1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * MAC data path 30 * 31 * The MAC data path is concerned with the flow of traffic from mac clients -- 32 * DLS, IP, etc. -- to various GLDv3 device drivers -- e1000g, vnic, aggr, 33 * ixgbe, etc. -- and from the GLDv3 device drivers back to clients. 34 * 35 * ----------- 36 * Terminology 37 * ----------- 38 * 39 * MAC uses a lot of different, but related terms that are associated with the 40 * design and structure of the data path. Before we cover other aspects, first 41 * let's review the terminology that MAC uses. 42 * 43 * MAC 44 * 45 * This driver. It interfaces with device drivers and provides abstractions 46 * that the rest of the system consumes. All data links -- things managed 47 * with dladm(1M), are accessed through MAC. 48 * 49 * GLDv3 DEVICE DRIVER 50 * 51 * A GLDv3 device driver refers to a driver, both for pseudo-devices and 52 * real devices, which implement the GLDv3 driver API. Common examples of 53 * these are igb and ixgbe, which are drivers for various Intel networking 54 * cards. These devices may or may not have various features, such as 55 * hardware rings and checksum offloading. For MAC, a GLDv3 device is the 56 * final point for the transmission of a packet and the starting point for 57 * the receipt of a packet. 58 * 59 * FLOWS 60 * 61 * At a high level, a flow refers to a series of packets that are related. 62 * Often times the term is used in the context of TCP to indicate a unique 63 * TCP connection and the traffic over it. However, a flow can exist at 64 * other levels of the system as well. MAC has a notion of a default flow 65 * which is used for all unicast traffic addressed to the address of a MAC 66 * device. For example, when a VNIC is created, a default flow is created 67 * for the VNIC's MAC address. In addition, flows are created for broadcast 68 * groups and a user may create a flow with flowadm(1M). 69 * 70 * CLASSIFICATION 71 * 72 * Classification refers to the notion of identifying an incoming frame 73 * based on its destination address and optionally its source addresses and 74 * doing different processing based on that information. Classification can 75 * be done in both hardware and software. In general, we usually only 76 * classify based on the layer two destination, eg. for Ethernet, the 77 * destination MAC address. 78 * 79 * The system also will do classification based on layer three and layer 80 * four properties. This is used to support things like flowadm(1M), which 81 * allows setting QoS and other properties on a per-flow basis. 82 * 83 * RING 84 * 85 * Conceptually, a ring represents a series of framed messages, often in a 86 * contiguous chunk of memory that acts as a circular buffer. Rings come in 87 * a couple of forms. Generally they are either a hardware construct (hw 88 * ring) or they are a software construct (sw ring) maintained by MAC. 89 * 90 * HW RING 91 * 92 * A hardware ring is a set of resources provided by a GLDv3 device driver 93 * (even if it is a pseudo-device). A hardware ring comes in two different 94 * forms: receive (rx) rings and transmit (tx) rings. An rx hw ring is 95 * something that has a unique DMA (direct memory access) region and 96 * generally supports some form of classification (though it isn't always 97 * used), as well as a means of generating an interrupt specific to that 98 * ring. For example, the device may generate a specific MSI-X for a PCI 99 * express device. A tx ring is similar, except that it is dedicated to 100 * transmission. It may also be a vector for enabling features such as VLAN 101 * tagging and large transmit offloading. It usually has its own dedicated 102 * interrupts for transmit being completed. 103 * 104 * SW RING 105 * 106 * A software ring is a construction of MAC. It represents the same thing 107 * that a hardware ring generally does, a collection of frames. However, 108 * instead of being in a contiguous ring of memory, they're instead linked 109 * by using the mblk_t's b_next pointer. Each frame may itself be multiple 110 * mblk_t's linked together by the b_cont pointer. A software ring always 111 * represents a collection of classified packets; however, it varies as to 112 * whether it uses only layer two information, or a combination of that and 113 * additional layer three and layer four data. 114 * 115 * FANOUT 116 * 117 * Fanout is the idea of spreading out the load of processing frames based 118 * on the source and destination information contained in the layer two, 119 * three, and four headers, such that the data can then be processed in 120 * parallel using multiple hardware threads. 121 * 122 * A fanout algorithm hashes the headers and uses that to place different 123 * flows into a bucket. The most important thing is that packets that are 124 * in the same flow end up in the same bucket. If they do not, performance 125 * can be adversely affected. Consider the case of TCP. TCP severely 126 * penalizes a connection if the data arrives out of order. If a given flow 127 * is processed on different CPUs, then the data will appear out of order, 128 * hence the invariant that fanout always hash a given flow to the same 129 * bucket and thus get processed on the same CPU. 130 * 131 * RECEIVE SIDE SCALING (RSS) 132 * 133 * 134 * Receive side scaling is a term that isn't common in illumos, but is used 135 * by vendors and was popularized by Microsoft. It refers to the idea of 136 * spreading the incoming receive load out across multiple interrupts which 137 * can be directed to different CPUs. This allows a device to leverage 138 * hardware rings even when it doesn't support hardware classification. The 139 * hardware uses an algorithm to perform fanout that ensures the flow 140 * invariant is maintained. 141 * 142 * SOFT RING SET 143 * 144 * A soft ring set, commonly abbreviated SRS, is a collection of rings and 145 * is used for both transmitting and receiving. It is maintained in the 146 * structure mac_soft_ring_set_t. A soft ring set is usually associated 147 * with flows, and coordinates both the use of hardware and software rings. 148 * Because the use of hardware rings can change as devices such as VNICs 149 * come and go, we always ensure that the set has software classification 150 * rules that correspond to the hardware classification rules from rings. 151 * 152 * Soft ring sets are also used for the enforcement of various QoS 153 * properties. For example, if a bandwidth limit has been placed on a 154 * specific flow or device, then that will be enforced by the soft ring 155 * set. 156 * 157 * SERVICE ATTACHMENT POINT (SAP) 158 * 159 * The service attachment point is a DLPI (Data Link Provider Interface) 160 * concept; however, it comes up quite often in MAC. Most MAC devices speak 161 * a protocol that has some notion of different channels or message type 162 * identifiers. For example, Ethernet defines an EtherType which is a part 163 * of the Ethernet header and defines the particular protocol of the data 164 * payload. If the EtherType is set to 0x0800, then it defines that the 165 * contents of that Ethernet frame is IPv4 traffic. For Ethernet, the 166 * EtherType is the SAP. 167 * 168 * In DLPI, a given consumer attaches to a specific SAP. In illumos, the ip 169 * and arp drivers attach to the EtherTypes for IPv4, IPv6, and ARP. Using 170 * libdlpi(3LIB) user software can attach to arbitrary SAPs. With the 171 * exception of 802.1Q VLAN tagged traffic, MAC itself does not directly 172 * consume the SAP; however, it uses that information as part of hashing 173 * and it may be used as part of the construction of flows. 174 * 175 * PRIMARY MAC CLIENT 176 * 177 * The primary mac client refers to a mac client whose unicast address 178 * matches the address of the device itself. For example, if the system has 179 * instance of the e1000g driver such as e1000g0, e1000g1, etc., the 180 * primary mac client is the one named after the device itself. VNICs that 181 * are created on top of such devices are not the primary client. 182 * 183 * TRANSMIT DESCRIPTORS 184 * 185 * Transmit descriptors are a resource that most GLDv3 device drivers have. 186 * Generally, a GLDv3 device driver takes a frame that's meant to be output 187 * and puts a copy of it into a region of memory. Each region of memory 188 * usually has an associated descriptor that the device uses to manage 189 * properties of the frames. Devices have a limited number of such 190 * descriptors. They get reclaimed once the device finishes putting the 191 * frame on the wire. 192 * 193 * If the driver runs out of transmit descriptors, for example, the OS is 194 * generating more frames than it can put on the wire, then it will return 195 * them back to the MAC layer. 196 * 197 * --------------------------------- 198 * Rings, Classification, and Fanout 199 * --------------------------------- 200 * 201 * The heart of MAC is made up of rings, and not those that Elven-kings wear. 202 * When receiving a packet, MAC breaks the work into two different, though 203 * interrelated phases. The first phase is generally classification and then the 204 * second phase is generally fanout. When a frame comes in from a GLDv3 Device, 205 * MAC needs to determine where that frame should be delivered. If it's a 206 * unicast frame (say a normal TCP/IP packet), then it will be delivered to a 207 * single MAC client; however, if it's a broadcast or multicast frame, then MAC 208 * may need to deliver it to multiple MAC clients. 209 * 210 * On transmit, classification isn't quite as important, but may still be used. 211 * Unlike with the receive path, the classification is not used to determine 212 * devices that should transmit something, but rather is used for special 213 * properties of a flow, eg. bandwidth limits for a given IP address, device, or 214 * connection. 215 * 216 * MAC employs a software classifier and leverages hardware classification as 217 * well. The software classifier can leverage the full layer two information, 218 * source, destination, VLAN, and SAP. If the SAP indicates that IP traffic is 219 * being sent, it can classify based on the IP header, and finally, it also 220 * knows how to classify based on the local and remote ports of TCP, UDP, and 221 * SCTP. 222 * 223 * Hardware classifiers vary in capability. Generally all hardware classifiers 224 * provide the capability to classify based on the destination MAC address. Some 225 * hardware has additional filters built in for performing more in-depth 226 * classification; however, it often has much more limited resources for these 227 * activities as compared to the layer two destination address classification. 228 * 229 * The modus operandi in MAC is to always ensure that we have software-based 230 * capabilities and rules in place and then to supplement that with hardware 231 * resources when available. In general, simple layer two classification is 232 * sufficient and nothing else is used, unless a specific flow is created with 233 * tools such as flowadm(1M) or bandwidth limits are set on a device with 234 * dladm(1M). 235 * 236 * RINGS AND GROUPS 237 * 238 * To get into how rings and classification play together, it's first important 239 * to understand how hardware devices commonly associate rings and allow them to 240 * be programmed. Recall that a hardware ring should be thought of as a DMA 241 * buffer and an interrupt resource. Rings are then collected into groups. A 242 * group itself has a series of classification rules. One or more MAC addresses 243 * are assigned to a group. 244 * 245 * Hardware devices vary in terms of what capabilities they provide. Sometimes 246 * they allow for a dynamic assignment of rings to a group and sometimes they 247 * have a static assignment of rings to a group. For example, the ixgbe driver 248 * has a static assignment of rings to groups such that every group has exactly 249 * one ring and the number of groups is equal to the number of rings. 250 * 251 * Classification and receive side scaling both come into play with how a device 252 * advertises itself to MAC and how MAC uses it. If a device supports layer two 253 * classification of frames, then MAC will assign MAC addresses to a group as a 254 * form of primary classification. If a single MAC address is assigned to a 255 * group, a common case, then MAC will consider packets that come in from rings 256 * on that group to be fully classified and will not need to do any software 257 * classification unless a specific flow has been created. 258 * 259 * If a device supports receive side scaling, then it may advertise or support 260 * groups with multiple rings. In those cases, then receive side scaling will 261 * come into play and MAC will use that as a means of fanning out received 262 * frames across multiple CPUs. This can also be combined with groups that 263 * support layer two classification. 264 * 265 * If a device supports dynamic assignments of rings to groups, then MAC will 266 * change around the way that rings are assigned to various groups as devices 267 * come and go from the system. For example, when a VNIC is created, a new flow 268 * will be created for the VNIC's MAC address. If a hardware ring is available, 269 * MAC may opt to reassign it from one group to another. 270 * 271 * ASSIGNMENT OF HARDWARE RINGS 272 * 273 * This is a bit of a complicated subject that varies depending on the device, 274 * the use of aggregations, the special nature of the primary mac client. This 275 * section deserves being fleshed out. 276 * 277 * FANOUT 278 * 279 * illumos uses fanout to help spread out the incoming processing load of chains 280 * of frames away from a single CPU. If a device supports receive side scaling, 281 * then that provides an initial form of fanout; however, what we're concerned 282 * with all happens after the context of a given set of frames being classified 283 * to a soft ring set. 284 * 285 * After frames reach a soft ring set and account for any potential bandwidth 286 * related accounting, they may be fanned out based on one of the following 287 * three modes: 288 * 289 * o No Fanout 290 * o Protocol level fanout 291 * o Full software ring protocol fanout 292 * 293 * MAC makes the determination as to which of these modes a given soft ring set 294 * obtains based on parameters such as whether or not it's the primary mac 295 * client, whether it's on a 10 GbE or faster device, user controlled dladm(1M) 296 * properties, and the nature of the hardware and the resources that it has. 297 * 298 * When there is no fanout, MAC does not create any soft rings for a device and 299 * the device has frames delivered directly to the MAC client. 300 * 301 * Otherwise, all fanout is performed by software. MAC divides incoming frames 302 * into one of three buckets -- IPv4 TCP traffic, IPv4 UDP traffic, and 303 * everything else. Regardless of the type of fanout, these three categories 304 * or buckets are always used. 305 * 306 * The difference between protocol level fanout and full software ring protocol 307 * fanout is the number of software rings that end up getting created. The 308 * system always uses the same number of software rings per protocol bucket. So 309 * in the first case when we're just doing protocol level fanout, we just create 310 * one software ring each for IPv4 TCP traffic, IPv4 UDP traffic, and everything 311 * else. 312 * 313 * In the case where we do full software ring protocol fanout, we generally use 314 * mac_compute_soft_ring_count() to determine the number of rings. There are 315 * other combinations of properties and devices that may send us down other 316 * paths, but this is a common starting point. If it's a non-bandwidth enforced 317 * device and we're on at least a 10 GbE link, then we'll use eight soft rings 318 * per protocol bucket as a starting point. See mac_compute_soft_ring_count() 319 * for more information on the total number. 320 * 321 * For each of these rings, we create a mac_soft_ring_t and an associated worker 322 * thread. Particularly when doing full software ring protocol fanout, we bind 323 * each of the worker threads to individual CPUs. 324 * 325 * The other advantage of these software rings is that it allows upper layers to 326 * optionally poll on them. For example, TCP can leverage an squeue to poll on 327 * the software ring, see squeue.c for more information. 328 * 329 * DLS BYPASS 330 * 331 * DLS is the data link services module. It interfaces with DLPI, which is the 332 * primary way that other parts of the system such as IP interface with the MAC 333 * layer. While DLS is traditionally a STREAMS-based interface, it allows for 334 * certain modules such as IP to negotiate various more modern interfaces to be 335 * used, which are useful for higher performance and allow it to use direct 336 * function calls to DLS instead of using STREAMS. 337 * 338 * When we have IPv4 TCP or UDP software rings, then traffic on those rings is 339 * eligible for what we call the dls bypass. In those cases, rather than going 340 * out mac_rx_deliver() to DLS, DLS instead registers them to go directly via 341 * the direct callback registered with DLS, generally ip_input(). 342 * 343 * HARDWARE RING POLLING 344 * 345 * GLDv3 devices with hardware rings generally deliver chains of messages 346 * (mblk_t chain) during the context of a single interrupt. However, interrupts 347 * are not the only way that these devices may be used. As part of implementing 348 * ring support, a GLDv3 device driver must have a way to disable the generation 349 * of that interrupt and allow for the operating system to poll on that ring. 350 * 351 * To implement this, every soft ring set has a worker thread and a polling 352 * thread. If a sufficient packet rate comes into the system, MAC will 'blank' 353 * (disable) interrupts on that specific ring and the polling thread will start 354 * consuming packets from the hardware device and deliver them to the soft ring 355 * set, where the worker thread will take over. 356 * 357 * Once the rate of packet intake drops down below a certain threshold, then 358 * polling on the hardware ring will be quiesced and interrupts will be 359 * re-enabled for the given ring. This effectively allows the system to shift 360 * how it handles a ring based on its load. At high packet rates, polling on the 361 * device as opposed to relying on interrupts can actually reduce overall system 362 * load due to the minimization of interrupt activity. 363 * 364 * Note the importance of each ring having its own interrupt source. The whole 365 * idea here is that we do not disable interrupts on the device as a whole, but 366 * rather each ring can be independently toggled. 367 * 368 * USE OF WORKER THREADS 369 * 370 * Both the soft ring set and individual soft rings have a worker thread 371 * associated with them that may be bound to a specific CPU in the system. Any 372 * such assignment will get reassessed as part of dynamic reconfiguration events 373 * in the system such as the onlining and offlining of CPUs and the creation of 374 * CPU partitions. 375 * 376 * In many cases, while in an interrupt, we try to deliver a frame all the way 377 * through the stack in the context of the interrupt itself. However, if the 378 * amount of queued frames has exceeded a threshold, then we instead defer to 379 * the worker thread to do this work and signal it. This is particularly useful 380 * when you have the soft ring set delivering frames into multiple software 381 * rings. If it was only delivering frames into a single software ring then 382 * there'd be no need to have another thread take over. However, if it's 383 * delivering chains of frames to multiple rings, then it's worthwhile to have 384 * the worker for the software ring take over so that the different software 385 * rings can be processed in parallel. 386 * 387 * In a similar fashion to the hardware polling thread, if we don't have a 388 * backlog or there's nothing to do, then the worker thread will go back to 389 * sleep and frames can be delivered all the way from an interrupt. This 390 * behavior is useful as it's designed to minimize latency and the default 391 * disposition of MAC is to optimize for latency. 392 * 393 * MAINTAINING CHAINS 394 * 395 * Another useful idea that MAC uses is to try and maintain frames in chains for 396 * as long as possible. The idea is that all of MAC can handle chains of frames 397 * structured as a series of mblk_t structures linked with the b_next pointer. 398 * When performing software classification and software fanout, MAC does not 399 * simply determine the destination and send the frame along. Instead, in the 400 * case of classification, it tries to maintain a chain for as long as possible 401 * before passing it along and performing additional processing. 402 * 403 * In the case of fanout, MAC first determines what the target software ring is 404 * for every frame in the original chain and constructs a new chain for each 405 * target. MAC then delivers the new chain to each software ring in succession. 406 * 407 * The whole rationale for doing this is that we want to try and maintain the 408 * pipe as much as possible and deliver as many frames through the stack at once 409 * that we can, rather than just pushing a single frame through. This can often 410 * help bring down latency and allows MAC to get a better sense of the overall 411 * activity in the system and properly engage worker threads. 412 * 413 * -------------------- 414 * Bandwidth Management 415 * -------------------- 416 * 417 * Bandwidth management is something that's built into the soft ring set itself. 