutex_exit(&mac_srs->srs_lock);
3434 }
3435 
3436 /* TX SIDE ROUTINES (RUNTIME) */
3437 
3438 /*
3439  * mac_tx_srs_no_desc
3440  *
3441  * This routine is called by Tx single ring default mode
3442  * when Tx ring runs out of descs.
3443  */
3444 mac_tx_cookie_t
3445 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3446     uint16_t flag, mblk_t **ret_mp)
3447 {
3448         mac_tx_cookie_t cookie = 0;
3449         mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3450         boolean_t wakeup_worker = B_TRUE;
3451         uint32_t tx_mode = srs_tx->st_mode;
3452         int cnt, sz;
3453         mblk_t *tail;
3454 
3455         ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW);
3456         if (flag & MAC_DROP_ON_NO_DESC) {
3457                 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3458         } else {
3459                 if (mac_srs->srs_first != NULL)
3460                         wakeup_worker = B_FALSE;
3461                 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3462                 if (flag & MAC_TX_NO_ENQUEUE) {
3463                         /*
3464                          * If TX_QUEUED is not set, queue the
3465                          * packet and let mac_tx_srs_drain()
3466                          * set the TX_BLOCKED bit for the
3467                          * reasons explained above. Otherwise,
3468                          * return the mblks.
3469                          */
3470                         if (wakeup_worker) {
3471                                 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3472                                     mp_chain, tail, cnt, sz);
3473                         } else {
3474                                 MAC_TX_SET_NO_ENQUEUE(mac_srs,
3475                                     mp_chain, ret_mp, cookie);
3476                         }
3477                 } else {
3478                         MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3479                             tail, cnt, sz, cookie);
3480                 }
3481                 if (wakeup_worker)
3482                         cv_signal(&mac_srs->srs_async);
3483         }
3484         return (cookie);
3485 }
3486 
3487 /*
3488  * mac_tx_srs_enqueue
3489  *
3490  * This routine is called when Tx SRS is operating in either serializer
3491  * or bandwidth mode. In serializer mode, a packet will get enqueued
3492  * when a thread cannot enter SRS exclusively. In bandwidth mode,
3493  * packets gets queued if allowed byte-count limit for a tick is
3494  * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and
3495  * MAC_TX_NO_ENQUEUE is set is different than when operaing in either
3496  * the default mode or fanout mode. Here packets get dropped or
3497  * returned back to the caller only after hi-watermark worth of data
3498  * is queued.
3499  */
3500 static mac_tx_cookie_t
3501 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3502     uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp)
3503 {
3504         mac_tx_cookie_t cookie = 0;
3505         int cnt, sz;
3506         mblk_t *tail;
3507         boolean_t wakeup_worker = B_TRUE;
3508 
3509         /*
3510          * Ignore fanout hint if we don't have multiple tx rings.
3511          */
3512         if (!MAC_TX_SOFT_RINGS(mac_srs))
3513                 fanout_hint = 0;
3514 
3515         if (mac_srs->srs_first != NULL)
3516                 wakeup_worker = B_FALSE;
3517         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3518         if (flag & MAC_DROP_ON_NO_DESC) {
3519                 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) {
3520                         MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3521                 } else {
3522                         MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3523                             mp_chain, tail, cnt, sz);
3524                 }
3525         } else if (flag & MAC_TX_NO_ENQUEUE) {
3526                 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) ||
3527                     (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) {
3528                         MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain,
3529                             ret_mp, cookie);
3530                 } else {
3531                         mp_chain->b_prev = (mblk_t *)fanout_hint;
3532                         MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3533                             mp_chain, tail, cnt, sz);
3534                 }
3535         } else {
3536                 /*
3537                  * If you are BW_ENFORCED, just enqueue the
3538                  * packet. srs_worker will drain it at the
3539                  * prescribed rate. Before enqueueing, save
3540                  * the fanout hint.
3541                  */
3542                 mp_chain->b_prev = (mblk_t *)fanout_hint;
3543                 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3544                     tail, cnt, sz, cookie);
3545         }
3546         if (wakeup_worker)
3547                 cv_signal(&mac_srs->srs_async);
3548         return (cookie);
3549 }
3550 
3551 /*
3552  * There are seven tx modes:
3553  *
3554  * 1) Default mode (SRS_TX_DEFAULT)
3555  * 2) Serialization mode (SRS_TX_SERIALIZE)
3556  * 3) Fanout mode (SRS_TX_FANOUT)
3557  * 4) Bandwdith mode (SRS_TX_BW)
3558  * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT)
3559  * 6) aggr Tx mode (SRS_TX_AGGR)
3560  * 7) aggr Tx bw mode (SRS_TX_BW_AGGR)
3561  *
3562  * The tx mode in which an SRS operates is decided in mac_tx_srs_setup()
3563  * based on the number of Tx rings requested for an SRS and whether
3564  * bandwidth control is requested or not.
3565  *
3566  * The default mode (i.e., no fanout/no bandwidth) is used when the
3567  * underlying NIC does not have Tx rings or just one Tx ring. In this mode,
3568  * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send().
3569  * When the underlying Tx ring runs out of Tx descs, it starts queueing up
3570  * packets in SRS. When flow-control is relieved, the srs_worker drains
3571  * the queued packets and informs blocked clients to restart sending
3572  * packets.
3573  *
3574  * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This
3575  * mode is used when the link has no Tx rings or only one Tx ring.
3576  *
3577  * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple
3578  * Tx rings. Each Tx ring will have a soft ring associated with it.
3579  * These soft rings will be hung off the Tx SRS. Queueing if it happens
3580  * due to lack of Tx desc will be in individual soft ring (and not srs)
3581  * associated with Tx ring.
3582  *
3583  * In the TX_BW mode, tx srs will allow packets to go down to Tx ring
3584  * only if bw is available. Otherwise the packets will be queued in
3585  * SRS. If fanout to multiple Tx rings is configured, the packets will
3586  * be fanned out among the soft rings associated with the Tx rings.
3587  *
3588  * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine
3589  * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring
3590  * belonging to a port on which the packet has to be sent. Aggr will
3591  * always have a pseudo Tx ring associated with it even when it is an
3592  * aggregation over a single NIC that has no Tx rings. Even in such a
3593  * case, the single pseudo Tx ring will have a soft ring associated with
3594  * it and the soft ring will hang off the SRS.
3595  *
3596  * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used.
3597  * In this mode, the bandwidth is first applied on the outgoing packets
3598  * and later mac_tx_addr_mode() function is called to send the packet out
3599  * of one of the pseudo Tx rings.
3600  *
3601  * Four flags are used in srs_state for indicating flow control
3602  * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT.
3603  * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the
3604  * driver below.
3605  * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat
3606  * and flow-control pressure is applied back to clients. The clients expect
3607  * wakeup when flow-control is relieved.
3608  * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk
3609  * got returned back to client either due to lack of Tx descs or due to bw
3610  * control reasons. The clients expect a wakeup when condition is relieved.
3611  *
3612  * The fourth argument to mac_tx() is the flag. Normally it will be 0 but
3613  * some clients set the following values too: MAC_DROP_ON_NO_DESC,
3614  * MAC_TX_NO_ENQUEUE
3615  * Mac clients that do not want packets to be enqueued in the mac layer set
3616  * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or
3617  * Tx soft rings but instead get dropped when the NIC runs out of desc. The
3618  * behaviour of this flag is different when the Tx is running in serializer
3619  * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet
3620  * get dropped when Tx high watermark is reached.
