1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  * Copyright 2018 Joyent, Inc.
  25  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
  26  */
  27 
  28 /*
  29  * MAC data path
  30  *
  31  * The MAC data path is concerned with the flow of traffic from mac clients --
  32  * DLS, IP, etc. -- to various GLDv3 device drivers -- e1000g, vnic, aggr,
  33  * ixgbe, etc. -- and from the GLDv3 device drivers back to clients.
  34  *
  35  * -----------
  36  * Terminology
  37  * -----------
  38  *
  39  * MAC uses a lot of different, but related terms that are associated with the
  40  * design and structure of the data path. Before we cover other aspects, first
  41  * let's review the terminology that MAC uses.
  42  *
  43  * MAC
  44  *
  45  *      This driver. It interfaces with device drivers and provides abstractions
  46  *      that the rest of the system consumes. All data links -- things managed
  47  *      with dladm(1M), are accessed through MAC.
  48  *
  49  * GLDv3 DEVICE DRIVER
  50  *
  51  *      A GLDv3 device driver refers to a driver, both for pseudo-devices and
  52  *      real devices, which implement the GLDv3 driver API. Common examples of
  53  *      these are igb and ixgbe, which are drivers for various Intel networking
  54  *      cards. These devices may or may not have various features, such as
  55  *      hardware rings and checksum offloading. For MAC, a GLDv3 device is the
  56  *      final point for the transmission of a packet and the starting point for
  57  *      the receipt of a packet.
  58  *
  59  * FLOWS
  60  *
  61  *      At a high level, a flow refers to a series of packets that are related.
  62  *      Often times the term is used in the context of TCP to indicate a unique
  63  *      TCP connection and the traffic over it. However, a flow can exist at
  64  *      other levels of the system as well. MAC has a notion of a default flow
  65  *      which is used for all unicast traffic addressed to the address of a MAC
  66  *      device. For example, when a VNIC is created, a default flow is created
  67  *      for the VNIC's MAC address. In addition, flows are created for broadcast
  68  *      groups and a user may create a flow with flowadm(1M).
  69  *
  70  * CLASSIFICATION
  71  *
  72  *      Classification refers to the notion of identifying an incoming frame
  73  *      based on its destination address and optionally its source addresses and
  74  *      doing different processing based on that information. Classification can
  75  *      be done in both hardware and software. In general, we usually only
  76  *      classify based on the layer two destination, eg. for Ethernet, the
  77  *      destination MAC address.
  78  *
  79  *      The system also will do classification based on layer three and layer
  80  *      four properties. This is used to support things like flowadm(1M), which
  81  *      allows setting QoS and other properties on a per-flow basis.
  82  *
  83  * RING
  84  *
  85  *      Conceptually, a ring represents a series of framed messages, often in a
  86  *      contiguous chunk of memory that acts as a circular buffer. Rings come in
  87  *      a couple of forms. Generally they are either a hardware construct (hw
  88  *      ring) or they are a software construct (sw ring) maintained by MAC.
  89  *
  90  * HW RING
  91  *
  92  *      A hardware ring is a set of resources provided by a GLDv3 device driver
  93  *      (even if it is a pseudo-device). A hardware ring comes in two different
  94  *      forms: receive (rx) rings and transmit (tx) rings. An rx hw ring is
  95  *      something that has a unique DMA (direct memory access) region and
  96  *      generally supports some form of classification (though it isn't always
  97  *      used), as well as a means of generating an interrupt specific to that
  98  *      ring. For example, the device may generate a specific MSI-X for a PCI
  99  *      express device. A tx ring is similar, except that it is dedicated to
 100  *      transmission. It may also be a vector for enabling features such as VLAN
 101  *      tagging and large transmit offloading. It usually has its own dedicated
 102  *      interrupts for transmit being completed.
 103  *
 104  * SW RING
 105  *
 106  *      A software ring is a construction of MAC. It represents the same thing
 107  *      that a hardware ring generally does, a collection of frames. However,
 108  *      instead of being in a contiguous ring of memory, they're instead linked
 109  *      by using the mblk_t's b_next pointer. Each frame may itself be multiple
 110  *      mblk_t's linked together by the b_cont pointer. A software ring always
 111  *      represents a collection of classified packets; however, it varies as to
 112  *      whether it uses only layer two information, or a combination of that and
 113  *      additional layer three and layer four data.
 114  *
 115  * FANOUT
 116  *
 117  *      Fanout is the idea of spreading out the load of processing frames based
 118  *      on the source and destination information contained in the layer two,
 119  *      three, and four headers, such that the data can then be processed in
 120  *      parallel using multiple hardware threads.
 121  *
 122  *      A fanout algorithm hashes the headers and uses that to place different
 123  *      flows into a bucket. The most important thing is that packets that are
 124  *      in the same flow end up in the same bucket. If they do not, performance
 125  *      can be adversely affected. Consider the case of TCP.  TCP severely
 126  *      penalizes a connection if the data arrives out of order. If a given flow
 127  *      is processed on different CPUs, then the data will appear out of order,
 128  *      hence the invariant that fanout always hash a given flow to the same
 129  *      bucket and thus get processed on the same CPU.
 130  *
 131  * RECEIVE SIDE SCALING (RSS)
 132  *
 133  *
 134  *      Receive side scaling is a term that isn't common in illumos, but is used
 135  *      by vendors and was popularized by Microsoft. It refers to the idea of
 136  *      spreading the incoming receive load out across multiple interrupts which
 137  *      can be directed to different CPUs. This allows a device to leverage
 138  *      hardware rings even when it doesn't support hardware classification. The
 139  *      hardware uses an algorithm to perform fanout that ensures the flow
 140  *      invariant is maintained.
 141  *
 142  * SOFT RING SET
 143  *
 144  *      A soft ring set, commonly abbreviated SRS, is a collection of rings and
 145  *      is used for both transmitting and receiving. It is maintained in the
 146  *      structure mac_soft_ring_set_t. A soft ring set is usually associated
 147  *      with flows, and coordinates both the use of hardware and software rings.
 148  *      Because the use of hardware rings can change as devices such as VNICs
 149  *      come and go, we always ensure that the set has software classification
 150  *      rules that correspond to the hardware classification rules from rings.
 151  *
 152  *      Soft ring sets are also used for the enforcement of various QoS
 153  *      properties. For example, if a bandwidth limit has been placed on a
 154  *      specific flow or device, then that will be enforced by the soft ring
 155  *      set.
 156  *
 157  * SERVICE ATTACHMENT POINT (SAP)
 158  *
 159  *      The service attachment point is a DLPI (Data Link Provider Interface)
 160  *      concept; however, it comes up quite often in MAC. Most MAC devices speak
 161  *      a protocol that has some notion of different channels or message type
 162  *      identifiers. For example, Ethernet defines an EtherType which is a part
 163  *      of the Ethernet header and defines the particular protocol of the data
 164  *      payload. If the EtherType is set to 0x0800, then it defines that the
 165  *      contents of that Ethernet frame is IPv4 traffic. For Ethernet, the
 166  *      EtherType is the SAP.
 167  *
 168  *      In DLPI, a given consumer attaches to a specific SAP. In illumos, the ip
 169  *      and arp drivers attach to the EtherTypes for IPv4, IPv6, and ARP. Using
 170  *      libdlpi(3LIB) user software can attach to arbitrary SAPs. With the
 171  *      exception of 802.1Q VLAN tagged traffic, MAC itself does not directly
 172  *      consume the SAP; however, it uses that information as part of hashing
 173  *      and it may be used as part of the construction of flows.
 174  *
 175  * PRIMARY MAC CLIENT
 176  *
 177  *      The primary mac client refers to a mac client whose unicast address
 178  *      matches the address of the device itself. For example, if the system has
 179  *      instance of the e1000g driver such as e1000g0, e1000g1, etc., the
 180  *      primary mac client is the one named after the device itself. VNICs that
 181  *      are created on top of such devices are not the primary client.
 182  *
 183  * TRANSMIT DESCRIPTORS
 184  *
 185  *      Transmit descriptors are a resource that most GLDv3 device drivers have.
 186  *      Generally, a GLDv3 device driver takes a frame that's meant to be output
 187  *      and puts a copy of it into a region of memory. Each region of memory
 188  *      usually has an associated descriptor that the device uses to manage
 189  *      properties of the frames. Devices have a limited number of such
 190  *      descriptors. They get reclaimed once the device finishes putting the
 191  *      frame on the wire.
 192  *
 193  *      If the driver runs out of transmit descriptors, for example, the OS is
 194  *      generating more frames than it can put on the wire, then it will return
 195  *      them back to the MAC layer.
 196  *
 197  * ---------------------------------
 198  * Rings, Classification, and Fanout
 199  * ---------------------------------
 200  *
 201  * The heart of MAC is made up of rings, and not those that Elven-kings wear.
 202  * When receiving a packet, MAC breaks the work into two different, though
 203  * interrelated phases. The first phase is generally classification and then the
 204  * second phase is generally fanout. When a frame comes in from a GLDv3 Device,
 205  * MAC needs to determine where that frame should be delivered. If it's a
 206  * unicast frame (say a normal TCP/IP packet), then it will be delivered to a
 207  * single MAC client; however, if it's a broadcast or multicast frame, then MAC
 208  * may need to deliver it to multiple MAC clients.
 209  *
 210  * On transmit, classification isn't quite as important, but may still be used.
 211  * Unlike with the receive path, the classification is not used to determine
 212  * devices that should transmit something, but rather is used for special
 213  * properties of a flow, eg. bandwidth limits for a given IP address, device, or
 214  * connection.
 215  *
 216  * MAC employs a software classifier and leverages hardware classification as
 217  * well. The software classifier can leverage the full layer two information,
 218  * source, destination, VLAN, and SAP. If the SAP indicates that IP traffic is
 219  * being sent, it can classify based on the IP header, and finally, it also
 220  * knows how to classify based on the local and remote ports of TCP, UDP, and
 221  * SCTP.
 222  *
 223  * Hardware classifiers vary in capability. Generally all hardware classifiers
 224  * provide the capability to classify based on the destination MAC address. Some
 225  * hardware has additional filters built in for performing more in-depth
 226  * classification; however, it often has much more limited resources for these
 227  * activities as compared to the layer two destination address classification.
 228  *
 229  * The modus operandi in MAC is to always ensure that we have software-based
 230  * capabilities and rules in place and then to supplement that with hardware
 231  * resources when available. In general, simple layer two classification is
 232  * sufficient and nothing else is used, unless a specific flow is created with
 233  * tools such as flowadm(1M) or bandwidth limits are set on a device with
 234  * dladm(1M).
 235  *
 236  * RINGS AND GROUPS
 237  *
 238  * To get into how rings and classification play together, it's first important
 239  * to understand how hardware devices commonly associate rings and allow them to
 240  * be programmed. Recall that a hardware ring should be thought of as a DMA
 241  * buffer and an interrupt resource. Rings are then collected into groups. A
 242  * group itself has a series of classification rules. One or more MAC addresses
 243  * are assigned to a group.
 244  *
 245  * Hardware devices vary in terms of what capabilities they provide. Sometimes
 246  * they allow for a dynamic assignment of rings to a group and sometimes they
 247  * have a static assignment of rings to a group. For example, the ixgbe driver
 248  * has a static assignment of rings to groups such that every group has exactly
 249  * one ring and the number of groups is equal to the number of rings.
 250  *
 251  * Classification and receive side scaling both come into play with how a device
 252  * advertises itself to MAC and how MAC uses it. If a device supports layer two
 253  * classification of frames, then MAC will assign MAC addresses to a group as a
 254  * form of primary classification. If a single MAC address is assigned to a
 255  * group, a common case, then MAC will consider packets that come in from rings
 256  * on that group to be fully classified and will not need to do any software
 257  * classification unless a specific flow has been created.
 258  *
 259  * If a device supports receive side scaling, then it may advertise or support
 260  * groups with multiple rings. In those cases, then receive side scaling will
 261  * come into play and MAC will use that as a means of fanning out received
 262  * frames across multiple CPUs. This can also be combined with groups that
 263  * support layer two classification.
 264  *
 265  * If a device supports dynamic assignments of rings to groups, then MAC will
 266  * change around the way that rings are assigned to various groups as devices
 267  * come and go from the system. For example, when a VNIC is created, a new flow
 268  * will be created for the VNIC's MAC address. If a hardware ring is available,
 269  * MAC may opt to reassign it from one group to another.
 270  *
 271  * ASSIGNMENT OF HARDWARE RINGS
 272  *
 273  * This is a bit of a complicated subject that varies depending on the device,
 274  * the use of aggregations, the special nature of the primary mac client. This
 275  * section deserves being fleshed out.
 276  *
 277  * FANOUT
 278  *
 279  * illumos uses fanout to help spread out the incoming processing load of chains
 280  * of frames away from a single CPU. If a device supports receive side scaling,
 281  * then that provides an initial form of fanout; however, what we're concerned
 282  * with all happens after the context of a given set of frames being classified
 283  * to a soft ring set.
 284  *
 285  * After frames reach a soft ring set and account for any potential bandwidth
 286  * related accounting, they may be fanned out based on one of the following
 287  * three modes:
 288  *
 289  *     o No Fanout
 290  *     o Protocol level fanout
 291  *     o Full software ring protocol fanout
 292  *
 293  * MAC makes the determination as to which of these modes a given soft ring set
 294  * obtains based on parameters such as whether or not it's the primary mac
 295  * client, whether it's on a 10 GbE or faster device, user controlled dladm(1M)
 296  * properties, and the nature of the hardware and the resources that it has.
 297  *
 298  * When there is no fanout, MAC does not create any soft rings for a device and
 299  * the device has frames delivered directly to the MAC client.
 300  *
 301  * Otherwise, all fanout is performed by software. MAC divides incoming frames
 302  * into one of three buckets -- IPv4 TCP traffic, IPv4 UDP traffic, and
 303  * everything else. Regardless of the type of fanout, these three categories
 304  * or buckets are always used.
 305  *
 306  * The difference between protocol level fanout and full software ring protocol
 307  * fanout is the number of software rings that end up getting created. The
 308  * system always uses the same number of software rings per protocol bucket. So
 309  * in the first case when we're just doing protocol level fanout, we just create
 310  * one software ring each for IPv4 TCP traffic, IPv4 UDP traffic, and everything
 311  * else.
 312  *
 313  * In the case where we do full software ring protocol fanout, we generally use
 314  * mac_compute_soft_ring_count() to determine the number of rings. There are
 315  * other combinations of properties and devices that may send us down other
 316  * paths, but this is a common starting point. If it's a non-bandwidth enforced
 317  * device and we're on at least a 10 GbE link, then we'll use eight soft rings
 318  * per protocol bucket as a starting point. See mac_compute_soft_ring_count()
 319  * for more information on the total number.
 320  *
 321  * For each of these rings, we create a mac_soft_ring_t and an associated worker
 322  * thread. Particularly when doing full software ring protocol fanout, we bind
 323  * each of the worker threads to individual CPUs.
 324  *
 325  * The other advantage of these software rings is that it allows upper layers to
 326  * optionally poll on them. For example, TCP can leverage an squeue to poll on
 327  * the software ring, see squeue.c for more information.
 328  *
 329  * DLS BYPASS
 330  *
 331  * DLS is the data link services module. It interfaces with DLPI, which is the
 332  * primary way that other parts of the system such as IP interface with the MAC
 333  * layer. While DLS is traditionally a STREAMS-based interface, it allows for
 334  * certain modules such as IP to negotiate various more modern interfaces to be
 335  * used, which are useful for higher performance and allow it to use direct
 336  * function calls to DLS instead of using STREAMS.
 337  *
 338  * When we have IPv4 TCP or UDP software rings, then traffic on those rings is
 339  * eligible for what we call the dls bypass. In those cases, rather than going
 340  * out mac_rx_deliver() to DLS, DLS instead registers them to go directly via
 341  * the direct callback registered with DLS, generally ip_input().
 342  *
 343  * HARDWARE RING POLLING
 344  *
 345  * GLDv3 devices with hardware rings generally deliver chains of messages
 346  * (mblk_t chain) during the context of a single interrupt. However, interrupts
 347  * are not the only way that these devices may be used. As part of implementing
 348  * ring support, a GLDv3 device driver must have a way to disable the generation
 349  * of that interrupt and allow for the operating system to poll on that ring.
 350  *
 351  * To implement this, every soft ring set has a worker thread and a polling
 352  * thread. If a sufficient packet rate comes into the system, MAC will 'blank'
 353  * (disable) interrupts on that specific ring and the polling thread will start
 354  * consuming packets from the hardware device and deliver them to the soft ring
 355  * set, where the worker thread will take over.
 356  *
 357  * Once the rate of packet intake drops down below a certain threshold, then
 358  * polling on the hardware ring will be quiesced and interrupts will be
 359  * re-enabled for the given ring. This effectively allows the system to shift
 360  * how it handles a ring based on its load. At high packet rates, polling on the
 361  * device as opposed to relying on interrupts can actually reduce overall system
 362  * load due to the minimization of interrupt activity.
 363  *
 364  * Note the importance of each ring having its own interrupt source. The whole
 365  * idea here is that we do not disable interrupts on the device as a whole, but
 366  * rather each ring can be independently toggled.
 367  *
 368  * USE OF WORKER THREADS
 369  *
 370  * Both the soft ring set and individual soft rings have a worker thread
 371  * associated with them that may be bound to a specific CPU in the system. Any
 372  * such assignment will get reassessed as part of dynamic reconfiguration events
 373  * in the system such as the onlining and offlining of CPUs and the creation of
 374  * CPU partitions.
 375  *
 376  * In many cases, while in an interrupt, we try to deliver a frame all the way
 377  * through the stack in the context of the interrupt itself. However, if the
 378  * amount of queued frames has exceeded a threshold, then we instead defer to
 379  * the worker thread to do this work and signal it. This is particularly useful
 380  * when you have the soft ring set delivering frames into multiple software
 381  * rings. If it was only delivering frames into a single software ring then
 382  * there'd be no need to have another thread take over. However, if it's
 383  * delivering chains of frames to multiple rings, then it's worthwhile to have
 384  * the worker for the software ring take over so that the different software
 385  * rings can be processed in parallel.
 386  *
 387  * In a similar fashion to the hardware polling thread, if we don't have a
 388  * backlog or there's nothing to do, then the worker thread will go back to
 389  * sleep and frames can be delivered all the way from an interrupt. This
 390  * behavior is useful as it's designed to minimize latency and the default
 391  * disposition of MAC is to optimize for latency.
 392  *
 393  * MAINTAINING CHAINS
 394  *
 395  * Another useful idea that MAC uses is to try and maintain frames in chains for
 396  * as long as possible. The idea is that all of MAC can handle chains of frames
 397  * structured as a series of mblk_t structures linked with the b_next pointer.
 398  * When performing software classification and software fanout, MAC does not
 399  * simply determine the destination and send the frame along. Instead, in the
 400  * case of classification, it tries to maintain a chain for as long as possible
 401  * before passing it along and performing additional processing.
 402  *
 403  * In the case of fanout, MAC first determines what the target software ring is
 404  * for every frame in the original chain and constructs a new chain for each
 405  * target. MAC then delivers the new chain to each software ring in succession.
 406  *
 407  * The whole rationale for doing this is that we want to try and maintain the
 408  * pipe as much as possible and deliver as many frames through the stack at once
 409  * that we can, rather than just pushing a single frame through. This can often
 410  * help bring down latency and allows MAC to get a better sense of the overall
 411  * activity in the system and properly engage worker threads.
 412  *
 413  * --------------------
 414  * Bandwidth Management
 415  * --------------------
 416  *
 417  * Bandwidth management is something that's built into the soft ring set itself.
 418  * When bandwidth limits are placed on a flow, a corresponding soft ring set is
 419  * toggled into bandwidth mode. This changes how we transmit and receive the
 420  * frames in question.
 421  *
 422  * Bandwidth management is done on a per-tick basis. We translate the user's
 423  * requested bandwidth from a quantity per-second into a quantity per-tick. MAC
 424  * cannot process a frame across more than one tick, thus it sets a lower bound
 425  * for the bandwidth cap to be a single MTU. This also means that when
 426  * hires ticks are enabled (hz is set to 1000), that the minimum amount of
 427  * bandwidth is higher, because the number of ticks has increased and MAC has to
 428  * go from accepting 100 packets / sec to 1000 / sec.
 429  *
 430  * The bandwidth counter is reset by either the soft ring set's worker thread or
 431  * a thread that is doing an inline transmit or receive if they discover that
 432  * the current tick is in the future from the recorded tick.
 433  *
 434  * Whenever we're receiving or transmitting data, we end up leaving most of the
 435  * work to the soft ring set's worker thread. This forces data inserted into the
 436  * soft ring set to be effectively serialized and allows us to exhume bandwidth
 437  * at a reasonable rate. If there is nothing in the soft ring set at the moment
 438  * and the set has available bandwidth, then it may processed inline.
 439  * Otherwise, the worker is responsible for taking care of the soft ring set.
 440  *
 441  * ---------------------
 442  * The Receive Data Path
 443  * ---------------------
 444  *
 445  * The following series of ASCII art images breaks apart the way that a frame
 446  * comes in and is processed in MAC.
 447  *
 448  * Part 1 -- Initial frame receipt, SRS classification
 449  *
 450  * Here, a frame is received by a GLDv3 driver, generally in the context of an
 451  * interrupt, and it ends up in mac_rx_common(). A driver calls either mac_rx or
 452  * mac_rx_ring, depending on whether or not it supports rings and can identify
 453  * the interrupt as having come from a specific ring. Here we determine whether
 454  * or not it's fully classified and perform software classification as
 455  * appropriate. From here, everything always ends up going to either entry [A]
 456  * or entry [B] based on whether or not they have subflow processing needed. We
 457  * leave via fanout or delivery.
 458  *
 459  *           +===========+
 460  *           v hardware  v
 461  *           v interrupt v
 462  *           +===========+
 463  *                 |
 464  *                 * . . appropriate
 465  *                 |     upcall made
 466  *                 |     by GLDv3 driver  . . always
 467  *                 |                      .
 468  *  +--------+     |     +----------+     .    +---------------+
 469  *  | GLDv3  |     +---->| mac_rx   |-----*--->| mac_rx_common |
 470  *  | Driver |-->--+     +----------+          +---------------+
 471  *  +--------+     |        ^                         |
 472  *      |          |        ^                         v
 473  *      ^          |        * . . always   +----------------------+
 474  *      |          |        |              | mac_promisc_dispatch |
 475  *      |          |    +-------------+    +----------------------+
 476  *      |          +--->| mac_rx_ring |               |
 477  *      |               +-------------+               * . . hw classified
 478  *      |                                             v     or single flow?
 479  *      |                                             |
 480  *      |                                   +--------++--------------+
 481  *      |                                   |        |               * hw class,
 482  *      |                                   |        * hw classified | subflows
 483  *      |                 no hw class and . *        | or single     | exist
 484  *      |                 subflows          |        | flow          |
 485  *      |                                   |        v               v
 486  *      |                                   |   +-----------+   +-----------+
 487  *      |                                   |   |   goto    |   |  goto     |
 488  *      |                                   |   | entry [A] |   | entry [B] |
 489  *      |                                   |   +-----------+   +-----------+
 490  *      |                                   v          ^
 491  *      |                            +-------------+   |
 492  *      |                            | mac_rx_flow |   * SRS and flow found,
 493  *      |                            +-------------+   | call flow cb
 494  *      |                                   |          +------+
 495  *      |                                   v                 |
 496  *      v                             +==========+    +-----------------+
 497  *      |                             v For each v--->| mac_rx_classify |
 498  * +----------+                       v  mblk_t  v    +-----------------+
 499  * |   srs    |                       +==========+
 500  * | pollling |
 501  * |  thread  |->------------------------------------------+
 502  * +----------+                                            |
 503  *                                                         v       . inline
 504  *            +--------------------+   +----------+   +---------+  .