418 * When bandwidth limits are placed on a flow, a corresponding soft ring set is 419 * toggled into bandwidth mode. This changes how we transmit and receive the 420 * frames in question. 421 * 422 * Bandwidth management is done on a per-tick basis. We translate the user's 423 * requested bandwidth from a quantity per-second into a quantity per-tick. MAC 424 * cannot process a frame across more than one tick, thus it sets a lower bound 425 * for the bandwidth cap to be a single MTU. This also means that when 426 * hires ticks are enabled (hz is set to 1000), that the minimum amount of 427 * bandwidth is higher, because the number of ticks has increased and MAC has to 428 * go from accepting 100 packets / sec to 1000 / sec. 429 * 430 * The bandwidth counter is reset by either the soft ring set's worker thread or 431 * a thread that is doing an inline transmit or receive if they discover that 432 * the current tick is in the future from the recorded tick. 433 * 434 * Whenever we're receiving or transmitting data, we end up leaving most of the 435 * work to the soft ring set's worker thread. This forces data inserted into the 436 * soft ring set to be effectively serialized and allows us to exhume bandwidth 437 * at a reasonable rate. If there is nothing in the soft ring set at the moment 438 * and the set has available bandwidth, then it may processed inline. 439 * Otherwise, the worker is responsible for taking care of the soft ring set. 440 * 441 * --------------------- 442 * The Receive Data Path 443 * --------------------- 444 * 445 * The following series of ASCII art images breaks apart the way that a frame 446 * comes in and is processed in MAC. 447 * 448 * Part 1 -- Initial frame receipt, SRS classification 449 * 450 * Here, a frame is received by a GLDv3 driver, generally in the context of an 451 * interrupt, and it ends up in mac_rx_common(). A driver calls either mac_rx or 452 * mac_rx_ring, depending on whether or not it supports rings and can identify 453 * the interrupt as having come from a specific ring. Here we determine whether 454 * or not it's fully classified and perform software classification as 455 * appropriate. From here, everything always ends up going to either entry [A] 456 * or entry [B] based on whether or not they have subflow processing needed. We 457 * leave via fanout or delivery. 458 * 459 * +===========+ 460 * v hardware v 461 * v interrupt v 462 * +===========+ 463 * | 464 * * . . appropriate 465 * | upcall made 466 * | by GLDv3 driver . . always 467 * | . 468 * +--------+ | +----------+ . +---------------+ 469 * | GLDv3 | +---->| mac_rx |-----*--->| mac_rx_common | 470 * | Driver |-->--+ +----------+ +---------------+ 471 * +--------+ | ^ | 472 * | | ^ v 473 * ^ | * . . always +----------------------+ 474 * | | | | mac_promisc_dispatch | 475 * | | +-------------+ +----------------------+ 476 * | +--->| mac_rx_ring | | 477 * | +-------------+ * . . hw classified 478 * | v or single flow? 479 * | | 480 * | +--------++--------------+ 481 * | | | * hw class, 482 * | | * hw classified | subflows 483 * | no hw class and . * | or single | exist 484 * | subflows | | flow | 485 * | | v v 486 * | | +-----------+ +-----------+ 487 * | | | goto | | goto | 488 * | | | entry [A] | | entry [B] | 489 * | | +-----------+ +-----------+ 490 * | v ^ 491 * | +-------------+ | 492 * | | mac_rx_flow | * SRS and flow found, 493 * | +-------------+ | call flow cb 494 * | | +------+ 495 * | v | 496 * v +==========+ +-----------------+ 497 * | v For each v--->| mac_rx_classify | 498 * +----------+ v mblk_t v +-----------------+ 499 * | srs | +==========+ 500 * | pollling | 501 * | thread |->------------------------------------------+ 502 * +----------+ | 503 * v . inline 504 * +--------------------+ +----------+ +---------+ . 505 * [A]---->| mac_rx_srs_process |-->| check bw |-->| enqueue |--*---------+ 506 * +--------------------+ | limits | | frames | | 507 * ^ +----------+ | to SRS | | 508 * | +---------+ | 509 * | send chain +--------+ | | 510 * * when clasified | signal | * BW limits, | 511 * | flow changes | srs |<---+ loopback, | 512 * | | worker | stack too | 513 * | +--------+ deep | 514 * +-----------------+ +--------+ | 515 * | mac_flow_lookup | | srs | +---------------------+ | 516 * +-----------------+ | worker |---->| mac_rx_srs_drain |<---+ 517 * ^ | thread | | mac_rx_srs_drain_bw | 518 * | +--------+ +---------------------+ 519 * | | 520 * +----------------------------+ * software rings 521 * [B]-->| mac_rx_srs_subflow_process | | for fanout? 522 * +----------------------------+ | 523 * +----------+-----------+ 524 * | | 525 * v v 526 * +--------+ +--------+ 527 * | goto | | goto | 528 * | Part 2 | | Part 3 | 529 * +--------+ +--------+ 530 * 531 * Part 2 -- Fanout 532 * 533 * This part is concerned with using software fanout to assign frames to 534 * software rings and then deliver them to MAC clients or allow those rings to 535 * be polled upon. While there are two different primary fanout entry points, 536 * mac_rx_fanout and mac_rx_proto_fanout, they behave in similar ways, and aside 537 * from some of the individual hashing techniques used, most of the general 538 * flow is the same. 539 * 540 * +--------+ +-------------------+ 541 * | From |---+--------->| mac_rx_srs_fanout |----+ 542 * | Part 1 | | +-------------------+ | +=================+ 543 * +--------+ | | v for each mblk_t v 544 * * . . protocol only +--->v assign to new v 545 * | fanout | v chain based on v 546 * | | v hash % nrings v 547 * | +-------------------------+ | +=================+ 548 * +--->| mac_rx_srs_proto_fanout |----+ | 549 * +-------------------------+ | 550 * v 551 * +------------+ +--------------------------+ +================+ 552 * | enqueue in |<---| mac_rx_soft_ring_process |<------v for each chain v 553 * | soft ring | +--------------------------+ +================+ 554 * +------------+ 555 * | +-----------+ 556 * * soft ring set | soft ring | 557 * | empty and no | worker | 558 * | worker? | thread | 559 * | +-----------+ 560 * +------*----------------+ | 561 * | . | v 562 * No . * . Yes | +------------------------+ 563 * | +----<--| mac_rx_soft_ring_drain | 564 * | | +------------------------+ 565 * v | 566 * +-----------+ v 567 * | signal | +---------------+ 568 * | soft ring | | Deliver chain | 569 * | worker | | goto Part 3 | 570 * +-----------+ +---------------+ 571 * 572 * 573 * Part 3 -- Packet Delivery 574 * 575 * Here, we go through and deliver the mblk_t chain directly to a given 576 * processing function. In a lot of cases this is mac_rx_deliver(). In the case 577 * of DLS bypass being used, then instead we end up going ahead and deliver it 578 * to the direct callback registered with DLS, generally ip_input. 579 * 580 * 581 * +---------+ +----------------+ +------------------+ 582 * | From |---+------->| mac_rx_deliver |--->| Off to DLS, or | 583 * | Parts 1 | | +----------------+ | other MAC client | 584 * | and 2 | * DLS bypass +------------------+ 585 * +---------+ | enabled +----------+ +-------------+ 586 * +---------->| ip_input |--->| To IP | 587 * +----------+ | and beyond! | 588 * +-------------+ 589 * 590 * ---------------------- 591 * The Transmit Data Path 592 * ---------------------- 593 * 594 * Before we go into the images, it's worth talking about a problem that is a 595 * bit different from the receive data path. GLDv3 device drivers have a finite 596 * amount of transmit descriptors. When they run out, they return unused frames 597 * back to MAC. MAC, at this point has several options about what it will do, 598 * which vary based upon the settings that the client uses. 599 * 600 * When a device runs out of descriptors, the next thing that MAC does is 601 * enqueue them off of the soft ring set or a software ring, depending on the 602 * configuration of the soft ring set. MAC will enqueue up to a high watermark 603 * of mblk_t chains, at which point it will indicate flow control back to the 604 * client. Once this condition is reached, any mblk_t chains that were not 605 * enqueued will be returned to the caller and they will have to decide what to 606 * do with them. There are various flags that control this behavior that a 607 * client may pass, which are discussed below. 608 * 609 * When this condition is hit, MAC also returns a cookie to the client in 610 * addition to unconsumed frames. Clients can poll on that cookie and register a 611 * callback with MAC to be notified when they are no longer subject to flow 612 * control, at which point they may continue to call mac_tx(). This flow control 613 * actually manages to work itself all the way up the stack, back through dls, 614 * to ip, through the various protocols, and to sockfs. 615 * 616 * While the behavior described above is the default, this behavior can be 617 * modified. There are two alternate modes, described below, which are 618 * controlled with flags. 619 * 620 * DROP MODE 621 * 622 * This mode is controlled by having the client pass the MAC_DROP_ON_NO_DESC 623 * flag. When this is passed, if a device driver runs out of transmit 624 * descriptors, then the MAC layer will drop any unsent traffic. The client in 625 * this case will never have any frames returned to it. 626 * 627 * DON'T ENQUEUE 628 * 629 * This mode is controlled by having the client pass the MAC_TX_NO_ENQUEUE flag. 630 * If the MAC_DROP_ON_NO_DESC flag is also passed, it takes precedence. In this 631 * mode, when we hit a case where a driver runs out of transmit descriptors, 632 * then instead of enqueuing packets in a soft ring set or software ring, we 633 * instead return the mblk_t chain back to the caller and immediately put the 634 * soft ring set into flow control mode. 635 * 636 * The following series of ASCII art images describe the transmit data path that 637 * MAC clients enter into based on calling into mac_tx(). A soft ring set has a 638 * transmission function associated with it. There are seven possible 639 * transmission modes, some of which share function entry points. The one that a 640 * soft ring set gets depends on properties such as whether there are 641 * transmission rings for fanout, whether the device involves aggregations, 642 * whether any bandwidth limits exist, etc. 643 * 644 * 645 * Part 1 -- Initial checks 646 * 647 * * . called by 648 * | MAC clients 649 * v . . No 650 * +--------+ +-----------+ . +-------------------+ +====================+ 651 * | mac_tx |->| device |-*-->| mac_protect_check |->v Is this the simple v 652 * +--------+ | quiesced? | +-------------------+ v case? See [1] v 653 * +-----------+ | +====================+ 654 * * . Yes * failed | 655 * v | frames | 656 * +--------------+ | +-------+---------+ 657 * | freemsgchain |<---------+ Yes . * No . * 658 * +--------------+ v v 659 * +-----------+ +--------+ 660 * | goto | | goto | 661 * | Part 2 | | SRS TX | 662 * | Entry [A] | | func | 663 * +-----------+ +--------+ 664 * | | 665 * | v 666 * | +--------+ 667 * +---------->| return | 668 * | cookie | 669 * +--------+ 670 * 671 * [1] The simple case refers to the SRS being configured with the 672 * SRS_TX_DEFAULT transmission mode, having a single mblk_t (not a chain), their 673 * being only a single active client, and not having a backlog in the srs. 674 * 675 * 676 * Part 2 -- The SRS transmission functions 677 * 678 * This part is a bit more complicated. The different transmission paths often 679 * leverage one another. In this case, we'll draw out the more common ones 680 * before the parts that depend upon them. Here, we're going to start with the 681 * workings of mac_tx_send() a common function that most of the others end up 682 * calling. 683 * 684 * +-------------+ 685 * | mac_tx_send | 686 * +-------------+ 687 * | 688 * v 689 * +=============+ +==============+ 690 * v more than v--->v check v 691 * v one client? v v VLAN and add v 692 * +=============+ v VLAN tags v 693 * | +==============+ 694 * | | 695 * +------------------+ 696 * | 697 * | [A] 698 * v | 699 * +============+ . No v 700 * v more than v . +==========+ +--------------------------+ 701 * v one active v-*---->v for each v---->| mac_promisc_dispatch_one |---+ 702 * v client? v v mblk_t v +--------------------------+ | 703 * +============+ +==========+ ^ | 704 * | | +==========+ | 705 * * . Yes | v hardware v<-------+ 706 * v +------------+ v rings? v 707 * +==========+ | +==========+ 708 * v for each v No . . . * | 709 * v mblk_t v specific | | 710 * +==========+ flow | +-----+-----+ 711 * | | | | 712 * v | v v 713 * +-----------------+ | +-------+ +---------+ 714 * | mac_tx_classify |------------+ | GLDv3 | | GLDv3 | 715 * +-----------------+ |TX func| | ring tx | 716 * | +-------+ | func | 717 * * Specific flow, generally | +---------+ 718 * | bcast, mcast, loopback | | 719 * v +-----+-----+ 720 * +==========+ +---------+ | 721 * v valid L2 v--*--->| freemsg | v 722 * v header v . No +---------+ +-------------------+ 723 * +==========+ | return unconsumed | 724 * * . Yes | frames to the | 725 * v | caller | 726 * +===========+ +-------------------+ 727 * v braodcast v +----------------+ ^ 728 * v flow? v--*-->| mac_bcast_send |------------------+ 729 * +===========+ . +----------------+ | 730 * | . . Yes | 731 * No . * v 732 * | +---------------------+ +---------------+ +----------+ 733 * +->|mac_promisc_dispatch |->| mac_fix_cksum |->| flow | 734 * +---------------------+ +---------------+ | callback | 735 * +----------+ 736 * 737 * 738 * In addition, many but not all of the routines, all rely on 739 * mac_tx_softring_process as an entry point. 740 * 741 * 742 * . No . No 743 * +--------------------------+ +========+ . +===========+ . +-------------+ 744 * | mac_tx_soft_ring_process |-->v worker v-*->v out of tx v-*->| goto | 745 * +--------------------------+ v only? v v descr.? v | mac_tx_send | 746 * +========+ +===========+ +-------------+ 747 * Yes . * * . Yes | 748 * . No v | v 749 * v=========+ . +===========+ . Yes | Yes . +==========+ 750 * v apppend v<--*----------v out of tx v-*-------+---------*--v returned v 751 * v mblk_t v v descr.? v | v frames? v 752 * v chain v +===========+ | +==========+ 753 * +=========+ | *. No 754 * | | v 755 * v v +------------+ 756 * +===================+ +----------------------+ | done | 757 * v worker scheduled? v | mac_tx_sring_enqueue | | processing | 758 * v Out of tx descr? v +----------------------+ +------------+ 759 * +===================+ | 760 * | | . Yes v 761 * * Yes * No . +============+ 762 * | v +-*---------v drop on no v 763 * | +========+ v v TX desc? v 764 * | v wake v +----------+ +============+ 765 * | v worker v | mac_pkt_ | * . No 766 * | +========+ | drop | | . Yes . No 767 * | | +----------+ v . . 768 * | | v ^ +===============+ . +========+ . 769 * +--+--------+---------+ | v Don't enqueue v-*->v ring v-*----+ 770 * | | v Set? v v empty? v | 771 * | +---------------+ +===============+ +========+ | 772 * | | | | | 773 * | | +-------------------+ | | 774 * | *. Yes | +---------+ | 775 * | | v v v 776 * | | +===========+ +========+ +--------------+ 777 * | +<-v At hiwat? v v append v | return | 778 * | +===========+ v mblk_t v | mblk_t chain | 779 * | * No v chain v | and flow | 780 * | v +========+ | control | 781 * | +=========+ | | cookie | 782 * | v append v v +--------------+ 783 * | v mblk_t v +========+ 784 * | v chain v v wake v +------------+ 785 * | +=========+ v worker v-->| done | 786 * | | +========+ | processing | 787 * | v .. Yes +------------+ 788 * | +=========+ . +========+ 789 * | v first v--*-->v wake v 790 * | v append? v v worker v 791 * | +=========+ +========+ 792 * | | | 793 * | No . * | 794 * | v | 795 * | +--------------+ | 796 * +------>| Return | | 797 * | flow control |<------------+ 798 * | cookie | 799 * +--------------+ 800 * 801 * 802 * The remaining images are all specific to each of the different transmission 803 * modes. 804 * 805 * SRS TX DEFAULT 806 * 807 * [ From Part 1 ] 808 * | 809 * v 810 * +-------------------------+ 811 * | mac_tx_single_ring_mode | 812 * +-------------------------+ 813 * | 814 * | . Yes 815 * v . 816 * +==========+ . +============+ 817 * v SRS v-*->v Try to v---->---------------------+ 818 * v backlog? v v enqueue in v | 819 * +==========+ v SRS v-->------+ * . . Queue too 820 * | +============+ * don't enqueue | deep or 821 * * . No ^ | | flag or at | drop flag 822 * | | v | hiwat, | 823 * v | | | return +---------+ 824 * +-------------+ | | | cookie | freemsg | 825 * | goto |-*-----+ | | +---------+ 826 * | mac_tx_send | . returned | | | 827 * +-------------+ mblk_t | | | 828 * | | | | 829 * | | | | 830 * * . . all mblk_t * queued, | | 831 * v consumed | may return | | 832 * +-------------+ | tx cookie | | 833 * | SRS TX func |<------------+------------+----------------+ 834 * | completed | 835 * +-------------+ 836 * 837 * SRS_TX_SERIALIZE 838 * 839 * +------------------------+ 840 * | mac_tx_serializer_mode | 841 * +------------------------+ 842 * | 843 * | . No 844 * v . 845 * +============+ . +============+ +-------------+ +============+ 846 * v srs being v-*->v set SRS v--->| goto |-->v remove SRS v 847 * v processed? v v proc flags v | mac_tx_send | v proc flag v 848 * +============+ +============+ +-------------+ +============+ 849 * | | 850 * * Yes | 851 * v . No v 852 * +--------------------+ . +==========+ 853 * | mac_tx_srs_enqueue | +------------------------*-----<--v returned v 854 * +--------------------+ | v frames? v 855 * | | . Yes +==========+ 856 * | | . | 857 * | | . +=========+ v 858 * v +-<-*-v queued v +--------------------+ 859 * +-------------+ | v frames? v<----| mac_tx_srs_enqueue | 860 * | SRS TX func | | +=========+ +--------------------+ 861 * | completed, |<------+ * . Yes 862 * | may return | | v 863 * | cookie | | +========+ 864 * +-------------+ +-<---v wake v 865 * v worker v 866 * +========+ 867 * 868 * 869 * SRS_TX_FANOUT 870 * 871 * . Yes 872 * +--------------------+ +=============+ . +--------------------------+ 873 * | mac_tx_fanout_mode |--->v Have fanout v-*-->| goto | 874 * +--------------------+ v hint? v | mac_rx_soft_ring_process | 875 * +=============+ +--------------------------+ 876 * * . No | 877 * v ^ 878 * +===========+ | 879 * +--->v for each v +===============+ 880 * | v mblk_t v v pick softring v 881 * same * +===========+ v from hash v 882 * hash | | +===============+ 883 * | v | 884 * | +--------------+ | 885 * +---| mac_pkt_hash |--->*------------+ 886 * +--------------+ . different 887 * hash or 888 * done proc. 889 * SRS_TX_AGGR chain 890 * 891 * +------------------+ +================================+ 892 * | mac_tx_aggr_mode |--->v Use aggr capab function to v 893 * +------------------+ v find appropriate tx ring. v 894 * v Applies hash based on aggr v 895 * v policy, see mac_tx_aggr_mode() v 896 * +================================+ 897 * | 898 * v 899 * +-------------------------------+ 900 * | goto | 901 * | mac_rx_srs_soft_ring_process | 902 * +-------------------------------+ 903 * 904 * 905 * SRS_TX_BW, SRS_TX_BW_FANOUT, SRS_TX_BW_AGGR 906 * 907 * Note, all three of these tx functions start from the same place -- 908 * mac_tx_bw_mode(). 909 * 910 * +----------------+ 911 * | mac_tx_bw_mode | 912 * +----------------+ 913 * | 914 * v . No . No . Yes 915 * +==============+ . +============+ . +=============+ . +=========+ 916 * v Out of BW? v--*->v SRS empty? v--*->v reset BW v-*->v Bump BW v 917 * +==============+ +============+ v tick count? v v Usage v 918 * | | +=============+ +=========+ 919 * | +---------+ | | 920 * | | +--------------------+ | 921 * | | | +----------------------+ 922 * v | v v 923 * +===============+ | +==========+ +==========+ +------------------+ 924 * v Don't enqueue v | v set bw v v Is aggr? v--*-->| goto | 925 * v flag set? v | v enforced v +==========+ . | mac_tx_aggr_mode |-+ 926 * +===============+ | +==========+ | . +------------------+ | 927 * | Yes .* | | No . * . | 928 * | | | | | . Yes | 929 * * . No | | v | | 930 * | +---------+ | +========+ v +======+ | 931 * | | freemsg | | v append v +============+ . Yes v pick v | 932 * | +---------+ | v mblk_t v v Is fanout? v--*---->v ring v | 933 * | | | v chain v +============+ +======+ | 934 * +------+ | +========+ | | | 935 * v | | v v | 936 * +---------+ | v +-------------+ +--------------------+ | 937 * | return | | +========+ | goto | | goto | | 938 * | flow | | v wakeup v | mac_tx_send | | mac_tx_fanout_mode | | 939 * | control | | v worker v +-------------+ +--------------------+ | 940 * | cookie | | +========+ | | | 941 * +---------+ | | | +------+------+ 942 * | v | | 943 * | +---------+ | v 944 * | | return | +============+ +------------+ 945 * | | flow | v unconsumed v-------+ | done | 946 * | | control | v frames? v | | processing | 947 * | | cookie | +============+ | +------------+ 948 * | +---------+ | | 949 * | Yes * | 950 * | | | 951 * | +===========+ | 952 * | v subtract v | 953 * | v unused bw v | 954 * | +===========+ | 955 * | | | 956 * | v | 957 * | +--------------------+ | 958 * +------------->| mac_tx_srs_enqueue | | 959 * +--------------------+ | 960 * | | 961 * | | 962 * +------------+ | 963 * | return fc | | 964 * | cookie and |<------+ 965 * | mblk_t | 966 * +------------+ 967 */ 968 969 #include <sys/types.h> 970 #include <sys/callb.h> 971 #include <sys/sdt.h> 972 #include <sys/strsubr.h> 973 #include <sys/strsun.h> 974 #include <sys/vlan.h> 975 #include <sys/stack.h> 976 #include <sys/archsystm.h> 977 #include <inet/ipsec_impl.h> 978 #include <inet/ip_impl.h> 979 #include <inet/sadb.h> 980 #include <inet/ipsecesp.h> 981 #include <inet/ipsecah.h> 982 #include <inet/ip6.h> 983 984 #include <sys/mac_impl.h> 985 #include <sys/mac_client_impl.h> 986 #include <sys/mac_client_priv.h> 987 #include <sys/mac_soft_ring.h> 988 #include <sys/mac_flow_impl.h> 989 990 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *, 991 uintptr_t, uint16_t, mblk_t **); 992 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *, 993 uintptr_t, uint16_t, mblk_t **); 994 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *, 995 uintptr_t, uint16_t, mblk_t **); 996 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *, 997 uintptr_t, uint16_t, mblk_t **); 998 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *, 999 uintptr_t, uint16_t, mblk_t **); 1000 1001 typedef struct mac_tx_mode_s { 1002 mac_tx_srs_mode_t mac_tx_mode; 1003 mac_tx_func_t mac_tx_func; 1004 } mac_tx_mode_t; 1005 1006 /* 1007 * There are seven modes of operation on the Tx side. These modes get set 1008 * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode, 1009 * none of the other modes are user configurable. They get selected by 1010 * the system depending upon whether the link (or flow) has multiple Tx 1011 * rings or a bandwidth configured, or if the link is an aggr, etc. 1012 * 1013 * When the Tx SRS is operating in aggr mode (st_mode) or if there are 1014 * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or 1015 * otherwise) will have a soft ring associated with it. These soft rings 1016 * are stored in srs_tx_soft_rings[] array. 