3621  * There are some mac clients like vsw, aggr that want the mblks to be
3622  * returned back to clients instead of being queued in Tx SRS (or Tx soft
3623  * rings) under flow-control (i.e., out of desc or exceeding bw limits)
3624  * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set.
3625  * In the default and Tx fanout mode, the un-transmitted mblks will be
3626  * returned back to the clients when the driver runs out of Tx descs.
3627  * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or
3628  * soft ring) so that the clients can be woken up when Tx desc become
3629  * available. When running in serializer or bandwidth mode mode,
3630  * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached.
3631  */
3632 
3633 mac_tx_func_t
3634 mac_tx_get_func(uint32_t mode)
3635 {
3636         return (mac_tx_mode_list[mode].mac_tx_func);
3637 }
3638 
3639 /* ARGSUSED */
3640 static mac_tx_cookie_t
3641 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3642     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3643 {
3644         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
3645         mac_tx_stats_t          stats;
3646         mac_tx_cookie_t         cookie = 0;
3647 
3648         ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT);
3649 
3650         /* Regular case with a single Tx ring */
3651         /*
3652          * SRS_TX_BLOCKED is set when underlying NIC runs
3653          * out of Tx descs and messages start getting
3654          * queued. It won't get reset until
3655          * tx_srs_drain() completely drains out the
3656          * messages.
3657          */
3658         if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3659                 /* Tx descs/resources not available */
3660                 mutex_enter(&mac_srs->srs_lock);
3661                 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3662                         cookie = mac_tx_srs_no_desc(mac_srs, mp_chain,
3663                             flag, ret_mp);
3664                         mutex_exit(&mac_srs->srs_lock);
3665                         return (cookie);
3666                 }
3667                 /*
3668                  * While we were computing mblk count, the
3669                  * flow control condition got relieved.
3670                  * Continue with the transmission.
3671                  */
3672                 mutex_exit(&mac_srs->srs_lock);
3673         }
3674 
3675         mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3676             mp_chain, &stats);
3677 
3678         /*
3679          * Multiple threads could be here sending packets.
3680          * Under such conditions, it is not possible to
3681          * automically set SRS_TX_BLOCKED bit to indicate
3682          * out of tx desc condition. To atomically set
3683          * this, we queue the returned packet and do
3684          * the setting of SRS_TX_BLOCKED in
3685          * mac_tx_srs_drain().
3686          */
3687         if (mp_chain != NULL) {
3688                 mutex_enter(&mac_srs->srs_lock);
3689                 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp);
3690                 mutex_exit(&mac_srs->srs_lock);
3691                 return (cookie);
3692         }
3693         SRS_TX_STATS_UPDATE(mac_srs, &stats);
3694 
3695         return (0);
3696 }
3697 
3698 /*
3699  * mac_tx_serialize_mode
3700  *
3701  * This is an experimental mode implemented as per the request of PAE.
3702  * In this mode, all callers attempting to send a packet to the NIC
3703  * will get serialized. Only one thread at any time will access the
3704  * NIC to send the packet out.
3705  */
3706 /* ARGSUSED */
3707 static mac_tx_cookie_t
3708 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3709     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3710 {
3711         mac_tx_stats_t          stats;
3712         mac_tx_cookie_t         cookie = 0;
3713         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
3714 
3715         /* Single ring, serialize below */
3716         ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE);
3717         mutex_enter(&mac_srs->srs_lock);
3718         if ((mac_srs->srs_first != NULL) ||
3719             (mac_srs->srs_state & SRS_PROC)) {
3720                 /*
3721                  * In serialization mode, queue all packets until
3722                  * TX_HIWAT is set.
3723                  * If drop bit is set, drop if TX_HIWAT is set.
3724                  * If no_enqueue is set, still enqueue until hiwat
3725                  * is set and return mblks after TX_HIWAT is set.
3726                  */
3727                 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain,
3728                     flag, 0, ret_mp);
3729                 mutex_exit(&mac_srs->srs_lock);
3730                 return (cookie);
3731         }
3732         /*
3733          * No packets queued, nothing on proc and no flow
3734          * control condition. Fast-path, ok. Do inline
3735          * processing.
3736          */
3737         mac_srs->srs_state |= SRS_PROC;
3738         mutex_exit(&mac_srs->srs_lock);
3739 
3740         mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3741             mp_chain, &stats);
3742 
3743         mutex_enter(&mac_srs->srs_lock);
3744         mac_srs->srs_state &= ~SRS_PROC;
3745         if (mp_chain != NULL) {
3746                 cookie = mac_tx_srs_enqueue(mac_srs,
3747                     mp_chain, flag, 0, ret_mp);
3748         }
3749         if (mac_srs->srs_first != NULL) {
3750                 /*
3751                  * We processed inline our packet and a new
3752                  * packet/s got queued while we were
3753                  * processing. Wakeup srs worker
3754                  */
3755                 cv_signal(&mac_srs->srs_async);
3756         }
3757         mutex_exit(&mac_srs->srs_lock);
3758 
3759         if (cookie == 0)
3760                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3761 
3762         return (cookie);
3763 }
3764 
3765 /*
3766  * mac_tx_fanout_mode
3767  *
3768  * In this mode, the SRS will have access to multiple Tx rings to send
3769  * the packet out. The fanout hint that is passed as an argument is
3770  * used to find an appropriate ring to fanout the traffic. Each Tx
3771  * ring, in turn,  will have a soft ring associated with it. If a Tx
3772  * ring runs out of Tx desc's the returned packet will be queued in
3773  * the soft ring associated with that Tx ring. The srs itself will not
3774  * queue any packets.
3775  */
3776 
3777 #define MAC_TX_SOFT_RING_PROCESS(chain) {                               \
3778         index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count),     \
3779         softring = mac_srs->srs_tx_soft_rings[index];                        \
3780         cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \
3781         DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index);       \
3782 }
3783 
3784 static mac_tx_cookie_t
3785 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3786     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3787 {
3788         mac_soft_ring_t         *softring;
3789         uint64_t                hash;
3790         uint_t                  index;
3791         mac_tx_cookie_t         cookie = 0;
3792 
3793         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3794             mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT);
3795         if (fanout_hint != 0) {
3796                 /*
3797                  * The hint is specified by the caller, simply pass the
3798                  * whole chain to the soft ring.
3799                  */
3800                 hash = HASH_HINT(fanout_hint);
3801                 MAC_TX_SOFT_RING_PROCESS(mp_chain);
3802         } else {
3803                 mblk_t *last_mp, *cur_mp, *sub_chain;
3804                 uint64_t last_hash = 0;
3805                 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media;
3806 
3807                 /*
3808                  * Compute the hash from the contents (headers) of the
3809                  * packets of the mblk chain. Split the chains into
3810                  * subchains of the same conversation.
3811                  *
3812                  * Since there may be more than one ring used for
3813                  * sub-chains of the same call, and since the caller
3814                  * does not maintain per conversation state since it
3815                  * passed a zero hint, unsent subchains will be
3816                  * dropped.