 505  *    [A]---->| mac_rx_srs_process |-->| check bw |-->| enqueue |--*---------+
 506  *            +--------------------+   |  limits  |   | frames  |            |
 507  *               ^                     +----------+   | to SRS  |            |
 508  *               |                                    +---------+            |
 509  *               |  send chain              +--------+    |                  |
 510  *               *  when clasified          | signal |    * BW limits,       |
 511  *               |  flow changes            |  srs   |<---+ loopback,        |
 512  *               |                          | worker |      stack too        |
 513  *               |                          +--------+      deep             |
 514  *      +-----------------+        +--------+                                |
 515  *      | mac_flow_lookup |        |  srs   |     +---------------------+    |
 516  *      +-----------------+        | worker |---->| mac_rx_srs_drain    |<---+
 517  *               ^                 | thread |     | mac_rx_srs_drain_bw |
 518  *               |                 +--------+     +---------------------+
 519  *               |                                          |
 520  *         +----------------------------+                   * software rings
 521  *   [B]-->| mac_rx_srs_subflow_process |                   | for fanout?
 522  *         +----------------------------+                   |
 523  *                                               +----------+-----------+
 524  *                                               |                      |
 525  *                                               v                      v
 526  *                                          +--------+             +--------+
 527  *                                          |  goto  |             |  goto  |
 528  *                                          | Part 2 |             | Part 3 |
 529  *                                          +--------+             +--------+
 530  *
 531  * Part 2 -- Fanout
 532  *
 533  * This part is concerned with using software fanout to assign frames to
 534  * software rings and then deliver them to MAC clients or allow those rings to
 535  * be polled upon. While there are two different primary fanout entry points,
 536  * mac_rx_fanout and mac_rx_proto_fanout, they behave in similar ways, and aside
 537  * from some of the individual hashing techniques used, most of the general
 538  * flow is the same.
 539  *
 540  *  +--------+              +-------------------+
 541  *  |  From  |---+--------->| mac_rx_srs_fanout |----+
 542  *  | Part 1 |   |          +-------------------+    |    +=================+
 543  *  +--------+   |                                   |    v for each mblk_t v
 544  *               * . . protocol only                 +--->v assign to new   v
 545  *               |     fanout                        |    v chain based on  v
 546  *               |                                   |    v hash % nrings   v
 547  *               |    +-------------------------+    |    +=================+
 548  *               +--->| mac_rx_srs_proto_fanout |----+             |
 549  *                    +-------------------------+                  |
 550  *                                                                 v
 551  *    +------------+    +--------------------------+       +================+
 552  *    | enqueue in |<---| mac_rx_soft_ring_process |<------v for each chain v
 553  *    | soft ring  |    +--------------------------+       +================+
 554  *    +------------+
 555  *         |                                    +-----------+
 556  *         * soft ring set                      | soft ring |
 557  *         | empty and no                       |  worker   |
 558  *         | worker?                            |  thread   |
 559  *         |                                    +-----------+
 560  *         +------*----------------+                  |
 561  *         |      .                |                  v
 562  *    No . *      . Yes            |       +------------------------+
 563  *         |                       +----<--| mac_rx_soft_ring_drain |
 564  *         |                       |       +------------------------+
 565  *         v                       |
 566  *   +-----------+                 v
 567  *   |   signal  |         +---------------+
 568  *   | soft ring |         | Deliver chain |
 569  *   |   worker  |         | goto Part 3   |
 570  *   +-----------+         +---------------+
 571  *
 572  *
 573  * Part 3 -- Packet Delivery
 574  *
 575  * Here, we go through and deliver the mblk_t chain directly to a given
 576  * processing function. In a lot of cases this is mac_rx_deliver(). In the case
 577  * of DLS bypass being used, then instead we end up going ahead and deliver it
 578  * to the direct callback registered with DLS, generally ip_input.
 579  *
 580  *
 581  *   +---------+            +----------------+    +------------------+
 582  *   |  From   |---+------->| mac_rx_deliver |--->| Off to DLS, or   |
 583  *   | Parts 1 |   |        +----------------+    | other MAC client |
 584  *   |  and 2  |   * DLS bypass                   +------------------+
 585  *   +---------+   | enabled   +----------+    +-------------+
 586  *                 +---------->| ip_input |--->|    To IP    |
 587  *                             +----------+    | and beyond! |
 588  *                                             +-------------+
 589  *
 590  * ----------------------
 591  * The Transmit Data Path
 592  * ----------------------
 593  *
 594  * Before we go into the images, it's worth talking about a problem that is a
 595  * bit different from the receive data path. GLDv3 device drivers have a finite
 596  * amount of transmit descriptors. When they run out, they return unused frames
 597  * back to MAC. MAC, at this point has several options about what it will do,
 598  * which vary based upon the settings that the client uses.
 599  *
 600  * When a device runs out of descriptors, the next thing that MAC does is
 601  * enqueue them off of the soft ring set or a software ring, depending on the
 602  * configuration of the soft ring set. MAC will enqueue up to a high watermark
 603  * of mblk_t chains, at which point it will indicate flow control back to the
 604  * client. Once this condition is reached, any mblk_t chains that were not
 605  * enqueued will be returned to the caller and they will have to decide what to
 606  * do with them. There are various flags that control this behavior that a
 607  * client may pass, which are discussed below.
 608  *
 609  * When this condition is hit, MAC also returns a cookie to the client in
 610  * addition to unconsumed frames. Clients can poll on that cookie and register a
 611  * callback with MAC to be notified when they are no longer subject to flow
 612  * control, at which point they may continue to call mac_tx(). This flow control
 613  * actually manages to work itself all the way up the stack, back through dls,
 614  * to ip, through the various protocols, and to sockfs.
 615  *
 616  * While the behavior described above is the default, this behavior can be
 617  * modified. There are two alternate modes, described below, which are
 618  * controlled with flags.
 619  *
 620  * DROP MODE
 621  *
 622  * This mode is controlled by having the client pass the MAC_DROP_ON_NO_DESC
 623  * flag. When this is passed, if a device driver runs out of transmit
 624  * descriptors, then the MAC layer will drop any unsent traffic. The client in
 625  * this case will never have any frames returned to it.
 626  *
 627  * DON'T ENQUEUE
 628  *
 629  * This mode is controlled by having the client pass the MAC_TX_NO_ENQUEUE flag.
 630  * If the MAC_DROP_ON_NO_DESC flag is also passed, it takes precedence. In this
 631  * mode, when we hit a case where a driver runs out of transmit descriptors,
 632  * then instead of enqueuing packets in a soft ring set or software ring, we
 633  * instead return the mblk_t chain back to the caller and immediately put the
 634  * soft ring set into flow control mode.
 635  *
 636  * The following series of ASCII art images describe the transmit data path that
 637  * MAC clients enter into based on calling into mac_tx(). A soft ring set has a
 638  * transmission function associated with it. There are seven possible
 639  * transmission modes, some of which share function entry points. The one that a
 640  * soft ring set gets depends on properties such as whether there are
 641  * transmission rings for fanout, whether the device involves aggregations,
 642  * whether any bandwidth limits exist, etc.
 643  *
 644  *
 645  * Part 1 -- Initial checks
 646  *
 647  *      * . called by
 648  *      |   MAC clients
 649  *      v                     . . No
 650  *  +--------+  +-----------+ .   +-------------------+  +====================+
 651  *  | mac_tx |->| device    |-*-->| mac_protect_check |->v Is this the simple v
 652  *  +--------+  | quiesced? |     +-------------------+  v case? See [1]      v
 653  *              +-----------+            |               +====================+
 654  *                  * . Yes              * failed                 |
 655  *                  v                    | frames                 |
 656  *             +--------------+          |                +-------+---------+
 657  *             | freemsgchain |<---------+          Yes . *            No . *
 658  *             +--------------+                           v                 v
 659  *                                                  +-----------+     +--------+
 660  *                                                  |   goto    |     |  goto  |
 661  *                                                  |  Part 2   |     | SRS TX |
 662  *                                                  | Entry [A] |     |  func  |
 663  *                                                  +-----------+     +--------+
 664  *                                                        |                 |
 665  *                                                        |                 v
 666  *                                                        |           +--------+
 667  *                                                        +---------->| return |
 668  *                                                                    | cookie |
 669  *                                                                    +--------+
 670  *
 671  * [1] The simple case refers to the SRS being configured with the
 672  * SRS_TX_DEFAULT transmission mode, having a single mblk_t (not a chain), their
 673  * being only a single active client, and not having a backlog in the srs.
 674  *
 675  *
 676  * Part 2 -- The SRS transmission functions
 677  *
 678  * This part is a bit more complicated. The different transmission paths often
 679  * leverage one another. In this case, we'll draw out the more common ones
 680  * before the parts that depend upon them. Here, we're going to start with the
 681  * workings of mac_tx_send() a common function that most of the others end up
 682  * calling.
 683  *
 684  *      +-------------+
 685  *      | mac_tx_send |
 686  *      +-------------+
 687  *            |
 688  *            v
 689  *      +=============+    +==============+
 690  *      v  more than  v--->v    check     v
 691  *      v one client? v    v VLAN and add v
 692  *      +=============+    v  VLAN tags   v
 693  *            |            +==============+
 694  *            |                  |
 695  *            +------------------+
 696  *            |
 697  *            |                 [A]
 698  *            v                  |
 699  *       +============+ . No     v
 700  *       v more than  v .     +==========+     +--------------------------+
 701  *       v one active v-*---->v for each v---->| mac_promisc_dispatch_one |---+
 702  *       v  client?   v       v mblk_t   v     +--------------------------+   |
 703  *       +============+       +==========+        ^                           |
 704  *            |                                   |       +==========+        |
 705  *            * . Yes                             |       v hardware v<-------+
 706  *            v                      +------------+       v  rings?  v
 707  *       +==========+                |                    +==========+
 708  *       v for each v       No . . . *                         |
 709  *       v mblk_t   v       specific |                         |
 710  *       +==========+       flow     |                   +-----+-----+
 711  *            |                      |                   |           |
 712  *            v                      |                   v           v
 713  *    +-----------------+            |               +-------+  +---------+
 714  *    | mac_tx_classify |------------+               | GLDv3 |  |  GLDv3  |
 715  *    +-----------------+                            |TX func|  | ring tx |
 716  *            |                                      +-------+  |  func   |
 717  *            * Specific flow, generally                 |      +---------+
 718  *            | bcast, mcast, loopback                   |           |
 719  *            v                                          +-----+-----+
 720  *      +==========+       +---------+                         |
 721  *      v valid L2 v--*--->| freemsg |                         v
 722  *      v  header  v  . No +---------+               +-------------------+
 723  *      +==========+                                 | return unconsumed |
 724  *            * . Yes                                |   frames to the   |
 725  *            v                                      |      caller       |
 726  *      +===========+                                +-------------------+
 727  *      v braodcast v      +----------------+                  ^
 728  *      v   flow?   v--*-->| mac_bcast_send |------------------+
 729  *      +===========+  .   +----------------+                  |
 730  *            |        . . Yes                                 |
 731  *       No . *                                                v
 732  *            |  +---------------------+  +---------------+  +----------+
 733  *            +->|mac_promisc_dispatch |->| mac_fix_cksum |->|   flow   |
 734  *               +---------------------+  +---------------+  | callback |
 735  *                                                           +----------+
 736  *
 737  *
 738  * In addition, many but not all of the routines, all rely on
 739  * mac_tx_softring_process as an entry point.
 740  *
 741  *
 742  *                                           . No             . No
 743  * +--------------------------+   +========+ .  +===========+ .  +-------------+
 744  * | mac_tx_soft_ring_process |-->v worker v-*->v out of tx v-*->|    goto     |
 745  * +--------------------------+   v only?  v    v  descr.?  v    | mac_tx_send |
 746  *                                +========+    +===========+    +-------------+
 747  *                              Yes . *               * . Yes           |
 748  *                   . No             v               |                 v
 749  *     v=========+   .          +===========+ . Yes   |     Yes .  +==========+
 750  *     v apppend v<--*----------v out of tx v-*-------+---------*--v returned v
 751  *     v mblk_t  v              v  descr.?  v         |            v frames?  v
 752  *     v chain   v              +===========+         |            +==========+
 753  *     +=========+                                    |                 *. No
 754  *         |                                          |                 v
 755  *         v                                          v           +------------+
 756  * +===================+           +----------------------+       |   done     |
 757  * v worker scheduled? v           | mac_tx_sring_enqueue |       | processing |
 758  * v Out of tx descr?  v           +----------------------+       +------------+
 759  * +===================+                      |
 760  *    |           |           . Yes           v
 761  *    * Yes       * No        .         +============+
 762  *    |           v         +-*---------v drop on no v
 763  *    |      +========+     v           v  TX desc?  v
 764  *    |      v  wake  v  +----------+   +============+
 765  *    |      v worker v  | mac_pkt_ |         * . No
 766  *    |      +========+  | drop     |         |         . Yes         . No
 767  *    |           |      +----------+         v         .             .
 768  *    |           |         v   ^     +===============+ .  +========+ .
 769  *    +--+--------+---------+   |     v Don't enqueue v-*->v ring   v-*----+
 770  *       |                      |     v     Set?      v    v empty? v      |
 771  *       |      +---------------+     +===============+    +========+      |
 772  *       |      |                            |                |            |
 773  *       |      |        +-------------------+                |            |
 774  *       |      *. Yes   |                          +---------+            |
 775  *       |      |        v                          v                      v
 776  *       |      |  +===========+               +========+      +--------------+
 777  *       |      +<-v At hiwat? v               v append v      |    return    |
 778  *       |         +===========+               v mblk_t v      | mblk_t chain |
 779  *       |                  * No               v chain  v      |   and flow   |
 780  *       |                  v                  +========+      |    control   |
 781  *       |               +=========+                |          |    cookie    |
 782  *       |               v  append v                v          +--------------+
 783  *       |               v  mblk_t v           +========+
 784  *       |               v  chain  v           v  wake  v   +------------+
 785  *       |               +=========+           v worker v-->|    done    |
 786  *       |                    |                +========+   | processing |
 787  *       |                    v       .. Yes                +------------+
 788  *       |               +=========+  .   +========+
 789  *       |               v  first  v--*-->v  wake  v
 790  *       |               v append? v      v worker v
 791  *       |               +=========+      +========+
 792  *       |                   |                |
 793  *       |              No . *                |
 794  *       |                   v                |
 795  *       |       +--------------+             |
 796  *       +------>|   Return     |             |
 797  *               | flow control |<------------+
 798  *               |   cookie     |
 799  *               +--------------+
 800  *
 801  *
 802  * The remaining images are all specific to each of the different transmission
 803  * modes.
 804  *
 805  * SRS TX DEFAULT
 806  *
 807  *      [ From Part 1 ]
 808  *             |
 809  *             v
 810  * +-------------------------+
 811  * | mac_tx_single_ring_mode |
 812  * +-------------------------+
 813  *            |
 814  *            |       . Yes
 815  *            v       .
 816  *       +==========+ .  +============+
 817  *       v   SRS    v-*->v   Try to   v---->---------------------+
 818  *       v backlog? v    v enqueue in v                          |
 819  *       +==========+    v     SRS    v-->------+                * . . Queue too
 820  *            |          +============+         * don't enqueue  |     deep or
 821  *            * . No         ^     |            | flag or at     |     drop flag
 822  *            |              |     v            | hiwat,         |
 823  *            v              |     |            | return    +---------+
 824  *     +-------------+       |     |            | cookie    | freemsg |
 825  *     |    goto     |-*-----+     |            |           +---------+
 826  *     | mac_tx_send | . returned  |            |                |
 827  *     +-------------+   mblk_t    |            |                |
 828  *            |                    |            |                |
 829  *            |                    |            |                |
 830  *            * . . all mblk_t     * queued,    |                |
 831  *            v     consumed       | may return |                |
 832  *     +-------------+             | tx cookie  |                |
 833  *     | SRS TX func |<------------+------------+----------------+
 834  *     |  completed  |
 835  *     +-------------+
 836  *
 837  * SRS_TX_SERIALIZE
 838  *
 839  *   +------------------------+
 840  *   | mac_tx_serializer_mode |
 841  *   +------------------------+
 842  *               |
 843  *               |        . No
 844  *               v        .
 845  *         +============+ .  +============+    +-------------+   +============+
 846  *         v srs being  v-*->v  set SRS   v--->|    goto     |-->v remove SRS v
 847  *         v processed? v    v proc flags v    | mac_tx_send |   v proc flag  v
 848  *         +============+    +============+    +-------------+   +============+
 849  *               |                                                     |
 850  *               * Yes                                                 |
 851  *               v                                       . No          v
 852  *      +--------------------+                           .        +==========+
 853  *      | mac_tx_srs_enqueue |  +------------------------*-----<--v returned v
 854  *      +--------------------+  |                                 v frames?  v
 855  *               |              |   . Yes                         +==========+
 856  *               |              |   .                                  |
 857  *               |              |   . +=========+                      v
 858  *               v              +-<-*-v queued  v     +--------------------+
 859  *        +-------------+       |     v frames? v<----| mac_tx_srs_enqueue |
 860  *        | SRS TX func |       |     +=========+     +--------------------+
 861  *        | completed,  |<------+         * . Yes
 862  *        | may return  |       |         v
 863  *        |   cookie    |       |     +========+
 864  *        +-------------+       +-<---v  wake  v
 865  *                                    v worker v
 866  *                                    +========+
 867  *
 868  *
 869  * SRS_TX_FANOUT
 870  *
 871  *                                             . Yes
 872  *   +--------------------+    +=============+ .   +--------------------------+
 873  *   | mac_tx_fanout_mode |--->v Have fanout v-*-->|           goto           |
 874  *   +--------------------+    v   hint?     v     | mac_rx_soft_ring_process |
 875  *                             +=============+     +--------------------------+
 876  *                                   * . No                    |
 877  *                                   v                         ^
 878  *                             +===========+                   |
 879  *                        +--->v for each  v           +===============+
 880  *                        |    v   mblk_t  v           v pick softring v
 881  *                 same   *    +===========+           v   from hash   v
 882  *                 hash   |          |                 +===============+
 883  *                        |          v                         |
 884  *                        |   +--------------+                 |
 885  *                        +---| mac_pkt_hash |--->*------------+
 886  *                            +--------------+    . different
 887  *                                                  hash or
 888  *                                                  done proc.
 889  * SRS_TX_AGGR                                      chain
 890  *
 891  *   +------------------+    +================================+
 892  *   | mac_tx_aggr_mode |--->v Use aggr capab function to     v
 893  *   +------------------+    v find appropriate tx ring.      v
 894  *                           v Applies hash based on aggr     v
 895  *                           v policy, see mac_tx_aggr_mode() v
 896  *                           +================================+
 897  *                                          |
 898  *                                          v
 899  *                           +-------------------------------+
 900  *                           |            goto               |
 901  *                           |  mac_rx_srs_soft_ring_process |
 902  *                           +-------------------------------+
 903  *
 904  *
 905  * SRS_TX_BW, SRS_TX_BW_FANOUT, SRS_TX_BW_AGGR
 906  *
 907  * Note, all three of these tx functions start from the same place --
 908  * mac_tx_bw_mode().
 909  *
 910  *  +----------------+
 911  *  | mac_tx_bw_mode |
 912  *  +----------------+
 913  *         |
 914  *         v          . No               . No               . Yes
 915  *  +==============+  .  +============+  .  +=============+ .  +=========+
 916  *  v  Out of BW?  v--*->v SRS empty? v--*->v  reset BW   v-*->v Bump BW v
 917  *  +==============+     +============+     v tick count? v    v Usage   v
 918  *         |                   |            +=============+    +=========+
 919  *         |         +---------+                   |                |
 920  *         |         |        +--------------------+                |
 921  *         |         |        |              +----------------------+
 922  *         v         |        v              v
 923  * +===============+ |  +==========+   +==========+      +------------------+
 924  * v Don't enqueue v |  v  set bw  v   v Is aggr? v--*-->|       goto       |
 925  * v   flag set?   v |  v enforced v   +==========+  .   | mac_tx_aggr_mode |-+
 926  * +===============+ |  +==========+         |       .   +------------------+ |
 927  *   |    Yes .*     |        |         No . *       .                        |
 928  *   |         |     |        |              |       . Yes                    |
 929  *   * . No    |     |        v              |                                |
 930  *   |  +---------+  |   +========+          v              +======+          |
 931  *   |  | freemsg |  |   v append v   +============+  . Yes v pick v          |
 932  *   |  +---------+  |   v mblk_t v   v Is fanout? v--*---->v ring v          |
 933  *   |      |        |   v chain  v   +============+        +======+          |
 934  *   +------+        |   +========+          |                  |             |
 935  *          v        |        |              v                  v             |
 936  *    +---------+    |        v       +-------------+ +--------------------+  |
 937  *    | return  |    |   +========+   |    goto     | |       goto         |  |
 938  *    |  flow   |    |   v wakeup v   | mac_tx_send | | mac_tx_fanout_mode |  |
 939  *    | control |    |   v worker v   +-------------+ +--------------------+  |
 940  *    | cookie  |    |   +========+          |                  |             |
 941  *    +---------+    |        |              |                  +------+------+
 942  *                   |        v              |                         |
 943  *                   |   +---------+         |                         v
 944  *                   |   | return  |   +============+           +------------+
 945  *                   |   |  flow   |   v unconsumed v-------+   |   done     |
 946  *                   |   | control |   v   frames?  v       |   | processing |
 947  *                   |   | cookie  |   +============+       |   +------------+
 948  *                   |   +---------+         |              |
 949  *                   |                  Yes  *              |
 950  *                   |                       |              |
 951  *                   |                 +===========+        |
 952  *                   |                 v subtract  v        |
 953  *                   |                 v unused bw v        |
 954  *                   |                 +===========+        |
 955  *                   |                       |              |
 956  *                   |                       v              |
 957  *                   |              +--------------------+  |
 958  *                   +------------->| mac_tx_srs_enqueue |  |
 959  *                                  +--------------------+  |
 960  *                                           |              |
 961  *                                           |              |
 962  *                                     +------------+       |
 963  *                                     |  return fc |       |
 964  *                                     | cookie and |<------+
 965  *                                     |    mblk_t  |
 966  *                                     +------------+
 967  */
 968 
 969 #include <sys/types.h>
 970 #include <sys/callb.h>
 971 #include <sys/sdt.h>
 972 #include <sys/strsubr.h>
 973 #include <sys/strsun.h>
 974 #include <sys/vlan.h>
 975 #include <sys/stack.h>
 976 #include <sys/archsystm.h>
 977 #include <inet/ipsec_impl.h>
 978 #include <inet/ip_impl.h>
 979 #include <inet/sadb.h>
 980 #include <inet/ipsecesp.h>
 981 #include <inet/ipsecah.h>
 982 #include <inet/ip6.h>
 983 
 984 #include <sys/mac_impl.h>
 985 #include <sys/mac_client_impl.h>
 986 #include <sys/mac_client_priv.h>
 987 #include <sys/mac_soft_ring.h>
 988 #include <sys/mac_flow_impl.h>
 989 
 990 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *,
 991     uintptr_t, uint16_t, mblk_t **);
 992 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *,
 993     uintptr_t, uint16_t, mblk_t **);
 994 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *,
 995     uintptr_t, uint16_t, mblk_t **);
 996 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *,
 997     uintptr_t, uint16_t, mblk_t **);
 998 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *,
 999     uintptr_t, uint16_t, mblk_t **);
1000 
1001 typedef struct mac_tx_mode_s {
1002         mac_tx_srs_mode_t       mac_tx_mode;
1003         mac_tx_func_t           mac_tx_func;
1004 } mac_tx_mode_t;
1005 
1006 /*
1007  * There are seven modes of operation on the Tx side. These modes get set
1008  * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode,
1009  * none of the other modes are user configurable. They get selected by
1010  * the system depending upon whether the link (or flow) has multiple Tx
1011  * rings or a bandwidth configured, or if the link is an aggr, etc.