1017 * 1018 * Additionally in the case of aggr, there is the st_soft_rings[] array 1019 * in the mac_srs_tx_t structure. This array is used to store the same 1020 * set of soft rings that are present in srs_tx_soft_rings[] array but 1021 * in a different manner. The soft ring associated with the pseudo Tx 1022 * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[] 1023 * array. This helps in quickly getting the soft ring associated with the 1024 * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to 1025 * be used for transmit. 1026 */ 1027 mac_tx_mode_t mac_tx_mode_list[] = { 1028 {SRS_TX_DEFAULT, mac_tx_single_ring_mode}, 1029 {SRS_TX_SERIALIZE, mac_tx_serializer_mode}, 1030 {SRS_TX_FANOUT, mac_tx_fanout_mode}, 1031 {SRS_TX_BW, mac_tx_bw_mode}, 1032 {SRS_TX_BW_FANOUT, mac_tx_bw_mode}, 1033 {SRS_TX_AGGR, mac_tx_aggr_mode}, 1034 {SRS_TX_BW_AGGR, mac_tx_bw_mode} 1035 }; 1036 1037 /* 1038 * Soft Ring Set (SRS) - The Run time code that deals with 1039 * dynamic polling from the hardware, bandwidth enforcement, 1040 * fanout etc. 1041 * 1042 * We try to use H/W classification on NIC and assign traffic for 1043 * a MAC address to a particular Rx ring or ring group. There is a 1044 * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically 1045 * switches the underlying Rx ring between interrupt and 1046 * polling mode and enforces any specified B/W control. 1047 * 1048 * There is always a SRS created and tied to each H/W and S/W rule. 1049 * Whenever we create a H/W rule, we always add the the same rule to 1050 * S/W classifier and tie a SRS to it. 1051 * 1052 * In case a B/W control is specified, it is broken into bytes 1053 * per ticks and as soon as the quota for a tick is exhausted, 1054 * the underlying Rx ring is forced into poll mode for remainder of 1055 * the tick. The SRS poll thread only polls for bytes that are 1056 * allowed to come in the SRS. We typically let 4x the configured 1057 * B/W worth of packets to come in the SRS (to prevent unnecessary 1058 * drops due to bursts) but only process the specified amount. 1059 * 1060 * A MAC client (e.g. a VNIC or aggr) can have 1 or more 1061 * Rx rings (and corresponding SRSs) assigned to it. The SRS 1062 * in turn can have softrings to do protocol level fanout or 1063 * softrings to do S/W based fanout or both. In case the NIC 1064 * has no Rx rings, we do S/W classification to respective SRS. 1065 * The S/W classification rule is always setup and ready. This 1066 * allows the MAC layer to reassign Rx rings whenever needed 1067 * but packets still continue to flow via the default path and 1068 * getting S/W classified to correct SRS. 1069 * 1070 * The SRS's are used on both Tx and Rx side. They use the same 1071 * data structure but the processing routines have slightly different 1072 * semantics due to the fact that Rx side needs to do dynamic 1073 * polling etc. 1074 * 1075 * Dynamic Polling Notes 1076 * ===================== 1077 * 1078 * Each Soft ring set is capable of switching its Rx ring between 1079 * interrupt and poll mode and actively 'polls' for packets in 1080 * poll mode. If the SRS is implementing a B/W limit, it makes 1081 * sure that only Max allowed packets are pulled in poll mode 1082 * and goes to poll mode as soon as B/W limit is exceeded. As 1083 * such, there are no overheads to implement B/W limits. 1084 * 1085 * In poll mode, its better to keep the pipeline going where the 1086 * SRS worker thread keeps processing packets and poll thread 1087 * keeps bringing more packets (specially if they get to run 1088 * on different CPUs). This also prevents the overheads associated 1089 * by excessive signalling (on NUMA machines, this can be 1090 * pretty devastating). The exception is latency optimized case 1091 * where worker thread does no work and interrupt and poll thread 1092 * are allowed to do their own drain. 1093 * 1094 * We use the following policy to control Dynamic Polling: 1095 * 1) We switch to poll mode anytime the processing 1096 * thread causes a backlog to build up in SRS and 1097 * its associated Soft Rings (sr_poll_pkt_cnt > 0). 1098 * 2) As long as the backlog stays under the low water 1099 * mark (sr_lowat), we poll the H/W for more packets. 1100 * 3) If the backlog (sr_poll_pkt_cnt) exceeds low 1101 * water mark, we stay in poll mode but don't poll 1102 * the H/W for more packets. 1103 * 4) Anytime in polling mode, if we poll the H/W for 1104 * packets and find nothing plus we have an existing 1105 * backlog (sr_poll_pkt_cnt > 0), we stay in polling 1106 * mode but don't poll the H/W for packets anymore 1107 * (let the polling thread go to sleep). 1108 * 5) Once the backlog is relived (packets are processed) 1109 * we reenable polling (by signalling the poll thread) 1110 * only when the backlog dips below sr_poll_thres. 1111 * 6) sr_hiwat is used exclusively when we are not 1112 * polling capable and is used to decide when to 1113 * drop packets so the SRS queue length doesn't grow 1114 * infinitely. 1115 * 1116 * NOTE: Also see the block level comment on top of mac_soft_ring.c 1117 */ 1118 1119 /* 1120 * mac_latency_optimize 1121 * 1122 * Controls whether the poll thread can process the packets inline 1123 * or let the SRS worker thread do the processing. This applies if 1124 * the SRS was not being processed. For latency sensitive traffic, 1125 * this needs to be true to allow inline processing. For throughput 1126 * under load, this should be false. 1127 * 1128 * This (and other similar) tunable should be rolled into a link 1129 * or flow specific workload hint that can be set using dladm 1130 * linkprop (instead of multiple such tunables). 1131 */ 1132 boolean_t mac_latency_optimize = B_TRUE; 1133 1134 /* 1135 * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN 1136 * 1137 * queue a mp or chain in soft ring set and increment the 1138 * local count (srs_count) for the SRS and the shared counter 1139 * (srs_poll_pkt_cnt - shared between SRS and its soft rings 1140 * to track the total unprocessed packets for polling to work 1141 * correctly). 1142 * 1143 * The size (total bytes queued) counters are incremented only 1144 * if we are doing B/W control. 1145 */ 1146 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 1147 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 1148 if ((mac_srs)->srs_last != NULL) \ 1149 (mac_srs)->srs_last->b_next = (head); \ 1150 else \ 1151 (mac_srs)->srs_first = (head); \ 1152 (mac_srs)->srs_last = (tail); \ 1153 (mac_srs)->srs_count += count; \ 1154 } 1155 1156 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 1157 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ 1158 \ 1159 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ 1160 srs_rx->sr_poll_pkt_cnt += count; \ 1161 ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \ 1162 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ 1163 (mac_srs)->srs_size += (sz); \ 1164 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \ 1165 (mac_srs)->srs_bw->mac_bw_sz += (sz); \ 1166 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \ 1167 } \ 1168 } 1169 1170 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ 1171 mac_srs->srs_state |= SRS_ENQUEUED; \ 1172 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ 1173 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ 1174 (mac_srs)->srs_size += (sz); \ 1175 (mac_srs)->srs_bw->mac_bw_sz += (sz); \ 1176 } \ 1177 } 1178 1179 /* 1180 * Turn polling on routines 1181 */ 1182 #define MAC_SRS_POLLING_ON(mac_srs) { \ 1183 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 1184 if (((mac_srs)->srs_state & \ 1185 (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \ 1186 (mac_srs)->srs_state |= SRS_POLLING; \ 1187 (void) mac_hwring_disable_intr((mac_ring_handle_t) \ 1188 (mac_srs)->srs_ring); \ 1189 (mac_srs)->srs_rx.sr_poll_on++; \ 1190 } \ 1191 } 1192 1193 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \ 1194 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 1195 if (((mac_srs)->srs_state & \ 1196 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \ 1197 (SRS_POLLING_CAPAB|SRS_WORKER)) { \ 1198 (mac_srs)->srs_state |= SRS_POLLING; \ 1199 (void) mac_hwring_disable_intr((mac_ring_handle_t) \ 1200 (mac_srs)->srs_ring); \ 1201 (mac_srs)->srs_rx.sr_worker_poll_on++; \ 1202 } \ 1203 } 1204 1205 /* 1206 * MAC_SRS_POLL_RING 1207 * 1208 * Signal the SRS poll thread to poll the underlying H/W ring 1209 * provided it wasn't already polling (SRS_GET_PKTS was set). 1210 * 1211 * Poll thread gets to run only from mac_rx_srs_drain() and only 1212 * if the drain was being done by the worker thread. 1213 */ 1214 #define MAC_SRS_POLL_RING(mac_srs) { \ 1215 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ 1216 \ 1217 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 1218 srs_rx->sr_poll_thr_sig++; \ 1219 if (((mac_srs)->srs_state & \ 1220 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \ 1221 (SRS_WORKER|SRS_POLLING_CAPAB)) { \ 1222 (mac_srs)->srs_state |= SRS_GET_PKTS; \ 1223 cv_signal(&(mac_srs)->srs_cv); \ 1224 } else { \ 1225 srs_rx->sr_poll_thr_busy++; \ 1226 } \ 1227 } 1228 1229 /* 1230 * MAC_SRS_CHECK_BW_CONTROL 1231 * 1232 * Check to see if next tick has started so we can reset the 1233 * SRS_BW_ENFORCED flag and allow more packets to come in the 1234 * system. 1235 */ 1236 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \ 1237 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 1238 ASSERT(((mac_srs)->srs_type & SRST_TX) || \ 1239 MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \ 1240 clock_t now = ddi_get_lbolt(); \ 1241 if ((mac_srs)->srs_bw->mac_bw_curr_time != now) { \ 1242 (mac_srs)->srs_bw->mac_bw_curr_time = now; \ 1243 (mac_srs)->srs_bw->mac_bw_used = 0; \ 1244 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \ 1245 (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \ 1246 } \ 1247 } 1248 1249 /* 1250 * MAC_SRS_WORKER_WAKEUP 1251 * 1252 * Wake up the SRS worker thread to process the queue as long as 1253 * no one else is processing the queue. If we are optimizing for 1254 * latency, we wake up the worker thread immediately or else we 1255 * wait mac_srs_worker_wakeup_ticks before worker thread gets 1256 * woken up. 1257 */ 1258 int mac_srs_worker_wakeup_ticks = 0; 1259 #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \ 1260 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ 1261 if (!((mac_srs)->srs_state & SRS_PROC) && \ 1262 (mac_srs)->srs_tid == NULL) { \ 1263 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) || \ 1264 (mac_srs_worker_wakeup_ticks == 0)) \ 1265 cv_signal(&(mac_srs)->srs_async); \ 1266 else \ 1267 (mac_srs)->srs_tid = \ 1268 timeout(mac_srs_fire, (mac_srs), \ 1269 mac_srs_worker_wakeup_ticks); \ 1270 } \ 1271 } 1272 1273 #define TX_BANDWIDTH_MODE(mac_srs) \ 1274 ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \ 1275 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \ 1276 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR) 1277 1278 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \ 1279 if (tx_mode == SRS_TX_BW_FANOUT) \ 1280 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\ 1281 else \ 1282 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL); \ 1283 } 1284 1285 /* 1286 * MAC_TX_SRS_BLOCK 1287 * 1288 * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED 1289 * will be set only if srs_tx_woken_up is FALSE. If 1290 * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived 1291 * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to 1292 * attempt to transmit again and not setting SRS_TX_BLOCKED does 1293 * that. 1294 */ 1295 #define MAC_TX_SRS_BLOCK(srs, mp) { \ 1296 ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \ 1297 if ((srs)->srs_tx.st_woken_up) { \ 1298 (srs)->srs_tx.st_woken_up = B_FALSE; \ 1299 } else { \ 1300 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \ 1301 (srs)->srs_state |= SRS_TX_BLOCKED; \ 1302 (srs)->srs_tx.st_stat.mts_blockcnt++; \ 1303 } \ 1304 } 1305 1306 /* 1307 * MAC_TX_SRS_TEST_HIWAT 1308 * 1309 * Called before queueing a packet onto Tx SRS to test and set 1310 * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat. 1311 */ 1312 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \ 1313 boolean_t enqueue = 1; \ 1314 \ 1315 if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \ 1316 /* \ 1317 * flow-controlled. Store srs in cookie so that it \ 1318 * can be returned as mac_tx_cookie_t to client \ 1319 */ \ 1320 (srs)->srs_state |= SRS_TX_HIWAT; \ 1321 cookie = (mac_tx_cookie_t)srs; \ 1322 (srs)->srs_tx.st_hiwat_cnt++; \ 1323 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \ 1324 /* increment freed stats */ \ 1325 (srs)->srs_tx.st_stat.mts_sdrops += cnt; \ 1326 /* \ 1327 * b_prev may be set to the fanout hint \ 1328 * hence can't use freemsg directly \ 1329 */ \ 1330 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \ 1331 DTRACE_PROBE1(tx_queued_hiwat, \ 1332 mac_soft_ring_set_t *, srs); \ 1333 enqueue = 0; \ 1334 } \ 1335 } \ 1336 if (enqueue) \ 1337 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \ 1338 } 1339 1340 /* Some utility macros */ 1341 #define MAC_SRS_BW_LOCK(srs) \ 1342 if (!(srs->srs_type & SRST_TX)) \ 1343 mutex_enter(&srs->srs_bw->mac_bw_lock); 1344 1345 #define MAC_SRS_BW_UNLOCK(srs) \ 1346 if (!(srs->srs_type & SRST_TX)) \ 1347 mutex_exit(&srs->srs_bw->mac_bw_lock); 1348 1349 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \ 1350 mac_pkt_drop(NULL, NULL, mp, B_FALSE); \ 1351 /* increment freed stats */ \ 1352 mac_srs->srs_tx.st_stat.mts_sdrops++; \ 1353 cookie = (mac_tx_cookie_t)srs; \ 1354 } 1355 1356 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \ 1357 mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \ 1358 cookie = (mac_tx_cookie_t)srs; \ 1359 *ret_mp = mp_chain; \ 1360 } 1361 1362 /* 1363 * MAC_RX_SRS_TOODEEP 1364 * 1365 * Macro called as part of receive-side processing to determine if handling 1366 * can occur in situ (in the interrupt thread) or if it should be left to a 1367 * worker thread. Note that the constant used to make this determination is 1368 * not entirely made-up, and is a result of some emprical validation. That 1369 * said, the constant is left as a static variable to allow it to be 1370 * dynamically tuned in the field if and as needed. 1371 */ 1372 static uintptr_t mac_rx_srs_stack_needed = 10240; 1373 static uint_t mac_rx_srs_stack_toodeep; 1374 1375 #ifndef STACK_GROWTH_DOWN 1376 #error Downward stack growth assumed. 1377 #endif 1378 1379 #define MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \ 1380 (uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \ 1381 ++mac_rx_srs_stack_toodeep) 1382 1383 1384 /* 1385 * Drop the rx packet and advance to the next one in the chain. 1386 */ 1387 static void 1388 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp) 1389 { 1390 mac_srs_rx_t *srs_rx = &srs->srs_rx; 1391 1392 ASSERT(mp->b_next == NULL); 1393 mutex_enter(&srs->srs_lock); 1394 MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1); 1395 MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp)); 1396 mutex_exit(&srs->srs_lock); 1397 1398 srs_rx->sr_stat.mrs_sdrops++; 1399 freemsg(mp); 1400 } 1401 1402 /* DATAPATH RUNTIME ROUTINES */ 1403 1404 /* 1405 * mac_srs_fire 1406 * 1407 * Timer callback routine for waking up the SRS worker thread. 1408 */ 1409 static void 1410 mac_srs_fire(void *arg) 1411 { 1412 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg; 1413 1414 mutex_enter(&mac_srs->srs_lock); 1415 if (mac_srs->srs_tid == NULL) { 1416 mutex_exit(&mac_srs->srs_lock); 1417 return; 1418 } 1419 1420 mac_srs->srs_tid = NULL; 1421 if (!(mac_srs->srs_state & SRS_PROC)) 1422 cv_signal(&mac_srs->srs_async); 1423 1424 mutex_exit(&mac_srs->srs_lock); 1425 } 1426 1427 /* 1428 * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack, 1429 * and it is used on the TX path. 1430 */ 1431 #define HASH_HINT(hint) \ 1432 ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8)) 1433 1434 1435 /* 1436 * hash based on the src address, dst address and the port information. 1437 */ 1438 #define HASH_ADDR(src, dst, ports) \ 1439 (ntohl((src) + (dst)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \ 1440 ((ports) >> 8) ^ (ports)) 1441 1442 #define COMPUTE_INDEX(key, sz) (key % sz) 1443 1444 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \ 1445 if ((tail) != NULL) { \ 1446 ASSERT((tail)->b_next == NULL); \ 1447 (tail)->b_next = (mp); \ 1448 } else { \ 1449 ASSERT((head) == NULL); \ 1450 (head) = (mp); \ 1451 } \ 1452 (tail) = (mp); \ 1453 (cnt)++; \ 1454 if ((bw_ctl)) \ 1455 (sz) += (sz0); \ 1456 } 1457 1458 #define MAC_FANOUT_DEFAULT 0 1459 #define MAC_FANOUT_RND_ROBIN 1 1460 int mac_fanout_type = MAC_FANOUT_DEFAULT; 1461 1462 #define MAX_SR_TYPES 3 1463 /* fanout types for port based hashing */ 1464 enum pkt_type { 1465 V4_TCP = 0, 1466 V4_UDP, 1467 OTH, 1468 UNDEF 1469 }; 1470 1471 /* 1472 * Pair of local and remote ports in the transport header 1473 */ 1474 #define PORTS_SIZE 4 1475 1476 /* 1477 * This routine delivers packets destined for an SRS into one of the 1478 * protocol soft rings. 1479 * 1480 * Given a chain of packets we need to split it up into multiple sub 1481 * chains: TCP, UDP or OTH soft ring. Instead of entering the soft 1482 * ring one packet at a time, we want to enter it in the form of a 1483 * chain otherwise we get this start/stop behaviour where the worker 1484 * thread goes to sleep and then next packet comes in forcing it to 1485 * wake up. 1486 */ 1487 static void 1488 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) 1489 { 1490 struct ether_header *ehp; 1491 struct ether_vlan_header *evhp; 1492 uint32_t sap; 1493 ipha_t *ipha; 1494 uint8_t *dstaddr; 1495 size_t hdrsize; 1496 mblk_t *mp; 1497 mblk_t *headmp[MAX_SR_TYPES]; 1498 mblk_t *tailmp[MAX_SR_TYPES]; 1499 int cnt[MAX_SR_TYPES]; 1500 size_t sz[MAX_SR_TYPES]; 1501 size_t sz1; 1502 boolean_t bw_ctl; 1503 boolean_t hw_classified; 1504 boolean_t dls_bypass; 1505 boolean_t is_ether; 1506 boolean_t is_unicast; 1507 enum pkt_type type; 1508 mac_client_impl_t *mcip = mac_srs->srs_mcip; 1509 1510 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); 1511 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); 1512 1513 /* 1514 * If we don't have a Rx ring, S/W classification would have done 1515 * its job and its a packet meant for us. If we were polling on 1516 * the default ring (i.e. there was a ring assigned to this SRS), 1517 * then we need to make sure that the mac address really belongs 1518 * to us. 1519 */ 1520 hw_classified = mac_srs->srs_ring != NULL && 1521 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; 1522 1523 /* 1524 * Some clients, such as non-ethernet, need DLS processing in 1525 * the Rx path. Such clients clear the SRST_DLS_BYPASS flag. 1526 * DLS bypass may also be disabled via the 1527 * MCIS_RX_BYPASS_DISABLE flag. 1528 */ 1529 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) && 1530 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0); 1531 1532 bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *)); 1533 bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *)); 1534 bzero(cnt, MAX_SR_TYPES * sizeof (int)); 1535 bzero(sz, MAX_SR_TYPES * sizeof (size_t)); 1536 1537 /* 1538 * We have a chain from SRS that we need to split across the 1539 * soft rings. The squeues for the TCP and IPv4 SAPs use their 1540 * own soft rings to allow polling from the squeue. The rest of 1541 * the packets are delivered on the OTH soft ring which cannot 1542 * be polled. 1543 */ 1544 while (head != NULL) { 1545 mp = head; 1546 head = head->b_next; 1547 mp->b_next = NULL; 1548 1549 type = OTH; 1550 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 1551 1552 if (is_ether) { 1553 /* 1554 * At this point we can be sure the packet at least 1555 * has an ether header. 1556 */ 1557 if (sz1 < sizeof (struct ether_header)) { 1558 mac_rx_drop_pkt(mac_srs, mp); 1559 continue; 1560 } 1561 ehp = (struct ether_header *)mp->b_rptr; 1562 1563 /* 1564 * Determine if this is a VLAN or non-VLAN packet. 1565 */ 1566 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { 1567 evhp = (struct ether_vlan_header *)mp->b_rptr; 1568 sap = ntohs(evhp->ether_type); 1569 hdrsize = sizeof (struct ether_vlan_header); 1570 1571 /* 1572 * Check if the VID of the packet, if 1573 * any, belongs to this client. 1574 * Technically, if this packet came up 1575 * via a HW classified ring then we 1576 * don't need to perform this check. 