3817                  */
3818 
3819                 flag |= MAC_DROP_ON_NO_DESC;
3820                 ret_mp = NULL;
3821 
3822                 ASSERT(ret_mp == NULL);
3823 
3824                 sub_chain = NULL;
3825                 last_mp = NULL;
3826 
3827                 for (cur_mp = mp_chain; cur_mp != NULL;
3828                     cur_mp = cur_mp->b_next) {
3829                         hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4,
3830                             B_TRUE);
3831                         if (last_hash != 0 && hash != last_hash) {
3832                                 /*
3833                                  * Starting a different subchain, send current
3834                                  * chain out.
3835                                  */
3836                                 ASSERT(last_mp != NULL);
3837                                 last_mp->b_next = NULL;
3838                                 MAC_TX_SOFT_RING_PROCESS(sub_chain);
3839                                 sub_chain = NULL;
3840                         }
3841 
3842                         /* add packet to subchain */
3843                         if (sub_chain == NULL)
3844                                 sub_chain = cur_mp;
3845                         last_mp = cur_mp;
3846                         last_hash = hash;
3847                 }
3848 
3849                 if (sub_chain != NULL) {
3850                         /* send last subchain */
3851                         ASSERT(last_mp != NULL);
3852                         last_mp->b_next = NULL;
3853                         MAC_TX_SOFT_RING_PROCESS(sub_chain);
3854                 }
3855 
3856                 cookie = 0;
3857         }
3858 
3859         return (cookie);
3860 }
3861 
3862 /*
3863  * mac_tx_bw_mode
3864  *
3865  * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring
3866  * only if bw is available. Otherwise the packets will be queued in
3867  * SRS. If the SRS has multiple Tx rings, then packets will get fanned
3868  * out to a Tx rings.
3869  */
3870 static mac_tx_cookie_t
3871 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3872     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3873 {
3874         int                     cnt, sz;
3875         mblk_t                  *tail;
3876         mac_tx_cookie_t         cookie = 0;
3877         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
3878         clock_t                 now;
3879 
3880         ASSERT(TX_BANDWIDTH_MODE(mac_srs));
3881         ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
3882         mutex_enter(&mac_srs->srs_lock);
3883         if (mac_srs->srs_bw->mac_bw_limit == 0) {
3884                 /*
3885                  * zero bandwidth, no traffic is sent: drop the packets,
3886                  * or return the whole chain if the caller requests all
3887                  * unsent packets back.
3888                  */
3889                 if (flag & MAC_TX_NO_ENQUEUE) {
3890                         cookie = (mac_tx_cookie_t)mac_srs;
3891                         *ret_mp = mp_chain;
3892                 } else {
3893                         MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3894                 }
3895                 mutex_exit(&mac_srs->srs_lock);
3896                 return (cookie);
3897         } else if ((mac_srs->srs_first != NULL) ||
3898             (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
3899                 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3900                     fanout_hint, ret_mp);
3901                 mutex_exit(&mac_srs->srs_lock);
3902                 return (cookie);
3903         }
3904         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3905         now = ddi_get_lbolt();
3906         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3907                 mac_srs->srs_bw->mac_bw_curr_time = now;
3908                 mac_srs->srs_bw->mac_bw_used = 0;
3909         } else if (mac_srs->srs_bw->mac_bw_used >
3910             mac_srs->srs_bw->mac_bw_limit) {
3911                 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3912                 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3913                     mp_chain, tail, cnt, sz);
3914                 /*
3915                  * Wakeup worker thread. Note that worker
3916                  * thread has to be woken up so that it
3917                  * can fire up the timer to be woken up
3918                  * on the next tick. Also once
3919                  * BW_ENFORCED is set, it can only be
3920                  * reset by srs_worker thread. Until then
3921                  * all packets will get queued up in SRS
3922                  * and hence this this code path won't be
3923                  * entered until BW_ENFORCED is reset.
3924                  */
3925                 cv_signal(&mac_srs->srs_async);
3926                 mutex_exit(&mac_srs->srs_lock);
3927                 return (cookie);
3928         }
3929 
3930         mac_srs->srs_bw->mac_bw_used += sz;
3931         mutex_exit(&mac_srs->srs_lock);
3932 
3933         if (srs_tx->st_mode == SRS_TX_BW_FANOUT) {
3934                 mac_soft_ring_t *softring;
3935                 uint_t indx, hash;
3936 
3937                 hash = HASH_HINT(fanout_hint);
3938                 indx = COMPUTE_INDEX(hash,
3939                     mac_srs->srs_tx_ring_count);
3940                 softring = mac_srs->srs_tx_soft_rings[indx];
3941                 return (mac_tx_soft_ring_process(softring, mp_chain, flag,
3942                     ret_mp));
3943         } else if (srs_tx->st_mode == SRS_TX_BW_AGGR) {
3944                 return (mac_tx_aggr_mode(mac_srs, mp_chain,
3945                     fanout_hint, flag, ret_mp));
3946         } else {
3947                 mac_tx_stats_t          stats;
3948 
3949                 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3950                     mp_chain, &stats);
3951 
3952                 if (mp_chain != NULL) {
3953                         mutex_enter(&mac_srs->srs_lock);
3954                         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3955                         if (mac_srs->srs_bw->mac_bw_used > sz)
3956                                 mac_srs->srs_bw->mac_bw_used -= sz;
3957                         else
3958                                 mac_srs->srs_bw->mac_bw_used = 0;
3959                         cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3960                             fanout_hint, ret_mp);
3961                         mutex_exit(&mac_srs->srs_lock);
3962                         return (cookie);
3963                 }
3964                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3965 
3966                 return (0);
3967         }
3968 }
3969 
3970 /*
3971  * mac_tx_aggr_mode
3972  *
3973  * This routine invokes an aggr function, aggr_find_tx_ring(), to find
3974  * a (pseudo) Tx ring belonging to a port on which the packet has to
3975  * be sent. aggr_find_tx_ring() first finds the outgoing port based on
3976  * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick
3977  * a Tx ring from the selected port.
3978  *
3979  * Note that a port can be deleted from the aggregation. In such a case,
3980  * the aggregation layer first separates the port from the rest of the
3981  * ports making sure that port (and thus any Tx rings associated with
3982  * it) won't get selected in the call to aggr_find_tx_ring() function.
3983  * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring
3984  * handles one by one which in turn will quiesce the Tx SRS and remove
3985  * the soft ring associated with the pseudo Tx ring. Unlike Rx side
3986  * where a cookie is used to protect against mac_rx_ring() calls on
3987  * rings that have been removed, no such cookie is needed on the Tx
3988  * side as the pseudo Tx ring won't be available anymore to
3989  * aggr_find_tx_ring() once the port has been removed.