1012  *
1013  * When the Tx SRS is operating in aggr mode (st_mode) or if there are
1014  * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or
1015  * otherwise) will have a soft ring associated with it. These soft rings
1016  * are stored in srs_tx_soft_rings[] array.
1017  *
1018  * Additionally in the case of aggr, there is the st_soft_rings[] array
1019  * in the mac_srs_tx_t structure. This array is used to store the same
1020  * set of soft rings that are present in srs_tx_soft_rings[] array but
1021  * in a different manner. The soft ring associated with the pseudo Tx
1022  * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[]
1023  * array. This helps in quickly getting the soft ring associated with the
1024  * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to
1025  * be used for transmit.
1026  */
1027 mac_tx_mode_t mac_tx_mode_list[] = {
1028         {SRS_TX_DEFAULT,        mac_tx_single_ring_mode},
1029         {SRS_TX_SERIALIZE,      mac_tx_serializer_mode},
1030         {SRS_TX_FANOUT,         mac_tx_fanout_mode},
1031         {SRS_TX_BW,             mac_tx_bw_mode},
1032         {SRS_TX_BW_FANOUT,      mac_tx_bw_mode},
1033         {SRS_TX_AGGR,           mac_tx_aggr_mode},
1034         {SRS_TX_BW_AGGR,        mac_tx_bw_mode}
1035 };
1036 
1037 /*
1038  * Soft Ring Set (SRS) - The Run time code that deals with
1039  * dynamic polling from the hardware, bandwidth enforcement,
1040  * fanout etc.
1041  *
1042  * We try to use H/W classification on NIC and assign traffic for
1043  * a MAC address to a particular Rx ring or ring group. There is a
1044  * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically
1045  * switches the underlying Rx ring between interrupt and
1046  * polling mode and enforces any specified B/W control.
1047  *
1048  * There is always a SRS created and tied to each H/W and S/W rule.
1049  * Whenever we create a H/W rule, we always add the the same rule to
1050  * S/W classifier and tie a SRS to it.
1051  *
1052  * In case a B/W control is specified, it is broken into bytes
1053  * per ticks and as soon as the quota for a tick is exhausted,
1054  * the underlying Rx ring is forced into poll mode for remainder of
1055  * the tick. The SRS poll thread only polls for bytes that are
1056  * allowed to come in the SRS. We typically let 4x the configured
1057  * B/W worth of packets to come in the SRS (to prevent unnecessary
1058  * drops due to bursts) but only process the specified amount.
1059  *
1060  * A MAC client (e.g. a VNIC or aggr) can have 1 or more
1061  * Rx rings (and corresponding SRSs) assigned to it. The SRS
1062  * in turn can have softrings to do protocol level fanout or
1063  * softrings to do S/W based fanout or both. In case the NIC
1064  * has no Rx rings, we do S/W classification to respective SRS.
1065  * The S/W classification rule is always setup and ready. This
1066  * allows the MAC layer to reassign Rx rings whenever needed
1067  * but packets still continue to flow via the default path and
1068  * getting S/W classified to correct SRS.
1069  *
1070  * The SRS's are used on both Tx and Rx side. They use the same
1071  * data structure but the processing routines have slightly different
1072  * semantics due to the fact that Rx side needs to do dynamic
1073  * polling etc.
1074  *
1075  * Dynamic Polling Notes
1076  * =====================
1077  *
1078  * Each Soft ring set is capable of switching its Rx ring between
1079  * interrupt and poll mode and actively 'polls' for packets in
1080  * poll mode. If the SRS is implementing a B/W limit, it makes
1081  * sure that only Max allowed packets are pulled in poll mode
1082  * and goes to poll mode as soon as B/W limit is exceeded. As
1083  * such, there are no overheads to implement B/W limits.
1084  *
1085  * In poll mode, its better to keep the pipeline going where the
1086  * SRS worker thread keeps processing packets and poll thread
1087  * keeps bringing more packets (specially if they get to run
1088  * on different CPUs). This also prevents the overheads associated
1089  * by excessive signalling (on NUMA machines, this can be
1090  * pretty devastating). The exception is latency optimized case
1091  * where worker thread does no work and interrupt and poll thread
1092  * are allowed to do their own drain.
1093  *
1094  * We use the following policy to control Dynamic Polling:
1095  * 1) We switch to poll mode anytime the processing
1096  *    thread causes a backlog to build up in SRS and
1097  *    its associated Soft Rings (sr_poll_pkt_cnt > 0).
1098  * 2) As long as the backlog stays under the low water
1099  *    mark (sr_lowat), we poll the H/W for more packets.
1100  * 3) If the backlog (sr_poll_pkt_cnt) exceeds low
1101  *    water mark, we stay in poll mode but don't poll
1102  *    the H/W for more packets.
1103  * 4) Anytime in polling mode, if we poll the H/W for
1104  *    packets and find nothing plus we have an existing
1105  *    backlog (sr_poll_pkt_cnt > 0), we stay in polling
1106  *    mode but don't poll the H/W for packets anymore
1107  *    (let the polling thread go to sleep).
1108  * 5) Once the backlog is relived (packets are processed)
1109  *    we reenable polling (by signalling the poll thread)
1110  *    only when the backlog dips below sr_poll_thres.
1111  * 6) sr_hiwat is used exclusively when we are not
1112  *    polling capable and is used to decide when to
1113  *    drop packets so the SRS queue length doesn't grow
1114  *    infinitely.
1115  *
1116  * NOTE: Also see the block level comment on top of mac_soft_ring.c
1117  */
1118 
1119 /*
1120  * mac_latency_optimize
1121  *
1122  * Controls whether the poll thread can process the packets inline
1123  * or let the SRS worker thread do the processing. This applies if
1124  * the SRS was not being processed. For latency sensitive traffic,
1125  * this needs to be true to allow inline processing. For throughput
1126  * under load, this should be false.
1127  *
1128  * This (and other similar) tunable should be rolled into a link
1129  * or flow specific workload hint that can be set using dladm
1130  * linkprop (instead of multiple such tunables).
1131  */
1132 boolean_t mac_latency_optimize = B_TRUE;
1133 
1134 /*
1135  * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN
1136  *
1137  * queue a mp or chain in soft ring set and increment the
1138  * local count (srs_count) for the SRS and the shared counter
1139  * (srs_poll_pkt_cnt - shared between SRS and its soft rings
1140  * to track the total unprocessed packets for polling to work
1141  * correctly).
1142  *
1143  * The size (total bytes queued) counters are incremented only
1144  * if we are doing B/W control.
1145  */
1146 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {         \
1147         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1148         if ((mac_srs)->srs_last != NULL)                             \
1149                 (mac_srs)->srs_last->b_next = (head);                     \
1150         else                                                            \
1151                 (mac_srs)->srs_first = (head);                               \
1152         (mac_srs)->srs_last = (tail);                                        \
1153         (mac_srs)->srs_count += count;                                       \
1154 }
1155 
1156 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {      \
1157         mac_srs_rx_t    *srs_rx = &(mac_srs)->srs_rx;                    \
1158                                                                         \
1159         MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz);          \
1160         srs_rx->sr_poll_pkt_cnt += count;                            \
1161         ASSERT(srs_rx->sr_poll_pkt_cnt > 0);                              \
1162         if ((mac_srs)->srs_type & SRST_BW_CONTROL) {                     \
1163                 (mac_srs)->srs_size += (sz);                         \
1164                 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock);         \
1165                 (mac_srs)->srs_bw->mac_bw_sz += (sz);                     \
1166                 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock);          \
1167         }                                                               \
1168 }
1169 
1170 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) {      \
1171         mac_srs->srs_state |= SRS_ENQUEUED;                          \
1172         MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz);          \
1173         if ((mac_srs)->srs_type & SRST_BW_CONTROL) {                     \
1174                 (mac_srs)->srs_size += (sz);                         \
1175                 (mac_srs)->srs_bw->mac_bw_sz += (sz);                     \
1176         }                                                               \
1177 }
1178 
1179 /*
1180  * Turn polling on routines
1181  */
1182 #define MAC_SRS_POLLING_ON(mac_srs) {                                   \
1183         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1184         if (((mac_srs)->srs_state &                                      \
1185             (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) {    \
1186                 (mac_srs)->srs_state |= SRS_POLLING;                 \
1187                 (void) mac_hwring_disable_intr((mac_ring_handle_t)      \
1188                     (mac_srs)->srs_ring);                            \
1189                 (mac_srs)->srs_rx.sr_poll_on++;                              \
1190         }                                                               \
1191 }
1192 
1193 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) {                            \
1194         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1195         if (((mac_srs)->srs_state &                                      \
1196             (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) ==              \
1197             (SRS_POLLING_CAPAB|SRS_WORKER)) {                           \
1198                 (mac_srs)->srs_state |= SRS_POLLING;                 \
1199                 (void) mac_hwring_disable_intr((mac_ring_handle_t)      \
1200                     (mac_srs)->srs_ring);                            \
1201                 (mac_srs)->srs_rx.sr_worker_poll_on++;                       \
1202         }                                                               \
1203 }
1204 
1205 /*
1206  * MAC_SRS_POLL_RING
1207  *
1208  * Signal the SRS poll thread to poll the underlying H/W ring
1209  * provided it wasn't already polling (SRS_GET_PKTS was set).
1210  *
1211  * Poll thread gets to run only from mac_rx_srs_drain() and only
1212  * if the drain was being done by the worker thread.
1213  */
1214 #define MAC_SRS_POLL_RING(mac_srs) {                                    \
1215         mac_srs_rx_t    *srs_rx = &(mac_srs)->srs_rx;                    \
1216                                                                         \
1217         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1218         srs_rx->sr_poll_thr_sig++;                                   \
1219         if (((mac_srs)->srs_state &                                      \
1220             (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) ==             \
1221                 (SRS_WORKER|SRS_POLLING_CAPAB)) {                       \
1222                 (mac_srs)->srs_state |= SRS_GET_PKTS;                        \
1223                 cv_signal(&(mac_srs)->srs_cv);                           \
1224         } else {                                                        \
1225                 srs_rx->sr_poll_thr_busy++;                          \
1226         }                                                               \
1227 }
1228 
1229 /*
1230  * MAC_SRS_CHECK_BW_CONTROL
1231  *
1232  * Check to see if next tick has started so we can reset the
1233  * SRS_BW_ENFORCED flag and allow more packets to come in the
1234  * system.
1235  */
1236 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) {                             \
1237         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1238         ASSERT(((mac_srs)->srs_type & SRST_TX) ||                        \
1239             MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock));             \
1240         clock_t now = ddi_get_lbolt();                                  \
1241         if ((mac_srs)->srs_bw->mac_bw_curr_time != now) {         \
1242                 (mac_srs)->srs_bw->mac_bw_curr_time = now;                \
1243                 (mac_srs)->srs_bw->mac_bw_used = 0;                       \
1244                 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED)        \
1245                         (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \
1246         }                                                               \
1247 }
1248 
1249 /*
1250  * MAC_SRS_WORKER_WAKEUP
1251  *
1252  * Wake up the SRS worker thread to process the queue as long as
1253  * no one else is processing the queue. If we are optimizing for
1254  * latency, we wake up the worker thread immediately or else we
1255  * wait mac_srs_worker_wakeup_ticks before worker thread gets
1256  * woken up.
1257  */
1258 int mac_srs_worker_wakeup_ticks = 0;
1259 #define MAC_SRS_WORKER_WAKEUP(mac_srs) {                                \
1260         ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock));                        \
1261         if (!((mac_srs)->srs_state & SRS_PROC) &&                        \
1262                 (mac_srs)->srs_tid == NULL) {                                \
1263                 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) ||          \
1264                         (mac_srs_worker_wakeup_ticks == 0))             \
1265                         cv_signal(&(mac_srs)->srs_async);                \
1266                 else                                                    \
1267                         (mac_srs)->srs_tid =                         \
1268                                 timeout(mac_srs_fire, (mac_srs),        \
1269                                         mac_srs_worker_wakeup_ticks);   \
1270         }                                                               \
1271 }
1272 
1273 #define TX_BANDWIDTH_MODE(mac_srs)                              \
1274         ((mac_srs)->srs_tx.st_mode == SRS_TX_BW ||           \
1275             (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \
1276             (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR)
1277 
1278 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) {                      \
1279         if (tx_mode == SRS_TX_BW_FANOUT)                                \
1280                 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\
1281         else                                                            \
1282                 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL);  \
1283 }
1284 
1285 /*
1286  * MAC_TX_SRS_BLOCK
1287  *
1288  * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED
1289  * will be set only if srs_tx_woken_up is FALSE. If
1290  * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived
1291  * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to
1292  * attempt to transmit again and not setting SRS_TX_BLOCKED does
1293  * that.
1294  */
1295 #define MAC_TX_SRS_BLOCK(srs, mp)       {                       \
1296         ASSERT(MUTEX_HELD(&(srs)->srs_lock));                    \
1297         if ((srs)->srs_tx.st_woken_up) {                     \
1298                 (srs)->srs_tx.st_woken_up = B_FALSE;         \
1299         } else {                                                \
1300                 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED));    \
1301                 (srs)->srs_state |= SRS_TX_BLOCKED;          \
1302                 (srs)->srs_tx.st_stat.mts_blockcnt++;                \
1303         }                                                       \
1304 }
1305 
1306 /*
1307  * MAC_TX_SRS_TEST_HIWAT
1308  *
1309  * Called before queueing a packet onto Tx SRS to test and set
1310  * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat.
1311  */
1312 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) {         \
1313         boolean_t enqueue = 1;                                          \
1314                                                                         \
1315         if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) {               \
1316                 /*                                                      \
1317                  * flow-controlled. Store srs in cookie so that it      \
1318                  * can be returned as mac_tx_cookie_t to client         \
1319                  */                                                     \
1320                 (srs)->srs_state |= SRS_TX_HIWAT;                    \
1321                 cookie = (mac_tx_cookie_t)srs;                          \
1322                 (srs)->srs_tx.st_hiwat_cnt++;                                \
1323                 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) {   \
1324                         /* increment freed stats */                     \
1325                         (srs)->srs_tx.st_stat.mts_sdrops += cnt;     \
1326                         /*                                              \
1327                          * b_prev may be set to the fanout hint         \
1328                          * hence can't use freemsg directly             \
1329                          */                                             \
1330                         mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);    \
1331                         DTRACE_PROBE1(tx_queued_hiwat,                  \
1332                             mac_soft_ring_set_t *, srs);                \
1333                         enqueue = 0;                                    \
1334                 }                                                       \
1335         }                                                               \
1336         if (enqueue)                                                    \
1337                 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz);       \
1338 }
1339 
1340 /* Some utility macros */
1341 #define MAC_SRS_BW_LOCK(srs)                                            \
1342         if (!(srs->srs_type & SRST_TX))                                  \
1343                 mutex_enter(&srs->srs_bw->mac_bw_lock);
1344 
1345 #define MAC_SRS_BW_UNLOCK(srs)                                          \
1346         if (!(srs->srs_type & SRST_TX))                                  \
1347                 mutex_exit(&srs->srs_bw->mac_bw_lock);
1348 
1349 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) {              \
1350         mac_pkt_drop(NULL, NULL, mp, B_FALSE);                  \
1351         /* increment freed stats */                             \
1352         mac_srs->srs_tx.st_stat.mts_sdrops++;                        \
1353         cookie = (mac_tx_cookie_t)srs;                          \
1354 }
1355 
1356 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) {          \
1357         mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT;                  \
1358         cookie = (mac_tx_cookie_t)srs;                                  \
1359         *ret_mp = mp_chain;                                             \
1360 }
1361 
1362 /*
1363  * MAC_RX_SRS_TOODEEP
1364  *
1365  * Macro called as part of receive-side processing to determine if handling
1366  * can occur in situ (in the interrupt thread) or if it should be left to a
1367  * worker thread.  Note that the constant used to make this determination is
1368  * not entirely made-up, and is a result of some emprical validation. That
1369  * said, the constant is left as a static variable to allow it to be
1370  * dynamically tuned in the field if and as needed.
1371  */
1372 static uintptr_t mac_rx_srs_stack_needed = 10240;
1373 static uint_t mac_rx_srs_stack_toodeep;
1374 
1375 #ifndef STACK_GROWTH_DOWN
1376 #error Downward stack growth assumed.
1377 #endif
1378 
1379 #define MAC_RX_SRS_TOODEEP() (STACK_BIAS + (uintptr_t)getfp() - \
1380         (uintptr_t)curthread->t_stkbase < mac_rx_srs_stack_needed && \
1381         ++mac_rx_srs_stack_toodeep)
1382 
1383 
1384 /*
1385  * Drop the rx packet and advance to the next one in the chain.
1386  */
1387 static void
1388 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp)
1389 {
1390         mac_srs_rx_t    *srs_rx = &srs->srs_rx;
1391 
1392         ASSERT(mp->b_next == NULL);
1393         mutex_enter(&srs->srs_lock);
1394         MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1);
1395         MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp));
1396         mutex_exit(&srs->srs_lock);
1397 
1398         srs_rx->sr_stat.mrs_sdrops++;
1399         freemsg(mp);
1400 }
1401 
1402 /* DATAPATH RUNTIME ROUTINES */
1403 
1404 /*
1405  * mac_srs_fire
1406  *
1407  * Timer callback routine for waking up the SRS worker thread.
1408  */
1409 static void
1410 mac_srs_fire(void *arg)
1411 {
1412         mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg;
1413 
1414         mutex_enter(&mac_srs->srs_lock);
1415         if (mac_srs->srs_tid == NULL) {
1416                 mutex_exit(&mac_srs->srs_lock);
1417                 return;
1418         }
1419 
1420         mac_srs->srs_tid = NULL;
1421         if (!(mac_srs->srs_state & SRS_PROC))
1422                 cv_signal(&mac_srs->srs_async);
1423 
1424         mutex_exit(&mac_srs->srs_lock);
1425 }
1426 
1427 /*
1428  * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack,
1429  * and it is used on the TX path.
1430  */
1431 #define HASH_HINT(hint) \
1432         ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8))
1433 
1434 
1435 /*
1436  * hash based on the src address, dst address and the port information.
1437  */
1438 #define HASH_ADDR(src, dst, ports)                                      \
1439         (ntohl((src) + (dst)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
1440         ((ports) >> 8) ^ (ports))
1441 
1442 #define COMPUTE_INDEX(key, sz)  (key % sz)
1443 
1444 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) {       \
1445         if ((tail) != NULL) {                                           \
1446                 ASSERT((tail)->b_next == NULL);                              \
1447                 (tail)->b_next = (mp);                                       \
1448         } else {                                                        \
1449                 ASSERT((head) == NULL);                                 \
1450                 (head) = (mp);                                          \
1451         }                                                               \
1452         (tail) = (mp);                                                  \
1453         (cnt)++;                                                        \
1454         if ((bw_ctl))                                                   \
1455                 (sz) += (sz0);                                          \
1456 }
1457 
1458 #define MAC_FANOUT_DEFAULT      0
1459 #define MAC_FANOUT_RND_ROBIN    1
1460 int mac_fanout_type = MAC_FANOUT_DEFAULT;
1461 
1462 #define MAX_SR_TYPES    3
1463 /* fanout types for port based hashing */
1464 enum pkt_type {
1465         V4_TCP = 0,
1466         V4_UDP,
1467         OTH,
1468         UNDEF
1469 };
1470 
1471 /*
1472  * Pair of local and remote ports in the transport header
1473  */
1474 #define PORTS_SIZE 4
1475 
1476 /*
1477  * This routine delivers packets destined for an SRS into one of the
1478  * protocol soft rings.
1479  *
1480  * Given a chain of packets we need to split it up into multiple sub
1481  * chains: TCP, UDP or OTH soft ring. Instead of entering the soft
1482  * ring one packet at a time, we want to enter it in the form of a
1483  * chain otherwise we get this start/stop behaviour where the worker
1484  * thread goes to sleep and then next packet comes in forcing it to
1485  * wake up.
1486  */
1487 static void
1488 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1489 {
1490         struct ether_header             *ehp;
1491         struct ether_vlan_header        *evhp;
1492         uint32_t                        sap;
1493         ipha_t                          *ipha;
1494         uint8_t                         *dstaddr;
1495         size_t                          hdrsize;
1496         mblk_t                          *mp;
1497         mblk_t                          *headmp[MAX_SR_TYPES];
1498         mblk_t                          *tailmp[MAX_SR_TYPES];
1499         int                             cnt[MAX_SR_TYPES];
1500         size_t                          sz[MAX_SR_TYPES];
1501         size_t                          sz1;
1502         boolean_t                       bw_ctl;
1503         boolean_t                       hw_classified;
1504         boolean_t                       dls_bypass;
1505         boolean_t                       is_ether;
1506         boolean_t                       is_unicast;
1507         enum pkt_type                   type;
1508         mac_client_impl_t               *mcip = mac_srs->srs_mcip;
1509 
1510         is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1511         bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1512 
1513         /*
1514          * If we don't have a Rx ring, S/W classification would have done
1515          * its job and its a packet meant for us. If we were polling on
1516          * the default ring (i.e. there was a ring assigned to this SRS),
1517          * then we need to make sure that the mac address really belongs
1518          * to us.
1519          */
1520         hw_classified = mac_srs->srs_ring != NULL &&
1521             mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1522 
1523         /*
1524          * Some clients, such as non-ethernet, need DLS processing in
1525          * the Rx path. Such clients clear the SRST_DLS_BYPASS flag.
1526          * DLS bypass may also be disabled via the
1527          * MCIS_RX_BYPASS_DISABLE flag.
1528          */
1529         dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1530             ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1531 
1532         bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *));
1533         bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *));
1534         bzero(cnt, MAX_SR_TYPES * sizeof (int));
1535         bzero(sz, MAX_SR_TYPES * sizeof (size_t));
1536 
1537         /*
1538          * We have a chain from SRS that we need to split across the
1539          * soft rings. The squeues for the TCP and IPv4 SAPs use their
1540          * own soft rings to allow polling from the squeue. The rest of
1541          * the packets are delivered on the OTH soft ring which cannot
1542          * be polled.