1577 * Perhaps a future optimization. 1578 */ 1579 if (!mac_client_check_flow_vid(mcip, 1580 VLAN_ID(ntohs(evhp->ether_tci)))) { 1581 mac_rx_drop_pkt(mac_srs, mp); 1582 continue; 1583 } 1584 } else { 1585 hdrsize = sizeof (struct ether_header); 1586 } 1587 is_unicast = 1588 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); 1589 dstaddr = (uint8_t *)&ehp->ether_dhost; 1590 } else { 1591 mac_header_info_t mhi; 1592 1593 if (mac_header_info((mac_handle_t)mcip->mci_mip, 1594 mp, &mhi) != 0) { 1595 mac_rx_drop_pkt(mac_srs, mp); 1596 continue; 1597 } 1598 hdrsize = mhi.mhi_hdrsize; 1599 sap = mhi.mhi_bindsap; 1600 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); 1601 dstaddr = (uint8_t *)mhi.mhi_daddr; 1602 } 1603 1604 if (!dls_bypass) { 1605 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], 1606 cnt[type], bw_ctl, sz[type], sz1, mp); 1607 continue; 1608 } 1609 1610 if (sap == ETHERTYPE_IP) { 1611 /* 1612 * If we are H/W classified, but we have promisc 1613 * on, then we need to check for the unicast address. 1614 */ 1615 if (hw_classified && mcip->mci_promisc_list != NULL) { 1616 mac_address_t *map; 1617 1618 rw_enter(&mcip->mci_rw_lock, RW_READER); 1619 map = mcip->mci_unicast; 1620 if (bcmp(dstaddr, map->ma_addr, 1621 map->ma_len) == 0) 1622 type = UNDEF; 1623 rw_exit(&mcip->mci_rw_lock); 1624 } else if (is_unicast) { 1625 type = UNDEF; 1626 } 1627 } 1628 1629 /* 1630 * This needs to become a contract with the driver for 1631 * the fast path. 1632 * 1633 * In the normal case the packet will have at least the L2 1634 * header and the IP + Transport header in the same mblk. 1635 * This is usually the case when the NIC driver sends up 1636 * the packet. This is also true when the stack generates 1637 * a packet that is looped back and when the stack uses the 1638 * fastpath mechanism. The normal case is optimized for 1639 * performance and may bypass DLS. All other cases go through 1640 * the 'OTH' type path without DLS bypass. 1641 */ 1642 ipha = (ipha_t *)(mp->b_rptr + hdrsize); 1643 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) 1644 type = OTH; 1645 1646 if (type == OTH) { 1647 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], 1648 cnt[type], bw_ctl, sz[type], sz1, mp); 1649 continue; 1650 } 1651 1652 ASSERT(type == UNDEF); 1653 1654 /* 1655 * Determine the type from the IP protocol value. If 1656 * classified as TCP or UDP, then update the read 1657 * pointer to the beginning of the IP header. 1658 * Otherwise leave the message as is for further 1659 * processing by DLS. 1660 */ 1661 switch (ipha->ipha_protocol) { 1662 case IPPROTO_TCP: 1663 type = V4_TCP; 1664 mp->b_rptr += hdrsize; 1665 break; 1666 case IPPROTO_UDP: 1667 type = V4_UDP; 1668 mp->b_rptr += hdrsize; 1669 break; 1670 default: 1671 type = OTH; 1672 break; 1673 } 1674 1675 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type], 1676 bw_ctl, sz[type], sz1, mp); 1677 } 1678 1679 for (type = V4_TCP; type < UNDEF; type++) { 1680 if (headmp[type] != NULL) { 1681 mac_soft_ring_t *softring; 1682 1683 ASSERT(tailmp[type]->b_next == NULL); 1684 switch (type) { 1685 case V4_TCP: 1686 softring = mac_srs->srs_tcp_soft_rings[0]; 1687 break; 1688 case V4_UDP: 1689 softring = mac_srs->srs_udp_soft_rings[0]; 1690 break; 1691 case OTH: 1692 softring = mac_srs->srs_oth_soft_rings[0]; 1693 } 1694 mac_rx_soft_ring_process(mcip, softring, 1695 headmp[type], tailmp[type], cnt[type], sz[type]); 1696 } 1697 } 1698 } 1699 1700 int fanout_unaligned = 0; 1701 1702 /* 1703 * The fanout routine for any clients with DLS bypass disabled or for 1704 * traffic classified as "other". Returns -1 on an error (drop the 1705 * packet due to a malformed packet), 0 on success, with values 1706 * written in *indx and *type. 1707 */ 1708 static int 1709 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp, 1710 uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx) 1711 { 1712 ip6_t *ip6h; 1713 ipha_t *ipha; 1714 uint8_t *whereptr; 1715 uint_t hash; 1716 uint16_t remlen; 1717 uint8_t nexthdr; 1718 uint16_t hdr_len; 1719 uint32_t src_val, dst_val; 1720 boolean_t modifiable = B_TRUE; 1721 boolean_t v6; 1722 1723 ASSERT(MBLKL(mp) >= hdrsize); 1724 1725 if (sap == ETHERTYPE_IPV6) { 1726 v6 = B_TRUE; 1727 hdr_len = IPV6_HDR_LEN; 1728 } else if (sap == ETHERTYPE_IP) { 1729 v6 = B_FALSE; 1730 hdr_len = IP_SIMPLE_HDR_LENGTH; 1731 } else { 1732 *indx = 0; 1733 *type = OTH; 1734 return (0); 1735 } 1736 1737 ip6h = (ip6_t *)(mp->b_rptr + hdrsize); 1738 ipha = (ipha_t *)ip6h; 1739 1740 if ((uint8_t *)ip6h == mp->b_wptr) { 1741 /* 1742 * The first mblk_t only includes the mac header. 1743 * Note that it is safe to change the mp pointer here, 1744 * as the subsequent operation does not assume mp 1745 * points to the start of the mac header. 1746 */ 1747 mp = mp->b_cont; 1748 1749 /* 1750 * Make sure the IP header points to an entire one. 1751 */ 1752 if (mp == NULL) 1753 return (-1); 1754 1755 if (MBLKL(mp) < hdr_len) { 1756 modifiable = (DB_REF(mp) == 1); 1757 1758 if (modifiable && !pullupmsg(mp, hdr_len)) 1759 return (-1); 1760 } 1761 1762 ip6h = (ip6_t *)mp->b_rptr; 1763 ipha = (ipha_t *)ip6h; 1764 } 1765 1766 if (!modifiable || !(OK_32PTR((char *)ip6h)) || 1767 ((uint8_t *)ip6h + hdr_len > mp->b_wptr)) { 1768 /* 1769 * If either the IP header is not aligned, or it does not hold 1770 * the complete simple structure (a pullupmsg() is not an 1771 * option since it would result in an unaligned IP header), 1772 * fanout to the default ring. 1773 * 1774 * Note that this may cause packet reordering. 1775 */ 1776 *indx = 0; 1777 *type = OTH; 1778 fanout_unaligned++; 1779 return (0); 1780 } 1781 1782 /* 1783 * Extract next-header, full header length, and source-hash value 1784 * using v4/v6 specific fields. 1785 */ 1786 if (v6) { 1787 remlen = ntohs(ip6h->ip6_plen); 1788 nexthdr = ip6h->ip6_nxt; 1789 src_val = V4_PART_OF_V6(ip6h->ip6_src); 1790 dst_val = V4_PART_OF_V6(ip6h->ip6_dst); 1791 /* 1792 * Do src based fanout if below tunable is set to B_TRUE or 1793 * when mac_ip_hdr_length_v6() fails because of malformed 1794 * packets or because mblks need to be concatenated using 1795 * pullupmsg(). 1796 * 1797 * Perform a version check to prevent parsing weirdness... 1798 */ 1799 if (IPH_HDR_VERSION(ip6h) != IPV6_VERSION || 1800 !mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len, &nexthdr, 1801 NULL)) { 1802 goto src_dst_based_fanout; 1803 } 1804 } else { 1805 hdr_len = IPH_HDR_LENGTH(ipha); 1806 remlen = ntohs(ipha->ipha_length) - hdr_len; 1807 nexthdr = ipha->ipha_protocol; 1808 src_val = (uint32_t)ipha->ipha_src; 1809 dst_val = (uint32_t)ipha->ipha_dst; 1810 /* 1811 * Catch IPv4 fragment case here. IPv6 has nexthdr == FRAG 1812 * for its equivalent case. 1813 */ 1814 if ((ntohs(ipha->ipha_fragment_offset_and_flags) & 1815 (IPH_MF | IPH_OFFSET)) != 0) { 1816 goto src_dst_based_fanout; 1817 } 1818 } 1819 if (remlen < MIN_EHDR_LEN) 1820 return (-1); 1821 whereptr = (uint8_t *)ip6h + hdr_len; 1822 1823 /* If the transport is one of below, we do port/SPI based fanout */ 1824 switch (nexthdr) { 1825 case IPPROTO_TCP: 1826 case IPPROTO_UDP: 1827 case IPPROTO_SCTP: 1828 case IPPROTO_ESP: 1829 /* 1830 * If the ports or SPI in the transport header is not part of 1831 * the mblk, do src_based_fanout, instead of calling 1832 * pullupmsg(). 1833 */ 1834 if (mp->b_cont == NULL || whereptr + PORTS_SIZE <= mp->b_wptr) 1835 break; /* out of switch... */ 1836 /* FALLTHRU */ 1837 default: 1838 goto src_dst_based_fanout; 1839 } 1840 1841 switch (nexthdr) { 1842 case IPPROTO_TCP: 1843 hash = HASH_ADDR(src_val, dst_val, *(uint32_t *)whereptr); 1844 *indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count); 1845 *type = OTH; 1846 break; 1847 case IPPROTO_UDP: 1848 case IPPROTO_SCTP: 1849 case IPPROTO_ESP: 1850 if (mac_fanout_type == MAC_FANOUT_DEFAULT) { 1851 hash = HASH_ADDR(src_val, dst_val, 1852 *(uint32_t *)whereptr); 1853 *indx = COMPUTE_INDEX(hash, 1854 mac_srs->srs_udp_ring_count); 1855 } else { 1856 *indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count; 1857 mac_srs->srs_ind++; 1858 } 1859 *type = OTH; 1860 break; 1861 } 1862 return (0); 1863 1864 src_dst_based_fanout: 1865 hash = HASH_ADDR(src_val, dst_val, (uint32_t)0); 1866 *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count); 1867 *type = OTH; 1868 return (0); 1869 } 1870 1871 /* 1872 * This routine delivers packets destined for an SRS into a soft ring member 1873 * of the set. 1874 * 1875 * Given a chain of packets we need to split it up into multiple sub 1876 * chains: TCP, UDP or OTH soft ring. Instead of entering the soft 1877 * ring one packet at a time, we want to enter it in the form of a 1878 * chain otherwise we get this start/stop behaviour where the worker 1879 * thread goes to sleep and then next packet comes in forcing it to 1880 * wake up. 1881 * 1882 * Note: 1883 * Since we know what is the maximum fanout possible, we create a 2D array 1884 * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz 1885 * variables so that we can enter the softrings with chain. We need the 1886 * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc 1887 * for each packet would be expensive). If we ever want to have the 1888 * ability to have unlimited fanout, we should probably declare a head, 1889 * tail, cnt, sz with each soft ring (a data struct which contains a softring 1890 * along with these members) and create an array of this uber struct so we 1891 * don't have to do kmem_alloc. 1892 */ 1893 int fanout_oth1 = 0; 1894 int fanout_oth2 = 0; 1895 int fanout_oth3 = 0; 1896 int fanout_oth4 = 0; 1897 int fanout_oth5 = 0; 1898 1899 static void 1900 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) 1901 { 1902 struct ether_header *ehp; 1903 struct ether_vlan_header *evhp; 1904 uint32_t sap; 1905 ipha_t *ipha; 1906 uint8_t *dstaddr; 1907 uint_t indx; 1908 size_t ports_offset; 1909 size_t ipha_len; 1910 size_t hdrsize; 1911 uint_t hash; 1912 mblk_t *mp; 1913 mblk_t *headmp[MAX_SR_TYPES][MAX_SR_FANOUT]; 1914 mblk_t *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT]; 1915 int cnt[MAX_SR_TYPES][MAX_SR_FANOUT]; 1916 size_t sz[MAX_SR_TYPES][MAX_SR_FANOUT]; 1917 size_t sz1; 1918 boolean_t bw_ctl; 1919 boolean_t hw_classified; 1920 boolean_t dls_bypass; 1921 boolean_t is_ether; 1922 boolean_t is_unicast; 1923 int fanout_cnt; 1924 enum pkt_type type; 1925 mac_client_impl_t *mcip = mac_srs->srs_mcip; 1926 1927 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); 1928 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); 1929 1930 /* 1931 * If we don't have a Rx ring, S/W classification would have done 1932 * its job and its a packet meant for us. If we were polling on 1933 * the default ring (i.e. there was a ring assigned to this SRS), 1934 * then we need to make sure that the mac address really belongs 1935 * to us. 1936 */ 1937 hw_classified = mac_srs->srs_ring != NULL && 1938 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; 1939 1940 /* 1941 * Some clients, such as non Ethernet, need DLS processing in 1942 * the Rx path. Such clients clear the SRST_DLS_BYPASS flag. 1943 * DLS bypass may also be disabled via the 1944 * MCIS_RX_BYPASS_DISABLE flag, but this is only consumed by 1945 * sun4v vsw currently. 1946 */ 1947 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) && 1948 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0); 1949 1950 /* 1951 * Since the softrings are never destroyed and we always 1952 * create equal number of softrings for TCP, UDP and rest, 1953 * its OK to check one of them for count and use it without 1954 * any lock. In future, if soft rings get destroyed because 1955 * of reduction in fanout, we will need to ensure that happens 1956 * behind the SRS_PROC. 1957 */ 1958 fanout_cnt = mac_srs->srs_tcp_ring_count; 1959 1960 bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); 1961 bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); 1962 bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int)); 1963 bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t)); 1964 1965 /* 1966 * We got a chain from SRS that we need to send to the soft rings. 1967 * Since squeues for TCP & IPv4 SAP poll their soft rings (for 1968 * performance reasons), we need to separate out v4_tcp, v4_udp 1969 * and the rest goes in other. 1970 */ 1971 while (head != NULL) { 1972 mp = head; 1973 head = head->b_next; 1974 mp->b_next = NULL; 1975 1976 type = OTH; 1977 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 1978 1979 if (is_ether) { 1980 /* 1981 * At this point we can be sure the packet at least 1982 * has an ether header. 1983 */ 1984 if (sz1 < sizeof (struct ether_header)) { 1985 mac_rx_drop_pkt(mac_srs, mp); 1986 continue; 1987 } 1988 ehp = (struct ether_header *)mp->b_rptr; 1989 1990 /* 1991 * Determine if this is a VLAN or non-VLAN packet. 1992 */ 1993 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { 1994 evhp = (struct ether_vlan_header *)mp->b_rptr; 1995 sap = ntohs(evhp->ether_type); 1996 hdrsize = sizeof (struct ether_vlan_header); 1997 1998 /* 1999 * Check if the VID of the packet, if 2000 * any, belongs to this client. 2001 * Technically, if this packet came up 2002 * via a HW classified ring then we 2003 * don't need to perform this check. 2004 * Perhaps a future optimization. 2005 */ 2006 if (!mac_client_check_flow_vid(mcip, 2007 VLAN_ID(ntohs(evhp->ether_tci)))) { 2008 mac_rx_drop_pkt(mac_srs, mp); 2009 continue; 2010 } 2011 } else { 2012 hdrsize = sizeof (struct ether_header); 2013 } 2014 is_unicast = 2015 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); 2016 dstaddr = (uint8_t *)&ehp->ether_dhost; 2017 } else { 2018 mac_header_info_t mhi; 2019 2020 if (mac_header_info((mac_handle_t)mcip->mci_mip, 2021 mp, &mhi) != 0) { 2022 mac_rx_drop_pkt(mac_srs, mp); 2023 continue; 2024 } 2025 hdrsize = mhi.mhi_hdrsize; 2026 sap = mhi.mhi_bindsap; 2027 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); 2028 dstaddr = (uint8_t *)mhi.mhi_daddr; 2029 } 2030 2031 if (!dls_bypass) { 2032 if (mac_rx_srs_long_fanout(mac_srs, mp, sap, 2033 hdrsize, &type, &indx) == -1) { 2034 mac_rx_drop_pkt(mac_srs, mp); 2035 continue; 2036 } 2037 2038 FANOUT_ENQUEUE_MP(headmp[type][indx], 2039 tailmp[type][indx], cnt[type][indx], bw_ctl, 2040 sz[type][indx], sz1, mp); 2041 continue; 2042 } 2043 2044 /* 2045 * If we are using the default Rx ring where H/W or S/W 2046 * classification has not happened, we need to verify if 2047 * this unicast packet really belongs to us. 2048 */ 2049 if (sap == ETHERTYPE_IP) { 2050 /* 2051 * If we are H/W classified, but we have promisc 2052 * on, then we need to check for the unicast address. 2053 */ 2054 if (hw_classified && mcip->mci_promisc_list != NULL) { 2055 mac_address_t *map; 2056 2057 rw_enter(&mcip->mci_rw_lock, RW_READER); 2058 map = mcip->mci_unicast; 2059 if (bcmp(dstaddr, map->ma_addr, 2060 map->ma_len) == 0) 2061 type = UNDEF; 2062 rw_exit(&mcip->mci_rw_lock); 2063 } else if (is_unicast) { 2064 type = UNDEF; 2065 } 2066 } 2067 2068 /* 2069 * This needs to become a contract with the driver for 2070 * the fast path. 2071 */ 2072 2073 ipha = (ipha_t *)(mp->b_rptr + hdrsize); 2074 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) { 2075 type = OTH; 2076 fanout_oth1++; 2077 } 2078 2079 if (type != OTH) { 2080 uint16_t frag_offset_flags; 2081 2082 switch (ipha->ipha_protocol) { 2083 case IPPROTO_TCP: 2084 case IPPROTO_UDP: 2085 case IPPROTO_SCTP: 2086 case IPPROTO_ESP: 2087 ipha_len = IPH_HDR_LENGTH(ipha); 2088 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE > 2089 mp->b_wptr) { 2090 type = OTH; 2091 break; 2092 } 2093 frag_offset_flags = 2094 ntohs(ipha->ipha_fragment_offset_and_flags); 2095 if ((frag_offset_flags & 2096 (IPH_MF | IPH_OFFSET)) != 0) { 2097 type = OTH; 2098 fanout_oth3++; 2099 break; 2100 } 2101 ports_offset = hdrsize + ipha_len; 2102 break; 2103 default: 2104 type = OTH; 2105 fanout_oth4++; 2106 break; 2107 } 2108 } 2109 2110 if (type == OTH) { 2111 if (mac_rx_srs_long_fanout(mac_srs, mp, sap, 2112 hdrsize, &type, &indx) == -1) { 2113 mac_rx_drop_pkt(mac_srs, mp); 2114 continue; 2115 } 2116 2117 FANOUT_ENQUEUE_MP(headmp[type][indx], 2118 tailmp[type][indx], cnt[type][indx], bw_ctl, 2119 sz[type][indx], sz1, mp); 2120 continue; 2121 } 2122 2123 ASSERT(type == UNDEF); 2124 2125 /* 2126 * XXX-Sunay: We should hold srs_lock since ring_count 2127 * below can change. But if we are always called from 2128 * mac_rx_srs_drain and SRS_PROC is set, then we can 2129 * enforce that ring_count can't be changed i.e. 2130 * to change fanout type or ring count, the calling 2131 * thread needs to be behind SRS_PROC. 2132 */ 2133 switch (ipha->ipha_protocol) { 2134 case IPPROTO_TCP: 2135 /* 2136 * Note that for ESP, we fanout on SPI and it is at the 2137 * same offset as the 2x16-bit ports. So it is clumped 2138 * along with TCP, UDP and SCTP. 2139 */ 2140 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst, 2141 *(uint32_t *)(mp->b_rptr + ports_offset)); 2142 indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count); 2143 type = V4_TCP; 2144 mp->b_rptr += hdrsize; 2145 break; 2146 case IPPROTO_UDP: 2147 case IPPROTO_SCTP: 2148 case IPPROTO_ESP: 2149 if (mac_fanout_type == MAC_FANOUT_DEFAULT) { 2150 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst, 2151 *(uint32_t *)(mp->b_rptr + ports_offset)); 2152 indx = COMPUTE_INDEX(hash, 2153 mac_srs->srs_udp_ring_count); 2154 } else { 2155 indx = mac_srs->srs_ind % 2156 mac_srs->srs_udp_ring_count; 2157 mac_srs->srs_ind++; 2158 } 2159 type = V4_UDP; 2160 mp->b_rptr += hdrsize; 2161 break; 2162 default: 2163 indx = 0; 2164 type = OTH; 2165 } 2166 2167 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx], 2168 cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp); 2169 } 2170 2171 for (type = V4_TCP; type < UNDEF; type++) { 2172 int i; 2173 2174 for (i = 0; i < fanout_cnt; i++) { 2175 if (headmp[type][i] != NULL) { 2176 mac_soft_ring_t *softring; 2177 2178 ASSERT(tailmp[type][i]->b_next == NULL); 2179 switch (type) { 2180 case V4_TCP: 2181 softring = 2182 mac_srs->srs_tcp_soft_rings[i]; 2183 break; 2184 case V4_UDP: 2185 softring = 2186 mac_srs->srs_udp_soft_rings[i]; 2187 break; 2188 case OTH: 2189 softring = 2190 mac_srs->srs_oth_soft_rings[i]; 2191 break; 2192 } 2193 mac_rx_soft_ring_process(mcip, 2194 softring, headmp[type][i], tailmp[type][i], 2195 cnt[type][i], sz[type][i]); 2196 } 2197 } 2198 } 2199 } 2200 2201 #define SRS_BYTES_TO_PICKUP 150000 2202 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP; 2203 2204 /* 2205 * mac_rx_srs_poll_ring 2206 * 2207 * This SRS Poll thread uses this routine to poll the underlying hardware 2208 * Rx ring to get a chain of packets. It can inline process that chain 2209 * if mac_latency_optimize is set (default) or signal the SRS worker thread 2210 * to do the remaining processing. 2211 * 2212 * Since packets come in the system via interrupt or poll path, we also 2213 * update the stats and deal with promiscous clients here. 2214 */ 2215 void 2216 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs) 2217 { 2218 kmutex_t *lock = &mac_srs->srs_lock; 2219 kcondvar_t *async = &mac_srs->srs_cv; 2220 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 2221 mblk_t *head, *tail, *mp; 2222 callb_cpr_t cprinfo; 2223 ssize_t bytes_to_pickup; 2224 size_t sz; 2225 int count; 2226 mac_client_impl_t *smcip; 2227 2228 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll"); 2229 mutex_enter(lock); 2230 2231 start: 2232 for (;;) { 2233 if (mac_srs->srs_state & SRS_PAUSE) 2234 goto done; 2235 2236 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2237 cv_wait(async, lock); 2238 CALLB_CPR_SAFE_END(&cprinfo, lock); 2239 2240 if (mac_srs->srs_state & SRS_PAUSE) 2241 goto done; 2242 2243 check_again: 2244 if (mac_srs->srs_type & SRST_BW_CONTROL) { 2245 /* 2246 * We pick as many bytes as we are allowed to queue. 2247 * Its possible that we will exceed the total 2248 * packets queued in case this SRS is part of the 2249 * Rx ring group since > 1 poll thread can be pulling 2250 * upto the max allowed packets at the same time 2251 * but that should be OK. 2252 */ 2253 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2254 bytes_to_pickup = 2255 mac_srs->srs_bw->mac_bw_drop_threshold - 2256 mac_srs->srs_bw->mac_bw_sz; 2257 /* 2258 * We shouldn't have been signalled if we 2259 * have 0 or less bytes to pick but since 2260 * some of the bytes accounting is driver 2261 * dependant, we do the safety check. 2262 */ 2263 if (bytes_to_pickup < 0) 2264 bytes_to_pickup = 0; 2265 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2266 } else { 2267 /* 2268 * ToDO: Need to change the polling API 2269 * to add a packet count and a flag which 2270 * tells the driver whether we want packets 2271 * based on a count, or bytes, or all the 2272 * packets queued in the driver/HW. This 2273 * way, we never have to check the limits 2274 * on poll path. We truly let only as many 2275 * packets enter the system as we are willing 2276 * to process or queue. 2277 * 2278 * Something along the lines of 2279 * pkts_to_pickup = mac_soft_ring_max_q_cnt - 2280 * mac_srs->srs_poll_pkt_cnt 2281 */ 2282 2283 /* 2284 * Since we are not doing B/W control, pick 2285 * as many packets as allowed. 2286 */ 2287 bytes_to_pickup = max_bytes_to_pickup; 2288 } 2289 2290 /* Poll the underlying Hardware */ 2291 mutex_exit(lock); 2292 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup); 2293 mutex_enter(lock); 2294 2295 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) == 2296 SRS_POLL_THR_OWNER); 2297 2298 mp = tail = head; 2299 count = 0; 2300 sz = 0; 2301 while (mp != NULL) { 2302 tail = mp; 2303 sz += msgdsize(mp); 2304 mp = mp->b_next; 2305 count++; 2306 } 2307 2308 if (head != NULL) { 2309 tail->b_next = NULL; 2310 smcip = mac_srs->srs_mcip; 2311 2312 SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz); 2313 SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count); 2314 2315 /* 2316 * If there are any promiscuous mode callbacks 2317 * defined for this MAC client, pass them a copy 2318 * if appropriate and also update the counters. 