3990  */
3991 static mac_tx_cookie_t
3992 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3993     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3994 {
3995         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
3996         mac_tx_ring_fn_t        find_tx_ring_fn;
3997         mac_ring_handle_t       ring = NULL;
3998         void                    *arg;
3999         mac_soft_ring_t         *sringp;
4000 
4001         find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn;
4002         arg = srs_tx->st_capab_aggr.mca_arg;
4003         if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL)
4004                 return (0);
4005         sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index];
4006         return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp));
4007 }
4008 
4009 void
4010 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie)
4011 {
4012         mac_cb_t *mcb;
4013         mac_tx_notify_cb_t *mtnfp;
4014 
4015         /* Wakeup callback registered clients */
4016         MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info);
4017         for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL;
4018             mcb = mcb->mcb_nextp) {
4019                 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp;
4020                 mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie);
4021         }
4022         MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info,
4023             &mcip->mci_tx_notify_cb_list);
4024 }
4025 
4026 /* ARGSUSED */
4027 void
4028 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
4029 {
4030         mblk_t                  *head, *tail;
4031         size_t                  sz;
4032         uint32_t                tx_mode;
4033         uint_t                  saved_pkt_count;
4034         mac_tx_stats_t          stats;
4035         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
4036         clock_t                 now;
4037 
4038         saved_pkt_count = 0;
4039         ASSERT(mutex_owned(&mac_srs->srs_lock));
4040         ASSERT(!(mac_srs->srs_state & SRS_PROC));
4041 
4042         mac_srs->srs_state |= SRS_PROC;
4043 
4044         tx_mode = srs_tx->st_mode;
4045         if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) {
4046                 if (mac_srs->srs_first != NULL) {
4047                         head = mac_srs->srs_first;
4048                         tail = mac_srs->srs_last;
4049                         saved_pkt_count = mac_srs->srs_count;
4050                         mac_srs->srs_first = NULL;
4051                         mac_srs->srs_last = NULL;
4052                         mac_srs->srs_count = 0;
4053                         mutex_exit(&mac_srs->srs_lock);
4054 
4055                         head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4056                             head, &stats);
4057 
4058                         mutex_enter(&mac_srs->srs_lock);
4059                         if (head != NULL) {
4060                                 /* Device out of tx desc, set block */
4061                                 if (head->b_next == NULL)
4062                                         VERIFY(head == tail);
4063                                 tail->b_next = mac_srs->srs_first;
4064                                 mac_srs->srs_first = head;
4065                                 mac_srs->srs_count +=
4066                                     (saved_pkt_count - stats.mts_opackets);
4067                                 if (mac_srs->srs_last == NULL)
4068                                         mac_srs->srs_last = tail;
4069                                 MAC_TX_SRS_BLOCK(mac_srs, head);
4070                         } else {
4071                                 srs_tx->st_woken_up = B_FALSE;
4072                                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4073                         }
4074                 }
4075         } else if (tx_mode == SRS_TX_BW) {
4076                 /*
4077                  * We are here because the timer fired and we have some data
4078                  * to tranmit. Also mac_tx_srs_worker should have reset
4079                  * SRS_BW_ENFORCED flag
4080                  */
4081                 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED));
4082                 head = tail = mac_srs->srs_first;
4083                 while (mac_srs->srs_first != NULL) {
4084                         tail = mac_srs->srs_first;
4085                         tail->b_prev = NULL;
4086                         mac_srs->srs_first = tail->b_next;
4087                         if (mac_srs->srs_first == NULL)
4088                                 mac_srs->srs_last = NULL;
4089                         mac_srs->srs_count--;
4090                         sz = msgdsize(tail);
4091                         mac_srs->srs_size -= sz;
4092                         saved_pkt_count++;
4093                         MAC_TX_UPDATE_BW_INFO(mac_srs, sz);
4094 
4095                         if (mac_srs->srs_bw->mac_bw_used <
4096                             mac_srs->srs_bw->mac_bw_limit)
4097                                 continue;
4098 
4099                         now = ddi_get_lbolt();
4100                         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4101                                 mac_srs->srs_bw->mac_bw_curr_time = now;
4102                                 mac_srs->srs_bw->mac_bw_used = sz;
4103                                 continue;
4104                         }
4105                         mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4106                         break;
4107                 }
4108 
4109                 ASSERT((head == NULL && tail == NULL) ||
4110                     (head != NULL && tail != NULL));
4111                 if (tail != NULL) {
4112                         tail->b_next = NULL;
4113                         mutex_exit(&mac_srs->srs_lock);
4114 
4115                         head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4116                             head, &stats);
4117 
4118                         mutex_enter(&mac_srs->srs_lock);
4119                         if (head != NULL) {
4120                                 uint_t size_sent;
4121 
4122                                 /* Device out of tx desc, set block */
4123                                 if (head->b_next == NULL)
4124                                         VERIFY(head == tail);
4125                                 tail->b_next = mac_srs->srs_first;
4126                                 mac_srs->srs_first = head;
4127                                 mac_srs->srs_count +=
4128                                     (saved_pkt_count - stats.mts_opackets);
4129                                 if (mac_srs->srs_last == NULL)
4130                                         mac_srs->srs_last = tail;
4131                                 size_sent = sz - stats.mts_obytes;
4132                                 mac_srs->srs_size += size_sent;
4133                                 mac_srs->srs_bw->mac_bw_sz += size_sent;
4134                                 if (mac_srs->srs_bw->mac_bw_used > size_sent) {
4135                                         mac_srs->srs_bw->mac_bw_used -=
4136                                             size_sent;
4137                                 } else {
4138                                         mac_srs->srs_bw->mac_bw_used = 0;
4139                                 }
4140                                 MAC_TX_SRS_BLOCK(mac_srs, head);
4141                         } else {
4142                                 srs_tx->st_woken_up = B_FALSE;
4143                                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4144                         }
4145                 }
4146         } else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) {
4147                 mblk_t *prev;
4148                 uint64_t hint;
4149 
4150                 /*
4151                  * We are here because the timer fired and we
4152                  * have some quota to tranmit.
4153                  */
4154                 prev = NULL;
4155                 head = tail = mac_srs->srs_first;
4156                 while (mac_srs->srs_first != NULL) {
4157                         tail = mac_srs->srs_first;
4158                         mac_srs->srs_first = tail->b_next;
4159                         if (mac_srs->srs_first == NULL)
4160                                 mac_srs->srs_last = NULL;
4161                         mac_srs->srs_count--;
4162                         sz = msgdsize(tail);
4163                         mac_srs->srs_size -= sz;
4164                         mac_srs->srs_bw->mac_bw_used += sz;
4165                         if (prev == NULL)
4166                                 hint = (ulong_t)tail->b_prev;
4167                         if (hint != (ulong_t)tail->b_prev) {
4168                                 prev->b_next = NULL;
4169                                 mutex_exit(&mac_srs->srs_lock);
4170                                 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4171                                 head = tail;
4172                                 hint = (ulong_t)tail->b_prev;
4173                                 mutex_enter(&mac_srs->srs_lock);
4174                         }
4175 
4176                         prev = tail;
4177                         tail->b_prev = NULL;
4178                         if (mac_srs->srs_bw->mac_bw_used <
4179                             mac_srs->srs_bw->mac_bw_limit)
4180                                 continue;
4181 
4182                         now = ddi_get_lbolt();
4183                         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4184                                 mac_srs->srs_bw->mac_bw_curr_time = now;
4185                                 mac_srs->srs_bw->mac_bw_used = 0;
4186                                 continue;
4187                         }
4188                         mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4189                         break;
4190                 }
4191                 ASSERT((head == NULL && tail == NULL) ||
4192                     (head != NULL && tail != NULL));
4193                 if (tail != NULL) {
4194                         tail->b_next = NULL;
4195                         mutex_exit(&mac_srs->srs_lock);
4196                         TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4197                         mutex_enter(&mac_srs->srs_lock);
4198                 }
4199         }
4200         /*
4201          * SRS_TX_FANOUT case not considered here because packets
4202          * won't be queued in the SRS for this case. Packets will
4203          * be sent directly to soft rings underneath and if there
4204          * is any queueing at all, it would be in Tx side soft
4205          * rings.