1543          */
1544         while (head != NULL) {
1545                 mp = head;
1546                 head = head->b_next;
1547                 mp->b_next = NULL;
1548 
1549                 type = OTH;
1550                 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1551 
1552                 if (is_ether) {
1553                         /*
1554                          * At this point we can be sure the packet at least
1555                          * has an ether header.
1556                          */
1557                         if (sz1 < sizeof (struct ether_header)) {
1558                                 mac_rx_drop_pkt(mac_srs, mp);
1559                                 continue;
1560                         }
1561                         ehp = (struct ether_header *)mp->b_rptr;
1562 
1563                         /*
1564                          * Determine if this is a VLAN or non-VLAN packet.
1565                          */
1566                         if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1567                                 evhp = (struct ether_vlan_header *)mp->b_rptr;
1568                                 sap = ntohs(evhp->ether_type);
1569                                 hdrsize = sizeof (struct ether_vlan_header);
1570 
1571                                 /*
1572                                  * Check if the VID of the packet, if
1573                                  * any, belongs to this client.
1574                                  * Technically, if this packet came up
1575                                  * via a HW classified ring then we
1576                                  * don't need to perform this check.
1577                                  * Perhaps a future optimization.
1578                                  */
1579                                 if (!mac_client_check_flow_vid(mcip,
1580                                     VLAN_ID(ntohs(evhp->ether_tci)))) {
1581                                         mac_rx_drop_pkt(mac_srs, mp);
1582                                         continue;
1583                                 }
1584                         } else {
1585                                 hdrsize = sizeof (struct ether_header);
1586                         }
1587                         is_unicast =
1588                             ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
1589                         dstaddr = (uint8_t *)&ehp->ether_dhost;
1590                 } else {
1591                         mac_header_info_t               mhi;
1592 
1593                         if (mac_header_info((mac_handle_t)mcip->mci_mip,
1594                             mp, &mhi) != 0) {
1595                                 mac_rx_drop_pkt(mac_srs, mp);
1596                                 continue;
1597                         }
1598                         hdrsize = mhi.mhi_hdrsize;
1599                         sap = mhi.mhi_bindsap;
1600                         is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
1601                         dstaddr = (uint8_t *)mhi.mhi_daddr;
1602                 }
1603 
1604                 if (!dls_bypass) {
1605                         FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1606                             cnt[type], bw_ctl, sz[type], sz1, mp);
1607                         continue;
1608                 }
1609 
1610                 if (sap == ETHERTYPE_IP) {
1611                         /*
1612                          * If we are H/W classified, but we have promisc
1613                          * on, then we need to check for the unicast address.
1614                          */
1615                         if (hw_classified && mcip->mci_promisc_list != NULL) {
1616                                 mac_address_t           *map;
1617 
1618                                 rw_enter(&mcip->mci_rw_lock, RW_READER);
1619                                 map = mcip->mci_unicast;
1620                                 if (bcmp(dstaddr, map->ma_addr,
1621                                     map->ma_len) == 0)
1622                                         type = UNDEF;
1623                                 rw_exit(&mcip->mci_rw_lock);
1624                         } else if (is_unicast) {
1625                                 type = UNDEF;
1626                         }
1627                 }
1628 
1629                 /*
1630                  * This needs to become a contract with the driver for
1631                  * the fast path.
1632                  *
1633                  * In the normal case the packet will have at least the L2
1634                  * header and the IP + Transport header in the same mblk.
1635                  * This is usually the case when the NIC driver sends up
1636                  * the packet. This is also true when the stack generates
1637                  * a packet that is looped back and when the stack uses the
1638                  * fastpath mechanism. The normal case is optimized for
1639                  * performance and may bypass DLS. All other cases go through
1640                  * the 'OTH' type path without DLS bypass.
1641                  */
1642                 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
1643                 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha))
1644                         type = OTH;
1645 
1646                 if (type == OTH) {
1647                         FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
1648                             cnt[type], bw_ctl, sz[type], sz1, mp);
1649                         continue;
1650                 }
1651 
1652                 ASSERT(type == UNDEF);
1653 
1654                 /*
1655                  * Determine the type from the IP protocol value. If
1656                  * classified as TCP or UDP, then update the read
1657                  * pointer to the beginning of the IP header.
1658                  * Otherwise leave the message as is for further
1659                  * processing by DLS.
1660                  */
1661                 switch (ipha->ipha_protocol) {
1662                 case IPPROTO_TCP:
1663                         type = V4_TCP;
1664                         mp->b_rptr += hdrsize;
1665                         break;
1666                 case IPPROTO_UDP:
1667                         type = V4_UDP;
1668                         mp->b_rptr += hdrsize;
1669                         break;
1670                 default:
1671                         type = OTH;
1672                         break;
1673                 }
1674 
1675                 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type],
1676                     bw_ctl, sz[type], sz1, mp);
1677         }
1678 
1679         for (type = V4_TCP; type < UNDEF; type++) {
1680                 if (headmp[type] != NULL) {
1681                         mac_soft_ring_t                 *softring;
1682 
1683                         ASSERT(tailmp[type]->b_next == NULL);
1684                         switch (type) {
1685                         case V4_TCP:
1686                                 softring = mac_srs->srs_tcp_soft_rings[0];
1687                                 break;
1688                         case V4_UDP:
1689                                 softring = mac_srs->srs_udp_soft_rings[0];
1690                                 break;
1691                         case OTH:
1692                                 softring = mac_srs->srs_oth_soft_rings[0];
1693                         }
1694                         mac_rx_soft_ring_process(mcip, softring,
1695                             headmp[type], tailmp[type], cnt[type], sz[type]);
1696                 }
1697         }
1698 }
1699 
1700 int     fanout_unaligned = 0;
1701 
1702 /*
1703  * The fanout routine for any clients with DLS bypass disabled or for
1704  * traffic classified as "other". Returns -1 on an error (drop the
1705  * packet due to a malformed packet), 0 on success, with values
1706  * written in *indx and *type.
1707  */
1708 static int
1709 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp,
1710     uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx)
1711 {
1712         ip6_t           *ip6h;
1713         ipha_t          *ipha;
1714         uint8_t         *whereptr;
1715         uint_t          hash;
1716         uint16_t        remlen;
1717         uint8_t         nexthdr;
1718         uint16_t        hdr_len;
1719         uint32_t        src_val, dst_val;
1720         boolean_t       modifiable = B_TRUE;
1721         boolean_t       v6;
1722 
1723         ASSERT(MBLKL(mp) >= hdrsize);
1724 
1725         if (sap == ETHERTYPE_IPV6) {
1726                 v6 = B_TRUE;
1727                 hdr_len = IPV6_HDR_LEN;
1728         } else if (sap == ETHERTYPE_IP) {
1729                 v6 = B_FALSE;
1730                 hdr_len = IP_SIMPLE_HDR_LENGTH;
1731         } else {
1732                 *indx = 0;
1733                 *type = OTH;
1734                 return (0);
1735         }
1736 
1737         ip6h = (ip6_t *)(mp->b_rptr + hdrsize);
1738         ipha = (ipha_t *)ip6h;
1739 
1740         if ((uint8_t *)ip6h == mp->b_wptr) {
1741                 /*
1742                  * The first mblk_t only includes the mac header.
1743                  * Note that it is safe to change the mp pointer here,
1744                  * as the subsequent operation does not assume mp
1745                  * points to the start of the mac header.
1746                  */
1747                 mp = mp->b_cont;
1748 
1749                 /*
1750                  * Make sure the IP header points to an entire one.
1751                  */
1752                 if (mp == NULL)
1753                         return (-1);
1754 
1755                 if (MBLKL(mp) < hdr_len) {
1756                         modifiable = (DB_REF(mp) == 1);
1757 
1758                         if (modifiable && !pullupmsg(mp, hdr_len))
1759                                 return (-1);
1760                 }
1761 
1762                 ip6h = (ip6_t *)mp->b_rptr;
1763                 ipha = (ipha_t *)ip6h;
1764         }
1765 
1766         if (!modifiable || !(OK_32PTR((char *)ip6h)) ||
1767             ((uint8_t *)ip6h + hdr_len > mp->b_wptr)) {
1768                 /*
1769                  * If either the IP header is not aligned, or it does not hold
1770                  * the complete simple structure (a pullupmsg() is not an
1771                  * option since it would result in an unaligned IP header),
1772                  * fanout to the default ring.
1773                  *
1774                  * Note that this may cause packet reordering.
1775                  */
1776                 *indx = 0;
1777                 *type = OTH;
1778                 fanout_unaligned++;
1779                 return (0);
1780         }
1781 
1782         /*
1783          * Extract next-header, full header length, and source-hash value
1784          * using v4/v6 specific fields.
1785          */
1786         if (v6) {
1787                 remlen = ntohs(ip6h->ip6_plen);
1788                 nexthdr = ip6h->ip6_nxt;
1789                 src_val = V4_PART_OF_V6(ip6h->ip6_src);
1790                 dst_val = V4_PART_OF_V6(ip6h->ip6_dst);
1791                 /*
1792                  * Do src based fanout if below tunable is set to B_TRUE or
1793                  * when mac_ip_hdr_length_v6() fails because of malformed
1794                  * packets or because mblks need to be concatenated using
1795                  * pullupmsg().
1796                  *
1797                  * Perform a version check to prevent parsing weirdness...
1798                  */
1799                 if (IPH_HDR_VERSION(ip6h) != IPV6_VERSION ||
1800                     !mac_ip_hdr_length_v6(ip6h, mp->b_wptr, &hdr_len, &nexthdr,
1801                     NULL)) {
1802                         goto src_dst_based_fanout;
1803                 }
1804         } else {
1805                 hdr_len = IPH_HDR_LENGTH(ipha);
1806                 remlen = ntohs(ipha->ipha_length) - hdr_len;
1807                 nexthdr = ipha->ipha_protocol;
1808                 src_val = (uint32_t)ipha->ipha_src;
1809                 dst_val = (uint32_t)ipha->ipha_dst;
1810                 /*
1811                  * Catch IPv4 fragment case here.  IPv6 has nexthdr == FRAG
1812                  * for its equivalent case.
1813                  */
1814                 if ((ntohs(ipha->ipha_fragment_offset_and_flags) &
1815                     (IPH_MF | IPH_OFFSET)) != 0) {
1816                         goto src_dst_based_fanout;
1817                 }
1818         }
1819         if (remlen < MIN_EHDR_LEN)
1820                 return (-1);
1821         whereptr = (uint8_t *)ip6h + hdr_len;
1822 
1823         /* If the transport is one of below, we do port/SPI based fanout */
1824         switch (nexthdr) {
1825         case IPPROTO_TCP:
1826         case IPPROTO_UDP:
1827         case IPPROTO_SCTP:
1828         case IPPROTO_ESP:
1829                 /*
1830                  * If the ports or SPI in the transport header is not part of
1831                  * the mblk, do src_based_fanout, instead of calling
1832                  * pullupmsg().
1833                  */
1834                 if (mp->b_cont == NULL || whereptr + PORTS_SIZE <= mp->b_wptr)
1835                         break;  /* out of switch... */
1836                 /* FALLTHRU */
1837         default:
1838                 goto src_dst_based_fanout;
1839         }
1840 
1841         switch (nexthdr) {
1842         case IPPROTO_TCP:
1843                 hash = HASH_ADDR(src_val, dst_val, *(uint32_t *)whereptr);
1844                 *indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
1845                 *type = OTH;
1846                 break;
1847         case IPPROTO_UDP:
1848         case IPPROTO_SCTP:
1849         case IPPROTO_ESP:
1850                 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
1851                         hash = HASH_ADDR(src_val, dst_val,
1852                             *(uint32_t *)whereptr);
1853                         *indx = COMPUTE_INDEX(hash,
1854                             mac_srs->srs_udp_ring_count);
1855                 } else {
1856                         *indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count;
1857                         mac_srs->srs_ind++;
1858                 }
1859                 *type = OTH;
1860                 break;
1861         }
1862         return (0);
1863 
1864 src_dst_based_fanout:
1865         hash = HASH_ADDR(src_val, dst_val, (uint32_t)0);
1866         *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count);
1867         *type = OTH;
1868         return (0);
1869 }
1870 
1871 /*
1872  * This routine delivers packets destined for an SRS into a soft ring member
1873  * of the set.
1874  *
1875  * Given a chain of packets we need to split it up into multiple sub
1876  * chains: TCP, UDP or OTH soft ring. Instead of entering the soft
1877  * ring one packet at a time, we want to enter it in the form of a
1878  * chain otherwise we get this start/stop behaviour where the worker
1879  * thread goes to sleep and then next packet comes in forcing it to
1880  * wake up.
1881  *
1882  * Note:
1883  * Since we know what is the maximum fanout possible, we create a 2D array
1884  * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz
1885  * variables so that we can enter the softrings with chain. We need the
1886  * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc
1887  * for each packet would be expensive). If we ever want to have the
1888  * ability to have unlimited fanout, we should probably declare a head,
1889  * tail, cnt, sz with each soft ring (a data struct which contains a softring
1890  * along with these members) and create an array of this uber struct so we
1891  * don't have to do kmem_alloc.
1892  */
1893 int     fanout_oth1 = 0;
1894 int     fanout_oth2 = 0;
1895 int     fanout_oth3 = 0;
1896 int     fanout_oth4 = 0;
1897 int     fanout_oth5 = 0;
1898 
1899 static void
1900 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
1901 {
1902         struct ether_header             *ehp;
1903         struct ether_vlan_header        *evhp;
1904         uint32_t                        sap;
1905         ipha_t                          *ipha;
1906         uint8_t                         *dstaddr;
1907         uint_t                          indx;
1908         size_t                          ports_offset;
1909         size_t                          ipha_len;
1910         size_t                          hdrsize;
1911         uint_t                          hash;
1912         mblk_t                          *mp;
1913         mblk_t                          *headmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1914         mblk_t                          *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT];
1915         int                             cnt[MAX_SR_TYPES][MAX_SR_FANOUT];
1916         size_t                          sz[MAX_SR_TYPES][MAX_SR_FANOUT];
1917         size_t                          sz1;
1918         boolean_t                       bw_ctl;
1919         boolean_t                       hw_classified;
1920         boolean_t                       dls_bypass;
1921         boolean_t                       is_ether;
1922         boolean_t                       is_unicast;
1923         int                             fanout_cnt;
1924         enum pkt_type                   type;
1925         mac_client_impl_t               *mcip = mac_srs->srs_mcip;
1926 
1927         is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
1928         bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
1929 
1930         /*
1931          * If we don't have a Rx ring, S/W classification would have done
1932          * its job and its a packet meant for us. If we were polling on
1933          * the default ring (i.e. there was a ring assigned to this SRS),
1934          * then we need to make sure that the mac address really belongs
1935          * to us.
1936          */
1937         hw_classified = mac_srs->srs_ring != NULL &&
1938             mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
1939 
1940         /*
1941          * Some clients, such as non Ethernet, need DLS processing in
1942          * the Rx path. Such clients clear the SRST_DLS_BYPASS flag.
1943          * DLS bypass may also be disabled via the
1944          * MCIS_RX_BYPASS_DISABLE flag, but this is only consumed by
1945          * sun4v vsw currently.
1946          */
1947         dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
1948             ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
1949 
1950         /*
1951          * Since the softrings are never destroyed and we always
1952          * create equal number of softrings for TCP, UDP and rest,
1953          * its OK to check one of them for count and use it without
1954          * any lock. In future, if soft rings get destroyed because
1955          * of reduction in fanout, we will need to ensure that happens
1956          * behind the SRS_PROC.
1957          */
1958         fanout_cnt = mac_srs->srs_tcp_ring_count;
1959 
1960         bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1961         bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
1962         bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int));
1963         bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t));
1964 
1965         /*
1966          * We got a chain from SRS that we need to send to the soft rings.
1967          * Since squeues for TCP & IPv4 SAP poll their soft rings (for
1968          * performance reasons), we need to separate out v4_tcp, v4_udp
1969          * and the rest goes in other.
1970          */
1971         while (head != NULL) {
1972                 mp = head;
1973                 head = head->b_next;
1974                 mp->b_next = NULL;
1975 
1976                 type = OTH;
1977                 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
1978 
1979                 if (is_ether) {
1980                         /*
1981                          * At this point we can be sure the packet at least
1982                          * has an ether header.
1983                          */
1984                         if (sz1 < sizeof (struct ether_header)) {
1985                                 mac_rx_drop_pkt(mac_srs, mp);
1986                                 continue;
1987                         }
1988                         ehp = (struct ether_header *)mp->b_rptr;
1989 
1990                         /*
1991                          * Determine if this is a VLAN or non-VLAN packet.
1992                          */
1993                         if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1994                                 evhp = (struct ether_vlan_header *)mp->b_rptr;
1995                                 sap = ntohs(evhp->ether_type);
1996                                 hdrsize = sizeof (struct ether_vlan_header);
1997 
1998                                 /*
1999                                  * Check if the VID of the packet, if
2000                                  * any, belongs to this client.
2001                                  * Technically, if this packet came up
2002                                  * via a HW classified ring then we
2003                                  * don't need to perform this check.
2004                                  * Perhaps a future optimization.
2005                                  */
2006                                 if (!mac_client_check_flow_vid(mcip,
2007                                     VLAN_ID(ntohs(evhp->ether_tci)))) {
2008                                         mac_rx_drop_pkt(mac_srs, mp);
2009                                         continue;
2010                                 }
2011                         } else {
2012                                 hdrsize = sizeof (struct ether_header);
2013                         }
2014                         is_unicast =
2015                             ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
2016                         dstaddr = (uint8_t *)&ehp->ether_dhost;
2017                 } else {
2018                         mac_header_info_t               mhi;
2019 
2020                         if (mac_header_info((mac_handle_t)mcip->mci_mip,
2021                             mp, &mhi) != 0) {
2022                                 mac_rx_drop_pkt(mac_srs, mp);
2023                                 continue;
2024                         }
2025                         hdrsize = mhi.mhi_hdrsize;
2026                         sap = mhi.mhi_bindsap;
2027                         is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
2028                         dstaddr = (uint8_t *)mhi.mhi_daddr;
2029                 }
2030 
2031                 if (!dls_bypass) {
2032                         if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2033                             hdrsize, &type, &indx) == -1) {
2034                                 mac_rx_drop_pkt(mac_srs, mp);
2035                                 continue;
2036                         }
2037 
2038                         FANOUT_ENQUEUE_MP(headmp[type][indx],
2039                             tailmp[type][indx], cnt[type][indx], bw_ctl,
2040                             sz[type][indx], sz1, mp);
2041                         continue;
2042                 }
2043 
2044                 /*
2045                  * If we are using the default Rx ring where H/W or S/W
2046                  * classification has not happened, we need to verify if
2047                  * this unicast packet really belongs to us.
2048                  */
2049                 if (sap == ETHERTYPE_IP) {
2050                         /*
2051                          * If we are H/W classified, but we have promisc
2052                          * on, then we need to check for the unicast address.
2053                          */
2054                         if (hw_classified && mcip->mci_promisc_list != NULL) {
2055                                 mac_address_t           *map;
2056 
2057                                 rw_enter(&mcip->mci_rw_lock, RW_READER);
2058                                 map = mcip->mci_unicast;
2059                                 if (bcmp(dstaddr, map->ma_addr,
2060                                     map->ma_len) == 0)
2061                                         type = UNDEF;
2062                                 rw_exit(&mcip->mci_rw_lock);
2063                         } else if (is_unicast) {
2064                                 type = UNDEF;
2065                         }
2066                 }
2067 
2068                 /*
2069                  * This needs to become a contract with the driver for
2070                  * the fast path.
2071                  */
2072 
2073                 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
2074                 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) {
2075                         type = OTH;
2076                         fanout_oth1++;
2077                 }
2078 
2079                 if (type != OTH) {
2080                         uint16_t        frag_offset_flags;
2081 
2082                         switch (ipha->ipha_protocol) {
2083                         case IPPROTO_TCP:
2084                         case IPPROTO_UDP:
2085                         case IPPROTO_SCTP:
2086                         case IPPROTO_ESP:
2087                                 ipha_len = IPH_HDR_LENGTH(ipha);
2088                                 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE >
2089                                     mp->b_wptr) {
2090                                         type = OTH;
2091                                         break;
2092                                 }
2093                                 frag_offset_flags =
2094                                     ntohs(ipha->ipha_fragment_offset_and_flags);
2095                                 if ((frag_offset_flags &
2096                                     (IPH_MF | IPH_OFFSET)) != 0) {
2097                                         type = OTH;
2098                                         fanout_oth3++;
2099                                         break;
2100                                 }
2101                                 ports_offset = hdrsize + ipha_len;
2102                                 break;
2103                         default:
2104                                 type = OTH;
2105                                 fanout_oth4++;
2106                                 break;
2107                         }
2108                 }
2109 
2110                 if (type == OTH) {
2111                         if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
2112                             hdrsize, &type, &indx) == -1) {
2113                                 mac_rx_drop_pkt(mac_srs, mp);
2114                                 continue;
2115                         }
2116 
2117                         FANOUT_ENQUEUE_MP(headmp[type][indx],
2118                             tailmp[type][indx], cnt[type][indx], bw_ctl,
2119                             sz[type][indx], sz1, mp);
2120                         continue;
2121                 }
2122 
2123                 ASSERT(type == UNDEF);
2124 
2125                 /*
2126                  * XXX-Sunay: We should hold srs_lock since ring_count
2127                  * below can change. But if we are always called from
2128                  * mac_rx_srs_drain and SRS_PROC is set, then we can
2129                  * enforce that ring_count can't be changed i.e.
2130                  * to change fanout type or ring count, the calling
2131                  * thread needs to be behind SRS_PROC.
2132                  */
2133                 switch (ipha->ipha_protocol) {
2134                 case IPPROTO_TCP:
2135                         /*
2136                          * Note that for ESP, we fanout on SPI and it is at the
2137                          * same offset as the 2x16-bit ports. So it is clumped
2138                          * along with TCP, UDP and SCTP.