2319 */ 2320 if (smcip != NULL) { 2321 if (smcip->mci_mip->mi_promisc_list != NULL) { 2322 mutex_exit(lock); 2323 mac_promisc_dispatch(smcip->mci_mip, 2324 head, NULL); 2325 mutex_enter(lock); 2326 } 2327 } 2328 if (mac_srs->srs_type & SRST_BW_CONTROL) { 2329 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2330 mac_srs->srs_bw->mac_bw_polled += sz; 2331 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2332 } 2333 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, 2334 count, sz); 2335 if (count <= 10) 2336 srs_rx->sr_stat.mrs_chaincntundr10++; 2337 else if (count > 10 && count <= 50) 2338 srs_rx->sr_stat.mrs_chaincnt10to50++; 2339 else 2340 srs_rx->sr_stat.mrs_chaincntover50++; 2341 } 2342 2343 /* 2344 * We are guaranteed that SRS_PROC will be set if we 2345 * are here. Also, poll thread gets to run only if 2346 * the drain was being done by a worker thread although 2347 * its possible that worker thread is still running 2348 * and poll thread was sent down to keep the pipeline 2349 * going instead of doing a complete drain and then 2350 * trying to poll the NIC. 2351 * 2352 * So we need to check SRS_WORKER flag to make sure 2353 * that the worker thread is not processing the queue 2354 * in parallel to us. The flags and conditions are 2355 * protected by the srs_lock to prevent any race. We 2356 * ensure that we don't drop the srs_lock from now 2357 * till the end and similarly we don't drop the srs_lock 2358 * in mac_rx_srs_drain() till similar condition check 2359 * are complete. The mac_rx_srs_drain() needs to ensure 2360 * that SRS_WORKER flag remains set as long as its 2361 * processing the queue. 2362 */ 2363 if (!(mac_srs->srs_state & SRS_WORKER) && 2364 (mac_srs->srs_first != NULL)) { 2365 /* 2366 * We have packets to process and worker thread 2367 * is not running. Check to see if poll thread is 2368 * allowed to process. 2369 */ 2370 if (mac_srs->srs_state & SRS_LATENCY_OPT) { 2371 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC); 2372 if (!(mac_srs->srs_state & SRS_PAUSE) && 2373 srs_rx->sr_poll_pkt_cnt <= 2374 srs_rx->sr_lowat) { 2375 srs_rx->sr_poll_again++; 2376 goto check_again; 2377 } 2378 /* 2379 * We are already above low water mark 2380 * so stay in the polling mode but no 2381 * need to poll. Once we dip below 2382 * the polling threshold, the processing 2383 * thread (soft ring) will signal us 2384 * to poll again (MAC_UPDATE_SRS_COUNT) 2385 */ 2386 srs_rx->sr_poll_drain_no_poll++; 2387 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); 2388 /* 2389 * In B/W control case, its possible 2390 * that the backlog built up due to 2391 * B/W limit being reached and packets 2392 * are queued only in SRS. In this case, 2393 * we should schedule worker thread 2394 * since no one else will wake us up. 2395 */ 2396 if ((mac_srs->srs_type & SRST_BW_CONTROL) && 2397 (mac_srs->srs_tid == NULL)) { 2398 mac_srs->srs_tid = 2399 timeout(mac_srs_fire, mac_srs, 1); 2400 srs_rx->sr_poll_worker_wakeup++; 2401 } 2402 } else { 2403 /* 2404 * Wakeup the worker thread for more processing. 2405 * We optimize for throughput in this case. 2406 */ 2407 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); 2408 MAC_SRS_WORKER_WAKEUP(mac_srs); 2409 srs_rx->sr_poll_sig_worker++; 2410 } 2411 } else if ((mac_srs->srs_first == NULL) && 2412 !(mac_srs->srs_state & SRS_WORKER)) { 2413 /* 2414 * There is nothing queued in SRS and 2415 * no worker thread running. Plus we 2416 * didn't get anything from the H/W 2417 * as well (head == NULL); 2418 */ 2419 ASSERT(head == NULL); 2420 mac_srs->srs_state &= 2421 ~(SRS_PROC|SRS_GET_PKTS); 2422 2423 /* 2424 * If we have a packets in soft ring, don't allow 2425 * more packets to come into this SRS by keeping the 2426 * interrupts off but not polling the H/W. The 2427 * poll thread will get signaled as soon as 2428 * srs_poll_pkt_cnt dips below poll threshold. 2429 */ 2430 if (srs_rx->sr_poll_pkt_cnt == 0) { 2431 srs_rx->sr_poll_intr_enable++; 2432 MAC_SRS_POLLING_OFF(mac_srs); 2433 } else { 2434 /* 2435 * We know nothing is queued in SRS 2436 * since we are here after checking 2437 * srs_first is NULL. The backlog 2438 * is entirely due to packets queued 2439 * in Soft ring which will wake us up 2440 * and get the interface out of polling 2441 * mode once the backlog dips below 2442 * sr_poll_thres. 2443 */ 2444 srs_rx->sr_poll_no_poll++; 2445 } 2446 } else { 2447 /* 2448 * Worker thread is already running. 2449 * Nothing much to do. If the polling 2450 * was enabled, worker thread will deal 2451 * with that. 2452 */ 2453 mac_srs->srs_state &= ~SRS_GET_PKTS; 2454 srs_rx->sr_poll_goto_sleep++; 2455 } 2456 } 2457 done: 2458 mac_srs->srs_state |= SRS_POLL_THR_QUIESCED; 2459 cv_signal(&mac_srs->srs_async); 2460 /* 2461 * If this is a temporary quiesce then wait for the restart signal 2462 * from the srs worker. Then clear the flags and signal the srs worker 2463 * to ensure a positive handshake and go back to start. 2464 */ 2465 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART))) 2466 cv_wait(async, lock); 2467 if (mac_srs->srs_state & SRS_POLL_THR_RESTART) { 2468 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); 2469 mac_srs->srs_state &= 2470 ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART); 2471 cv_signal(&mac_srs->srs_async); 2472 goto start; 2473 } else { 2474 mac_srs->srs_state |= SRS_POLL_THR_EXITED; 2475 cv_signal(&mac_srs->srs_async); 2476 CALLB_CPR_EXIT(&cprinfo); 2477 thread_exit(); 2478 } 2479 } 2480 2481 /* 2482 * mac_srs_pick_chain 2483 * 2484 * In Bandwidth control case, checks how many packets can be processed 2485 * and return them in a sub chain. 2486 */ 2487 static mblk_t * 2488 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail, 2489 size_t *chain_sz, int *chain_cnt) 2490 { 2491 mblk_t *head = NULL; 2492 mblk_t *tail = NULL; 2493 size_t sz; 2494 size_t tsz = 0; 2495 int cnt = 0; 2496 mblk_t *mp; 2497 2498 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 2499 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2500 if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <= 2501 mac_srs->srs_bw->mac_bw_limit) || 2502 (mac_srs->srs_bw->mac_bw_limit == 0)) { 2503 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2504 head = mac_srs->srs_first; 2505 mac_srs->srs_first = NULL; 2506 *chain_tail = mac_srs->srs_last; 2507 mac_srs->srs_last = NULL; 2508 *chain_sz = mac_srs->srs_size; 2509 *chain_cnt = mac_srs->srs_count; 2510 mac_srs->srs_count = 0; 2511 mac_srs->srs_size = 0; 2512 return (head); 2513 } 2514 2515 /* 2516 * Can't clear the entire backlog. 2517 * Need to find how many packets to pick 2518 */ 2519 ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock)); 2520 while ((mp = mac_srs->srs_first) != NULL) { 2521 sz = msgdsize(mp); 2522 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) > 2523 mac_srs->srs_bw->mac_bw_limit) { 2524 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) 2525 mac_srs->srs_bw->mac_bw_state |= 2526 SRS_BW_ENFORCED; 2527 break; 2528 } 2529 2530 /* 2531 * The _size & cnt is decremented from the softrings 2532 * when they send up the packet for polling to work 2533 * properly. 2534 */ 2535 tsz += sz; 2536 cnt++; 2537 mac_srs->srs_count--; 2538 mac_srs->srs_size -= sz; 2539 if (tail != NULL) 2540 tail->b_next = mp; 2541 else 2542 head = mp; 2543 tail = mp; 2544 mac_srs->srs_first = mac_srs->srs_first->b_next; 2545 } 2546 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2547 if (mac_srs->srs_first == NULL) 2548 mac_srs->srs_last = NULL; 2549 2550 if (tail != NULL) 2551 tail->b_next = NULL; 2552 *chain_tail = tail; 2553 *chain_cnt = cnt; 2554 *chain_sz = tsz; 2555 2556 return (head); 2557 } 2558 2559 /* 2560 * mac_rx_srs_drain 2561 * 2562 * The SRS drain routine. Gets to run to clear the queue. Any thread 2563 * (worker, interrupt, poll) can call this based on processing model. 2564 * The first thing we do is disable interrupts if possible and then 2565 * drain the queue. we also try to poll the underlying hardware if 2566 * there is a dedicated hardware Rx ring assigned to this SRS. 2567 * 2568 * There is a equivalent drain routine in bandwidth control mode 2569 * mac_rx_srs_drain_bw. There is some code duplication between the two 2570 * routines but they are highly performance sensitive and are easier 2571 * to read/debug if they stay separate. Any code changes here might 2572 * also apply to mac_rx_srs_drain_bw as well. 2573 */ 2574 void 2575 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 2576 { 2577 mblk_t *head; 2578 mblk_t *tail; 2579 timeout_id_t tid; 2580 int cnt = 0; 2581 mac_client_impl_t *mcip = mac_srs->srs_mcip; 2582 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 2583 2584 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 2585 ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL)); 2586 2587 /* If we are blanked i.e. can't do upcalls, then we are done */ 2588 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { 2589 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || 2590 (mac_srs->srs_state & SRS_PAUSE)); 2591 goto out; 2592 } 2593 2594 if (mac_srs->srs_first == NULL) 2595 goto out; 2596 2597 if (!(mac_srs->srs_state & SRS_LATENCY_OPT) && 2598 (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) { 2599 /* 2600 * In the normal case, the SRS worker thread does no 2601 * work and we wait for a backlog to build up before 2602 * we switch into polling mode. In case we are 2603 * optimizing for throughput, we use the worker thread 2604 * as well. The goal is to let worker thread process 2605 * the queue and poll thread to feed packets into 2606 * the queue. As such, we should signal the poll 2607 * thread to try and get more packets. 2608 * 2609 * We could have pulled this check in the POLL_RING 2610 * macro itself but keeping it explicit here makes 2611 * the architecture more human understandable. 2612 */ 2613 MAC_SRS_POLL_RING(mac_srs); 2614 } 2615 2616 again: 2617 head = mac_srs->srs_first; 2618 mac_srs->srs_first = NULL; 2619 tail = mac_srs->srs_last; 2620 mac_srs->srs_last = NULL; 2621 cnt = mac_srs->srs_count; 2622 mac_srs->srs_count = 0; 2623 2624 ASSERT(head != NULL); 2625 ASSERT(tail != NULL); 2626 2627 if ((tid = mac_srs->srs_tid) != NULL) 2628 mac_srs->srs_tid = NULL; 2629 2630 mac_srs->srs_state |= (SRS_PROC|proc_type); 2631 2632 /* 2633 * mcip is NULL for broadcast and multicast flows. The promisc 2634 * callbacks for broadcast and multicast packets are delivered from 2635 * mac_rx() and we don't need to worry about that case in this path 2636 */ 2637 if (mcip != NULL) { 2638 if (mcip->mci_promisc_list != NULL) { 2639 mutex_exit(&mac_srs->srs_lock); 2640 mac_promisc_client_dispatch(mcip, head); 2641 mutex_enter(&mac_srs->srs_lock); 2642 } 2643 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) { 2644 mutex_exit(&mac_srs->srs_lock); 2645 mac_protect_intercept_dynamic(mcip, head); 2646 mutex_enter(&mac_srs->srs_lock); 2647 } 2648 } 2649 2650 /* 2651 * Check if SRS itself is doing the processing. This direct 2652 * path applies only when subflows are present. 2653 */ 2654 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { 2655 mac_direct_rx_t proc; 2656 void *arg1; 2657 mac_resource_handle_t arg2; 2658 2659 /* 2660 * This is the case when a Rx is directly 2661 * assigned and we have a fully classified 2662 * protocol chain. We can deal with it in 2663 * one shot. 2664 */ 2665 proc = srs_rx->sr_func; 2666 arg1 = srs_rx->sr_arg1; 2667 arg2 = srs_rx->sr_arg2; 2668 2669 mac_srs->srs_state |= SRS_CLIENT_PROC; 2670 mutex_exit(&mac_srs->srs_lock); 2671 if (tid != NULL) { 2672 (void) untimeout(tid); 2673 tid = NULL; 2674 } 2675 2676 proc(arg1, arg2, head, NULL); 2677 /* 2678 * Decrement the size and count here itelf 2679 * since the packet has been processed. 2680 */ 2681 mutex_enter(&mac_srs->srs_lock); 2682 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 2683 if (mac_srs->srs_state & SRS_CLIENT_WAIT) 2684 cv_signal(&mac_srs->srs_client_cv); 2685 mac_srs->srs_state &= ~SRS_CLIENT_PROC; 2686 } else { 2687 /* Some kind of softrings based fanout is required */ 2688 mutex_exit(&mac_srs->srs_lock); 2689 if (tid != NULL) { 2690 (void) untimeout(tid); 2691 tid = NULL; 2692 } 2693 2694 /* 2695 * Since the fanout routines can deal with chains, 2696 * shoot the entire chain up. 2697 */ 2698 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) 2699 mac_rx_srs_fanout(mac_srs, head); 2700 else 2701 mac_rx_srs_proto_fanout(mac_srs, head); 2702 mutex_enter(&mac_srs->srs_lock); 2703 } 2704 2705 if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) && 2706 (mac_srs->srs_first != NULL)) { 2707 /* 2708 * More packets arrived while we were clearing the 2709 * SRS. This can be possible because of one of 2710 * three conditions below: 2711 * 1) The driver is using multiple worker threads 2712 * to send the packets to us. 2713 * 2) The driver has a race in switching 2714 * between interrupt and polling mode or 2715 * 3) Packets are arriving in this SRS via the 2716 * S/W classification as well. 2717 * 2718 * We should switch to polling mode and see if we 2719 * need to send the poll thread down. Also, signal 2720 * the worker thread to process whats just arrived. 2721 */ 2722 MAC_SRS_POLLING_ON(mac_srs); 2723 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) { 2724 srs_rx->sr_drain_poll_sig++; 2725 MAC_SRS_POLL_RING(mac_srs); 2726 } 2727 2728 /* 2729 * If we didn't signal the poll thread, we need 2730 * to deal with the pending packets ourselves. 2731 */ 2732 if (proc_type == SRS_WORKER) { 2733 srs_rx->sr_drain_again++; 2734 goto again; 2735 } else { 2736 srs_rx->sr_drain_worker_sig++; 2737 cv_signal(&mac_srs->srs_async); 2738 } 2739 } 2740 2741 out: 2742 if (mac_srs->srs_state & SRS_GET_PKTS) { 2743 /* 2744 * Poll thread is already running. Leave the 2745 * SRS_RPOC set and hand over the control to 2746 * poll thread. 2747 */ 2748 mac_srs->srs_state &= ~proc_type; 2749 srs_rx->sr_drain_poll_running++; 2750 return; 2751 } 2752 2753 /* 2754 * Even if there are no packets queued in SRS, we 2755 * need to make sure that the shared counter is 2756 * clear and any associated softrings have cleared 2757 * all the backlog. Otherwise, leave the interface 2758 * in polling mode and the poll thread will get 2759 * signalled once the count goes down to zero. 2760 * 2761 * If someone is already draining the queue (SRS_PROC is 2762 * set) when the srs_poll_pkt_cnt goes down to zero, 2763 * then it means that drain is already running and we 2764 * will turn off polling at that time if there is 2765 * no backlog. 2766 * 2767 * As long as there are packets queued either 2768 * in soft ring set or its soft rings, we will leave 2769 * the interface in polling mode (even if the drain 2770 * was done being the interrupt thread). We signal 2771 * the poll thread as well if we have dipped below 2772 * low water mark. 2773 * 2774 * NOTE: We can't use the MAC_SRS_POLLING_ON macro 2775 * since that turn polling on only for worker thread. 2776 * Its not worth turning polling on for interrupt 2777 * thread (since NIC will not issue another interrupt) 2778 * unless a backlog builds up. 2779 */ 2780 if ((srs_rx->sr_poll_pkt_cnt > 0) && 2781 (mac_srs->srs_state & SRS_POLLING_CAPAB)) { 2782 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 2783 srs_rx->sr_drain_keep_polling++; 2784 MAC_SRS_POLLING_ON(mac_srs); 2785 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) 2786 MAC_SRS_POLL_RING(mac_srs); 2787 return; 2788 } 2789 2790 /* Nothing else to do. Get out of poll mode */ 2791 MAC_SRS_POLLING_OFF(mac_srs); 2792 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 2793 srs_rx->sr_drain_finish_intr++; 2794 } 2795 2796 /* 2797 * mac_rx_srs_drain_bw 2798 * 2799 * The SRS BW drain routine. Gets to run to clear the queue. Any thread 2800 * (worker, interrupt, poll) can call this based on processing model. 2801 * The first thing we do is disable interrupts if possible and then 2802 * drain the queue. we also try to poll the underlying hardware if 2803 * there is a dedicated hardware Rx ring assigned to this SRS. 2804 * 2805 * There is a equivalent drain routine in non bandwidth control mode 2806 * mac_rx_srs_drain. There is some code duplication between the two 2807 * routines but they are highly performance sensitive and are easier 2808 * to read/debug if they stay separate. Any code changes here might 2809 * also apply to mac_rx_srs_drain as well. 2810 */ 2811 void 2812 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 2813 { 2814 mblk_t *head; 2815 mblk_t *tail; 2816 timeout_id_t tid; 2817 size_t sz = 0; 2818 int cnt = 0; 2819 mac_client_impl_t *mcip = mac_srs->srs_mcip; 2820 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 2821 clock_t now; 2822 2823 ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); 2824 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); 2825 again: 2826 /* Check if we are doing B/W control */ 2827 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2828 now = ddi_get_lbolt(); 2829 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 2830 mac_srs->srs_bw->mac_bw_curr_time = now; 2831 mac_srs->srs_bw->mac_bw_used = 0; 2832 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) 2833 mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; 2834 } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) { 2835 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2836 goto done; 2837 } else if (mac_srs->srs_bw->mac_bw_used > 2838 mac_srs->srs_bw->mac_bw_limit) { 2839 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 2840 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2841 goto done; 2842 } 2843 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2844 2845 /* If we are blanked i.e. can't do upcalls, then we are done */ 2846 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { 2847 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || 2848 (mac_srs->srs_state & SRS_PAUSE)); 2849 goto done; 2850 } 2851 2852 sz = 0; 2853 cnt = 0; 2854 if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) { 2855 /* 2856 * We couldn't pick up a single packet. 2857 */ 2858 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2859 if ((mac_srs->srs_bw->mac_bw_used == 0) && 2860 (mac_srs->srs_size != 0) && 2861 !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 2862 /* 2863 * Seems like configured B/W doesn't 2864 * even allow processing of 1 packet 2865 * per tick. 2866 * 2867 * XXX: raise the limit to processing 2868 * at least 1 packet per tick. 2869 */ 2870 mac_srs->srs_bw->mac_bw_limit += 2871 mac_srs->srs_bw->mac_bw_limit; 2872 mac_srs->srs_bw->mac_bw_drop_threshold += 2873 mac_srs->srs_bw->mac_bw_drop_threshold; 2874 cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) " 2875 "raised B/W limit to %d since not even a " 2876 "single packet can be processed per " 2877 "tick %d\n", (void *)mac_srs, 2878 (int)mac_srs->srs_bw->mac_bw_limit, 2879 (int)msgdsize(mac_srs->srs_first)); 2880 } 2881 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2882 goto done; 2883 } 2884 2885 ASSERT(head != NULL); 2886 ASSERT(tail != NULL); 2887 2888 /* zero bandwidth: drop all and return to interrupt mode */ 2889 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 2890 if (mac_srs->srs_bw->mac_bw_limit == 0) { 2891 srs_rx->sr_stat.mrs_sdrops += cnt; 2892 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz); 2893 mac_srs->srs_bw->mac_bw_sz -= sz; 2894 mac_srs->srs_bw->mac_bw_drop_bytes += sz; 2895 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2896 mac_pkt_drop(NULL, NULL, head, B_FALSE); 2897 goto leave_poll; 2898 } else { 2899 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 2900 } 2901 2902 if ((tid = mac_srs->srs_tid) != NULL) 2903 mac_srs->srs_tid = NULL; 2904 2905 mac_srs->srs_state |= (SRS_PROC|proc_type); 2906 MAC_SRS_WORKER_POLLING_ON(mac_srs); 2907 2908 /* 2909 * mcip is NULL for broadcast and multicast flows. The promisc 2910 * callbacks for broadcast and multicast packets are delivered from 2911 * mac_rx() and we don't need to worry about that case in this path 2912 */ 2913 if (mcip != NULL) { 2914 if (mcip->mci_promisc_list != NULL) { 2915 mutex_exit(&mac_srs->srs_lock); 2916 mac_promisc_client_dispatch(mcip, head); 2917 mutex_enter(&mac_srs->srs_lock); 2918 } 2919 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) { 2920 mutex_exit(&mac_srs->srs_lock); 2921 mac_protect_intercept_dynamic(mcip, head); 2922 mutex_enter(&mac_srs->srs_lock); 2923 } 2924 } 2925 2926 /* 2927 * Check if SRS itself is doing the processing 2928 * This direct path does not apply when subflows are present. In this 2929 * case, packets need to be dispatched to a soft ring according to the 2930 * flow's bandwidth and other resources contraints. 2931 */ 2932 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { 2933 mac_direct_rx_t proc; 2934 void *arg1; 2935 mac_resource_handle_t arg2; 2936 2937 /* 2938 * This is the case when a Rx is directly 2939 * assigned and we have a fully classified 2940 * protocol chain. We can deal with it in 2941 * one shot. 2942 */ 2943 proc = srs_rx->sr_func; 2944 arg1 = srs_rx->sr_arg1; 2945 arg2 = srs_rx->sr_arg2; 2946 2947 mac_srs->srs_state |= SRS_CLIENT_PROC; 2948 mutex_exit(&mac_srs->srs_lock); 2949 if (tid != NULL) { 2950 (void) untimeout(tid); 2951 tid = NULL; 2952 } 2953 2954 proc(arg1, arg2, head, NULL); 2955 /* 2956 * Decrement the size and count here itelf 2957 * since the packet has been processed. 