4206          */
4207 
4208         /*
4209          * When srs_count becomes 0, reset SRS_TX_HIWAT and
4210          * SRS_TX_WAKEUP_CLIENT and wakeup registered clients.
4211          */
4212         if (mac_srs->srs_count == 0 && (mac_srs->srs_state &
4213             (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) {
4214                 mac_client_impl_t *mcip = mac_srs->srs_mcip;
4215                 boolean_t wakeup_required = B_FALSE;
4216 
4217                 if (mac_srs->srs_state &
4218                     (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) {
4219                         wakeup_required = B_TRUE;
4220                 }
4221                 mac_srs->srs_state &= ~(SRS_TX_HIWAT |
4222                     SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED);
4223                 mutex_exit(&mac_srs->srs_lock);
4224                 if (wakeup_required) {
4225                         mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs);
4226                         /*
4227                          * If the client is not the primary MAC client, then we
4228                          * need to send the notification to the clients upper
4229                          * MAC, i.e. mci_upper_mip.
4230                          */
4231                         mac_tx_notify(mcip->mci_upper_mip != NULL ?
4232                             mcip->mci_upper_mip : mcip->mci_mip);
4233                 }
4234                 mutex_enter(&mac_srs->srs_lock);
4235         }
4236         mac_srs->srs_state &= ~SRS_PROC;
4237 }
4238 
4239 /*
4240  * Given a packet, get the flow_entry that identifies the flow
4241  * to which that packet belongs. The flow_entry will contain
4242  * the transmit function to be used to send the packet. If the
4243  * function returns NULL, the packet should be sent using the
4244  * underlying NIC.
4245  */
4246 static flow_entry_t *
4247 mac_tx_classify(mac_impl_t *mip, mblk_t *mp)
4248 {
4249         flow_entry_t            *flent = NULL;
4250         mac_client_impl_t       *mcip;
4251         int     err;
4252 
4253         /*
4254          * Do classification on the packet.
4255          */
4256         err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent);
4257         if (err != 0)
4258                 return (NULL);
4259 
4260         /*
4261          * This flent might just be an additional one on the MAC client,
4262          * i.e. for classification purposes (different fdesc), however
4263          * the resources, SRS et. al., are in the mci_flent, so if
4264          * this isn't the mci_flent, we need to get it.
4265          */
4266         if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) {
4267                 FLOW_REFRELE(flent);
4268                 flent = mcip->mci_flent;
4269                 FLOW_TRY_REFHOLD(flent, err);
4270                 if (err != 0)
4271                         return (NULL);
4272         }
4273 
4274         return (flent);
4275 }
4276 
4277 /*
4278  * This macro is only meant to be used by mac_tx_send().
4279  */
4280 #define CHECK_VID_AND_ADD_TAG(mp) {                     \
4281         if (vid_check) {                                \
4282                 int err = 0;                            \
4283                                                         \
4284                 MAC_VID_CHECK(src_mcip, (mp), err);     \
4285                 if (err != 0) {                         \
4286                         freemsg((mp));                  \
4287                         (mp) = next;                    \
4288                         oerrors++;                      \
4289                         continue;                       \
4290                 }                                       \
4291         }                                               \
4292         if (add_tag) {                                  \
4293                 (mp) = mac_add_vlan_tag((mp), 0, vid);  \
4294                 if ((mp) == NULL) {                     \
4295                         (mp) = next;                    \
4296                         oerrors++;                      \
4297                         continue;                       \
4298                 }                                       \
4299         }                                               \
4300 }
4301 
4302 mblk_t *
4303 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain,
4304     mac_tx_stats_t *stats)
4305 {
4306         mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch;
4307         mac_impl_t *mip = src_mcip->mci_mip;
4308         uint_t obytes = 0, opackets = 0, oerrors = 0;
4309         mblk_t *mp = NULL, *next;
4310         boolean_t vid_check, add_tag;
4311         uint16_t vid = 0;
4312 
4313         if (mip->mi_nclients > 1) {
4314                 vid_check = MAC_VID_CHECK_NEEDED(src_mcip);
4315                 add_tag = MAC_TAG_NEEDED(src_mcip);
4316                 if (add_tag)
4317                         vid = mac_client_vid(mch);
4318         } else {
4319                 ASSERT(mip->mi_nclients == 1);
4320                 vid_check = add_tag = B_FALSE;
4321         }
4322 
4323         /*
4324          * Fastpath: if there's only one client, we simply send
4325          * the packet down to the underlying NIC.
4326          */
4327         if (mip->mi_nactiveclients == 1) {
4328                 DTRACE_PROBE2(fastpath,
4329                     mac_client_impl_t *, src_mcip, mblk_t *, mp_chain);
4330 
4331                 mp = mp_chain;
4332                 while (mp != NULL) {
4333                         next = mp->b_next;
4334                         mp->b_next = NULL;
4335                         opackets++;
4336                         obytes += (mp->b_cont == NULL ? MBLKL(mp) :
4337                             msgdsize(mp));
4338 
4339                         CHECK_VID_AND_ADD_TAG(mp);
4340                         MAC_TX(mip, ring, mp, src_mcip);
4341 
4342                         /*
4343                          * If the driver is out of descriptors and does a
4344                          * partial send it will return a chain of unsent
4345                          * mblks. Adjust the accounting stats.
4346                          */
4347                         if (mp != NULL) {
4348                                 opackets--;
4349                                 obytes -= msgdsize(mp);
4350                                 mp->b_next = next;
4351                                 break;
4352                         }
4353                         mp = next;
4354                 }
4355                 goto done;
4356         }
4357 
4358         /*
4359          * No fastpath, we either have more than one MAC client
4360          * defined on top of the same MAC, or one or more MAC
4361          * client promiscuous callbacks.
4362          */
4363         DTRACE_PROBE3(slowpath, mac_client_impl_t *,
4364             src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain);
4365 
4366         mp = mp_chain;
4367         while (mp != NULL) {
4368                 flow_entry_t *dst_flow_ent;
4369                 void *flow_cookie;
4370                 size_t  pkt_size;
4371                 mblk_t *mp1;
4372 
4373                 next = mp->b_next;
4374                 mp->b_next = NULL;
4375                 opackets++;
4376                 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp));
4377                 obytes += pkt_size;
4378                 CHECK_VID_AND_ADD_TAG(mp);
4379 
4380                 /*
4381                  * Find the destination.