2139                          */
2140                         hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2141                             *(uint32_t *)(mp->b_rptr + ports_offset));
2142                         indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
2143                         type = V4_TCP;
2144                         mp->b_rptr += hdrsize;
2145                         break;
2146                 case IPPROTO_UDP:
2147                 case IPPROTO_SCTP:
2148                 case IPPROTO_ESP:
2149                         if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
2150                                 hash = HASH_ADDR(ipha->ipha_src, ipha->ipha_dst,
2151                                     *(uint32_t *)(mp->b_rptr + ports_offset));
2152                                 indx = COMPUTE_INDEX(hash,
2153                                     mac_srs->srs_udp_ring_count);
2154                         } else {
2155                                 indx = mac_srs->srs_ind %
2156                                     mac_srs->srs_udp_ring_count;
2157                                 mac_srs->srs_ind++;
2158                         }
2159                         type = V4_UDP;
2160                         mp->b_rptr += hdrsize;
2161                         break;
2162                 default:
2163                         indx = 0;
2164                         type = OTH;
2165                 }
2166 
2167                 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx],
2168                     cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp);
2169         }
2170 
2171         for (type = V4_TCP; type < UNDEF; type++) {
2172                 int     i;
2173 
2174                 for (i = 0; i < fanout_cnt; i++) {
2175                         if (headmp[type][i] != NULL) {
2176                                 mac_soft_ring_t *softring;
2177 
2178                                 ASSERT(tailmp[type][i]->b_next == NULL);
2179                                 switch (type) {
2180                                 case V4_TCP:
2181                                         softring =
2182                                             mac_srs->srs_tcp_soft_rings[i];
2183                                         break;
2184                                 case V4_UDP:
2185                                         softring =
2186                                             mac_srs->srs_udp_soft_rings[i];
2187                                         break;
2188                                 case OTH:
2189                                         softring =
2190                                             mac_srs->srs_oth_soft_rings[i];
2191                                         break;
2192                                 }
2193                                 mac_rx_soft_ring_process(mcip,
2194                                     softring, headmp[type][i], tailmp[type][i],
2195                                     cnt[type][i], sz[type][i]);
2196                         }
2197                 }
2198         }
2199 }
2200 
2201 #define SRS_BYTES_TO_PICKUP     150000
2202 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP;
2203 
2204 /*
2205  * mac_rx_srs_poll_ring
2206  *
2207  * This SRS Poll thread uses this routine to poll the underlying hardware
2208  * Rx ring to get a chain of packets. It can inline process that chain
2209  * if mac_latency_optimize is set (default) or signal the SRS worker thread
2210  * to do the remaining processing.
2211  *
2212  * Since packets come in the system via interrupt or poll path, we also
2213  * update the stats and deal with promiscous clients here.
2214  */
2215 void
2216 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs)
2217 {
2218         kmutex_t                *lock = &mac_srs->srs_lock;
2219         kcondvar_t              *async = &mac_srs->srs_cv;
2220         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
2221         mblk_t                  *head, *tail, *mp;
2222         callb_cpr_t             cprinfo;
2223         ssize_t                 bytes_to_pickup;
2224         size_t                  sz;
2225         int                     count;
2226         mac_client_impl_t       *smcip;
2227 
2228         CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll");
2229         mutex_enter(lock);
2230 
2231 start:
2232         for (;;) {
2233                 if (mac_srs->srs_state & SRS_PAUSE)
2234                         goto done;
2235 
2236                 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2237                 cv_wait(async, lock);
2238                 CALLB_CPR_SAFE_END(&cprinfo, lock);
2239 
2240                 if (mac_srs->srs_state & SRS_PAUSE)
2241                         goto done;
2242 
2243 check_again:
2244                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2245                         /*
2246                          * We pick as many bytes as we are allowed to queue.
2247                          * Its possible that we will exceed the total
2248                          * packets queued in case this SRS is part of the
2249                          * Rx ring group since > 1 poll thread can be pulling
2250                          * upto the max allowed packets at the same time
2251                          * but that should be OK.
2252                          */
2253                         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2254                         bytes_to_pickup =
2255                             mac_srs->srs_bw->mac_bw_drop_threshold -
2256                             mac_srs->srs_bw->mac_bw_sz;
2257                         /*
2258                          * We shouldn't have been signalled if we
2259                          * have 0 or less bytes to pick but since
2260                          * some of the bytes accounting is driver
2261                          * dependant, we do the safety check.
2262                          */
2263                         if (bytes_to_pickup < 0)
2264                                 bytes_to_pickup = 0;
2265                         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2266                 } else {
2267                         /*
2268                          * ToDO: Need to change the polling API
2269                          * to add a packet count and a flag which
2270                          * tells the driver whether we want packets
2271                          * based on a count, or bytes, or all the
2272                          * packets queued in the driver/HW. This
2273                          * way, we never have to check the limits
2274                          * on poll path. We truly let only as many
2275                          * packets enter the system as we are willing
2276                          * to process or queue.
2277                          *
2278                          * Something along the lines of
2279                          * pkts_to_pickup = mac_soft_ring_max_q_cnt -
2280                          *      mac_srs->srs_poll_pkt_cnt
2281                          */
2282 
2283                         /*
2284                          * Since we are not doing B/W control, pick
2285                          * as many packets as allowed.
2286                          */
2287                         bytes_to_pickup = max_bytes_to_pickup;
2288                 }
2289 
2290                 /* Poll the underlying Hardware */
2291                 mutex_exit(lock);
2292                 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup);
2293                 mutex_enter(lock);
2294 
2295                 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
2296                     SRS_POLL_THR_OWNER);
2297 
2298                 mp = tail = head;
2299                 count = 0;
2300                 sz = 0;
2301                 while (mp != NULL) {
2302                         tail = mp;
2303                         sz += msgdsize(mp);
2304                         mp = mp->b_next;
2305                         count++;
2306                 }
2307 
2308                 if (head != NULL) {
2309                         tail->b_next = NULL;
2310                         smcip = mac_srs->srs_mcip;
2311 
2312                         SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz);
2313                         SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count);
2314 
2315                         /*
2316                          * If there are any promiscuous mode callbacks
2317                          * defined for this MAC client, pass them a copy
2318                          * if appropriate and also update the counters.
2319                          */
2320                         if (smcip != NULL) {
2321                                 if (smcip->mci_mip->mi_promisc_list != NULL) {
2322                                         mutex_exit(lock);
2323                                         mac_promisc_dispatch(smcip->mci_mip,
2324                                             head, NULL);
2325                                         mutex_enter(lock);
2326                                 }
2327                         }
2328                         if (mac_srs->srs_type & SRST_BW_CONTROL) {
2329                                 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2330                                 mac_srs->srs_bw->mac_bw_polled += sz;
2331                                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2332                         }
2333                         MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail,
2334                             count, sz);
2335                         if (count <= 10)
2336                                 srs_rx->sr_stat.mrs_chaincntundr10++;
2337                         else if (count > 10 && count <= 50)
2338                                 srs_rx->sr_stat.mrs_chaincnt10to50++;
2339                         else
2340                                 srs_rx->sr_stat.mrs_chaincntover50++;
2341                 }
2342 
2343                 /*
2344                  * We are guaranteed that SRS_PROC will be set if we
2345                  * are here. Also, poll thread gets to run only if
2346                  * the drain was being done by a worker thread although
2347                  * its possible that worker thread is still running
2348                  * and poll thread was sent down to keep the pipeline
2349                  * going instead of doing a complete drain and then
2350                  * trying to poll the NIC.
2351                  *
2352                  * So we need to check SRS_WORKER flag to make sure
2353                  * that the worker thread is not processing the queue
2354                  * in parallel to us. The flags and conditions are
2355                  * protected by the srs_lock to prevent any race. We
2356                  * ensure that we don't drop the srs_lock from now
2357                  * till the end and similarly we don't drop the srs_lock
2358                  * in mac_rx_srs_drain() till similar condition check
2359                  * are complete. The mac_rx_srs_drain() needs to ensure
2360                  * that SRS_WORKER flag remains set as long as its
2361                  * processing the queue.
2362                  */
2363                 if (!(mac_srs->srs_state & SRS_WORKER) &&
2364                     (mac_srs->srs_first != NULL)) {
2365                         /*
2366                          * We have packets to process and worker thread
2367                          * is not running. Check to see if poll thread is
2368                          * allowed to process.
2369                          */
2370                         if (mac_srs->srs_state & SRS_LATENCY_OPT) {
2371                                 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC);
2372                                 if (!(mac_srs->srs_state & SRS_PAUSE) &&
2373                                     srs_rx->sr_poll_pkt_cnt <=
2374                                     srs_rx->sr_lowat) {
2375                                         srs_rx->sr_poll_again++;
2376                                         goto check_again;
2377                                 }
2378                                 /*
2379                                  * We are already above low water mark
2380                                  * so stay in the polling mode but no
2381                                  * need to poll. Once we dip below
2382                                  * the polling threshold, the processing
2383                                  * thread (soft ring) will signal us
2384                                  * to poll again (MAC_UPDATE_SRS_COUNT)
2385                                  */
2386                                 srs_rx->sr_poll_drain_no_poll++;
2387                                 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2388                                 /*
2389                                  * In B/W control case, its possible
2390                                  * that the backlog built up due to
2391                                  * B/W limit being reached and packets
2392                                  * are queued only in SRS. In this case,
2393                                  * we should schedule worker thread
2394                                  * since no one else will wake us up.
2395                                  */
2396                                 if ((mac_srs->srs_type & SRST_BW_CONTROL) &&
2397                                     (mac_srs->srs_tid == NULL)) {
2398                                         mac_srs->srs_tid =
2399                                             timeout(mac_srs_fire, mac_srs, 1);
2400                                         srs_rx->sr_poll_worker_wakeup++;
2401                                 }
2402                         } else {
2403                                 /*
2404                                  * Wakeup the worker thread for more processing.
2405                                  * We optimize for throughput in this case.
2406                                  */
2407                                 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
2408                                 MAC_SRS_WORKER_WAKEUP(mac_srs);
2409                                 srs_rx->sr_poll_sig_worker++;
2410                         }
2411                 } else if ((mac_srs->srs_first == NULL) &&
2412                     !(mac_srs->srs_state & SRS_WORKER)) {
2413                         /*
2414                          * There is nothing queued in SRS and
2415                          * no worker thread running. Plus we
2416                          * didn't get anything from the H/W
2417                          * as well (head == NULL);
2418                          */
2419                         ASSERT(head == NULL);
2420                         mac_srs->srs_state &=
2421                             ~(SRS_PROC|SRS_GET_PKTS);
2422 
2423                         /*
2424                          * If we have a packets in soft ring, don't allow
2425                          * more packets to come into this SRS by keeping the
2426                          * interrupts off but not polling the H/W. The
2427                          * poll thread will get signaled as soon as
2428                          * srs_poll_pkt_cnt dips below poll threshold.
2429                          */
2430                         if (srs_rx->sr_poll_pkt_cnt == 0) {
2431                                 srs_rx->sr_poll_intr_enable++;
2432                                 MAC_SRS_POLLING_OFF(mac_srs);
2433                         } else {
2434                                 /*
2435                                  * We know nothing is queued in SRS
2436                                  * since we are here after checking
2437                                  * srs_first is NULL. The backlog
2438                                  * is entirely due to packets queued
2439                                  * in Soft ring which will wake us up
2440                                  * and get the interface out of polling
2441                                  * mode once the backlog dips below
2442                                  * sr_poll_thres.
2443                                  */
2444                                 srs_rx->sr_poll_no_poll++;
2445                         }
2446                 } else {
2447                         /*
2448                          * Worker thread is already running.
2449                          * Nothing much to do. If the polling
2450                          * was enabled, worker thread will deal
2451                          * with that.
2452                          */
2453                         mac_srs->srs_state &= ~SRS_GET_PKTS;
2454                         srs_rx->sr_poll_goto_sleep++;
2455                 }
2456         }
2457 done:
2458         mac_srs->srs_state |= SRS_POLL_THR_QUIESCED;
2459         cv_signal(&mac_srs->srs_async);
2460         /*
2461          * If this is a temporary quiesce then wait for the restart signal
2462          * from the srs worker. Then clear the flags and signal the srs worker
2463          * to ensure a positive handshake and go back to start.
2464          */
2465         while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART)))
2466                 cv_wait(async, lock);
2467         if (mac_srs->srs_state & SRS_POLL_THR_RESTART) {
2468                 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
2469                 mac_srs->srs_state &=
2470                     ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART);
2471                 cv_signal(&mac_srs->srs_async);
2472                 goto start;
2473         } else {
2474                 mac_srs->srs_state |= SRS_POLL_THR_EXITED;
2475                 cv_signal(&mac_srs->srs_async);
2476                 CALLB_CPR_EXIT(&cprinfo);
2477                 thread_exit();
2478         }
2479 }
2480 
2481 /*
2482  * mac_srs_pick_chain
2483  *
2484  * In Bandwidth control case, checks how many packets can be processed
2485  * and return them in a sub chain.
2486  */
2487 static mblk_t *
2488 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail,
2489     size_t *chain_sz, int *chain_cnt)
2490 {
2491         mblk_t                  *head = NULL;
2492         mblk_t                  *tail = NULL;
2493         size_t                  sz;
2494         size_t                  tsz = 0;
2495         int                     cnt = 0;
2496         mblk_t                  *mp;
2497 
2498         ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2499         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2500         if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <=
2501             mac_srs->srs_bw->mac_bw_limit) ||
2502             (mac_srs->srs_bw->mac_bw_limit == 0)) {
2503                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2504                 head = mac_srs->srs_first;
2505                 mac_srs->srs_first = NULL;
2506                 *chain_tail = mac_srs->srs_last;
2507                 mac_srs->srs_last = NULL;
2508                 *chain_sz = mac_srs->srs_size;
2509                 *chain_cnt = mac_srs->srs_count;
2510                 mac_srs->srs_count = 0;
2511                 mac_srs->srs_size = 0;
2512                 return (head);
2513         }
2514 
2515         /*
2516          * Can't clear the entire backlog.
2517          * Need to find how many packets to pick
2518          */
2519         ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock));
2520         while ((mp = mac_srs->srs_first) != NULL) {
2521                 sz = msgdsize(mp);
2522                 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) >
2523                     mac_srs->srs_bw->mac_bw_limit) {
2524                         if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED))
2525                                 mac_srs->srs_bw->mac_bw_state |=
2526                                     SRS_BW_ENFORCED;
2527                         break;
2528                 }
2529 
2530                 /*
2531                  * The _size & cnt is  decremented from the softrings
2532                  * when they send up the packet for polling to work
2533                  * properly.
2534                  */
2535                 tsz += sz;
2536                 cnt++;
2537                 mac_srs->srs_count--;
2538                 mac_srs->srs_size -= sz;
2539                 if (tail != NULL)
2540                         tail->b_next = mp;
2541                 else
2542                         head = mp;
2543                 tail = mp;
2544                 mac_srs->srs_first = mac_srs->srs_first->b_next;
2545         }
2546         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2547         if (mac_srs->srs_first == NULL)
2548                 mac_srs->srs_last = NULL;
2549 
2550         if (tail != NULL)
2551                 tail->b_next = NULL;
2552         *chain_tail = tail;
2553         *chain_cnt = cnt;
2554         *chain_sz = tsz;
2555 
2556         return (head);
2557 }
2558 
2559 /*
2560  * mac_rx_srs_drain
2561  *
2562  * The SRS drain routine. Gets to run to clear the queue. Any thread
2563  * (worker, interrupt, poll) can call this based on processing model.
2564  * The first thing we do is disable interrupts if possible and then
2565  * drain the queue. we also try to poll the underlying hardware if
2566  * there is a dedicated hardware Rx ring assigned to this SRS.
2567  *
2568  * There is a equivalent drain routine in bandwidth control mode
2569  * mac_rx_srs_drain_bw. There is some code duplication between the two
2570  * routines but they are highly performance sensitive and are easier
2571  * to read/debug if they stay separate. Any code changes here might
2572  * also apply to mac_rx_srs_drain_bw as well.
2573  */
2574 void
2575 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2576 {
2577         mblk_t                  *head;
2578         mblk_t                  *tail;
2579         timeout_id_t            tid;
2580         int                     cnt = 0;
2581         mac_client_impl_t       *mcip = mac_srs->srs_mcip;
2582         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
2583 
2584         ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2585         ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL));
2586 
2587         /* If we are blanked i.e. can't do upcalls, then we are done */
2588         if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2589                 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2590                     (mac_srs->srs_state & SRS_PAUSE));
2591                 goto out;
2592         }
2593 
2594         if (mac_srs->srs_first == NULL)
2595                 goto out;
2596 
2597         if (!(mac_srs->srs_state & SRS_LATENCY_OPT) &&
2598             (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) {
2599                 /*
2600                  * In the normal case, the SRS worker thread does no
2601                  * work and we wait for a backlog to build up before
2602                  * we switch into polling mode. In case we are
2603                  * optimizing for throughput, we use the worker thread
2604                  * as well. The goal is to let worker thread process
2605                  * the queue and poll thread to feed packets into
2606                  * the queue. As such, we should signal the poll
2607                  * thread to try and get more packets.
2608                  *
2609                  * We could have pulled this check in the POLL_RING
2610                  * macro itself but keeping it explicit here makes
2611                  * the architecture more human understandable.
2612                  */
2613                 MAC_SRS_POLL_RING(mac_srs);
2614         }
2615 
2616 again:
2617         head = mac_srs->srs_first;
2618         mac_srs->srs_first = NULL;
2619         tail = mac_srs->srs_last;
2620         mac_srs->srs_last = NULL;
2621         cnt = mac_srs->srs_count;
2622         mac_srs->srs_count = 0;
2623 
2624         ASSERT(head != NULL);
2625         ASSERT(tail != NULL);
2626 
2627         if ((tid = mac_srs->srs_tid) != NULL)
2628                 mac_srs->srs_tid = NULL;
2629 
2630         mac_srs->srs_state |= (SRS_PROC|proc_type);
2631 
2632         /*
2633          * mcip is NULL for broadcast and multicast flows. The promisc
2634          * callbacks for broadcast and multicast packets are delivered from
2635          * mac_rx() and we don't need to worry about that case in this path
2636          */
2637         if (mcip != NULL) {
2638                 if (mcip->mci_promisc_list != NULL) {
2639                         mutex_exit(&mac_srs->srs_lock);
2640                         mac_promisc_client_dispatch(mcip, head);
2641                         mutex_enter(&mac_srs->srs_lock);
2642                 }
2643                 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2644                         mutex_exit(&mac_srs->srs_lock);
2645                         mac_protect_intercept_dynamic(mcip, head);
2646                         mutex_enter(&mac_srs->srs_lock);
2647                 }
2648         }
2649 
2650         /*
2651          * Check if SRS itself is doing the processing. This direct
2652          * path applies only when subflows are present.
2653          */
2654         if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2655                 mac_direct_rx_t         proc;
2656                 void                    *arg1;
2657                 mac_resource_handle_t   arg2;
2658 
2659                 /*
2660                  * This is the case when a Rx is directly
2661                  * assigned and we have a fully classified
2662                  * protocol chain. We can deal with it in
2663                  * one shot.
2664                  */
2665                 proc = srs_rx->sr_func;
2666                 arg1 = srs_rx->sr_arg1;
2667                 arg2 = srs_rx->sr_arg2;
2668 
2669                 mac_srs->srs_state |= SRS_CLIENT_PROC;
2670                 mutex_exit(&mac_srs->srs_lock);
2671                 if (tid != NULL) {
2672                         (void) untimeout(tid);
2673                         tid = NULL;
2674                 }
2675 
2676                 proc(arg1, arg2, head, NULL);
2677                 /*
2678                  * Decrement the size and count here itelf
2679                  * since the packet has been processed.
2680                  */
2681                 mutex_enter(&mac_srs->srs_lock);
2682                 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2683                 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2684                         cv_signal(&mac_srs->srs_client_cv);
2685                 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2686         } else {
2687                 /* Some kind of softrings based fanout is required */
2688                 mutex_exit(&mac_srs->srs_lock);
2689                 if (tid != NULL) {
2690                         (void) untimeout(tid);
2691                         tid = NULL;
2692                 }
2693 
2694                 /*
2695                  * Since the fanout routines can deal with chains,
2696                  * shoot the entire chain up.
2697                  */
2698                 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2699                         mac_rx_srs_fanout(mac_srs, head);
2700                 else
2701                         mac_rx_srs_proto_fanout(mac_srs, head);
2702                 mutex_enter(&mac_srs->srs_lock);
2703         }
2704 
2705         if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) &&
2706             (mac_srs->srs_first != NULL)) {
2707                 /*
2708                  * More packets arrived while we were clearing the
2709                  * SRS. This can be possible because of one of
2710                  * three conditions below:
2711                  * 1) The driver is using multiple worker threads
2712                  *    to send the packets to us.
2713                  * 2) The driver has a race in switching
2714                  *    between interrupt and polling mode or
2715                  * 3) Packets are arriving in this SRS via the
2716                  *    S/W classification as well.
2717                  *
2718                  * We should switch to polling mode and see if we
2719                  * need to send the poll thread down. Also, signal
2720                  * the worker thread to process whats just arrived.
2721                  */
2722                 MAC_SRS_POLLING_ON(mac_srs);
2723                 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) {
2724                         srs_rx->sr_drain_poll_sig++;
2725                         MAC_SRS_POLL_RING(mac_srs);
2726                 }
2727 
2728                 /*
2729                  * If we didn't signal the poll thread, we need
2730                  * to deal with the pending packets ourselves.
2731                  */
2732                 if (proc_type == SRS_WORKER) {
2733                         srs_rx->sr_drain_again++;
2734                         goto again;
2735                 } else {
2736                         srs_rx->sr_drain_worker_sig++;
2737                         cv_signal(&mac_srs->srs_async);
2738                 }
2739         }
2740 
2741 out:
2742         if (mac_srs->srs_state & SRS_GET_PKTS) {
2743                 /*
2744                  * Poll thread is already running. Leave the
2745                  * SRS_RPOC set and hand over the control to
2746                  * poll thread.
2747                  */
2748                 mac_srs->srs_state &= ~proc_type;
2749                 srs_rx->sr_drain_poll_running++;
2750                 return;
2751         }
2752 
2753         /*
2754          * Even if there are no packets queued in SRS, we
2755          * need to make sure that the shared counter is
2756          * clear and any associated softrings have cleared
2757          * all the backlog. Otherwise, leave the interface
2758          * in polling mode and the poll thread will get
2759          * signalled once the count goes down to zero.
2760          *
2761          * If someone is already draining the queue (SRS_PROC is
2762          * set) when the srs_poll_pkt_cnt goes down to zero,
2763          * then it means that drain is already running and we
2764          * will turn off polling at that time if there is
2765          * no backlog.
2766          *
2767          * As long as there are packets queued either
2768          * in soft ring set or its soft rings, we will leave
2769          * the interface in polling mode (even if the drain
2770          * was done being the interrupt thread). We signal
2771          * the poll thread as well if we have dipped below
2772          * low water mark.
2773          *
2774          * NOTE: We can't use the MAC_SRS_POLLING_ON macro
2775          * since that turn polling on only for worker thread.
2776          * Its not worth turning polling on for interrupt
2777          * thread (since NIC will not issue another interrupt)
2778          * unless a backlog builds up.
2779          */
2780         if ((srs_rx->sr_poll_pkt_cnt > 0) &&
2781             (mac_srs->srs_state & SRS_POLLING_CAPAB)) {
2782                 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2783                 srs_rx->sr_drain_keep_polling++;
2784                 MAC_SRS_POLLING_ON(mac_srs);
2785                 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)
2786                         MAC_SRS_POLL_RING(mac_srs);
2787                 return;
2788         }
2789 
2790         /* Nothing else to do. Get out of poll mode */
2791         MAC_SRS_POLLING_OFF(mac_srs);
2792         mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2793         srs_rx->sr_drain_finish_intr++;
2794 }
2795 
2796 /*
2797  * mac_rx_srs_drain_bw
2798  *
2799  * The SRS BW drain routine. Gets to run to clear the queue. Any thread
2800  * (worker, interrupt, poll) can call this based on processing model.
2801  * The first thing we do is disable interrupts if possible and then
2802  * drain the queue. we also try to poll the underlying hardware if
2803  * there is a dedicated hardware Rx ring assigned to this SRS.
2804  *
2805  * There is a equivalent drain routine in non bandwidth control mode
2806  * mac_rx_srs_drain. There is some code duplication between the two
2807  * routines but they are highly performance sensitive and are easier
2808  * to read/debug if they stay separate. Any code changes here might
2809  * also apply to mac_rx_srs_drain as well.