2958 */ 2959 mutex_enter(&mac_srs->srs_lock); 2960 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 2961 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); 2962 2963 if (mac_srs->srs_state & SRS_CLIENT_WAIT) 2964 cv_signal(&mac_srs->srs_client_cv); 2965 mac_srs->srs_state &= ~SRS_CLIENT_PROC; 2966 } else { 2967 /* Some kind of softrings based fanout is required */ 2968 mutex_exit(&mac_srs->srs_lock); 2969 if (tid != NULL) { 2970 (void) untimeout(tid); 2971 tid = NULL; 2972 } 2973 2974 /* 2975 * Since the fanout routines can deal with chains, 2976 * shoot the entire chain up. 2977 */ 2978 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) 2979 mac_rx_srs_fanout(mac_srs, head); 2980 else 2981 mac_rx_srs_proto_fanout(mac_srs, head); 2982 mutex_enter(&mac_srs->srs_lock); 2983 } 2984 2985 /* 2986 * Send the poll thread to pick up any packets arrived 2987 * so far. This also serves as the last check in case 2988 * nothing else is queued in the SRS. The poll thread 2989 * is signalled only in the case the drain was done 2990 * by the worker thread and SRS_WORKER is set. The 2991 * worker thread can run in parallel as long as the 2992 * SRS_WORKER flag is set. We we have nothing else to 2993 * process, we can exit while leaving SRS_PROC set 2994 * which gives the poll thread control to process and 2995 * cleanup once it returns from the NIC. 2996 * 2997 * If we have nothing else to process, we need to 2998 * ensure that we keep holding the srs_lock till 2999 * all the checks below are done and control is 3000 * handed to the poll thread if it was running. 3001 */ 3002 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 3003 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 3004 if (mac_srs->srs_first != NULL) { 3005 if (proc_type == SRS_WORKER) { 3006 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 3007 if (srs_rx->sr_poll_pkt_cnt <= 3008 srs_rx->sr_lowat) 3009 MAC_SRS_POLL_RING(mac_srs); 3010 goto again; 3011 } else { 3012 cv_signal(&mac_srs->srs_async); 3013 } 3014 } 3015 } 3016 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 3017 3018 done: 3019 3020 if (mac_srs->srs_state & SRS_GET_PKTS) { 3021 /* 3022 * Poll thread is already running. Leave the 3023 * SRS_RPOC set and hand over the control to 3024 * poll thread. 3025 */ 3026 mac_srs->srs_state &= ~proc_type; 3027 return; 3028 } 3029 3030 /* 3031 * If we can't process packets because we have exceeded 3032 * B/W limit for this tick, just set the timeout 3033 * and leave. 3034 * 3035 * Even if there are no packets queued in SRS, we 3036 * need to make sure that the shared counter is 3037 * clear and any associated softrings have cleared 3038 * all the backlog. Otherwise, leave the interface 3039 * in polling mode and the poll thread will get 3040 * signalled once the count goes down to zero. 3041 * 3042 * If someone is already draining the queue (SRS_PROC is 3043 * set) when the srs_poll_pkt_cnt goes down to zero, 3044 * then it means that drain is already running and we 3045 * will turn off polling at that time if there is 3046 * no backlog. As long as there are packets queued either 3047 * is soft ring set or its soft rings, we will leave 3048 * the interface in polling mode. 3049 */ 3050 mutex_enter(&mac_srs->srs_bw->mac_bw_lock); 3051 if ((mac_srs->srs_state & SRS_POLLING_CAPAB) && 3052 ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) || 3053 (srs_rx->sr_poll_pkt_cnt > 0))) { 3054 MAC_SRS_POLLING_ON(mac_srs); 3055 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 3056 if ((mac_srs->srs_first != NULL) && 3057 (mac_srs->srs_tid == NULL)) 3058 mac_srs->srs_tid = timeout(mac_srs_fire, 3059 mac_srs, 1); 3060 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 3061 return; 3062 } 3063 mutex_exit(&mac_srs->srs_bw->mac_bw_lock); 3064 3065 leave_poll: 3066 3067 /* Nothing else to do. Get out of poll mode */ 3068 MAC_SRS_POLLING_OFF(mac_srs); 3069 mac_srs->srs_state &= ~(SRS_PROC|proc_type); 3070 } 3071 3072 /* 3073 * mac_srs_worker 3074 * 3075 * The SRS worker routine. Drains the queue when no one else is 3076 * processing it. 3077 */ 3078 void 3079 mac_srs_worker(mac_soft_ring_set_t *mac_srs) 3080 { 3081 kmutex_t *lock = &mac_srs->srs_lock; 3082 kcondvar_t *async = &mac_srs->srs_async; 3083 callb_cpr_t cprinfo; 3084 boolean_t bw_ctl_flag; 3085 3086 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker"); 3087 mutex_enter(lock); 3088 3089 start: 3090 for (;;) { 3091 bw_ctl_flag = B_FALSE; 3092 if (mac_srs->srs_type & SRST_BW_CONTROL) { 3093 MAC_SRS_BW_LOCK(mac_srs); 3094 MAC_SRS_CHECK_BW_CONTROL(mac_srs); 3095 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) 3096 bw_ctl_flag = B_TRUE; 3097 MAC_SRS_BW_UNLOCK(mac_srs); 3098 } 3099 /* 3100 * The SRS_BW_ENFORCED flag may change since we have dropped 3101 * the mac_bw_lock. However the drain function can handle both 3102 * a drainable SRS or a bandwidth controlled SRS, and the 3103 * effect of scheduling a timeout is to wakeup the worker 3104 * thread which in turn will call the drain function. Since 3105 * we release the srs_lock atomically only in the cv_wait there 3106 * isn't a fear of waiting for ever. 3107 */ 3108 while (((mac_srs->srs_state & SRS_PROC) || 3109 (mac_srs->srs_first == NULL) || bw_ctl_flag || 3110 (mac_srs->srs_state & SRS_TX_BLOCKED)) && 3111 !(mac_srs->srs_state & SRS_PAUSE)) { 3112 /* 3113 * If we have packets queued and we are here 3114 * because B/W control is in place, we better 3115 * schedule the worker wakeup after 1 tick 3116 * to see if bandwidth control can be relaxed. 3117 */ 3118 if (bw_ctl_flag && mac_srs->srs_tid == NULL) { 3119 /* 3120 * We need to ensure that a timer is already 3121 * scheduled or we force schedule one for 3122 * later so that we can continue processing 3123 * after this quanta is over. 3124 */ 3125 mac_srs->srs_tid = timeout(mac_srs_fire, 3126 mac_srs, 1); 3127 } 3128 wait: 3129 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3130 cv_wait(async, lock); 3131 CALLB_CPR_SAFE_END(&cprinfo, lock); 3132 3133 if (mac_srs->srs_state & SRS_PAUSE) 3134 goto done; 3135 if (mac_srs->srs_state & SRS_PROC) 3136 goto wait; 3137 3138 if (mac_srs->srs_first != NULL && 3139 mac_srs->srs_type & SRST_BW_CONTROL) { 3140 MAC_SRS_BW_LOCK(mac_srs); 3141 if (mac_srs->srs_bw->mac_bw_state & 3142 SRS_BW_ENFORCED) { 3143 MAC_SRS_CHECK_BW_CONTROL(mac_srs); 3144 } 3145 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state & 3146 SRS_BW_ENFORCED; 3147 MAC_SRS_BW_UNLOCK(mac_srs); 3148 } 3149 } 3150 3151 if (mac_srs->srs_state & SRS_PAUSE) 3152 goto done; 3153 mac_srs->srs_drain_func(mac_srs, SRS_WORKER); 3154 } 3155 done: 3156 /* 3157 * The Rx SRS quiesce logic first cuts off packet supply to the SRS 3158 * from both hard and soft classifications and waits for such threads 3159 * to finish before signaling the worker. So at this point the only 3160 * thread left that could be competing with the worker is the poll 3161 * thread. In the case of Tx, there shouldn't be any thread holding 3162 * SRS_PROC at this point. 3163 */ 3164 if (!(mac_srs->srs_state & SRS_PROC)) { 3165 mac_srs->srs_state |= SRS_PROC; 3166 } else { 3167 ASSERT((mac_srs->srs_type & SRST_TX) == 0); 3168 /* 3169 * Poll thread still owns the SRS and is still running 3170 */ 3171 ASSERT((mac_srs->srs_poll_thr == NULL) || 3172 ((mac_srs->srs_state & SRS_POLL_THR_OWNER) == 3173 SRS_POLL_THR_OWNER)); 3174 } 3175 mac_srs_worker_quiesce(mac_srs); 3176 /* 3177 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator 3178 * of the quiesce operation 3179 */ 3180 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART))) 3181 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock); 3182 3183 if (mac_srs->srs_state & SRS_RESTART) { 3184 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); 3185 mac_srs_worker_restart(mac_srs); 3186 mac_srs->srs_state &= ~SRS_PROC; 3187 goto start; 3188 } 3189 3190 if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE)) 3191 mac_srs_worker_quiesce(mac_srs); 3192 3193 mac_srs->srs_state &= ~SRS_PROC; 3194 /* The macro drops the srs_lock */ 3195 CALLB_CPR_EXIT(&cprinfo); 3196 thread_exit(); 3197 } 3198 3199 /* 3200 * mac_rx_srs_subflow_process 3201 * 3202 * Receive side routine called from interrupt path when there are 3203 * sub flows present on this SRS. 3204 */ 3205 /* ARGSUSED */ 3206 void 3207 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs, 3208 mblk_t *mp_chain, boolean_t loopback) 3209 { 3210 flow_entry_t *flent = NULL; 3211 flow_entry_t *prev_flent = NULL; 3212 mblk_t *mp = NULL; 3213 mblk_t *tail = NULL; 3214 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 3215 mac_client_impl_t *mcip; 3216 3217 mcip = mac_srs->srs_mcip; 3218 ASSERT(mcip != NULL); 3219 3220 /* 3221 * We need to determine the SRS for every packet 3222 * by walking the flow table, if we don't get any, 3223 * then we proceed using the SRS we came with. 3224 */ 3225 mp = tail = mp_chain; 3226 while (mp != NULL) { 3227 3228 /* 3229 * We will increment the stats for the mactching subflow. 3230 * when we get the bytes/pkt count for the classified packets 3231 * later in mac_rx_srs_process. 3232 */ 3233 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp, 3234 FLOW_INBOUND, &flent); 3235 3236 if (mp == mp_chain || flent == prev_flent) { 3237 if (prev_flent != NULL) 3238 FLOW_REFRELE(prev_flent); 3239 prev_flent = flent; 3240 flent = NULL; 3241 tail = mp; 3242 mp = mp->b_next; 3243 continue; 3244 } 3245 tail->b_next = NULL; 3246 /* 3247 * A null indicates, this is for the mac_srs itself. 3248 * XXX-venu : probably assert for fe_rx_srs_cnt == 0. 3249 */ 3250 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { 3251 mac_rx_srs_process(arg, 3252 (mac_resource_handle_t)mac_srs, mp_chain, 3253 loopback); 3254 } else { 3255 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 3256 prev_flent->fe_cb_arg2, mp_chain, loopback); 3257 FLOW_REFRELE(prev_flent); 3258 } 3259 prev_flent = flent; 3260 flent = NULL; 3261 mp_chain = mp; 3262 tail = mp; 3263 mp = mp->b_next; 3264 } 3265 /* Last chain */ 3266 ASSERT(mp_chain != NULL); 3267 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { 3268 mac_rx_srs_process(arg, 3269 (mac_resource_handle_t)mac_srs, mp_chain, loopback); 3270 } else { 3271 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, 3272 prev_flent->fe_cb_arg2, mp_chain, loopback); 3273 FLOW_REFRELE(prev_flent); 3274 } 3275 } 3276 3277 /* 3278 * mac_rx_srs_process 3279 * 3280 * Receive side routine called from the interrupt path. 3281 * 3282 * loopback is set to force a context switch on the loopback 3283 * path between MAC clients. 3284 */ 3285 /* ARGSUSED */ 3286 void 3287 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain, 3288 boolean_t loopback) 3289 { 3290 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 3291 mblk_t *mp, *tail, *head; 3292 int count = 0; 3293 int count1; 3294 size_t sz = 0; 3295 size_t chain_sz, sz1; 3296 mac_bw_ctl_t *mac_bw; 3297 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 3298 3299 /* 3300 * Set the tail, count and sz. We set the sz irrespective 3301 * of whether we are doing B/W control or not for the 3302 * purpose of updating the stats. 3303 */ 3304 mp = tail = mp_chain; 3305 while (mp != NULL) { 3306 tail = mp; 3307 count++; 3308 sz += msgdsize(mp); 3309 mp = mp->b_next; 3310 } 3311 3312 mutex_enter(&mac_srs->srs_lock); 3313 3314 if (loopback) { 3315 SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz); 3316 SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count); 3317 3318 } else { 3319 SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz); 3320 SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count); 3321 } 3322 3323 /* 3324 * If the SRS in already being processed; has been blanked; 3325 * can be processed by worker thread only; or the B/W limit 3326 * has been reached, then queue the chain and check if 3327 * worker thread needs to be awakend. 3328 */ 3329 if (mac_srs->srs_type & SRST_BW_CONTROL) { 3330 mac_bw = mac_srs->srs_bw; 3331 ASSERT(mac_bw != NULL); 3332 mutex_enter(&mac_bw->mac_bw_lock); 3333 mac_bw->mac_bw_intr += sz; 3334 if (mac_bw->mac_bw_limit == 0) { 3335 /* zero bandwidth: drop all */ 3336 srs_rx->sr_stat.mrs_sdrops += count; 3337 mac_bw->mac_bw_drop_bytes += sz; 3338 mutex_exit(&mac_bw->mac_bw_lock); 3339 mutex_exit(&mac_srs->srs_lock); 3340 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); 3341 return; 3342 } else { 3343 if ((mac_bw->mac_bw_sz + sz) <= 3344 mac_bw->mac_bw_drop_threshold) { 3345 mutex_exit(&mac_bw->mac_bw_lock); 3346 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, 3347 tail, count, sz); 3348 } else { 3349 mp = mp_chain; 3350 chain_sz = 0; 3351 count1 = 0; 3352 tail = NULL; 3353 head = NULL; 3354 while (mp != NULL) { 3355 sz1 = msgdsize(mp); 3356 if (mac_bw->mac_bw_sz + chain_sz + sz1 > 3357 mac_bw->mac_bw_drop_threshold) 3358 break; 3359 chain_sz += sz1; 3360 count1++; 3361 tail = mp; 3362 mp = mp->b_next; 3363 } 3364 mutex_exit(&mac_bw->mac_bw_lock); 3365 if (tail != NULL) { 3366 head = tail->b_next; 3367 tail->b_next = NULL; 3368 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, 3369 mp_chain, tail, count1, chain_sz); 3370 sz -= chain_sz; 3371 count -= count1; 3372 } else { 3373 /* Can't pick up any */ 3374 head = mp_chain; 3375 } 3376 if (head != NULL) { 3377 /* Drop any packet over the threshold */ 3378 srs_rx->sr_stat.mrs_sdrops += count; 3379 mutex_enter(&mac_bw->mac_bw_lock); 3380 mac_bw->mac_bw_drop_bytes += sz; 3381 mutex_exit(&mac_bw->mac_bw_lock); 3382 freemsgchain(head); 3383 } 3384 } 3385 MAC_SRS_WORKER_WAKEUP(mac_srs); 3386 mutex_exit(&mac_srs->srs_lock); 3387 return; 3388 } 3389 } 3390 3391 /* 3392 * If the total number of packets queued in the SRS and 3393 * its associated soft rings exceeds the max allowed, 3394 * then drop the chain. If we are polling capable, this 3395 * shouldn't be happening. 3396 */ 3397 if (!(mac_srs->srs_type & SRST_BW_CONTROL) && 3398 (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) { 3399 mac_bw = mac_srs->srs_bw; 3400 srs_rx->sr_stat.mrs_sdrops += count; 3401 mutex_enter(&mac_bw->mac_bw_lock); 3402 mac_bw->mac_bw_drop_bytes += sz; 3403 mutex_exit(&mac_bw->mac_bw_lock); 3404 freemsgchain(mp_chain); 3405 mutex_exit(&mac_srs->srs_lock); 3406 return; 3407 } 3408 3409 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz); 3410 3411 if (!(mac_srs->srs_state & SRS_PROC)) { 3412 /* 3413 * If we are coming via loopback, if we are not optimizing for 3414 * latency, or if our stack is running deep, we should signal 3415 * the worker thread. 3416 */ 3417 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT) || 3418 MAC_RX_SRS_TOODEEP()) { 3419 /* 3420 * For loopback, We need to let the worker take 3421 * over as we don't want to continue in the same 3422 * thread even if we can. This could lead to stack 3423 * overflows and may also end up using 3424 * resources (cpu) incorrectly. 3425 */ 3426 cv_signal(&mac_srs->srs_async); 3427 } else { 3428 /* 3429 * Seems like no one is processing the SRS and 3430 * there is no backlog. We also inline process 3431 * our packet if its a single packet in non 3432 * latency optimized case (in latency optimized 3433 * case, we inline process chains of any size). 3434 */ 3435 mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST); 3436 } 3437 } 3438 mutex_exit(&mac_srs->srs_lock); 3439 } 3440 3441 /* TX SIDE ROUTINES (RUNTIME) */ 3442 3443 /* 3444 * mac_tx_srs_no_desc 3445 * 3446 * This routine is called by Tx single ring default mode 3447 * when Tx ring runs out of descs. 3448 */ 3449 mac_tx_cookie_t 3450 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3451 uint16_t flag, mblk_t **ret_mp) 3452 { 3453 mac_tx_cookie_t cookie = 0; 3454 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3455 boolean_t wakeup_worker = B_TRUE; 3456 uint32_t tx_mode = srs_tx->st_mode; 3457 int cnt, sz; 3458 mblk_t *tail; 3459 3460 ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW); 3461 if (flag & MAC_DROP_ON_NO_DESC) { 3462 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 3463 } else { 3464 if (mac_srs->srs_first != NULL) 3465 wakeup_worker = B_FALSE; 3466 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3467 if (flag & MAC_TX_NO_ENQUEUE) { 3468 /* 3469 * If TX_QUEUED is not set, queue the 3470 * packet and let mac_tx_srs_drain() 3471 * set the TX_BLOCKED bit for the 3472 * reasons explained above. Otherwise, 3473 * return the mblks. 3474 */ 3475 if (wakeup_worker) { 3476 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 3477 mp_chain, tail, cnt, sz); 3478 } else { 3479 MAC_TX_SET_NO_ENQUEUE(mac_srs, 3480 mp_chain, ret_mp, cookie); 3481 } 3482 } else { 3483 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, 3484 tail, cnt, sz, cookie); 3485 } 3486 if (wakeup_worker) 3487 cv_signal(&mac_srs->srs_async); 3488 } 3489 return (cookie); 3490 } 3491 3492 /* 3493 * mac_tx_srs_enqueue 3494 * 3495 * This routine is called when Tx SRS is operating in either serializer 3496 * or bandwidth mode. In serializer mode, a packet will get enqueued 3497 * when a thread cannot enter SRS exclusively. In bandwidth mode, 3498 * packets gets queued if allowed byte-count limit for a tick is 3499 * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and 3500 * MAC_TX_NO_ENQUEUE is set is different than when operaing in either 3501 * the default mode or fanout mode. Here packets get dropped or 3502 * returned back to the caller only after hi-watermark worth of data 3503 * is queued. 3504 */ 3505 static mac_tx_cookie_t 3506 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3507 uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp) 3508 { 3509 mac_tx_cookie_t cookie = 0; 3510 int cnt, sz; 3511 mblk_t *tail; 3512 boolean_t wakeup_worker = B_TRUE; 3513 3514 /* 3515 * Ignore fanout hint if we don't have multiple tx rings. 3516 */ 3517 if (!MAC_TX_SOFT_RINGS(mac_srs)) 3518 fanout_hint = 0; 3519 3520 if (mac_srs->srs_first != NULL) 3521 wakeup_worker = B_FALSE; 3522 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3523 if (flag & MAC_DROP_ON_NO_DESC) { 3524 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) { 3525 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 3526 } else { 3527 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 3528 mp_chain, tail, cnt, sz); 3529 } 3530 } else if (flag & MAC_TX_NO_ENQUEUE) { 3531 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) || 3532 (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) { 3533 MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain, 3534 ret_mp, cookie); 3535 } else { 3536 mp_chain->b_prev = (mblk_t *)fanout_hint; 3537 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 3538 mp_chain, tail, cnt, sz); 3539 } 3540 } else { 3541 /* 3542 * If you are BW_ENFORCED, just enqueue the 3543 * packet. srs_worker will drain it at the 3544 * prescribed rate. Before enqueueing, save 3545 * the fanout hint. 3546 */ 3547 mp_chain->b_prev = (mblk_t *)fanout_hint; 3548 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, 3549 tail, cnt, sz, cookie); 3550 } 3551 if (wakeup_worker) 3552 cv_signal(&mac_srs->srs_async); 3553 return (cookie); 3554 } 3555 3556 /* 3557 * There are seven tx modes: 3558 * 3559 * 1) Default mode (SRS_TX_DEFAULT) 3560 * 2) Serialization mode (SRS_TX_SERIALIZE) 3561 * 3) Fanout mode (SRS_TX_FANOUT) 3562 * 4) Bandwdith mode (SRS_TX_BW) 3563 * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT) 3564 * 6) aggr Tx mode (SRS_TX_AGGR) 3565 * 7) aggr Tx bw mode (SRS_TX_BW_AGGR) 3566 * 3567 * The tx mode in which an SRS operates is decided in mac_tx_srs_setup() 3568 * based on the number of Tx rings requested for an SRS and whether 3569 * bandwidth control is requested or not. 3570 * 3571 * The default mode (i.e., no fanout/no bandwidth) is used when the 3572 * underlying NIC does not have Tx rings or just one Tx ring. In this mode, 3573 * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send(). 3574 * When the underlying Tx ring runs out of Tx descs, it starts queueing up 3575 * packets in SRS. When flow-control is relieved, the srs_worker drains 3576 * the queued packets and informs blocked clients to restart sending 3577 * packets. 3578 * 3579 * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This 3580 * mode is used when the link has no Tx rings or only one Tx ring. 3581 * 3582 * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple 3583 * Tx rings. Each Tx ring will have a soft ring associated with it. 3584 * These soft rings will be hung off the Tx SRS. Queueing if it happens 3585 * due to lack of Tx desc will be in individual soft ring (and not srs) 3586 * associated with Tx ring. 3587 * 3588 * In the TX_BW mode, tx srs will allow packets to go down to Tx ring 3589 * only if bw is available. Otherwise the packets will be queued in 3590 * SRS. If fanout to multiple Tx rings is configured, the packets will 3591 * be fanned out among the soft rings associated with the Tx rings. 3592 * 3593 * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine 3594 * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring 3595 * belonging to a port on which the packet has to be sent. Aggr will 3596 * always have a pseudo Tx ring associated with it even when it is an 3597 * aggregation over a single NIC that has no Tx rings. Even in such a 3598 * case, the single pseudo Tx ring will have a soft ring associated with 3599 * it and the soft ring will hang off the SRS. 3600 * 3601 * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used. 3602 * In this mode, the bandwidth is first applied on the outgoing packets 3603 * and later mac_tx_addr_mode() function is called to send the packet out 3604 * of one of the pseudo Tx rings. 