4382                  */
4383                 dst_flow_ent = mac_tx_classify(mip, mp);
4384 
4385                 if (dst_flow_ent != NULL) {
4386                         size_t  hdrsize;
4387                         int     err = 0;
4388 
4389                         if (mip->mi_info.mi_nativemedia == DL_ETHER) {
4390                                 struct ether_vlan_header *evhp =
4391                                     (struct ether_vlan_header *)mp->b_rptr;
4392 
4393                                 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN)
4394                                         hdrsize = sizeof (*evhp);
4395                                 else
4396                                         hdrsize = sizeof (struct ether_header);
4397                         } else {
4398                                 mac_header_info_t       mhi;
4399 
4400                                 err = mac_header_info((mac_handle_t)mip,
4401                                     mp, &mhi);
4402                                 if (err == 0)
4403                                         hdrsize = mhi.mhi_hdrsize;
4404                         }
4405 
4406                         /*
4407                          * Got a matching flow. It's either another
4408                          * MAC client, or a broadcast/multicast flow.
4409                          * Make sure the packet size is within the
4410                          * allowed size. If not drop the packet and
4411                          * move to next packet.
4412                          */
4413                         if (err != 0 ||
4414                             (pkt_size - hdrsize) > mip->mi_sdu_max) {
4415                                 oerrors++;
4416                                 DTRACE_PROBE2(loopback__drop, size_t, pkt_size,
4417                                     mblk_t *, mp);
4418                                 freemsg(mp);
4419                                 mp = next;
4420                                 FLOW_REFRELE(dst_flow_ent);
4421                                 continue;
4422                         }
4423                         flow_cookie = mac_flow_get_client_cookie(dst_flow_ent);
4424                         if (flow_cookie != NULL) {
4425                                 /*
4426                                  * The vnic_bcast_send function expects
4427                                  * to receive the sender MAC client
4428                                  * as value for arg2.
4429                                  */
4430                                 mac_bcast_send(flow_cookie, src_mcip, mp,
4431                                     B_TRUE);
4432                         } else {
4433                                 /*
4434                                  * loopback the packet to a local MAC
4435                                  * client. We force a context switch
4436                                  * if both source and destination MAC
4437                                  * clients are used by IP, i.e.
4438                                  * bypass is set.
4439                                  */
4440                                 boolean_t do_switch;
4441                                 mac_client_impl_t *dst_mcip =
4442                                     dst_flow_ent->fe_mcip;
4443 
4444                                 /*
4445                                  * Check if there are promiscuous mode
4446                                  * callbacks defined. This check is
4447                                  * done here in the 'else' case and
4448                                  * not in other cases because this
4449                                  * path is for local loopback
4450                                  * communication which does not go
4451                                  * through MAC_TX(). For paths that go
4452                                  * through MAC_TX(), the promisc_list
4453                                  * check is done inside the MAC_TX()
4454                                  * macro.
4455                                  */
4456                                 if (mip->mi_promisc_list != NULL)
4457                                         mac_promisc_dispatch(mip, mp, src_mcip);
4458 
4459                                 do_switch = ((src_mcip->mci_state_flags &
4460                                     dst_mcip->mci_state_flags &
4461                                     MCIS_CLIENT_POLL_CAPABLE) != 0);
4462 
4463                                 if ((mp1 = mac_fix_cksum(mp)) != NULL) {
4464                                         (dst_flow_ent->fe_cb_fn)(
4465                                             dst_flow_ent->fe_cb_arg1,
4466                                             dst_flow_ent->fe_cb_arg2,
4467                                             mp1, do_switch);
4468                                 }
4469                         }
4470                         FLOW_REFRELE(dst_flow_ent);
4471                 } else {
4472                         /*
4473                          * Unknown destination, send via the underlying
4474                          * NIC.
4475                          */
4476                         MAC_TX(mip, ring, mp, src_mcip);
4477                         if (mp != NULL) {
4478                                 /*
4479                                  * Adjust for the last packet that
4480                                  * could not be transmitted
4481                                  */
4482                                 opackets--;
4483                                 obytes -= pkt_size;
4484                                 mp->b_next = next;
4485                                 break;
4486                         }
4487                 }
4488                 mp = next;
4489         }
4490 
4491 done:
4492         stats->mts_obytes = obytes;
4493         stats->mts_opackets = opackets;
4494         stats->mts_oerrors = oerrors;
4495         return (mp);
4496 }
4497 
4498 /*
4499  * mac_tx_srs_ring_present
4500  *
4501  * Returns whether the specified ring is part of the specified SRS.
4502  */
4503 boolean_t
4504 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4505 {
4506         int i;
4507         mac_soft_ring_t *soft_ring;
4508 
4509         if (srs->srs_tx.st_arg2 == tx_ring)
4510                 return (B_TRUE);
4511 
4512         for (i = 0; i < srs->srs_tx_ring_count; i++) {
4513                 soft_ring =  srs->srs_tx_soft_rings[i];
4514                 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4515                         return (B_TRUE);
4516         }
4517 
4518         return (B_FALSE);
4519 }
4520 
4521 /*
4522  * mac_tx_srs_get_soft_ring
4523  *
4524  * Returns the TX soft ring associated with the given ring, if present.
4525  */
4526 mac_soft_ring_t *
4527 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4528 {
4529         int             i;
4530         mac_soft_ring_t *soft_ring;
4531 
4532         if (srs->srs_tx.st_arg2 == tx_ring)
4533                 return (NULL);
4534 
4535         for (i = 0; i < srs->srs_tx_ring_count; i++) {
4536                 soft_ring =  srs->srs_tx_soft_rings[i];
4537                 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4538                         return (soft_ring);
4539         }
4540 
4541         return (NULL);
4542 }
4543 
4544 /*
4545  * mac_tx_srs_wakeup
4546  *
4547  * Called when Tx desc become available. Wakeup the appropriate worker
4548  * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the
4549  * state field.
4550  */
4551 void
4552 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring)
4553 {
4554         int i;
4555         mac_soft_ring_t *sringp;
4556         mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
4557 
4558         mutex_enter(&mac_srs->srs_lock);
4559         /*
4560          * srs_tx_ring_count == 0 is the single ring mode case. In
4561          * this mode, there will not be Tx soft rings associated
4562          * with the SRS.
4563          */
4564         if (!MAC_TX_SOFT_RINGS(mac_srs)) {
4565                 if (srs_tx->st_arg2 == ring &&
4566                     mac_srs->srs_state & SRS_TX_BLOCKED) {
4567                         mac_srs->srs_state &= ~SRS_TX_BLOCKED;
4568                         srs_tx->st_stat.mts_unblockcnt++;
4569                         cv_signal(&mac_srs->srs_async);
4570                 }
4571                 /*
4572                  * A wakeup can come before tx_srs_drain() could
4573                  * grab srs lock and set SRS_TX_BLOCKED. So
4574                  * always set woken_up flag when we come here.
4575                  */
4576                 srs_tx->st_woken_up = B_TRUE;
4577                 mutex_exit(&mac_srs->srs_lock);
4578                 return;
4579         }
4580 
4581         /*
4582          * If you are here, it is for FANOUT, BW_FANOUT,
4583          * AGGR_MODE or AGGR_BW_MODE case
4584          */
4585         for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
4586                 sringp = mac_srs->srs_tx_soft_rings[i];
4587                 mutex_enter(&sringp->s_ring_lock);
4588                 if (sringp->s_ring_tx_arg2 == ring) {
4589                         if (sringp->s_ring_state & S_RING_BLOCK) {
4590                                 sringp->s_ring_state &= ~S_RING_BLOCK;
4591                                 sringp->s_st_stat.mts_unblockcnt++;
4592                                 cv_signal(&sringp->s_ring_async);
4593                         }
4594                         sringp->s_ring_tx_woken_up = B_TRUE;
4595                 }
4596                 mutex_exit(&sringp->s_ring_lock);
4597         }
4598         mutex_exit(&mac_srs->srs_lock);
4599 }
4600 
4601 /*
4602  * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash
4603  * the blocked clients again.