2810  */
2811 void
2812 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
2813 {
2814         mblk_t                  *head;
2815         mblk_t                  *tail;
2816         timeout_id_t            tid;
2817         size_t                  sz = 0;
2818         int                     cnt = 0;
2819         mac_client_impl_t       *mcip = mac_srs->srs_mcip;
2820         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
2821         clock_t                 now;
2822 
2823         ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
2824         ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
2825 again:
2826         /* Check if we are doing B/W control */
2827         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2828         now = ddi_get_lbolt();
2829         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
2830                 mac_srs->srs_bw->mac_bw_curr_time = now;
2831                 mac_srs->srs_bw->mac_bw_used = 0;
2832                 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
2833                         mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED;
2834         } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) {
2835                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2836                 goto done;
2837         } else if (mac_srs->srs_bw->mac_bw_used >
2838             mac_srs->srs_bw->mac_bw_limit) {
2839                 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
2840                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2841                 goto done;
2842         }
2843         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2844 
2845         /* If we are blanked i.e. can't do upcalls, then we are done */
2846         if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
2847                 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
2848                     (mac_srs->srs_state & SRS_PAUSE));
2849                 goto done;
2850         }
2851 
2852         sz = 0;
2853         cnt = 0;
2854         if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) {
2855                 /*
2856                  * We couldn't pick up a single packet.
2857                  */
2858                 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2859                 if ((mac_srs->srs_bw->mac_bw_used == 0) &&
2860                     (mac_srs->srs_size != 0) &&
2861                     !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2862                         /*
2863                          * Seems like configured B/W doesn't
2864                          * even allow processing of 1 packet
2865                          * per tick.
2866                          *
2867                          * XXX: raise the limit to processing
2868                          * at least 1 packet per tick.
2869                          */
2870                         mac_srs->srs_bw->mac_bw_limit +=
2871                             mac_srs->srs_bw->mac_bw_limit;
2872                         mac_srs->srs_bw->mac_bw_drop_threshold +=
2873                             mac_srs->srs_bw->mac_bw_drop_threshold;
2874                         cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) "
2875                             "raised B/W limit to %d since not even a "
2876                             "single packet can be processed per "
2877                             "tick %d\n", (void *)mac_srs,
2878                             (int)mac_srs->srs_bw->mac_bw_limit,
2879                             (int)msgdsize(mac_srs->srs_first));
2880                 }
2881                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2882                 goto done;
2883         }
2884 
2885         ASSERT(head != NULL);
2886         ASSERT(tail != NULL);
2887 
2888         /* zero bandwidth: drop all and return to interrupt mode */
2889         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2890         if (mac_srs->srs_bw->mac_bw_limit == 0) {
2891                 srs_rx->sr_stat.mrs_sdrops += cnt;
2892                 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz);
2893                 mac_srs->srs_bw->mac_bw_sz -= sz;
2894                 mac_srs->srs_bw->mac_bw_drop_bytes += sz;
2895                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2896                 mac_pkt_drop(NULL, NULL, head, B_FALSE);
2897                 goto leave_poll;
2898         } else {
2899                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2900         }
2901 
2902         if ((tid = mac_srs->srs_tid) != NULL)
2903                 mac_srs->srs_tid = NULL;
2904 
2905         mac_srs->srs_state |= (SRS_PROC|proc_type);
2906         MAC_SRS_WORKER_POLLING_ON(mac_srs);
2907 
2908         /*
2909          * mcip is NULL for broadcast and multicast flows. The promisc
2910          * callbacks for broadcast and multicast packets are delivered from
2911          * mac_rx() and we don't need to worry about that case in this path
2912          */
2913         if (mcip != NULL) {
2914                 if (mcip->mci_promisc_list != NULL) {
2915                         mutex_exit(&mac_srs->srs_lock);
2916                         mac_promisc_client_dispatch(mcip, head);
2917                         mutex_enter(&mac_srs->srs_lock);
2918                 }
2919                 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
2920                         mutex_exit(&mac_srs->srs_lock);
2921                         mac_protect_intercept_dynamic(mcip, head);
2922                         mutex_enter(&mac_srs->srs_lock);
2923                 }
2924         }
2925 
2926         /*
2927          * Check if SRS itself is doing the processing
2928          * This direct path does not apply when subflows are present. In this
2929          * case, packets need to be dispatched to a soft ring according to the
2930          * flow's bandwidth and other resources contraints.
2931          */
2932         if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
2933                 mac_direct_rx_t         proc;
2934                 void                    *arg1;
2935                 mac_resource_handle_t   arg2;
2936 
2937                 /*
2938                  * This is the case when a Rx is directly
2939                  * assigned and we have a fully classified
2940                  * protocol chain. We can deal with it in
2941                  * one shot.
2942                  */
2943                 proc = srs_rx->sr_func;
2944                 arg1 = srs_rx->sr_arg1;
2945                 arg2 = srs_rx->sr_arg2;
2946 
2947                 mac_srs->srs_state |= SRS_CLIENT_PROC;
2948                 mutex_exit(&mac_srs->srs_lock);
2949                 if (tid != NULL) {
2950                         (void) untimeout(tid);
2951                         tid = NULL;
2952                 }
2953 
2954                 proc(arg1, arg2, head, NULL);
2955                 /*
2956                  * Decrement the size and count here itelf
2957                  * since the packet has been processed.
2958                  */
2959                 mutex_enter(&mac_srs->srs_lock);
2960                 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
2961                 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
2962 
2963                 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
2964                         cv_signal(&mac_srs->srs_client_cv);
2965                 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
2966         } else {
2967                 /* Some kind of softrings based fanout is required */
2968                 mutex_exit(&mac_srs->srs_lock);
2969                 if (tid != NULL) {
2970                         (void) untimeout(tid);
2971                         tid = NULL;
2972                 }
2973 
2974                 /*
2975                  * Since the fanout routines can deal with chains,
2976                  * shoot the entire chain up.
2977                  */
2978                 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
2979                         mac_rx_srs_fanout(mac_srs, head);
2980                 else
2981                         mac_rx_srs_proto_fanout(mac_srs, head);
2982                 mutex_enter(&mac_srs->srs_lock);
2983         }
2984 
2985         /*
2986          * Send the poll thread to pick up any packets arrived
2987          * so far. This also serves as the last check in case
2988          * nothing else is queued in the SRS. The poll thread
2989          * is signalled only in the case the drain was done
2990          * by the worker thread and SRS_WORKER is set. The
2991          * worker thread can run in parallel as long as the
2992          * SRS_WORKER flag is set. We we have nothing else to
2993          * process, we can exit while leaving SRS_PROC set
2994          * which gives the poll thread control to process and
2995          * cleanup once it returns from the NIC.
2996          *
2997          * If we have nothing else to process, we need to
2998          * ensure that we keep holding the srs_lock till
2999          * all the checks below are done and control is
3000          * handed to the poll thread if it was running.
3001          */
3002         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
3003         if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
3004                 if (mac_srs->srs_first != NULL) {
3005                         if (proc_type == SRS_WORKER) {
3006                                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3007                                 if (srs_rx->sr_poll_pkt_cnt <=
3008                                     srs_rx->sr_lowat)
3009                                         MAC_SRS_POLL_RING(mac_srs);
3010                                 goto again;
3011                         } else {
3012                                 cv_signal(&mac_srs->srs_async);
3013                         }
3014                 }
3015         }
3016         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3017 
3018 done:
3019 
3020         if (mac_srs->srs_state & SRS_GET_PKTS) {
3021                 /*
3022                  * Poll thread is already running. Leave the
3023                  * SRS_RPOC set and hand over the control to
3024                  * poll thread.
3025                  */
3026                 mac_srs->srs_state &= ~proc_type;
3027                 return;
3028         }
3029 
3030         /*
3031          * If we can't process packets because we have exceeded
3032          * B/W limit for this tick, just set the timeout
3033          * and leave.
3034          *
3035          * Even if there are no packets queued in SRS, we
3036          * need to make sure that the shared counter is
3037          * clear and any associated softrings have cleared
3038          * all the backlog. Otherwise, leave the interface
3039          * in polling mode and the poll thread will get
3040          * signalled once the count goes down to zero.
3041          *
3042          * If someone is already draining the queue (SRS_PROC is
3043          * set) when the srs_poll_pkt_cnt goes down to zero,
3044          * then it means that drain is already running and we
3045          * will turn off polling at that time if there is
3046          * no backlog. As long as there are packets queued either
3047          * is soft ring set or its soft rings, we will leave
3048          * the interface in polling mode.
3049          */
3050         mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
3051         if ((mac_srs->srs_state & SRS_POLLING_CAPAB) &&
3052             ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) ||
3053             (srs_rx->sr_poll_pkt_cnt > 0))) {
3054                 MAC_SRS_POLLING_ON(mac_srs);
3055                 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3056                 if ((mac_srs->srs_first != NULL) &&
3057                     (mac_srs->srs_tid == NULL))
3058                         mac_srs->srs_tid = timeout(mac_srs_fire,
3059                             mac_srs, 1);
3060                 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3061                 return;
3062         }
3063         mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
3064 
3065 leave_poll:
3066 
3067         /* Nothing else to do. Get out of poll mode */
3068         MAC_SRS_POLLING_OFF(mac_srs);
3069         mac_srs->srs_state &= ~(SRS_PROC|proc_type);
3070 }
3071 
3072 /*
3073  * mac_srs_worker
3074  *
3075  * The SRS worker routine. Drains the queue when no one else is
3076  * processing it.
3077  */
3078 void
3079 mac_srs_worker(mac_soft_ring_set_t *mac_srs)
3080 {
3081         kmutex_t                *lock = &mac_srs->srs_lock;
3082         kcondvar_t              *async = &mac_srs->srs_async;
3083         callb_cpr_t             cprinfo;
3084         boolean_t               bw_ctl_flag;
3085 
3086         CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker");
3087         mutex_enter(lock);
3088 
3089 start:
3090         for (;;) {
3091                 bw_ctl_flag = B_FALSE;
3092                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
3093                         MAC_SRS_BW_LOCK(mac_srs);
3094                         MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3095                         if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
3096                                 bw_ctl_flag = B_TRUE;
3097                         MAC_SRS_BW_UNLOCK(mac_srs);
3098                 }
3099                 /*
3100                  * The SRS_BW_ENFORCED flag may change since we have dropped
3101                  * the mac_bw_lock. However the drain function can handle both
3102                  * a drainable SRS or a bandwidth controlled SRS, and the
3103                  * effect of scheduling a timeout is to wakeup the worker
3104                  * thread which in turn will call the drain function. Since
3105                  * we release the srs_lock atomically only in the cv_wait there
3106                  * isn't a fear of waiting for ever.
3107                  */
3108                 while (((mac_srs->srs_state & SRS_PROC) ||
3109                     (mac_srs->srs_first == NULL) || bw_ctl_flag ||
3110                     (mac_srs->srs_state & SRS_TX_BLOCKED)) &&
3111                     !(mac_srs->srs_state & SRS_PAUSE)) {
3112                         /*
3113                          * If we have packets queued and we are here
3114                          * because B/W control is in place, we better
3115                          * schedule the worker wakeup after 1 tick
3116                          * to see if bandwidth control can be relaxed.
3117                          */
3118                         if (bw_ctl_flag && mac_srs->srs_tid == NULL) {
3119                                 /*
3120                                  * We need to ensure that a timer  is already
3121                                  * scheduled or we force  schedule one for
3122                                  * later so that we can continue processing
3123                                  * after this  quanta is over.
3124                                  */
3125                                 mac_srs->srs_tid = timeout(mac_srs_fire,
3126                                     mac_srs, 1);
3127                         }
3128 wait:
3129                         CALLB_CPR_SAFE_BEGIN(&cprinfo);
3130                         cv_wait(async, lock);
3131                         CALLB_CPR_SAFE_END(&cprinfo, lock);
3132 
3133                         if (mac_srs->srs_state & SRS_PAUSE)
3134                                 goto done;
3135                         if (mac_srs->srs_state & SRS_PROC)
3136                                 goto wait;
3137 
3138                         if (mac_srs->srs_first != NULL &&
3139                             mac_srs->srs_type & SRST_BW_CONTROL) {
3140                                 MAC_SRS_BW_LOCK(mac_srs);
3141                                 if (mac_srs->srs_bw->mac_bw_state &
3142                                     SRS_BW_ENFORCED) {
3143                                         MAC_SRS_CHECK_BW_CONTROL(mac_srs);
3144                                 }
3145                                 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state &
3146                                     SRS_BW_ENFORCED;
3147                                 MAC_SRS_BW_UNLOCK(mac_srs);
3148                         }
3149                 }
3150 
3151                 if (mac_srs->srs_state & SRS_PAUSE)
3152                         goto done;
3153                 mac_srs->srs_drain_func(mac_srs, SRS_WORKER);
3154         }
3155 done:
3156         /*
3157          * The Rx SRS quiesce logic first cuts off packet supply to the SRS
3158          * from both hard and soft classifications and waits for such threads
3159          * to finish before signaling the worker. So at this point the only
3160          * thread left that could be competing with the worker is the poll
3161          * thread. In the case of Tx, there shouldn't be any thread holding
3162          * SRS_PROC at this point.
3163          */
3164         if (!(mac_srs->srs_state & SRS_PROC)) {
3165                 mac_srs->srs_state |= SRS_PROC;
3166         } else {
3167                 ASSERT((mac_srs->srs_type & SRST_TX) == 0);
3168                 /*
3169                  * Poll thread still owns the SRS and is still running
3170                  */
3171                 ASSERT((mac_srs->srs_poll_thr == NULL) ||
3172                     ((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
3173                     SRS_POLL_THR_OWNER));
3174         }
3175         mac_srs_worker_quiesce(mac_srs);
3176         /*
3177          * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator
3178          * of the quiesce operation
3179          */
3180         while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART)))
3181                 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock);
3182 
3183         if (mac_srs->srs_state & SRS_RESTART) {
3184                 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
3185                 mac_srs_worker_restart(mac_srs);
3186                 mac_srs->srs_state &= ~SRS_PROC;
3187                 goto start;
3188         }
3189 
3190         if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE))
3191                 mac_srs_worker_quiesce(mac_srs);
3192 
3193         mac_srs->srs_state &= ~SRS_PROC;
3194         /* The macro drops the srs_lock */
3195         CALLB_CPR_EXIT(&cprinfo);
3196         thread_exit();
3197 }
3198 
3199 /*
3200  * mac_rx_srs_subflow_process
3201  *
3202  * Receive side routine called from interrupt path when there are
3203  * sub flows present on this SRS.
3204  */
3205 /* ARGSUSED */
3206 void
3207 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs,
3208     mblk_t *mp_chain, boolean_t loopback)
3209 {
3210         flow_entry_t            *flent = NULL;
3211         flow_entry_t            *prev_flent = NULL;
3212         mblk_t                  *mp = NULL;
3213         mblk_t                  *tail = NULL;
3214         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
3215         mac_client_impl_t       *mcip;
3216 
3217         mcip = mac_srs->srs_mcip;
3218         ASSERT(mcip != NULL);
3219 
3220         /*
3221          * We need to determine the SRS for every packet
3222          * by walking the flow table, if we don't get any,
3223          * then we proceed using the SRS we came with.
3224          */
3225         mp = tail = mp_chain;
3226         while (mp != NULL) {
3227 
3228                 /*
3229                  * We will increment the stats for the mactching subflow.
3230                  * when we get the bytes/pkt count for the classified packets
3231                  * later in mac_rx_srs_process.
3232                  */
3233                 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp,
3234                     FLOW_INBOUND, &flent);
3235 
3236                 if (mp == mp_chain || flent == prev_flent) {
3237                         if (prev_flent != NULL)
3238                                 FLOW_REFRELE(prev_flent);
3239                         prev_flent = flent;
3240                         flent = NULL;
3241                         tail = mp;
3242                         mp = mp->b_next;
3243                         continue;
3244                 }
3245                 tail->b_next = NULL;
3246                 /*
3247                  * A null indicates, this is for the mac_srs itself.
3248                  * XXX-venu : probably assert for fe_rx_srs_cnt == 0.
3249                  */
3250                 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3251                         mac_rx_srs_process(arg,
3252                             (mac_resource_handle_t)mac_srs, mp_chain,
3253                             loopback);
3254                 } else {
3255                         (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3256                             prev_flent->fe_cb_arg2, mp_chain, loopback);
3257                         FLOW_REFRELE(prev_flent);
3258                 }
3259                 prev_flent = flent;
3260                 flent = NULL;
3261                 mp_chain = mp;
3262                 tail = mp;
3263                 mp = mp->b_next;
3264         }
3265         /* Last chain */
3266         ASSERT(mp_chain != NULL);
3267         if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
3268                 mac_rx_srs_process(arg,
3269                     (mac_resource_handle_t)mac_srs, mp_chain, loopback);
3270         } else {
3271                 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
3272                     prev_flent->fe_cb_arg2, mp_chain, loopback);
3273                 FLOW_REFRELE(prev_flent);
3274         }
3275 }
3276 
3277 /*
3278  * mac_rx_srs_process
3279  *
3280  * Receive side routine called from the interrupt path.
3281  *
3282  * loopback is set to force a context switch on the loopback
3283  * path between MAC clients.
3284  */
3285 /* ARGSUSED */
3286 void
3287 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain,
3288     boolean_t loopback)
3289 {
3290         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
3291         mblk_t                  *mp, *tail, *head;
3292         int                     count = 0;
3293         int                     count1;
3294         size_t                  sz = 0;
3295         size_t                  chain_sz, sz1;
3296         mac_bw_ctl_t            *mac_bw;
3297         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
3298 
3299         /*
3300          * Set the tail, count and sz. We set the sz irrespective
3301          * of whether we are doing B/W control or not for the
3302          * purpose of updating the stats.
3303          */
3304         mp = tail = mp_chain;
3305         while (mp != NULL) {
3306                 tail = mp;
3307                 count++;
3308                 sz += msgdsize(mp);
3309                 mp = mp->b_next;
3310         }
3311 
3312         mutex_enter(&mac_srs->srs_lock);
3313 
3314         if (loopback) {
3315                 SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz);
3316                 SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count);
3317 
3318         } else {
3319                 SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz);
3320                 SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count);
3321         }
3322 
3323         /*
3324          * If the SRS in already being processed; has been blanked;
3325          * can be processed by worker thread only; or the B/W limit
3326          * has been reached, then queue the chain and check if
3327          * worker thread needs to be awakend.
3328          */
3329         if (mac_srs->srs_type & SRST_BW_CONTROL) {
3330                 mac_bw = mac_srs->srs_bw;
3331                 ASSERT(mac_bw != NULL);
3332                 mutex_enter(&mac_bw->mac_bw_lock);
3333                 mac_bw->mac_bw_intr += sz;
3334                 if (mac_bw->mac_bw_limit == 0) {
3335                         /* zero bandwidth: drop all */
3336                         srs_rx->sr_stat.mrs_sdrops += count;
3337                         mac_bw->mac_bw_drop_bytes += sz;
3338                         mutex_exit(&mac_bw->mac_bw_lock);
3339                         mutex_exit(&mac_srs->srs_lock);
3340                         mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
3341                         return;
3342                 } else {
3343                         if ((mac_bw->mac_bw_sz + sz) <=
3344                             mac_bw->mac_bw_drop_threshold) {
3345                                 mutex_exit(&mac_bw->mac_bw_lock);
3346                                 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain,
3347                                     tail, count, sz);
3348                         } else {
3349                                 mp = mp_chain;
3350                                 chain_sz = 0;
3351                                 count1 = 0;
3352                                 tail = NULL;
3353                                 head = NULL;
3354                                 while (mp != NULL) {
3355                                         sz1 = msgdsize(mp);
3356                                         if (mac_bw->mac_bw_sz + chain_sz + sz1 >
3357                                             mac_bw->mac_bw_drop_threshold)
3358                                                 break;
3359                                         chain_sz += sz1;
3360                                         count1++;
3361                                         tail = mp;
3362                                         mp = mp->b_next;
3363                                 }
3364                                 mutex_exit(&mac_bw->mac_bw_lock);
3365                                 if (tail != NULL) {
3366                                         head = tail->b_next;
3367                                         tail->b_next = NULL;
3368                                         MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs,
3369                                             mp_chain, tail, count1, chain_sz);
3370                                         sz -= chain_sz;
3371                                         count -= count1;
3372                                 } else {
3373                                         /* Can't pick up any */
3374                                         head = mp_chain;
3375                                 }
3376                                 if (head != NULL) {
3377                                         /* Drop any packet over the threshold */
3378                                         srs_rx->sr_stat.mrs_sdrops += count;
3379                                         mutex_enter(&mac_bw->mac_bw_lock);
3380                                         mac_bw->mac_bw_drop_bytes += sz;
3381                                         mutex_exit(&mac_bw->mac_bw_lock);
3382                                         freemsgchain(head);
3383                                 }
3384                         }
3385                         MAC_SRS_WORKER_WAKEUP(mac_srs);
3386                         mutex_exit(&mac_srs->srs_lock);
3387                         return;
3388                 }
3389         }
3390 
3391         /*
3392          * If the total number of packets queued in the SRS and
3393          * its associated soft rings exceeds the max allowed,
3394          * then drop the chain. If we are polling capable, this
3395          * shouldn't be happening.
3396          */
3397         if (!(mac_srs->srs_type & SRST_BW_CONTROL) &&
3398             (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) {
3399                 mac_bw = mac_srs->srs_bw;
3400                 srs_rx->sr_stat.mrs_sdrops += count;
3401                 mutex_enter(&mac_bw->mac_bw_lock);
3402                 mac_bw->mac_bw_drop_bytes += sz;
3403                 mutex_exit(&mac_bw->mac_bw_lock);
3404                 freemsgchain(mp_chain);
3405                 mutex_exit(&mac_srs->srs_lock);
3406                 return;
3407         }
3408 
3409         MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz);
3410 
3411         if (!(mac_srs->srs_state & SRS_PROC)) {
3412                 /*
3413                  * If we are coming via loopback, if we are not optimizing for
3414                  * latency, or if our stack is running deep, we should signal
3415                  * the worker thread.
3416                  */
3417                 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT) ||
3418                     MAC_RX_SRS_TOODEEP()) {
3419                         /*
3420                          * For loopback, We need to let the worker take
3421                          * over as we don't want to continue in the same
3422                          * thread even if we can. This could lead to stack
3423                          * overflows and may also end up using
3424                          * resources (cpu) incorrectly.
3425                          */
3426                         cv_signal(&mac_srs->srs_async);
3427                 } else {
3428                         /*
3429                          * Seems like no one is processing the SRS and
3430                          * there is no backlog. We also inline process
3431                          * our packet if its a single packet in non
3432                          * latency optimized case (in latency optimized
3433                          * case, we inline process chains of any size).
3434                          */
3435                         mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST);
3436                 }
3437         }
3438         mutex_exit(&mac_srs->srs_lock);
3439 }
3440 
3441 /* TX SIDE ROUTINES (RUNTIME) */
3442 
3443 /*
3444  * mac_tx_srs_no_desc
3445  *
3446  * This routine is called by Tx single ring default mode
3447  * when Tx ring runs out of descs.