3605 * 3606 * Four flags are used in srs_state for indicating flow control 3607 * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT. 3608 * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the 3609 * driver below. 3610 * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat 3611 * and flow-control pressure is applied back to clients. The clients expect 3612 * wakeup when flow-control is relieved. 3613 * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk 3614 * got returned back to client either due to lack of Tx descs or due to bw 3615 * control reasons. The clients expect a wakeup when condition is relieved. 3616 * 3617 * The fourth argument to mac_tx() is the flag. Normally it will be 0 but 3618 * some clients set the following values too: MAC_DROP_ON_NO_DESC, 3619 * MAC_TX_NO_ENQUEUE 3620 * Mac clients that do not want packets to be enqueued in the mac layer set 3621 * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or 3622 * Tx soft rings but instead get dropped when the NIC runs out of desc. The 3623 * behaviour of this flag is different when the Tx is running in serializer 3624 * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet 3625 * get dropped when Tx high watermark is reached. 3626 * There are some mac clients like vsw, aggr that want the mblks to be 3627 * returned back to clients instead of being queued in Tx SRS (or Tx soft 3628 * rings) under flow-control (i.e., out of desc or exceeding bw limits) 3629 * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set. 3630 * In the default and Tx fanout mode, the un-transmitted mblks will be 3631 * returned back to the clients when the driver runs out of Tx descs. 3632 * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or 3633 * soft ring) so that the clients can be woken up when Tx desc become 3634 * available. When running in serializer or bandwidth mode mode, 3635 * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached. 3636 */ 3637 3638 mac_tx_func_t 3639 mac_tx_get_func(uint32_t mode) 3640 { 3641 return (mac_tx_mode_list[mode].mac_tx_func); 3642 } 3643 3644 /* ARGSUSED */ 3645 static mac_tx_cookie_t 3646 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3647 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 3648 { 3649 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3650 mac_tx_stats_t stats; 3651 mac_tx_cookie_t cookie = 0; 3652 3653 ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT); 3654 3655 /* Regular case with a single Tx ring */ 3656 /* 3657 * SRS_TX_BLOCKED is set when underlying NIC runs 3658 * out of Tx descs and messages start getting 3659 * queued. It won't get reset until 3660 * tx_srs_drain() completely drains out the 3661 * messages. 3662 */ 3663 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { 3664 /* Tx descs/resources not available */ 3665 mutex_enter(&mac_srs->srs_lock); 3666 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { 3667 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, 3668 flag, ret_mp); 3669 mutex_exit(&mac_srs->srs_lock); 3670 return (cookie); 3671 } 3672 /* 3673 * While we were computing mblk count, the 3674 * flow control condition got relieved. 3675 * Continue with the transmission. 3676 */ 3677 mutex_exit(&mac_srs->srs_lock); 3678 } 3679 3680 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 3681 mp_chain, &stats); 3682 3683 /* 3684 * Multiple threads could be here sending packets. 3685 * Under such conditions, it is not possible to 3686 * automically set SRS_TX_BLOCKED bit to indicate 3687 * out of tx desc condition. To atomically set 3688 * this, we queue the returned packet and do 3689 * the setting of SRS_TX_BLOCKED in 3690 * mac_tx_srs_drain(). 3691 */ 3692 if (mp_chain != NULL) { 3693 mutex_enter(&mac_srs->srs_lock); 3694 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp); 3695 mutex_exit(&mac_srs->srs_lock); 3696 return (cookie); 3697 } 3698 SRS_TX_STATS_UPDATE(mac_srs, &stats); 3699 3700 return (0); 3701 } 3702 3703 /* 3704 * mac_tx_serialize_mode 3705 * 3706 * This is an experimental mode implemented as per the request of PAE. 3707 * In this mode, all callers attempting to send a packet to the NIC 3708 * will get serialized. Only one thread at any time will access the 3709 * NIC to send the packet out. 3710 */ 3711 /* ARGSUSED */ 3712 static mac_tx_cookie_t 3713 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3714 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 3715 { 3716 mac_tx_stats_t stats; 3717 mac_tx_cookie_t cookie = 0; 3718 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3719 3720 /* Single ring, serialize below */ 3721 ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE); 3722 mutex_enter(&mac_srs->srs_lock); 3723 if ((mac_srs->srs_first != NULL) || 3724 (mac_srs->srs_state & SRS_PROC)) { 3725 /* 3726 * In serialization mode, queue all packets until 3727 * TX_HIWAT is set. 3728 * If drop bit is set, drop if TX_HIWAT is set. 3729 * If no_enqueue is set, still enqueue until hiwat 3730 * is set and return mblks after TX_HIWAT is set. 3731 */ 3732 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, 3733 flag, 0, ret_mp); 3734 mutex_exit(&mac_srs->srs_lock); 3735 return (cookie); 3736 } 3737 /* 3738 * No packets queued, nothing on proc and no flow 3739 * control condition. Fast-path, ok. Do inline 3740 * processing. 3741 */ 3742 mac_srs->srs_state |= SRS_PROC; 3743 mutex_exit(&mac_srs->srs_lock); 3744 3745 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 3746 mp_chain, &stats); 3747 3748 mutex_enter(&mac_srs->srs_lock); 3749 mac_srs->srs_state &= ~SRS_PROC; 3750 if (mp_chain != NULL) { 3751 cookie = mac_tx_srs_enqueue(mac_srs, 3752 mp_chain, flag, 0, ret_mp); 3753 } 3754 if (mac_srs->srs_first != NULL) { 3755 /* 3756 * We processed inline our packet and a new 3757 * packet/s got queued while we were 3758 * processing. Wakeup srs worker 3759 */ 3760 cv_signal(&mac_srs->srs_async); 3761 } 3762 mutex_exit(&mac_srs->srs_lock); 3763 3764 if (cookie == 0) 3765 SRS_TX_STATS_UPDATE(mac_srs, &stats); 3766 3767 return (cookie); 3768 } 3769 3770 /* 3771 * mac_tx_fanout_mode 3772 * 3773 * In this mode, the SRS will have access to multiple Tx rings to send 3774 * the packet out. The fanout hint that is passed as an argument is 3775 * used to find an appropriate ring to fanout the traffic. Each Tx 3776 * ring, in turn, will have a soft ring associated with it. If a Tx 3777 * ring runs out of Tx desc's the returned packet will be queued in 3778 * the soft ring associated with that Tx ring. The srs itself will not 3779 * queue any packets. 3780 */ 3781 3782 #define MAC_TX_SOFT_RING_PROCESS(chain) { \ 3783 index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count), \ 3784 softring = mac_srs->srs_tx_soft_rings[index]; \ 3785 cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \ 3786 DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \ 3787 } 3788 3789 static mac_tx_cookie_t 3790 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3791 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 3792 { 3793 mac_soft_ring_t *softring; 3794 uint64_t hash; 3795 uint_t index; 3796 mac_tx_cookie_t cookie = 0; 3797 3798 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 3799 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT); 3800 if (fanout_hint != 0) { 3801 /* 3802 * The hint is specified by the caller, simply pass the 3803 * whole chain to the soft ring. 3804 */ 3805 hash = HASH_HINT(fanout_hint); 3806 MAC_TX_SOFT_RING_PROCESS(mp_chain); 3807 } else { 3808 mblk_t *last_mp, *cur_mp, *sub_chain; 3809 uint64_t last_hash = 0; 3810 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media; 3811 3812 /* 3813 * Compute the hash from the contents (headers) of the 3814 * packets of the mblk chain. Split the chains into 3815 * subchains of the same conversation. 3816 * 3817 * Since there may be more than one ring used for 3818 * sub-chains of the same call, and since the caller 3819 * does not maintain per conversation state since it 3820 * passed a zero hint, unsent subchains will be 3821 * dropped. 3822 */ 3823 3824 flag |= MAC_DROP_ON_NO_DESC; 3825 ret_mp = NULL; 3826 3827 ASSERT(ret_mp == NULL); 3828 3829 sub_chain = NULL; 3830 last_mp = NULL; 3831 3832 for (cur_mp = mp_chain; cur_mp != NULL; 3833 cur_mp = cur_mp->b_next) { 3834 hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4, 3835 B_TRUE); 3836 if (last_hash != 0 && hash != last_hash) { 3837 /* 3838 * Starting a different subchain, send current 3839 * chain out. 3840 */ 3841 ASSERT(last_mp != NULL); 3842 last_mp->b_next = NULL; 3843 MAC_TX_SOFT_RING_PROCESS(sub_chain); 3844 sub_chain = NULL; 3845 } 3846 3847 /* add packet to subchain */ 3848 if (sub_chain == NULL) 3849 sub_chain = cur_mp; 3850 last_mp = cur_mp; 3851 last_hash = hash; 3852 } 3853 3854 if (sub_chain != NULL) { 3855 /* send last subchain */ 3856 ASSERT(last_mp != NULL); 3857 last_mp->b_next = NULL; 3858 MAC_TX_SOFT_RING_PROCESS(sub_chain); 3859 } 3860 3861 cookie = 0; 3862 } 3863 3864 return (cookie); 3865 } 3866 3867 /* 3868 * mac_tx_bw_mode 3869 * 3870 * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring 3871 * only if bw is available. Otherwise the packets will be queued in 3872 * SRS. If the SRS has multiple Tx rings, then packets will get fanned 3873 * out to a Tx rings. 3874 */ 3875 static mac_tx_cookie_t 3876 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3877 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 3878 { 3879 int cnt, sz; 3880 mblk_t *tail; 3881 mac_tx_cookie_t cookie = 0; 3882 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 3883 clock_t now; 3884 3885 ASSERT(TX_BANDWIDTH_MODE(mac_srs)); 3886 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); 3887 mutex_enter(&mac_srs->srs_lock); 3888 if (mac_srs->srs_bw->mac_bw_limit == 0) { 3889 /* 3890 * zero bandwidth, no traffic is sent: drop the packets, 3891 * or return the whole chain if the caller requests all 3892 * unsent packets back. 3893 */ 3894 if (flag & MAC_TX_NO_ENQUEUE) { 3895 cookie = (mac_tx_cookie_t)mac_srs; 3896 *ret_mp = mp_chain; 3897 } else { 3898 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); 3899 } 3900 mutex_exit(&mac_srs->srs_lock); 3901 return (cookie); 3902 } else if ((mac_srs->srs_first != NULL) || 3903 (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { 3904 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, 3905 fanout_hint, ret_mp); 3906 mutex_exit(&mac_srs->srs_lock); 3907 return (cookie); 3908 } 3909 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3910 now = ddi_get_lbolt(); 3911 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 3912 mac_srs->srs_bw->mac_bw_curr_time = now; 3913 mac_srs->srs_bw->mac_bw_used = 0; 3914 } else if (mac_srs->srs_bw->mac_bw_used > 3915 mac_srs->srs_bw->mac_bw_limit) { 3916 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 3917 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, 3918 mp_chain, tail, cnt, sz); 3919 /* 3920 * Wakeup worker thread. Note that worker 3921 * thread has to be woken up so that it 3922 * can fire up the timer to be woken up 3923 * on the next tick. Also once 3924 * BW_ENFORCED is set, it can only be 3925 * reset by srs_worker thread. Until then 3926 * all packets will get queued up in SRS 3927 * and hence this this code path won't be 3928 * entered until BW_ENFORCED is reset. 3929 */ 3930 cv_signal(&mac_srs->srs_async); 3931 mutex_exit(&mac_srs->srs_lock); 3932 return (cookie); 3933 } 3934 3935 mac_srs->srs_bw->mac_bw_used += sz; 3936 mutex_exit(&mac_srs->srs_lock); 3937 3938 if (srs_tx->st_mode == SRS_TX_BW_FANOUT) { 3939 mac_soft_ring_t *softring; 3940 uint_t indx, hash; 3941 3942 hash = HASH_HINT(fanout_hint); 3943 indx = COMPUTE_INDEX(hash, 3944 mac_srs->srs_tx_ring_count); 3945 softring = mac_srs->srs_tx_soft_rings[indx]; 3946 return (mac_tx_soft_ring_process(softring, mp_chain, flag, 3947 ret_mp)); 3948 } else if (srs_tx->st_mode == SRS_TX_BW_AGGR) { 3949 return (mac_tx_aggr_mode(mac_srs, mp_chain, 3950 fanout_hint, flag, ret_mp)); 3951 } else { 3952 mac_tx_stats_t stats; 3953 3954 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 3955 mp_chain, &stats); 3956 3957 if (mp_chain != NULL) { 3958 mutex_enter(&mac_srs->srs_lock); 3959 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 3960 if (mac_srs->srs_bw->mac_bw_used > sz) 3961 mac_srs->srs_bw->mac_bw_used -= sz; 3962 else 3963 mac_srs->srs_bw->mac_bw_used = 0; 3964 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, 3965 fanout_hint, ret_mp); 3966 mutex_exit(&mac_srs->srs_lock); 3967 return (cookie); 3968 } 3969 SRS_TX_STATS_UPDATE(mac_srs, &stats); 3970 3971 return (0); 3972 } 3973 } 3974 3975 /* 3976 * mac_tx_aggr_mode 3977 * 3978 * This routine invokes an aggr function, aggr_find_tx_ring(), to find 3979 * a (pseudo) Tx ring belonging to a port on which the packet has to 3980 * be sent. aggr_find_tx_ring() first finds the outgoing port based on 3981 * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick 3982 * a Tx ring from the selected port. 3983 * 3984 * Note that a port can be deleted from the aggregation. In such a case, 3985 * the aggregation layer first separates the port from the rest of the 3986 * ports making sure that port (and thus any Tx rings associated with 3987 * it) won't get selected in the call to aggr_find_tx_ring() function. 3988 * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring 3989 * handles one by one which in turn will quiesce the Tx SRS and remove 3990 * the soft ring associated with the pseudo Tx ring. Unlike Rx side 3991 * where a cookie is used to protect against mac_rx_ring() calls on 3992 * rings that have been removed, no such cookie is needed on the Tx 3993 * side as the pseudo Tx ring won't be available anymore to 3994 * aggr_find_tx_ring() once the port has been removed. 3995 */ 3996 static mac_tx_cookie_t 3997 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, 3998 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) 3999 { 4000 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 4001 mac_tx_ring_fn_t find_tx_ring_fn; 4002 mac_ring_handle_t ring = NULL; 4003 void *arg; 4004 mac_soft_ring_t *sringp; 4005 4006 find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn; 4007 arg = srs_tx->st_capab_aggr.mca_arg; 4008 if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL) 4009 return (0); 4010 sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index]; 4011 return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp)); 4012 } 4013 4014 void 4015 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie) 4016 { 4017 mac_cb_t *mcb; 4018 mac_tx_notify_cb_t *mtnfp; 4019 4020 /* Wakeup callback registered clients */ 4021 MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info); 4022 for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL; 4023 mcb = mcb->mcb_nextp) { 4024 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp; 4025 mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie); 4026 } 4027 MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info, 4028 &mcip->mci_tx_notify_cb_list); 4029 } 4030 4031 /* ARGSUSED */ 4032 void 4033 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) 4034 { 4035 mblk_t *head, *tail; 4036 size_t sz; 4037 uint32_t tx_mode; 4038 uint_t saved_pkt_count; 4039 mac_tx_stats_t stats; 4040 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 4041 clock_t now; 4042 4043 saved_pkt_count = 0; 4044 ASSERT(mutex_owned(&mac_srs->srs_lock)); 4045 ASSERT(!(mac_srs->srs_state & SRS_PROC)); 4046 4047 mac_srs->srs_state |= SRS_PROC; 4048 4049 tx_mode = srs_tx->st_mode; 4050 if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) { 4051 if (mac_srs->srs_first != NULL) { 4052 head = mac_srs->srs_first; 4053 tail = mac_srs->srs_last; 4054 saved_pkt_count = mac_srs->srs_count; 4055 mac_srs->srs_first = NULL; 4056 mac_srs->srs_last = NULL; 4057 mac_srs->srs_count = 0; 4058 mutex_exit(&mac_srs->srs_lock); 4059 4060 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 4061 head, &stats); 4062 4063 mutex_enter(&mac_srs->srs_lock); 4064 if (head != NULL) { 4065 /* Device out of tx desc, set block */ 4066 if (head->b_next == NULL) 4067 VERIFY(head == tail); 4068 tail->b_next = mac_srs->srs_first; 4069 mac_srs->srs_first = head; 4070 mac_srs->srs_count += 4071 (saved_pkt_count - stats.mts_opackets); 4072 if (mac_srs->srs_last == NULL) 4073 mac_srs->srs_last = tail; 4074 MAC_TX_SRS_BLOCK(mac_srs, head); 4075 } else { 4076 srs_tx->st_woken_up = B_FALSE; 4077 SRS_TX_STATS_UPDATE(mac_srs, &stats); 4078 } 4079 } 4080 } else if (tx_mode == SRS_TX_BW) { 4081 /* 4082 * We are here because the timer fired and we have some data 4083 * to tranmit. Also mac_tx_srs_worker should have reset 4084 * SRS_BW_ENFORCED flag 4085 */ 4086 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)); 4087 head = tail = mac_srs->srs_first; 4088 while (mac_srs->srs_first != NULL) { 4089 tail = mac_srs->srs_first; 4090 tail->b_prev = NULL; 4091 mac_srs->srs_first = tail->b_next; 4092 if (mac_srs->srs_first == NULL) 4093 mac_srs->srs_last = NULL; 4094 mac_srs->srs_count--; 4095 sz = msgdsize(tail); 4096 mac_srs->srs_size -= sz; 4097 saved_pkt_count++; 4098 MAC_TX_UPDATE_BW_INFO(mac_srs, sz); 4099 4100 if (mac_srs->srs_bw->mac_bw_used < 4101 mac_srs->srs_bw->mac_bw_limit) 4102 continue; 4103 4104 now = ddi_get_lbolt(); 4105 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 4106 mac_srs->srs_bw->mac_bw_curr_time = now; 4107 mac_srs->srs_bw->mac_bw_used = sz; 4108 continue; 4109 } 4110 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 4111 break; 4112 } 4113 4114 ASSERT((head == NULL && tail == NULL) || 4115 (head != NULL && tail != NULL)); 4116 if (tail != NULL) { 4117 tail->b_next = NULL; 4118 mutex_exit(&mac_srs->srs_lock); 4119 4120 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, 4121 head, &stats); 4122 4123 mutex_enter(&mac_srs->srs_lock); 4124 if (head != NULL) { 4125 uint_t size_sent; 4126 4127 /* Device out of tx desc, set block */ 4128 if (head->b_next == NULL) 4129 VERIFY(head == tail); 4130 tail->b_next = mac_srs->srs_first; 4131 mac_srs->srs_first = head; 4132 mac_srs->srs_count += 4133 (saved_pkt_count - stats.mts_opackets); 4134 if (mac_srs->srs_last == NULL) 4135 mac_srs->srs_last = tail; 4136 size_sent = sz - stats.mts_obytes; 4137 mac_srs->srs_size += size_sent; 4138 mac_srs->srs_bw->mac_bw_sz += size_sent; 4139 if (mac_srs->srs_bw->mac_bw_used > size_sent) { 4140 mac_srs->srs_bw->mac_bw_used -= 4141 size_sent; 4142 } else { 4143 mac_srs->srs_bw->mac_bw_used = 0; 4144 } 4145 MAC_TX_SRS_BLOCK(mac_srs, head); 4146 } else { 4147 srs_tx->st_woken_up = B_FALSE; 4148 SRS_TX_STATS_UPDATE(mac_srs, &stats); 4149 } 4150 } 4151 } else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) { 4152 mblk_t *prev; 4153 uint64_t hint; 4154 4155 /* 4156 * We are here because the timer fired and we 4157 * have some quota to tranmit. 4158 */ 4159 prev = NULL; 4160 head = tail = mac_srs->srs_first; 4161 while (mac_srs->srs_first != NULL) { 4162 tail = mac_srs->srs_first; 4163 mac_srs->srs_first = tail->b_next; 4164 if (mac_srs->srs_first == NULL) 4165 mac_srs->srs_last = NULL; 4166 mac_srs->srs_count--; 4167 sz = msgdsize(tail); 4168 mac_srs->srs_size -= sz; 4169 mac_srs->srs_bw->mac_bw_used += sz; 4170 if (prev == NULL) 4171 hint = (ulong_t)tail->b_prev; 4172 if (hint != (ulong_t)tail->b_prev) { 4173 prev->b_next = NULL; 4174 mutex_exit(&mac_srs->srs_lock); 4175 TX_SRS_TO_SOFT_RING(mac_srs, head, hint); 4176 head = tail; 4177 hint = (ulong_t)tail->b_prev; 4178 mutex_enter(&mac_srs->srs_lock); 4179 } 4180 4181 prev = tail; 4182 tail->b_prev = NULL; 4183 if (mac_srs->srs_bw->mac_bw_used < 4184 mac_srs->srs_bw->mac_bw_limit) 4185 continue; 4186 4187 now = ddi_get_lbolt(); 4188 if (mac_srs->srs_bw->mac_bw_curr_time != now) { 4189 mac_srs->srs_bw->mac_bw_curr_time = now; 4190 mac_srs->srs_bw->mac_bw_used = 0; 4191 continue; 4192 } 4193 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; 4194 break; 4195 } 4196 ASSERT((head == NULL && tail == NULL) || 4197 (head != NULL && tail != NULL)); 4198 if (tail != NULL) { 4199 tail->b_next = NULL; 4200 mutex_exit(&mac_srs->srs_lock); 4201 TX_SRS_TO_SOFT_RING(mac_srs, head, hint); 4202 mutex_enter(&mac_srs->srs_lock); 4203 } 4204 } 4205 /* 4206 * SRS_TX_FANOUT case not considered here because packets 4207 * won't be queued in the SRS for this case. Packets will 4208 * be sent directly to soft rings underneath and if there 4209 * is any queueing at all, it would be in Tx side soft 4210 * rings. 4211 */ 4212 4213 /* 4214 * When srs_count becomes 0, reset SRS_TX_HIWAT and 4215 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients. 4216 */ 4217 if (mac_srs->srs_count == 0 && (mac_srs->srs_state & 4218 (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) { 4219 mac_client_impl_t *mcip = mac_srs->srs_mcip; 4220 boolean_t wakeup_required = B_FALSE; 4221 4222 if (mac_srs->srs_state & 4223 (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) { 4224 wakeup_required = B_TRUE; 4225 } 4226 mac_srs->srs_state &= ~(SRS_TX_HIWAT | 4227 SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED); 4228 mutex_exit(&mac_srs->srs_lock); 4229 if (wakeup_required) { 4230 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs); 4231 /* 4232 * If the client is not the primary MAC client, then we 4233 * need to send the notification to the clients upper 4234 * MAC, i.e. mci_upper_mip. 4235 */ 4236 mac_tx_notify(mcip->mci_upper_mip != NULL ? 4237 mcip->mci_upper_mip : mcip->mci_mip); 4238 } 4239 mutex_enter(&mac_srs->srs_lock); 4240 } 4241 mac_srs->srs_state &= ~SRS_PROC; 4242 } 4243 4244 /* 4245 * Given a packet, get the flow_entry that identifies the flow 4246 * to which that packet belongs. The flow_entry will contain 4247 * the transmit function to be used to send the packet. If the 4248 * function returns NULL, the packet should be sent using the 4249 * underlying NIC. 4250 */ 4251 static flow_entry_t * 4252 mac_tx_classify(mac_impl_t *mip, mblk_t *mp) 4253 { 4254 flow_entry_t *flent = NULL; 4255 mac_client_impl_t *mcip; 4256 int err; 4257 4258 /* 4259 * Do classification on the packet. 