4604  */
4605 void
4606 mac_tx_notify(mac_impl_t *mip)
4607 {
4608         i_mac_notify(mip, MAC_NOTE_TX);
4609 }
4610 
4611 /*
4612  * RX SOFTRING RELATED FUNCTIONS
4613  *
4614  * These functions really belong in mac_soft_ring.c and here for
4615  * a short period.
4616  */
4617 
4618 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) {             \
4619         /*                                                              \
4620          * Enqueue our mblk chain.                                      \
4621          */                                                             \
4622         ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock));                       \
4623                                                                         \
4624         if ((ringp)->s_ring_last != NULL)                            \
4625                 (ringp)->s_ring_last->b_next = (mp);                      \
4626         else                                                            \
4627                 (ringp)->s_ring_first = (mp);                                \
4628         (ringp)->s_ring_last = (tail);                                       \
4629         (ringp)->s_ring_count += (cnt);                                      \
4630         ASSERT((ringp)->s_ring_count > 0);                                \
4631         if ((ringp)->s_ring_type & ST_RING_BW_CTL) {                     \
4632                 (ringp)->s_ring_size += sz;                          \
4633         }                                                               \
4634 }
4635 
4636 /*
4637  * Default entry point to deliver a packet chain to a MAC client.
4638  * If the MAC client has flows, do the classification with these
4639  * flows as well.
4640  */
4641 /* ARGSUSED */
4642 void
4643 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain,
4644     mac_header_info_t *arg3)
4645 {
4646         mac_client_impl_t *mcip = arg1;
4647 
4648         if (mcip->mci_nvids == 1 &&
4649             !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) {
4650                 /*
4651                  * If the client has exactly one VID associated with it
4652                  * and striping of VLAN header is not disabled,
4653                  * remove the VLAN tag from the packet before
4654                  * passing it on to the client's receive callback.
4655                  * Note that this needs to be done after we dispatch
4656                  * the packet to the promiscuous listeners of the
4657                  * client, since they expect to see the whole
4658                  * frame including the VLAN headers.
4659                  */
4660                 mp_chain = mac_strip_vlan_tag_chain(mp_chain);
4661         }
4662 
4663         mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE);
4664 }
4665 
4666 /*
4667  * mac_rx_soft_ring_process
4668  *
4669  * process a chain for a given soft ring. The number of packets queued
4670  * in the SRS and its associated soft rings (including this one) is
4671  * very small (tracked by srs_poll_pkt_cnt), then allow the entering
4672  * thread (interrupt or poll thread) to do inline processing. This
4673  * helps keep the latency down under low load.
4674  *
4675  * The proc and arg for each mblk is already stored in the mblk in
4676  * appropriate places.
4677  */
4678 /* ARGSUSED */
4679 void
4680 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp,
4681     mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz)
4682 {
4683         mac_direct_rx_t         proc;
4684         void                    *arg1;
4685         mac_resource_handle_t   arg2;
4686         mac_soft_ring_set_t     *mac_srs = ringp->s_ring_set;
4687 
4688         ASSERT(ringp != NULL);
4689         ASSERT(mp_chain != NULL);
4690         ASSERT(tail != NULL);
4691         ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4692 
4693         mutex_enter(&ringp->s_ring_lock);
4694         ringp->s_ring_total_inpkt += cnt;
4695         ringp->s_ring_total_rbytes += sz;
4696         if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) &&
4697             !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) {
4698                 /* If on processor or blanking on, then enqueue and return */
4699                 if (ringp->s_ring_state & S_RING_BLANK ||
4700                     ringp->s_ring_state & S_RING_PROC) {
4701                         SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4702                         mutex_exit(&ringp->s_ring_lock);
4703                         return;
4704                 }
4705                 proc = ringp->s_ring_rx_func;
4706                 arg1 = ringp->s_ring_rx_arg1;
4707                 arg2 = ringp->s_ring_rx_arg2;
4708                 /*
4709                  * See if anything is already queued. If we are the
4710                  * first packet, do inline processing else queue the
4711                  * packet and do the drain.
4712                  */
4713                 if (ringp->s_ring_first == NULL) {
4714                         /*
4715                          * Fast-path, ok to process and nothing queued.
4716                          */
4717                         ringp->s_ring_run = curthread;
4718                         ringp->s_ring_state |= (S_RING_PROC);
4719 
4720                         mutex_exit(&ringp->s_ring_lock);
4721 
4722                         /*
4723                          * We are the chain of 1 packet so
4724                          * go through this fast path.
4725                          */
4726                         ASSERT(mp_chain->b_next == NULL);
4727 
4728                         (*proc)(arg1, arg2, mp_chain, NULL);
4729 
4730                         ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4731                         /*
4732                          * If we have a soft ring set which is doing
4733                          * bandwidth control, we need to decrement
4734                          * srs_size and count so it the SRS can have a
4735                          * accurate idea of what is the real data
4736                          * queued between SRS and its soft rings. We
4737                          * decrement the counters only when the packet
4738                          * gets processed by both SRS and the soft ring.
4739                          */
4740                         mutex_enter(&mac_srs->srs_lock);
4741                         MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
4742                         MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
4743                         mutex_exit(&mac_srs->srs_lock);
4744 
4745                         mutex_enter(&ringp->s_ring_lock);
4746                         ringp->s_ring_run = NULL;
4747                         ringp->s_ring_state &= ~S_RING_PROC;
4748                         if (ringp->s_ring_state & S_RING_CLIENT_WAIT)
4749                                 cv_signal(&ringp->s_ring_client_cv);
4750 
4751                         if ((ringp->s_ring_first == NULL) ||
4752                             (ringp->s_ring_state & S_RING_BLANK)) {
4753                                 /*
4754                                  * We processed inline our packet and
4755                                  * nothing new has arrived or our
4756                                  * receiver doesn't want to receive
4757                                  * any packets. We are done.
4758                                  */
4759                                 mutex_exit(&ringp->s_ring_lock);
4760                                 return;
4761                         }
4762                 } else {
4763                         SOFT_RING_ENQUEUE_CHAIN(ringp,
4764                             mp_chain, tail, cnt, sz);
4765                 }
4766 
4767                 /*
4768                  * We are here because either we couldn't do inline
4769                  * processing (because something was already
4770                  * queued), or we had a chain of more than one
4771                  * packet, or something else arrived after we were
4772                  * done with inline processing.
4773                  */
4774                 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4775                 ASSERT(ringp->s_ring_first != NULL);
4776 
4777                 ringp->s_ring_drain_func(ringp);
4778                 mutex_exit(&ringp->s_ring_lock);
4779                 return;
4780         } else {
4781                 /* ST_RING_WORKER_ONLY case */
4782                 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4783                 mac_soft_ring_worker_wakeup(ringp);
4784                 mutex_exit(&ringp->s_ring_lock);
4785         }
4786 }
4787 
4788 /*
4789  * TX SOFTRING RELATED FUNCTIONS
4790  *
4791  * These functions really belong in mac_soft_ring.c and here for
4792  * a short period.