3448  */
3449 mac_tx_cookie_t
3450 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3451     uint16_t flag, mblk_t **ret_mp)
3452 {
3453         mac_tx_cookie_t cookie = 0;
3454         mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3455         boolean_t wakeup_worker = B_TRUE;
3456         uint32_t tx_mode = srs_tx->st_mode;
3457         int cnt, sz;
3458         mblk_t *tail;
3459 
3460         ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW);
3461         if (flag & MAC_DROP_ON_NO_DESC) {
3462                 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3463         } else {
3464                 if (mac_srs->srs_first != NULL)
3465                         wakeup_worker = B_FALSE;
3466                 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3467                 if (flag & MAC_TX_NO_ENQUEUE) {
3468                         /*
3469                          * If TX_QUEUED is not set, queue the
3470                          * packet and let mac_tx_srs_drain()
3471                          * set the TX_BLOCKED bit for the
3472                          * reasons explained above. Otherwise,
3473                          * return the mblks.
3474                          */
3475                         if (wakeup_worker) {
3476                                 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3477                                     mp_chain, tail, cnt, sz);
3478                         } else {
3479                                 MAC_TX_SET_NO_ENQUEUE(mac_srs,
3480                                     mp_chain, ret_mp, cookie);
3481                         }
3482                 } else {
3483                         MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3484                             tail, cnt, sz, cookie);
3485                 }
3486                 if (wakeup_worker)
3487                         cv_signal(&mac_srs->srs_async);
3488         }
3489         return (cookie);
3490 }
3491 
3492 /*
3493  * mac_tx_srs_enqueue
3494  *
3495  * This routine is called when Tx SRS is operating in either serializer
3496  * or bandwidth mode. In serializer mode, a packet will get enqueued
3497  * when a thread cannot enter SRS exclusively. In bandwidth mode,
3498  * packets gets queued if allowed byte-count limit for a tick is
3499  * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and
3500  * MAC_TX_NO_ENQUEUE is set is different than when operaing in either
3501  * the default mode or fanout mode. Here packets get dropped or
3502  * returned back to the caller only after hi-watermark worth of data
3503  * is queued.
3504  */
3505 static mac_tx_cookie_t
3506 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3507     uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp)
3508 {
3509         mac_tx_cookie_t cookie = 0;
3510         int cnt, sz;
3511         mblk_t *tail;
3512         boolean_t wakeup_worker = B_TRUE;
3513 
3514         /*
3515          * Ignore fanout hint if we don't have multiple tx rings.
3516          */
3517         if (!MAC_TX_SOFT_RINGS(mac_srs))
3518                 fanout_hint = 0;
3519 
3520         if (mac_srs->srs_first != NULL)
3521                 wakeup_worker = B_FALSE;
3522         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3523         if (flag & MAC_DROP_ON_NO_DESC) {
3524                 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) {
3525                         MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3526                 } else {
3527                         MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3528                             mp_chain, tail, cnt, sz);
3529                 }
3530         } else if (flag & MAC_TX_NO_ENQUEUE) {
3531                 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) ||
3532                     (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) {
3533                         MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain,
3534                             ret_mp, cookie);
3535                 } else {
3536                         mp_chain->b_prev = (mblk_t *)fanout_hint;
3537                         MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3538                             mp_chain, tail, cnt, sz);
3539                 }
3540         } else {
3541                 /*
3542                  * If you are BW_ENFORCED, just enqueue the
3543                  * packet. srs_worker will drain it at the
3544                  * prescribed rate. Before enqueueing, save
3545                  * the fanout hint.
3546                  */
3547                 mp_chain->b_prev = (mblk_t *)fanout_hint;
3548                 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
3549                     tail, cnt, sz, cookie);
3550         }
3551         if (wakeup_worker)
3552                 cv_signal(&mac_srs->srs_async);
3553         return (cookie);
3554 }
3555 
3556 /*
3557  * There are seven tx modes:
3558  *
3559  * 1) Default mode (SRS_TX_DEFAULT)
3560  * 2) Serialization mode (SRS_TX_SERIALIZE)
3561  * 3) Fanout mode (SRS_TX_FANOUT)
3562  * 4) Bandwdith mode (SRS_TX_BW)
3563  * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT)
3564  * 6) aggr Tx mode (SRS_TX_AGGR)
3565  * 7) aggr Tx bw mode (SRS_TX_BW_AGGR)
3566  *
3567  * The tx mode in which an SRS operates is decided in mac_tx_srs_setup()
3568  * based on the number of Tx rings requested for an SRS and whether
3569  * bandwidth control is requested or not.
3570  *
3571  * The default mode (i.e., no fanout/no bandwidth) is used when the
3572  * underlying NIC does not have Tx rings or just one Tx ring. In this mode,
3573  * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send().
3574  * When the underlying Tx ring runs out of Tx descs, it starts queueing up
3575  * packets in SRS. When flow-control is relieved, the srs_worker drains
3576  * the queued packets and informs blocked clients to restart sending
3577  * packets.
3578  *
3579  * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This
3580  * mode is used when the link has no Tx rings or only one Tx ring.
3581  *
3582  * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple
3583  * Tx rings. Each Tx ring will have a soft ring associated with it.
3584  * These soft rings will be hung off the Tx SRS. Queueing if it happens
3585  * due to lack of Tx desc will be in individual soft ring (and not srs)
3586  * associated with Tx ring.
3587  *
3588  * In the TX_BW mode, tx srs will allow packets to go down to Tx ring
3589  * only if bw is available. Otherwise the packets will be queued in
3590  * SRS. If fanout to multiple Tx rings is configured, the packets will
3591  * be fanned out among the soft rings associated with the Tx rings.
3592  *
3593  * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine
3594  * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring
3595  * belonging to a port on which the packet has to be sent. Aggr will
3596  * always have a pseudo Tx ring associated with it even when it is an
3597  * aggregation over a single NIC that has no Tx rings. Even in such a
3598  * case, the single pseudo Tx ring will have a soft ring associated with
3599  * it and the soft ring will hang off the SRS.
3600  *
3601  * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used.
3602  * In this mode, the bandwidth is first applied on the outgoing packets
3603  * and later mac_tx_addr_mode() function is called to send the packet out
3604  * of one of the pseudo Tx rings.
3605  *
3606  * Four flags are used in srs_state for indicating flow control
3607  * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT.
3608  * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the
3609  * driver below.
3610  * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat
3611  * and flow-control pressure is applied back to clients. The clients expect
3612  * wakeup when flow-control is relieved.
3613  * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk
3614  * got returned back to client either due to lack of Tx descs or due to bw
3615  * control reasons. The clients expect a wakeup when condition is relieved.
3616  *
3617  * The fourth argument to mac_tx() is the flag. Normally it will be 0 but
3618  * some clients set the following values too: MAC_DROP_ON_NO_DESC,
3619  * MAC_TX_NO_ENQUEUE
3620  * Mac clients that do not want packets to be enqueued in the mac layer set
3621  * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or
3622  * Tx soft rings but instead get dropped when the NIC runs out of desc. The
3623  * behaviour of this flag is different when the Tx is running in serializer
3624  * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet
3625  * get dropped when Tx high watermark is reached.
3626  * There are some mac clients like vsw, aggr that want the mblks to be
3627  * returned back to clients instead of being queued in Tx SRS (or Tx soft
3628  * rings) under flow-control (i.e., out of desc or exceeding bw limits)
3629  * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set.
3630  * In the default and Tx fanout mode, the un-transmitted mblks will be
3631  * returned back to the clients when the driver runs out of Tx descs.
3632  * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or
3633  * soft ring) so that the clients can be woken up when Tx desc become
3634  * available. When running in serializer or bandwidth mode mode,
3635  * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached.
3636  */
3637 
3638 mac_tx_func_t
3639 mac_tx_get_func(uint32_t mode)
3640 {
3641         return (mac_tx_mode_list[mode].mac_tx_func);
3642 }
3643 
3644 /* ARGSUSED */
3645 static mac_tx_cookie_t
3646 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3647     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3648 {
3649         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
3650         mac_tx_stats_t          stats;
3651         mac_tx_cookie_t         cookie = 0;
3652 
3653         ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT);
3654 
3655         /* Regular case with a single Tx ring */
3656         /*
3657          * SRS_TX_BLOCKED is set when underlying NIC runs
3658          * out of Tx descs and messages start getting
3659          * queued. It won't get reset until
3660          * tx_srs_drain() completely drains out the
3661          * messages.
3662          */
3663         if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3664                 /* Tx descs/resources not available */
3665                 mutex_enter(&mac_srs->srs_lock);
3666                 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
3667                         cookie = mac_tx_srs_no_desc(mac_srs, mp_chain,
3668                             flag, ret_mp);
3669                         mutex_exit(&mac_srs->srs_lock);
3670                         return (cookie);
3671                 }
3672                 /*
3673                  * While we were computing mblk count, the
3674                  * flow control condition got relieved.
3675                  * Continue with the transmission.
3676                  */
3677                 mutex_exit(&mac_srs->srs_lock);
3678         }
3679 
3680         mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3681             mp_chain, &stats);
3682 
3683         /*
3684          * Multiple threads could be here sending packets.
3685          * Under such conditions, it is not possible to
3686          * automically set SRS_TX_BLOCKED bit to indicate
3687          * out of tx desc condition. To atomically set
3688          * this, we queue the returned packet and do
3689          * the setting of SRS_TX_BLOCKED in
3690          * mac_tx_srs_drain().
3691          */
3692         if (mp_chain != NULL) {
3693                 mutex_enter(&mac_srs->srs_lock);
3694                 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp);
3695                 mutex_exit(&mac_srs->srs_lock);
3696                 return (cookie);
3697         }
3698         SRS_TX_STATS_UPDATE(mac_srs, &stats);
3699 
3700         return (0);
3701 }
3702 
3703 /*
3704  * mac_tx_serialize_mode
3705  *
3706  * This is an experimental mode implemented as per the request of PAE.
3707  * In this mode, all callers attempting to send a packet to the NIC
3708  * will get serialized. Only one thread at any time will access the
3709  * NIC to send the packet out.
3710  */
3711 /* ARGSUSED */
3712 static mac_tx_cookie_t
3713 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3714     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3715 {
3716         mac_tx_stats_t          stats;
3717         mac_tx_cookie_t         cookie = 0;
3718         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
3719 
3720         /* Single ring, serialize below */
3721         ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE);
3722         mutex_enter(&mac_srs->srs_lock);
3723         if ((mac_srs->srs_first != NULL) ||
3724             (mac_srs->srs_state & SRS_PROC)) {
3725                 /*
3726                  * In serialization mode, queue all packets until
3727                  * TX_HIWAT is set.
3728                  * If drop bit is set, drop if TX_HIWAT is set.
3729                  * If no_enqueue is set, still enqueue until hiwat
3730                  * is set and return mblks after TX_HIWAT is set.
3731                  */
3732                 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain,
3733                     flag, 0, ret_mp);
3734                 mutex_exit(&mac_srs->srs_lock);
3735                 return (cookie);
3736         }
3737         /*
3738          * No packets queued, nothing on proc and no flow
3739          * control condition. Fast-path, ok. Do inline
3740          * processing.
3741          */
3742         mac_srs->srs_state |= SRS_PROC;
3743         mutex_exit(&mac_srs->srs_lock);
3744 
3745         mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3746             mp_chain, &stats);
3747 
3748         mutex_enter(&mac_srs->srs_lock);
3749         mac_srs->srs_state &= ~SRS_PROC;
3750         if (mp_chain != NULL) {
3751                 cookie = mac_tx_srs_enqueue(mac_srs,
3752                     mp_chain, flag, 0, ret_mp);
3753         }
3754         if (mac_srs->srs_first != NULL) {
3755                 /*
3756                  * We processed inline our packet and a new
3757                  * packet/s got queued while we were
3758                  * processing. Wakeup srs worker
3759                  */
3760                 cv_signal(&mac_srs->srs_async);
3761         }
3762         mutex_exit(&mac_srs->srs_lock);
3763 
3764         if (cookie == 0)
3765                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3766 
3767         return (cookie);
3768 }
3769 
3770 /*
3771  * mac_tx_fanout_mode
3772  *
3773  * In this mode, the SRS will have access to multiple Tx rings to send
3774  * the packet out. The fanout hint that is passed as an argument is
3775  * used to find an appropriate ring to fanout the traffic. Each Tx
3776  * ring, in turn,  will have a soft ring associated with it. If a Tx
3777  * ring runs out of Tx desc's the returned packet will be queued in
3778  * the soft ring associated with that Tx ring. The srs itself will not
3779  * queue any packets.
3780  */
3781 
3782 #define MAC_TX_SOFT_RING_PROCESS(chain) {                               \
3783         index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count),     \
3784         softring = mac_srs->srs_tx_soft_rings[index];                        \
3785         cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \
3786         DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index);       \
3787 }
3788 
3789 static mac_tx_cookie_t
3790 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3791     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3792 {
3793         mac_soft_ring_t         *softring;
3794         uint64_t                hash;
3795         uint_t                  index;
3796         mac_tx_cookie_t         cookie = 0;
3797 
3798         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3799             mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT);
3800         if (fanout_hint != 0) {
3801                 /*
3802                  * The hint is specified by the caller, simply pass the
3803                  * whole chain to the soft ring.
3804                  */
3805                 hash = HASH_HINT(fanout_hint);
3806                 MAC_TX_SOFT_RING_PROCESS(mp_chain);
3807         } else {
3808                 mblk_t *last_mp, *cur_mp, *sub_chain;
3809                 uint64_t last_hash = 0;
3810                 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media;
3811 
3812                 /*
3813                  * Compute the hash from the contents (headers) of the
3814                  * packets of the mblk chain. Split the chains into
3815                  * subchains of the same conversation.
3816                  *
3817                  * Since there may be more than one ring used for
3818                  * sub-chains of the same call, and since the caller
3819                  * does not maintain per conversation state since it
3820                  * passed a zero hint, unsent subchains will be
3821                  * dropped.
3822                  */
3823 
3824                 flag |= MAC_DROP_ON_NO_DESC;
3825                 ret_mp = NULL;
3826 
3827                 ASSERT(ret_mp == NULL);
3828 
3829                 sub_chain = NULL;
3830                 last_mp = NULL;
3831 
3832                 for (cur_mp = mp_chain; cur_mp != NULL;
3833                     cur_mp = cur_mp->b_next) {
3834                         hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4,
3835                             B_TRUE);
3836                         if (last_hash != 0 && hash != last_hash) {
3837                                 /*
3838                                  * Starting a different subchain, send current
3839                                  * chain out.
3840                                  */
3841                                 ASSERT(last_mp != NULL);
3842                                 last_mp->b_next = NULL;
3843                                 MAC_TX_SOFT_RING_PROCESS(sub_chain);
3844                                 sub_chain = NULL;
3845                         }
3846 
3847                         /* add packet to subchain */
3848                         if (sub_chain == NULL)
3849                                 sub_chain = cur_mp;
3850                         last_mp = cur_mp;
3851                         last_hash = hash;
3852                 }
3853 
3854                 if (sub_chain != NULL) {
3855                         /* send last subchain */
3856                         ASSERT(last_mp != NULL);
3857                         last_mp->b_next = NULL;
3858                         MAC_TX_SOFT_RING_PROCESS(sub_chain);
3859                 }
3860 
3861                 cookie = 0;
3862         }
3863 
3864         return (cookie);
3865 }
3866 
3867 /*
3868  * mac_tx_bw_mode
3869  *
3870  * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring
3871  * only if bw is available. Otherwise the packets will be queued in
3872  * SRS. If the SRS has multiple Tx rings, then packets will get fanned
3873  * out to a Tx rings.
3874  */
3875 static mac_tx_cookie_t
3876 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3877     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3878 {
3879         int                     cnt, sz;
3880         mblk_t                  *tail;
3881         mac_tx_cookie_t         cookie = 0;
3882         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
3883         clock_t                 now;
3884 
3885         ASSERT(TX_BANDWIDTH_MODE(mac_srs));
3886         ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
3887         mutex_enter(&mac_srs->srs_lock);
3888         if (mac_srs->srs_bw->mac_bw_limit == 0) {
3889                 /*
3890                  * zero bandwidth, no traffic is sent: drop the packets,
3891                  * or return the whole chain if the caller requests all
3892                  * unsent packets back.
3893                  */
3894                 if (flag & MAC_TX_NO_ENQUEUE) {
3895                         cookie = (mac_tx_cookie_t)mac_srs;
3896                         *ret_mp = mp_chain;
3897                 } else {
3898                         MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
3899                 }
3900                 mutex_exit(&mac_srs->srs_lock);
3901                 return (cookie);
3902         } else if ((mac_srs->srs_first != NULL) ||
3903             (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
3904                 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3905                     fanout_hint, ret_mp);
3906                 mutex_exit(&mac_srs->srs_lock);
3907                 return (cookie);
3908         }
3909         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3910         now = ddi_get_lbolt();
3911         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3912                 mac_srs->srs_bw->mac_bw_curr_time = now;
3913                 mac_srs->srs_bw->mac_bw_used = 0;
3914         } else if (mac_srs->srs_bw->mac_bw_used >
3915             mac_srs->srs_bw->mac_bw_limit) {
3916                 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3917                 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
3918                     mp_chain, tail, cnt, sz);
3919                 /*
3920                  * Wakeup worker thread. Note that worker
3921                  * thread has to be woken up so that it
3922                  * can fire up the timer to be woken up
3923                  * on the next tick. Also once
3924                  * BW_ENFORCED is set, it can only be
3925                  * reset by srs_worker thread. Until then
3926                  * all packets will get queued up in SRS
3927                  * and hence this this code path won't be
3928                  * entered until BW_ENFORCED is reset.
3929                  */
3930                 cv_signal(&mac_srs->srs_async);
3931                 mutex_exit(&mac_srs->srs_lock);
3932                 return (cookie);
3933         }
3934 
3935         mac_srs->srs_bw->mac_bw_used += sz;
3936         mutex_exit(&mac_srs->srs_lock);
3937 
3938         if (srs_tx->st_mode == SRS_TX_BW_FANOUT) {
3939                 mac_soft_ring_t *softring;
3940                 uint_t indx, hash;
3941 
3942                 hash = HASH_HINT(fanout_hint);
3943                 indx = COMPUTE_INDEX(hash,
3944                     mac_srs->srs_tx_ring_count);
3945                 softring = mac_srs->srs_tx_soft_rings[indx];
3946                 return (mac_tx_soft_ring_process(softring, mp_chain, flag,
3947                     ret_mp));
3948         } else if (srs_tx->st_mode == SRS_TX_BW_AGGR) {
3949                 return (mac_tx_aggr_mode(mac_srs, mp_chain,
3950                     fanout_hint, flag, ret_mp));
3951         } else {
3952                 mac_tx_stats_t          stats;
3953 
3954                 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3955                     mp_chain, &stats);
3956 
3957                 if (mp_chain != NULL) {
3958                         mutex_enter(&mac_srs->srs_lock);
3959                         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3960                         if (mac_srs->srs_bw->mac_bw_used > sz)
3961                                 mac_srs->srs_bw->mac_bw_used -= sz;
3962                         else
3963                                 mac_srs->srs_bw->mac_bw_used = 0;
3964                         cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
3965                             fanout_hint, ret_mp);
3966                         mutex_exit(&mac_srs->srs_lock);
3967                         return (cookie);
3968                 }
3969                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3970 
3971                 return (0);
3972         }
3973 }
3974 
3975 /*
3976  * mac_tx_aggr_mode
3977  *
3978  * This routine invokes an aggr function, aggr_find_tx_ring(), to find
3979  * a (pseudo) Tx ring belonging to a port on which the packet has to
3980  * be sent. aggr_find_tx_ring() first finds the outgoing port based on
3981  * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick
3982  * a Tx ring from the selected port.
3983  *
3984  * Note that a port can be deleted from the aggregation. In such a case,
3985  * the aggregation layer first separates the port from the rest of the
3986  * ports making sure that port (and thus any Tx rings associated with
3987  * it) won't get selected in the call to aggr_find_tx_ring() function.
3988  * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring
3989  * handles one by one which in turn will quiesce the Tx SRS and remove
3990  * the soft ring associated with the pseudo Tx ring. Unlike Rx side
3991  * where a cookie is used to protect against mac_rx_ring() calls on
3992  * rings that have been removed, no such cookie is needed on the Tx
3993  * side as the pseudo Tx ring won't be available anymore to
3994  * aggr_find_tx_ring() once the port has been removed.