4260 */ 4261 err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent); 4262 if (err != 0) 4263 return (NULL); 4264 4265 /* 4266 * This flent might just be an additional one on the MAC client, 4267 * i.e. for classification purposes (different fdesc), however 4268 * the resources, SRS et. al., are in the mci_flent, so if 4269 * this isn't the mci_flent, we need to get it. 4270 */ 4271 if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) { 4272 FLOW_REFRELE(flent); 4273 flent = mcip->mci_flent; 4274 FLOW_TRY_REFHOLD(flent, err); 4275 if (err != 0) 4276 return (NULL); 4277 } 4278 4279 return (flent); 4280 } 4281 4282 /* 4283 * This macro is only meant to be used by mac_tx_send(). 4284 */ 4285 #define CHECK_VID_AND_ADD_TAG(mp) { \ 4286 if (vid_check) { \ 4287 int err = 0; \ 4288 \ 4289 MAC_VID_CHECK(src_mcip, (mp), err); \ 4290 if (err != 0) { \ 4291 freemsg((mp)); \ 4292 (mp) = next; \ 4293 oerrors++; \ 4294 continue; \ 4295 } \ 4296 } \ 4297 if (add_tag) { \ 4298 (mp) = mac_add_vlan_tag((mp), 0, vid); \ 4299 if ((mp) == NULL) { \ 4300 (mp) = next; \ 4301 oerrors++; \ 4302 continue; \ 4303 } \ 4304 } \ 4305 } 4306 4307 mblk_t * 4308 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain, 4309 mac_tx_stats_t *stats) 4310 { 4311 mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch; 4312 mac_impl_t *mip = src_mcip->mci_mip; 4313 uint_t obytes = 0, opackets = 0, oerrors = 0; 4314 mblk_t *mp = NULL, *next; 4315 boolean_t vid_check, add_tag; 4316 uint16_t vid = 0; 4317 4318 if (mip->mi_nclients > 1) { 4319 vid_check = MAC_VID_CHECK_NEEDED(src_mcip); 4320 add_tag = MAC_TAG_NEEDED(src_mcip); 4321 if (add_tag) 4322 vid = mac_client_vid(mch); 4323 } else { 4324 ASSERT(mip->mi_nclients == 1); 4325 vid_check = add_tag = B_FALSE; 4326 } 4327 4328 /* 4329 * Fastpath: if there's only one client, we simply send 4330 * the packet down to the underlying NIC. 4331 */ 4332 if (mip->mi_nactiveclients == 1) { 4333 DTRACE_PROBE2(fastpath, 4334 mac_client_impl_t *, src_mcip, mblk_t *, mp_chain); 4335 4336 mp = mp_chain; 4337 while (mp != NULL) { 4338 next = mp->b_next; 4339 mp->b_next = NULL; 4340 opackets++; 4341 obytes += (mp->b_cont == NULL ? MBLKL(mp) : 4342 msgdsize(mp)); 4343 4344 CHECK_VID_AND_ADD_TAG(mp); 4345 MAC_TX(mip, ring, mp, src_mcip); 4346 4347 /* 4348 * If the driver is out of descriptors and does a 4349 * partial send it will return a chain of unsent 4350 * mblks. Adjust the accounting stats. 4351 */ 4352 if (mp != NULL) { 4353 opackets--; 4354 obytes -= msgdsize(mp); 4355 mp->b_next = next; 4356 break; 4357 } 4358 mp = next; 4359 } 4360 goto done; 4361 } 4362 4363 /* 4364 * No fastpath, we either have more than one MAC client 4365 * defined on top of the same MAC, or one or more MAC 4366 * client promiscuous callbacks. 4367 */ 4368 DTRACE_PROBE3(slowpath, mac_client_impl_t *, 4369 src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain); 4370 4371 mp = mp_chain; 4372 while (mp != NULL) { 4373 flow_entry_t *dst_flow_ent; 4374 void *flow_cookie; 4375 size_t pkt_size; 4376 mblk_t *mp1; 4377 4378 next = mp->b_next; 4379 mp->b_next = NULL; 4380 opackets++; 4381 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp)); 4382 obytes += pkt_size; 4383 CHECK_VID_AND_ADD_TAG(mp); 4384 4385 /* 4386 * Find the destination. 4387 */ 4388 dst_flow_ent = mac_tx_classify(mip, mp); 4389 4390 if (dst_flow_ent != NULL) { 4391 size_t hdrsize; 4392 int err = 0; 4393 4394 if (mip->mi_info.mi_nativemedia == DL_ETHER) { 4395 struct ether_vlan_header *evhp = 4396 (struct ether_vlan_header *)mp->b_rptr; 4397 4398 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN) 4399 hdrsize = sizeof (*evhp); 4400 else 4401 hdrsize = sizeof (struct ether_header); 4402 } else { 4403 mac_header_info_t mhi; 4404 4405 err = mac_header_info((mac_handle_t)mip, 4406 mp, &mhi); 4407 if (err == 0) 4408 hdrsize = mhi.mhi_hdrsize; 4409 } 4410 4411 /* 4412 * Got a matching flow. It's either another 4413 * MAC client, or a broadcast/multicast flow. 4414 * Make sure the packet size is within the 4415 * allowed size. If not drop the packet and 4416 * move to next packet. 4417 */ 4418 if (err != 0 || 4419 (pkt_size - hdrsize) > mip->mi_sdu_max) { 4420 oerrors++; 4421 DTRACE_PROBE2(loopback__drop, size_t, pkt_size, 4422 mblk_t *, mp); 4423 freemsg(mp); 4424 mp = next; 4425 FLOW_REFRELE(dst_flow_ent); 4426 continue; 4427 } 4428 flow_cookie = mac_flow_get_client_cookie(dst_flow_ent); 4429 if (flow_cookie != NULL) { 4430 /* 4431 * The vnic_bcast_send function expects 4432 * to receive the sender MAC client 4433 * as value for arg2. 4434 */ 4435 mac_bcast_send(flow_cookie, src_mcip, mp, 4436 B_TRUE); 4437 } else { 4438 /* 4439 * loopback the packet to a local MAC 4440 * client. We force a context switch 4441 * if both source and destination MAC 4442 * clients are used by IP, i.e. 4443 * bypass is set. 4444 */ 4445 boolean_t do_switch; 4446 mac_client_impl_t *dst_mcip = 4447 dst_flow_ent->fe_mcip; 4448 4449 /* 4450 * Check if there are promiscuous mode 4451 * callbacks defined. This check is 4452 * done here in the 'else' case and 4453 * not in other cases because this 4454 * path is for local loopback 4455 * communication which does not go 4456 * through MAC_TX(). For paths that go 4457 * through MAC_TX(), the promisc_list 4458 * check is done inside the MAC_TX() 4459 * macro. 4460 */ 4461 if (mip->mi_promisc_list != NULL) 4462 mac_promisc_dispatch(mip, mp, src_mcip); 4463 4464 do_switch = ((src_mcip->mci_state_flags & 4465 dst_mcip->mci_state_flags & 4466 MCIS_CLIENT_POLL_CAPABLE) != 0); 4467 4468 if ((mp1 = mac_fix_cksum(mp)) != NULL) { 4469 (dst_flow_ent->fe_cb_fn)( 4470 dst_flow_ent->fe_cb_arg1, 4471 dst_flow_ent->fe_cb_arg2, 4472 mp1, do_switch); 4473 } 4474 } 4475 FLOW_REFRELE(dst_flow_ent); 4476 } else { 4477 /* 4478 * Unknown destination, send via the underlying 4479 * NIC. 4480 */ 4481 MAC_TX(mip, ring, mp, src_mcip); 4482 if (mp != NULL) { 4483 /* 4484 * Adjust for the last packet that 4485 * could not be transmitted 4486 */ 4487 opackets--; 4488 obytes -= pkt_size; 4489 mp->b_next = next; 4490 break; 4491 } 4492 } 4493 mp = next; 4494 } 4495 4496 done: 4497 stats->mts_obytes = obytes; 4498 stats->mts_opackets = opackets; 4499 stats->mts_oerrors = oerrors; 4500 return (mp); 4501 } 4502 4503 /* 4504 * mac_tx_srs_ring_present 4505 * 4506 * Returns whether the specified ring is part of the specified SRS. 4507 */ 4508 boolean_t 4509 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring) 4510 { 4511 int i; 4512 mac_soft_ring_t *soft_ring; 4513 4514 if (srs->srs_tx.st_arg2 == tx_ring) 4515 return (B_TRUE); 4516 4517 for (i = 0; i < srs->srs_tx_ring_count; i++) { 4518 soft_ring = srs->srs_tx_soft_rings[i]; 4519 if (soft_ring->s_ring_tx_arg2 == tx_ring) 4520 return (B_TRUE); 4521 } 4522 4523 return (B_FALSE); 4524 } 4525 4526 /* 4527 * mac_tx_srs_get_soft_ring 4528 * 4529 * Returns the TX soft ring associated with the given ring, if present. 4530 */ 4531 mac_soft_ring_t * 4532 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring) 4533 { 4534 int i; 4535 mac_soft_ring_t *soft_ring; 4536 4537 if (srs->srs_tx.st_arg2 == tx_ring) 4538 return (NULL); 4539 4540 for (i = 0; i < srs->srs_tx_ring_count; i++) { 4541 soft_ring = srs->srs_tx_soft_rings[i]; 4542 if (soft_ring->s_ring_tx_arg2 == tx_ring) 4543 return (soft_ring); 4544 } 4545 4546 return (NULL); 4547 } 4548 4549 /* 4550 * mac_tx_srs_wakeup 4551 * 4552 * Called when Tx desc become available. Wakeup the appropriate worker 4553 * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the 4554 * state field. 4555 */ 4556 void 4557 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring) 4558 { 4559 int i; 4560 mac_soft_ring_t *sringp; 4561 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; 4562 4563 mutex_enter(&mac_srs->srs_lock); 4564 /* 4565 * srs_tx_ring_count == 0 is the single ring mode case. In 4566 * this mode, there will not be Tx soft rings associated 4567 * with the SRS. 4568 */ 4569 if (!MAC_TX_SOFT_RINGS(mac_srs)) { 4570 if (srs_tx->st_arg2 == ring && 4571 mac_srs->srs_state & SRS_TX_BLOCKED) { 4572 mac_srs->srs_state &= ~SRS_TX_BLOCKED; 4573 srs_tx->st_stat.mts_unblockcnt++; 4574 cv_signal(&mac_srs->srs_async); 4575 } 4576 /* 4577 * A wakeup can come before tx_srs_drain() could 4578 * grab srs lock and set SRS_TX_BLOCKED. So 4579 * always set woken_up flag when we come here. 4580 */ 4581 srs_tx->st_woken_up = B_TRUE; 4582 mutex_exit(&mac_srs->srs_lock); 4583 return; 4584 } 4585 4586 /* 4587 * If you are here, it is for FANOUT, BW_FANOUT, 4588 * AGGR_MODE or AGGR_BW_MODE case 4589 */ 4590 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) { 4591 sringp = mac_srs->srs_tx_soft_rings[i]; 4592 mutex_enter(&sringp->s_ring_lock); 4593 if (sringp->s_ring_tx_arg2 == ring) { 4594 if (sringp->s_ring_state & S_RING_BLOCK) { 4595 sringp->s_ring_state &= ~S_RING_BLOCK; 4596 sringp->s_st_stat.mts_unblockcnt++; 4597 cv_signal(&sringp->s_ring_async); 4598 } 4599 sringp->s_ring_tx_woken_up = B_TRUE; 4600 } 4601 mutex_exit(&sringp->s_ring_lock); 4602 } 4603 mutex_exit(&mac_srs->srs_lock); 4604 } 4605 4606 /* 4607 * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash 4608 * the blocked clients again. 4609 */ 4610 void 4611 mac_tx_notify(mac_impl_t *mip) 4612 { 4613 i_mac_notify(mip, MAC_NOTE_TX); 4614 } 4615 4616 /* 4617 * RX SOFTRING RELATED FUNCTIONS 4618 * 4619 * These functions really belong in mac_soft_ring.c and here for 4620 * a short period. 4621 */ 4622 4623 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ 4624 /* \ 4625 * Enqueue our mblk chain. \ 4626 */ \ 4627 ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \ 4628 \ 4629 if ((ringp)->s_ring_last != NULL) \ 4630 (ringp)->s_ring_last->b_next = (mp); \ 4631 else \ 4632 (ringp)->s_ring_first = (mp); \ 4633 (ringp)->s_ring_last = (tail); \ 4634 (ringp)->s_ring_count += (cnt); \ 4635 ASSERT((ringp)->s_ring_count > 0); \ 4636 if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \ 4637 (ringp)->s_ring_size += sz; \ 4638 } \ 4639 } 4640 4641 /* 4642 * Default entry point to deliver a packet chain to a MAC client. 4643 * If the MAC client has flows, do the classification with these 4644 * flows as well. 4645 */ 4646 /* ARGSUSED */ 4647 void 4648 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain, 4649 mac_header_info_t *arg3) 4650 { 4651 mac_client_impl_t *mcip = arg1; 4652 4653 if (mcip->mci_nvids == 1 && 4654 !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) { 4655 /* 4656 * If the client has exactly one VID associated with it 4657 * and striping of VLAN header is not disabled, 4658 * remove the VLAN tag from the packet before 4659 * passing it on to the client's receive callback. 4660 * Note that this needs to be done after we dispatch 4661 * the packet to the promiscuous listeners of the 4662 * client, since they expect to see the whole 4663 * frame including the VLAN headers. 4664 * 4665 * The MCIS_STRIP_DISABLE is only issued when sun4v 4666 * vsw is in play. 4667 */ 4668 mp_chain = mac_strip_vlan_tag_chain(mp_chain); 4669 } 4670 4671 mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE); 4672 } 4673 4674 /* 4675 * Process a chain for a given soft ring. If the number of packets 4676 * queued in the SRS and its associated soft rings (including this 4677 * one) is very small (tracked by srs_poll_pkt_cnt) then allow the 4678 * entering thread (interrupt or poll thread) to process the chain 4679 * inline. This is meant to reduce latency under low load. 4680 * 4681 * The proc and arg for each mblk is already stored in the mblk in 4682 * appropriate places. 4683 */ 4684 /* ARGSUSED */ 4685 void 4686 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp, 4687 mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz) 4688 { 4689 mac_direct_rx_t proc; 4690 void *arg1; 4691 mac_resource_handle_t arg2; 4692 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 4693 4694 ASSERT(ringp != NULL); 4695 ASSERT(mp_chain != NULL); 4696 ASSERT(tail != NULL); 4697 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 4698 4699 mutex_enter(&ringp->s_ring_lock); 4700 ringp->s_ring_total_inpkt += cnt; 4701 ringp->s_ring_total_rbytes += sz; 4702 if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) && 4703 !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) { 4704 /* If on processor or blanking on, then enqueue and return */ 4705 if (ringp->s_ring_state & S_RING_BLANK || 4706 ringp->s_ring_state & S_RING_PROC) { 4707 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 4708 mutex_exit(&ringp->s_ring_lock); 4709 return; 4710 } 4711 proc = ringp->s_ring_rx_func; 4712 arg1 = ringp->s_ring_rx_arg1; 4713 arg2 = ringp->s_ring_rx_arg2; 4714 /* 4715 * See if anything is already queued. If we are the 4716 * first packet, do inline processing else queue the 4717 * packet and do the drain. 4718 */ 4719 if (ringp->s_ring_first == NULL) { 4720 /* 4721 * Fast-path, ok to process and nothing queued. 4722 */ 4723 ringp->s_ring_run = curthread; 4724 ringp->s_ring_state |= (S_RING_PROC); 4725 4726 mutex_exit(&ringp->s_ring_lock); 4727 4728 /* 4729 * We are the chain of 1 packet so 4730 * go through this fast path. 4731 */ 4732 ASSERT(mp_chain->b_next == NULL); 4733 4734 (*proc)(arg1, arg2, mp_chain, NULL); 4735 4736 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 4737 /* 4738 * If we have an SRS performing bandwidth 4739 * control then we need to decrement the size 4740 * and count so the SRS has an accurate count 4741 * of the data queued between the SRS and its 4742 * soft rings. We decrement the counters only 4743 * when the packet is processed by both the 4744 * SRS and the soft ring. 4745 */ 4746 mutex_enter(&mac_srs->srs_lock); 4747 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); 4748 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); 4749 mutex_exit(&mac_srs->srs_lock); 4750 4751 mutex_enter(&ringp->s_ring_lock); 4752 ringp->s_ring_run = NULL; 4753 ringp->s_ring_state &= ~S_RING_PROC; 4754 if (ringp->s_ring_state & S_RING_CLIENT_WAIT) 4755 cv_signal(&ringp->s_ring_client_cv); 4756 4757 if ((ringp->s_ring_first == NULL) || 4758 (ringp->s_ring_state & S_RING_BLANK)) { 4759 /* 4760 * We processed a single packet inline 4761 * and nothing new has arrived or our 4762 * receiver doesn't want to receive 4763 * any packets. We are done. 4764 */ 4765 mutex_exit(&ringp->s_ring_lock); 4766 return; 4767 } 4768 } else { 4769 SOFT_RING_ENQUEUE_CHAIN(ringp, 4770 mp_chain, tail, cnt, sz); 4771 } 4772 4773 /* 4774 * We are here because either we couldn't do inline 4775 * processing (because something was already 4776 * queued), or we had a chain of more than one 4777 * packet, or something else arrived after we were 4778 * done with inline processing. 4779 */ 4780 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); 4781 ASSERT(ringp->s_ring_first != NULL); 4782 4783 ringp->s_ring_drain_func(ringp); 4784 mutex_exit(&ringp->s_ring_lock); 4785 return; 4786 } else { 4787 /* ST_RING_WORKER_ONLY case */ 4788 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 4789 mac_soft_ring_worker_wakeup(ringp); 4790 mutex_exit(&ringp->s_ring_lock); 4791 } 4792 } 4793 4794 /* 4795 * TX SOFTRING RELATED FUNCTIONS 4796 * 4797 * These functions really belong in mac_soft_ring.c and here for 4798 * a short period. 4799 */ 4800 4801 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ 4802 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \ 4803 ringp->s_ring_state |= S_RING_ENQUEUED; \ 4804 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \ 4805 } 4806 4807 /* 4808 * mac_tx_sring_queued 4809 * 4810 * When we are out of transmit descriptors and we already have a 4811 * queue that exceeds hiwat (or the client called us with 4812 * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the 4813 * soft ring pointer as the opaque cookie for the client enable 4814 * flow control. 4815 */ 4816 static mac_tx_cookie_t 4817 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag, 4818 mblk_t **ret_mp) 4819 { 4820 int cnt; 4821 size_t sz; 4822 mblk_t *tail; 4823 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 4824 mac_tx_cookie_t cookie = 0; 4825 boolean_t wakeup_worker = B_TRUE; 4826 4827 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); 4828 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 4829 if (flag & MAC_DROP_ON_NO_DESC) { 4830 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); 4831 /* increment freed stats */ 4832 ringp->s_ring_drops += cnt; 4833 cookie = (mac_tx_cookie_t)ringp; 4834 } else { 4835 if (ringp->s_ring_first != NULL) 4836 wakeup_worker = B_FALSE; 4837 4838 if (flag & MAC_TX_NO_ENQUEUE) { 4839 /* 4840 * If QUEUED is not set, queue the packet 4841 * and let mac_tx_soft_ring_drain() set 4842 * the TX_BLOCKED bit for the reasons 4843 * explained above. Otherwise, return the 4844 * mblks. 4845 */ 4846 if (wakeup_worker) { 4847 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, 4848 mp_chain, tail, cnt, sz); 4849 } else { 4850 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT; 4851 cookie = (mac_tx_cookie_t)ringp; 4852 *ret_mp = mp_chain; 4853 } 4854 } else { 4855 boolean_t enqueue = B_TRUE; 4856 4857 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { 4858 /* 4859 * flow-controlled. Store ringp in cookie 4860 * so that it can be returned as 4861 * mac_tx_cookie_t to client 4862 */ 4863 ringp->s_ring_state |= S_RING_TX_HIWAT; 4864 cookie = (mac_tx_cookie_t)ringp; 4865 ringp->s_ring_hiwat_cnt++; 4866 if (ringp->s_ring_count > 4867 ringp->s_ring_tx_max_q_cnt) { 4868 /* increment freed stats */ 4869 ringp->s_ring_drops += cnt; 4870 /* 4871 * b_prev may be set to the fanout hint 4872 * hence can't use freemsg directly 4873 */ 4874 mac_pkt_drop(NULL, NULL, 4875 mp_chain, B_FALSE); 4876 DTRACE_PROBE1(tx_queued_hiwat, 4877 mac_soft_ring_t *, ringp); 4878 enqueue = B_FALSE; 4879 } 4880 } 4881 if (enqueue) { 4882 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, 4883 tail, cnt, sz); 4884 } 4885 } 4886 if (wakeup_worker) 4887 cv_signal(&ringp->s_ring_async); 4888 } 4889 return (cookie); 4890 } 4891 4892 4893 /* 4894 * mac_tx_soft_ring_process 4895 * 4896 * This routine is called when fanning out outgoing traffic among 4897 * multipe Tx rings. 4898 * Note that a soft ring is associated with a h/w Tx ring. 4899 */ 4900 mac_tx_cookie_t 4901 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain, 4902 uint16_t flag, mblk_t **ret_mp) 4903 { 4904 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; 4905 int cnt; 4906 size_t sz; 4907 mblk_t *tail; 4908 mac_tx_cookie_t cookie = 0; 4909 4910 ASSERT(ringp != NULL); 4911 ASSERT(mp_chain != NULL); 4912 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); 4913 /* 4914 * The following modes can come here: SRS_TX_BW_FANOUT, 4915 * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR. 4916 */ 4917 ASSERT(MAC_TX_SOFT_RINGS(mac_srs)); 4918 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 4919 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT || 4920 mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4921 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4922 4923 if (ringp->s_ring_type & ST_RING_WORKER_ONLY) { 4924 /* Serialization mode */ 4925 4926 mutex_enter(&ringp->s_ring_lock); 4927 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { 4928 cookie = mac_tx_sring_enqueue(ringp, mp_chain, 4929 flag, ret_mp); 4930 mutex_exit(&ringp->s_ring_lock); 4931 return (cookie); 4932 } 4933 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); 4934 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); 4935 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) { 4936 /* 4937 * If ring is blocked due to lack of Tx 4938 * descs, just return. Worker thread 4939 * will get scheduled when Tx desc's 4940 * become available. 4941 */ 4942 mutex_exit(&ringp->s_ring_lock); 4943 return (cookie); 4944 } 4945 mac_soft_ring_worker_wakeup(ringp); 4946 mutex_exit(&ringp->s_ring_lock); 4947 return (cookie); 4948 } else { 4949 /* Default fanout mode */ 4950 /* 4951 * S_RING_BLOCKED is set when underlying NIC runs 4952 * out of Tx descs and messages start getting 4953 * queued. It won't get reset until 4954 * tx_srs_drain() completely drains out the 4955 * messages. 4956 */ 4957 mac_tx_stats_t stats; 4958 4959 if (ringp->s_ring_state & S_RING_ENQUEUED) { 4960 /* Tx descs/resources not available */ 4961 mutex_enter(&ringp->s_ring_lock); 4962 if (ringp->s_ring_state & S_RING_ENQUEUED) { 4963 cookie = mac_tx_sring_enqueue(ringp, mp_chain, 4964 flag, ret_mp); 4965 mutex_exit(&ringp->s_ring_lock); 4966 return (cookie); 4967 } 4968 /* 4969 * While we were computing mblk count, the 4970 * flow control condition got relieved. 4971 * Continue with the transmission. 4972 */ 4973 mutex_exit(&ringp->s_ring_lock); 4974 } 4975 4976 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1, 4977 ringp->s_ring_tx_arg2, mp_chain, &stats); 4978 4979 /* 4980 * Multiple threads could be here sending packets. 4981 * Under such conditions, it is not possible to 4982 * automically set S_RING_BLOCKED bit to indicate 4983 * out of tx desc condition. To atomically set 4984 * this, we queue the returned packet and do 4985 * the setting of S_RING_BLOCKED in 4986 * mac_tx_soft_ring_drain(). 4987 */ 4988 if (mp_chain != NULL) { 4989 mutex_enter(&ringp->s_ring_lock); 4990 cookie = 4991 mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp); 4992 mutex_exit(&ringp->s_ring_lock); 4993 return (cookie); 4994 } 4995 SRS_TX_STATS_UPDATE(mac_srs, &stats); 4996 SOFTRING_TX_STATS_UPDATE(ringp, &stats); 4997 4998 return (0); 4999 } 5000 }