4793  */
4794 
4795 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) {          \
4796         ASSERT(MUTEX_HELD(&ringp->s_ring_lock));                 \
4797         ringp->s_ring_state |= S_RING_ENQUEUED;                              \
4798         SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);        \
4799 }
4800 
4801 /*
4802  * mac_tx_sring_queued
4803  *
4804  * When we are out of transmit descriptors and we already have a
4805  * queue that exceeds hiwat (or the client called us with
4806  * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the
4807  * soft ring pointer as the opaque cookie for the client enable
4808  * flow control.
4809  */
4810 static mac_tx_cookie_t
4811 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag,
4812     mblk_t **ret_mp)
4813 {
4814         int cnt;
4815         size_t sz;
4816         mblk_t *tail;
4817         mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4818         mac_tx_cookie_t cookie = 0;
4819         boolean_t wakeup_worker = B_TRUE;
4820 
4821         ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4822         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4823         if (flag & MAC_DROP_ON_NO_DESC) {
4824                 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
4825                 /* increment freed stats */
4826                 ringp->s_ring_drops += cnt;
4827                 cookie = (mac_tx_cookie_t)ringp;
4828         } else {
4829                 if (ringp->s_ring_first != NULL)
4830                         wakeup_worker = B_FALSE;
4831 
4832                 if (flag & MAC_TX_NO_ENQUEUE) {
4833                         /*
4834                          * If QUEUED is not set, queue the packet
4835                          * and let mac_tx_soft_ring_drain() set
4836                          * the TX_BLOCKED bit for the reasons
4837                          * explained above. Otherwise, return the
4838                          * mblks.
4839                          */
4840                         if (wakeup_worker) {
4841                                 TX_SOFT_RING_ENQUEUE_CHAIN(ringp,
4842                                     mp_chain, tail, cnt, sz);
4843                         } else {
4844                                 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT;
4845                                 cookie = (mac_tx_cookie_t)ringp;
4846                                 *ret_mp = mp_chain;
4847                         }
4848                 } else {
4849                         boolean_t enqueue = B_TRUE;
4850 
4851                         if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4852                                 /*
4853                                  * flow-controlled. Store ringp in cookie
4854                                  * so that it can be returned as
4855                                  * mac_tx_cookie_t to client
4856                                  */
4857                                 ringp->s_ring_state |= S_RING_TX_HIWAT;
4858                                 cookie = (mac_tx_cookie_t)ringp;
4859                                 ringp->s_ring_hiwat_cnt++;
4860                                 if (ringp->s_ring_count >
4861                                     ringp->s_ring_tx_max_q_cnt) {
4862                                         /* increment freed stats */
4863                                         ringp->s_ring_drops += cnt;
4864                                         /*
4865                                          * b_prev may be set to the fanout hint
4866                                          * hence can't use freemsg directly
4867                                          */
4868                                         mac_pkt_drop(NULL, NULL,
4869                                             mp_chain, B_FALSE);
4870                                         DTRACE_PROBE1(tx_queued_hiwat,
4871                                             mac_soft_ring_t *, ringp);
4872                                         enqueue = B_FALSE;
4873                                 }
4874                         }
4875                         if (enqueue) {
4876                                 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain,
4877                                     tail, cnt, sz);
4878                         }
4879                 }
4880                 if (wakeup_worker)
4881                         cv_signal(&ringp->s_ring_async);
4882         }
4883         return (cookie);
4884 }
4885 
4886 
4887 /*
4888  * mac_tx_soft_ring_process
4889  *
4890  * This routine is called when fanning out outgoing traffic among
4891  * multipe Tx rings.
4892  * Note that a soft ring is associated with a h/w Tx ring.
4893  */
4894 mac_tx_cookie_t
4895 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain,
4896     uint16_t flag, mblk_t **ret_mp)
4897 {
4898         mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4899         int     cnt;
4900         size_t  sz;
4901         mblk_t  *tail;
4902         mac_tx_cookie_t cookie = 0;
4903 
4904         ASSERT(ringp != NULL);
4905         ASSERT(mp_chain != NULL);
4906         ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4907         /*
4908          * The following modes can come here: SRS_TX_BW_FANOUT,
4909          * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR.
4910          */
4911         ASSERT(MAC_TX_SOFT_RINGS(mac_srs));
4912         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
4913             mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT ||
4914             mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4915             mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4916 
4917         if (ringp->s_ring_type & ST_RING_WORKER_ONLY) {
4918                 /* Serialization mode */
4919 
4920                 mutex_enter(&ringp->s_ring_lock);
4921                 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4922                         cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4923                             flag, ret_mp);
4924                         mutex_exit(&ringp->s_ring_lock);
4925                         return (cookie);
4926                 }
4927                 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4928                 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4929                 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) {
4930                         /*
4931                          * If ring is blocked due to lack of Tx
4932                          * descs, just return. Worker thread
4933                          * will get scheduled when Tx desc's
4934                          * become available.
4935                          */
4936                         mutex_exit(&ringp->s_ring_lock);
4937                         return (cookie);
4938                 }
4939                 mac_soft_ring_worker_wakeup(ringp);
4940                 mutex_exit(&ringp->s_ring_lock);
4941                 return (cookie);
4942         } else {
4943                 /* Default fanout mode */
4944                 /*
4945                  * S_RING_BLOCKED is set when underlying NIC runs
4946                  * out of Tx descs and messages start getting
4947                  * queued. It won't get reset until
4948                  * tx_srs_drain() completely drains out the
4949                  * messages.
4950                  */
4951                 mac_tx_stats_t          stats;
4952 
4953                 if (ringp->s_ring_state & S_RING_ENQUEUED) {
4954                         /* Tx descs/resources not available */
4955                         mutex_enter(&ringp->s_ring_lock);
4956                         if (ringp->s_ring_state & S_RING_ENQUEUED) {
4957                                 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4958                                     flag, ret_mp);
4959                                 mutex_exit(&ringp->s_ring_lock);
4960                                 return (cookie);
4961                         }
4962                         /*
4963                          * While we were computing mblk count, the
4964                          * flow control condition got relieved.
4965                          * Continue with the transmission.
4966                          */
4967                         mutex_exit(&ringp->s_ring_lock);
4968                 }
4969 
4970                 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1,
4971                     ringp->s_ring_tx_arg2, mp_chain, &stats);
4972 
4973                 /*
4974                  * Multiple threads could be here sending packets.
4975                  * Under such conditions, it is not possible to
4976                  * automically set S_RING_BLOCKED bit to indicate
4977                  * out of tx desc condition. To atomically set
4978                  * this, we queue the returned packet and do
4979                  * the setting of S_RING_BLOCKED in
4980                  * mac_tx_soft_ring_drain().
4981                  */
4982                 if (mp_chain != NULL) {
4983                         mutex_enter(&ringp->s_ring_lock);
4984                         cookie =
4985                             mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp);
4986                         mutex_exit(&ringp->s_ring_lock);
4987                         return (cookie);
4988                 }
4989                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4990                 SOFTRING_TX_STATS_UPDATE(ringp, &stats);
4991 
4992                 return (0);
4993         }
4994 }