3995  */
3996 static mac_tx_cookie_t
3997 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3998     uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3999 {
4000         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
4001         mac_tx_ring_fn_t        find_tx_ring_fn;
4002         mac_ring_handle_t       ring = NULL;
4003         void                    *arg;
4004         mac_soft_ring_t         *sringp;
4005 
4006         find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn;
4007         arg = srs_tx->st_capab_aggr.mca_arg;
4008         if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL)
4009                 return (0);
4010         sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index];
4011         return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp));
4012 }
4013 
4014 void
4015 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie)
4016 {
4017         mac_cb_t *mcb;
4018         mac_tx_notify_cb_t *mtnfp;
4019 
4020         /* Wakeup callback registered clients */
4021         MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info);
4022         for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL;
4023             mcb = mcb->mcb_nextp) {
4024                 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp;
4025                 mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie);
4026         }
4027         MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info,
4028             &mcip->mci_tx_notify_cb_list);
4029 }
4030 
4031 /* ARGSUSED */
4032 void
4033 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
4034 {
4035         mblk_t                  *head, *tail;
4036         size_t                  sz;
4037         uint32_t                tx_mode;
4038         uint_t                  saved_pkt_count;
4039         mac_tx_stats_t          stats;
4040         mac_srs_tx_t            *srs_tx = &mac_srs->srs_tx;
4041         clock_t                 now;
4042 
4043         saved_pkt_count = 0;
4044         ASSERT(mutex_owned(&mac_srs->srs_lock));
4045         ASSERT(!(mac_srs->srs_state & SRS_PROC));
4046 
4047         mac_srs->srs_state |= SRS_PROC;
4048 
4049         tx_mode = srs_tx->st_mode;
4050         if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) {
4051                 if (mac_srs->srs_first != NULL) {
4052                         head = mac_srs->srs_first;
4053                         tail = mac_srs->srs_last;
4054                         saved_pkt_count = mac_srs->srs_count;
4055                         mac_srs->srs_first = NULL;
4056                         mac_srs->srs_last = NULL;
4057                         mac_srs->srs_count = 0;
4058                         mutex_exit(&mac_srs->srs_lock);
4059 
4060                         head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4061                             head, &stats);
4062 
4063                         mutex_enter(&mac_srs->srs_lock);
4064                         if (head != NULL) {
4065                                 /* Device out of tx desc, set block */
4066                                 if (head->b_next == NULL)
4067                                         VERIFY(head == tail);
4068                                 tail->b_next = mac_srs->srs_first;
4069                                 mac_srs->srs_first = head;
4070                                 mac_srs->srs_count +=
4071                                     (saved_pkt_count - stats.mts_opackets);
4072                                 if (mac_srs->srs_last == NULL)
4073                                         mac_srs->srs_last = tail;
4074                                 MAC_TX_SRS_BLOCK(mac_srs, head);
4075                         } else {
4076                                 srs_tx->st_woken_up = B_FALSE;
4077                                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4078                         }
4079                 }
4080         } else if (tx_mode == SRS_TX_BW) {
4081                 /*
4082                  * We are here because the timer fired and we have some data
4083                  * to tranmit. Also mac_tx_srs_worker should have reset
4084                  * SRS_BW_ENFORCED flag
4085                  */
4086                 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED));
4087                 head = tail = mac_srs->srs_first;
4088                 while (mac_srs->srs_first != NULL) {
4089                         tail = mac_srs->srs_first;
4090                         tail->b_prev = NULL;
4091                         mac_srs->srs_first = tail->b_next;
4092                         if (mac_srs->srs_first == NULL)
4093                                 mac_srs->srs_last = NULL;
4094                         mac_srs->srs_count--;
4095                         sz = msgdsize(tail);
4096                         mac_srs->srs_size -= sz;
4097                         saved_pkt_count++;
4098                         MAC_TX_UPDATE_BW_INFO(mac_srs, sz);
4099 
4100                         if (mac_srs->srs_bw->mac_bw_used <
4101                             mac_srs->srs_bw->mac_bw_limit)
4102                                 continue;
4103 
4104                         now = ddi_get_lbolt();
4105                         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4106                                 mac_srs->srs_bw->mac_bw_curr_time = now;
4107                                 mac_srs->srs_bw->mac_bw_used = sz;
4108                                 continue;
4109                         }
4110                         mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4111                         break;
4112                 }
4113 
4114                 ASSERT((head == NULL && tail == NULL) ||
4115                     (head != NULL && tail != NULL));
4116                 if (tail != NULL) {
4117                         tail->b_next = NULL;
4118                         mutex_exit(&mac_srs->srs_lock);
4119 
4120                         head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
4121                             head, &stats);
4122 
4123                         mutex_enter(&mac_srs->srs_lock);
4124                         if (head != NULL) {
4125                                 uint_t size_sent;
4126 
4127                                 /* Device out of tx desc, set block */
4128                                 if (head->b_next == NULL)
4129                                         VERIFY(head == tail);
4130                                 tail->b_next = mac_srs->srs_first;
4131                                 mac_srs->srs_first = head;
4132                                 mac_srs->srs_count +=
4133                                     (saved_pkt_count - stats.mts_opackets);
4134                                 if (mac_srs->srs_last == NULL)
4135                                         mac_srs->srs_last = tail;
4136                                 size_sent = sz - stats.mts_obytes;
4137                                 mac_srs->srs_size += size_sent;
4138                                 mac_srs->srs_bw->mac_bw_sz += size_sent;
4139                                 if (mac_srs->srs_bw->mac_bw_used > size_sent) {
4140                                         mac_srs->srs_bw->mac_bw_used -=
4141                                             size_sent;
4142                                 } else {
4143                                         mac_srs->srs_bw->mac_bw_used = 0;
4144                                 }
4145                                 MAC_TX_SRS_BLOCK(mac_srs, head);
4146                         } else {
4147                                 srs_tx->st_woken_up = B_FALSE;
4148                                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4149                         }
4150                 }
4151         } else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) {
4152                 mblk_t *prev;
4153                 uint64_t hint;
4154 
4155                 /*
4156                  * We are here because the timer fired and we
4157                  * have some quota to tranmit.
4158                  */
4159                 prev = NULL;
4160                 head = tail = mac_srs->srs_first;
4161                 while (mac_srs->srs_first != NULL) {
4162                         tail = mac_srs->srs_first;
4163                         mac_srs->srs_first = tail->b_next;
4164                         if (mac_srs->srs_first == NULL)
4165                                 mac_srs->srs_last = NULL;
4166                         mac_srs->srs_count--;
4167                         sz = msgdsize(tail);
4168                         mac_srs->srs_size -= sz;
4169                         mac_srs->srs_bw->mac_bw_used += sz;
4170                         if (prev == NULL)
4171                                 hint = (ulong_t)tail->b_prev;
4172                         if (hint != (ulong_t)tail->b_prev) {
4173                                 prev->b_next = NULL;
4174                                 mutex_exit(&mac_srs->srs_lock);
4175                                 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4176                                 head = tail;
4177                                 hint = (ulong_t)tail->b_prev;
4178                                 mutex_enter(&mac_srs->srs_lock);
4179                         }
4180 
4181                         prev = tail;
4182                         tail->b_prev = NULL;
4183                         if (mac_srs->srs_bw->mac_bw_used <
4184                             mac_srs->srs_bw->mac_bw_limit)
4185                                 continue;
4186 
4187                         now = ddi_get_lbolt();
4188                         if (mac_srs->srs_bw->mac_bw_curr_time != now) {
4189                                 mac_srs->srs_bw->mac_bw_curr_time = now;
4190                                 mac_srs->srs_bw->mac_bw_used = 0;
4191                                 continue;
4192                         }
4193                         mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
4194                         break;
4195                 }
4196                 ASSERT((head == NULL && tail == NULL) ||
4197                     (head != NULL && tail != NULL));
4198                 if (tail != NULL) {
4199                         tail->b_next = NULL;
4200                         mutex_exit(&mac_srs->srs_lock);
4201                         TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
4202                         mutex_enter(&mac_srs->srs_lock);
4203                 }
4204         }
4205         /*
4206          * SRS_TX_FANOUT case not considered here because packets
4207          * won't be queued in the SRS for this case. Packets will
4208          * be sent directly to soft rings underneath and if there
4209          * is any queueing at all, it would be in Tx side soft
4210          * rings.
4211          */
4212 
4213         /*
4214          * When srs_count becomes 0, reset SRS_TX_HIWAT and
4215          * SRS_TX_WAKEUP_CLIENT and wakeup registered clients.
4216          */
4217         if (mac_srs->srs_count == 0 && (mac_srs->srs_state &
4218             (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) {
4219                 mac_client_impl_t *mcip = mac_srs->srs_mcip;
4220                 boolean_t wakeup_required = B_FALSE;
4221 
4222                 if (mac_srs->srs_state &
4223                     (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) {
4224                         wakeup_required = B_TRUE;
4225                 }
4226                 mac_srs->srs_state &= ~(SRS_TX_HIWAT |
4227                     SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED);
4228                 mutex_exit(&mac_srs->srs_lock);
4229                 if (wakeup_required) {
4230                         mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs);
4231                         /*
4232                          * If the client is not the primary MAC client, then we
4233                          * need to send the notification to the clients upper
4234                          * MAC, i.e. mci_upper_mip.
4235                          */
4236                         mac_tx_notify(mcip->mci_upper_mip != NULL ?
4237                             mcip->mci_upper_mip : mcip->mci_mip);
4238                 }
4239                 mutex_enter(&mac_srs->srs_lock);
4240         }
4241         mac_srs->srs_state &= ~SRS_PROC;
4242 }
4243 
4244 /*
4245  * Given a packet, get the flow_entry that identifies the flow
4246  * to which that packet belongs. The flow_entry will contain
4247  * the transmit function to be used to send the packet. If the
4248  * function returns NULL, the packet should be sent using the
4249  * underlying NIC.
4250  */
4251 static flow_entry_t *
4252 mac_tx_classify(mac_impl_t *mip, mblk_t *mp)
4253 {
4254         flow_entry_t            *flent = NULL;
4255         mac_client_impl_t       *mcip;
4256         int     err;
4257 
4258         /*
4259          * Do classification on the packet.
4260          */
4261         err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent);
4262         if (err != 0)
4263                 return (NULL);
4264 
4265         /*
4266          * This flent might just be an additional one on the MAC client,
4267          * i.e. for classification purposes (different fdesc), however
4268          * the resources, SRS et. al., are in the mci_flent, so if
4269          * this isn't the mci_flent, we need to get it.
4270          */
4271         if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) {
4272                 FLOW_REFRELE(flent);
4273                 flent = mcip->mci_flent;
4274                 FLOW_TRY_REFHOLD(flent, err);
4275                 if (err != 0)
4276                         return (NULL);
4277         }
4278 
4279         return (flent);
4280 }
4281 
4282 /*
4283  * This macro is only meant to be used by mac_tx_send().
4284  */
4285 #define CHECK_VID_AND_ADD_TAG(mp) {                     \
4286         if (vid_check) {                                \
4287                 int err = 0;                            \
4288                                                         \
4289                 MAC_VID_CHECK(src_mcip, (mp), err);     \
4290                 if (err != 0) {                         \
4291                         freemsg((mp));                  \
4292                         (mp) = next;                    \
4293                         oerrors++;                      \
4294                         continue;                       \
4295                 }                                       \
4296         }                                               \
4297         if (add_tag) {                                  \
4298                 (mp) = mac_add_vlan_tag((mp), 0, vid);  \
4299                 if ((mp) == NULL) {                     \
4300                         (mp) = next;                    \
4301                         oerrors++;                      \
4302                         continue;                       \
4303                 }                                       \
4304         }                                               \
4305 }
4306 
4307 mblk_t *
4308 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain,
4309     mac_tx_stats_t *stats)
4310 {
4311         mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch;
4312         mac_impl_t *mip = src_mcip->mci_mip;
4313         uint_t obytes = 0, opackets = 0, oerrors = 0;
4314         mblk_t *mp = NULL, *next;
4315         boolean_t vid_check, add_tag;
4316         uint16_t vid = 0;
4317 
4318         if (mip->mi_nclients > 1) {
4319                 vid_check = MAC_VID_CHECK_NEEDED(src_mcip);
4320                 add_tag = MAC_TAG_NEEDED(src_mcip);
4321                 if (add_tag)
4322                         vid = mac_client_vid(mch);
4323         } else {
4324                 ASSERT(mip->mi_nclients == 1);
4325                 vid_check = add_tag = B_FALSE;
4326         }
4327 
4328         /*
4329          * Fastpath: if there's only one client, we simply send
4330          * the packet down to the underlying NIC.
4331          */
4332         if (mip->mi_nactiveclients == 1) {
4333                 DTRACE_PROBE2(fastpath,
4334                     mac_client_impl_t *, src_mcip, mblk_t *, mp_chain);
4335 
4336                 mp = mp_chain;
4337                 while (mp != NULL) {
4338                         next = mp->b_next;
4339                         mp->b_next = NULL;
4340                         opackets++;
4341                         obytes += (mp->b_cont == NULL ? MBLKL(mp) :
4342                             msgdsize(mp));
4343 
4344                         CHECK_VID_AND_ADD_TAG(mp);
4345                         MAC_TX(mip, ring, mp, src_mcip);
4346 
4347                         /*
4348                          * If the driver is out of descriptors and does a
4349                          * partial send it will return a chain of unsent
4350                          * mblks. Adjust the accounting stats.
4351                          */
4352                         if (mp != NULL) {
4353                                 opackets--;
4354                                 obytes -= msgdsize(mp);
4355                                 mp->b_next = next;
4356                                 break;
4357                         }
4358                         mp = next;
4359                 }
4360                 goto done;
4361         }
4362 
4363         /*
4364          * No fastpath, we either have more than one MAC client
4365          * defined on top of the same MAC, or one or more MAC
4366          * client promiscuous callbacks.
4367          */
4368         DTRACE_PROBE3(slowpath, mac_client_impl_t *,
4369             src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain);
4370 
4371         mp = mp_chain;
4372         while (mp != NULL) {
4373                 flow_entry_t *dst_flow_ent;
4374                 void *flow_cookie;
4375                 size_t  pkt_size;
4376                 mblk_t *mp1;
4377 
4378                 next = mp->b_next;
4379                 mp->b_next = NULL;
4380                 opackets++;
4381                 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp));
4382                 obytes += pkt_size;
4383                 CHECK_VID_AND_ADD_TAG(mp);
4384 
4385                 /*
4386                  * Find the destination.
4387                  */
4388                 dst_flow_ent = mac_tx_classify(mip, mp);
4389 
4390                 if (dst_flow_ent != NULL) {
4391                         size_t  hdrsize;
4392                         int     err = 0;
4393 
4394                         if (mip->mi_info.mi_nativemedia == DL_ETHER) {
4395                                 struct ether_vlan_header *evhp =
4396                                     (struct ether_vlan_header *)mp->b_rptr;
4397 
4398                                 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN)
4399                                         hdrsize = sizeof (*evhp);
4400                                 else
4401                                         hdrsize = sizeof (struct ether_header);
4402                         } else {
4403                                 mac_header_info_t       mhi;
4404 
4405                                 err = mac_header_info((mac_handle_t)mip,
4406                                     mp, &mhi);
4407                                 if (err == 0)
4408                                         hdrsize = mhi.mhi_hdrsize;
4409                         }
4410 
4411                         /*
4412                          * Got a matching flow. It's either another
4413                          * MAC client, or a broadcast/multicast flow.
4414                          * Make sure the packet size is within the
4415                          * allowed size. If not drop the packet and
4416                          * move to next packet.
4417                          */
4418                         if (err != 0 ||
4419                             (pkt_size - hdrsize) > mip->mi_sdu_max) {
4420                                 oerrors++;
4421                                 DTRACE_PROBE2(loopback__drop, size_t, pkt_size,
4422                                     mblk_t *, mp);
4423                                 freemsg(mp);
4424                                 mp = next;
4425                                 FLOW_REFRELE(dst_flow_ent);
4426                                 continue;
4427                         }
4428                         flow_cookie = mac_flow_get_client_cookie(dst_flow_ent);
4429                         if (flow_cookie != NULL) {
4430                                 /*
4431                                  * The vnic_bcast_send function expects
4432                                  * to receive the sender MAC client
4433                                  * as value for arg2.
4434                                  */
4435                                 mac_bcast_send(flow_cookie, src_mcip, mp,
4436                                     B_TRUE);
4437                         } else {
4438                                 /*
4439                                  * loopback the packet to a local MAC
4440                                  * client. We force a context switch
4441                                  * if both source and destination MAC
4442                                  * clients are used by IP, i.e.
4443                                  * bypass is set.
4444                                  */
4445                                 boolean_t do_switch;
4446                                 mac_client_impl_t *dst_mcip =
4447                                     dst_flow_ent->fe_mcip;
4448 
4449                                 /*
4450                                  * Check if there are promiscuous mode
4451                                  * callbacks defined. This check is
4452                                  * done here in the 'else' case and
4453                                  * not in other cases because this
4454                                  * path is for local loopback
4455                                  * communication which does not go
4456                                  * through MAC_TX(). For paths that go
4457                                  * through MAC_TX(), the promisc_list
4458                                  * check is done inside the MAC_TX()
4459                                  * macro.
4460                                  */
4461                                 if (mip->mi_promisc_list != NULL)
4462                                         mac_promisc_dispatch(mip, mp, src_mcip);
4463 
4464                                 do_switch = ((src_mcip->mci_state_flags &
4465                                     dst_mcip->mci_state_flags &
4466                                     MCIS_CLIENT_POLL_CAPABLE) != 0);
4467 
4468                                 if ((mp1 = mac_fix_cksum(mp)) != NULL) {
4469                                         (dst_flow_ent->fe_cb_fn)(
4470                                             dst_flow_ent->fe_cb_arg1,
4471                                             dst_flow_ent->fe_cb_arg2,
4472                                             mp1, do_switch);
4473                                 }
4474                         }
4475                         FLOW_REFRELE(dst_flow_ent);
4476                 } else {
4477                         /*
4478                          * Unknown destination, send via the underlying
4479                          * NIC.
4480                          */
4481                         MAC_TX(mip, ring, mp, src_mcip);
4482                         if (mp != NULL) {
4483                                 /*
4484                                  * Adjust for the last packet that
4485                                  * could not be transmitted
4486                                  */
4487                                 opackets--;
4488                                 obytes -= pkt_size;
4489                                 mp->b_next = next;
4490                                 break;
4491                         }
4492                 }
4493                 mp = next;
4494         }
4495 
4496 done:
4497         stats->mts_obytes = obytes;
4498         stats->mts_opackets = opackets;
4499         stats->mts_oerrors = oerrors;
4500         return (mp);
4501 }
4502 
4503 /*
4504  * mac_tx_srs_ring_present
4505  *
4506  * Returns whether the specified ring is part of the specified SRS.
4507  */
4508 boolean_t
4509 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4510 {
4511         int i;
4512         mac_soft_ring_t *soft_ring;
4513 
4514         if (srs->srs_tx.st_arg2 == tx_ring)
4515                 return (B_TRUE);
4516 
4517         for (i = 0; i < srs->srs_tx_ring_count; i++) {
4518                 soft_ring =  srs->srs_tx_soft_rings[i];
4519                 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4520                         return (B_TRUE);
4521         }
4522 
4523         return (B_FALSE);
4524 }
4525 
4526 /*
4527  * mac_tx_srs_get_soft_ring
4528  *
4529  * Returns the TX soft ring associated with the given ring, if present.
4530  */
4531 mac_soft_ring_t *
4532 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
4533 {
4534         int             i;
4535         mac_soft_ring_t *soft_ring;
4536 
4537         if (srs->srs_tx.st_arg2 == tx_ring)
4538                 return (NULL);
4539 
4540         for (i = 0; i < srs->srs_tx_ring_count; i++) {
4541                 soft_ring =  srs->srs_tx_soft_rings[i];
4542                 if (soft_ring->s_ring_tx_arg2 == tx_ring)
4543                         return (soft_ring);
4544         }
4545 
4546         return (NULL);
4547 }
4548 
4549 /*
4550  * mac_tx_srs_wakeup
4551  *
4552  * Called when Tx desc become available. Wakeup the appropriate worker
4553  * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the
4554  * state field.
4555  */
4556 void
4557 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring)
4558 {
4559         int i;
4560         mac_soft_ring_t *sringp;
4561         mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
4562 
4563         mutex_enter(&mac_srs->srs_lock);
4564         /*
4565          * srs_tx_ring_count == 0 is the single ring mode case. In
4566          * this mode, there will not be Tx soft rings associated
4567          * with the SRS.
4568          */
4569         if (!MAC_TX_SOFT_RINGS(mac_srs)) {
4570                 if (srs_tx->st_arg2 == ring &&
4571                     mac_srs->srs_state & SRS_TX_BLOCKED) {
4572                         mac_srs->srs_state &= ~SRS_TX_BLOCKED;
4573                         srs_tx->st_stat.mts_unblockcnt++;
4574                         cv_signal(&mac_srs->srs_async);
4575                 }
4576                 /*
4577                  * A wakeup can come before tx_srs_drain() could
4578                  * grab srs lock and set SRS_TX_BLOCKED. So
4579                  * always set woken_up flag when we come here.
4580                  */
4581                 srs_tx->st_woken_up = B_TRUE;
4582                 mutex_exit(&mac_srs->srs_lock);
4583                 return;
4584         }
4585 
4586         /*
4587          * If you are here, it is for FANOUT, BW_FANOUT,
4588          * AGGR_MODE or AGGR_BW_MODE case
4589          */
4590         for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
4591                 sringp = mac_srs->srs_tx_soft_rings[i];
4592                 mutex_enter(&sringp->s_ring_lock);
4593                 if (sringp->s_ring_tx_arg2 == ring) {
4594                         if (sringp->s_ring_state & S_RING_BLOCK) {
4595                                 sringp->s_ring_state &= ~S_RING_BLOCK;
4596                                 sringp->s_st_stat.mts_unblockcnt++;
4597                                 cv_signal(&sringp->s_ring_async);
4598                         }
4599                         sringp->s_ring_tx_woken_up = B_TRUE;
4600                 }
4601                 mutex_exit(&sringp->s_ring_lock);
4602         }
4603         mutex_exit(&mac_srs->srs_lock);
4604 }
4605 
4606 /*
4607  * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash
4608  * the blocked clients again.
4609  */
4610 void
4611 mac_tx_notify(mac_impl_t *mip)
4612 {
4613         i_mac_notify(mip, MAC_NOTE_TX);
4614 }
4615 
4616 /*
4617  * RX SOFTRING RELATED FUNCTIONS
4618  *
4619  * These functions really belong in mac_soft_ring.c and here for
4620  * a short period.
4621  */
4622 
4623 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) {             \
4624         /*                                                              \
4625          * Enqueue our mblk chain.                                      \
4626          */                                                             \
4627         ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock));                       \
4628                                                                         \
4629         if ((ringp)->s_ring_last != NULL)                            \
4630                 (ringp)->s_ring_last->b_next = (mp);                      \
4631         else                                                            \
4632                 (ringp)->s_ring_first = (mp);                                \
4633         (ringp)->s_ring_last = (tail);                                       \
4634         (ringp)->s_ring_count += (cnt);                                      \
4635         ASSERT((ringp)->s_ring_count > 0);                                \
4636         if ((ringp)->s_ring_type & ST_RING_BW_CTL) {                     \
4637                 (ringp)->s_ring_size += sz;                          \
4638         }                                                               \
4639 }
4640 
4641 /*
4642  * Default entry point to deliver a packet chain to a MAC client.
4643  * If the MAC client has flows, do the classification with these
4644  * flows as well.
4645  */
4646 /* ARGSUSED */
4647 void
4648 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain,
4649     mac_header_info_t *arg3)
4650 {
4651         mac_client_impl_t *mcip = arg1;
4652 
4653         if (mcip->mci_nvids == 1 &&
4654             !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) {
4655                 /*
4656                  * If the client has exactly one VID associated with it
4657                  * and striping of VLAN header is not disabled,
4658                  * remove the VLAN tag from the packet before
4659                  * passing it on to the client's receive callback.
4660                  * Note that this needs to be done after we dispatch
4661                  * the packet to the promiscuous listeners of the
4662                  * client, since they expect to see the whole
4663                  * frame including the VLAN headers.
4664                  *
4665                  * The MCIS_STRIP_DISABLE is only issued when sun4v
4666                  * vsw is in play.
4667                  */
4668                 mp_chain = mac_strip_vlan_tag_chain(mp_chain);
4669         }
4670 
4671         mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE);
4672 }
4673 
4674 /*
4675  * Process a chain for a given soft ring. If the number of packets
4676  * queued in the SRS and its associated soft rings (including this
4677  * one) is very small (tracked by srs_poll_pkt_cnt) then allow the
4678  * entering thread (interrupt or poll thread) to process the chain
4679  * inline. This is meant to reduce latency under low load.
4680  *
4681  * The proc and arg for each mblk is already stored in the mblk in
4682  * appropriate places.
4683  */
4684 /* ARGSUSED */
4685 void
4686 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp,
4687     mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz)
4688 {
4689         mac_direct_rx_t         proc;
4690         void                    *arg1;
4691         mac_resource_handle_t   arg2;
4692         mac_soft_ring_set_t     *mac_srs = ringp->s_ring_set;
4693 
4694         ASSERT(ringp != NULL);
4695         ASSERT(mp_chain != NULL);
4696         ASSERT(tail != NULL);
4697         ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4698 
4699         mutex_enter(&ringp->s_ring_lock);
4700         ringp->s_ring_total_inpkt += cnt;
4701         ringp->s_ring_total_rbytes += sz;
4702         if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) &&
4703             !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) {
4704                 /* If on processor or blanking on, then enqueue and return */
4705                 if (ringp->s_ring_state & S_RING_BLANK ||
4706                     ringp->s_ring_state & S_RING_PROC) {
4707                         SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4708                         mutex_exit(&ringp->s_ring_lock);
4709                         return;
4710                 }
4711                 proc = ringp->s_ring_rx_func;
4712                 arg1 = ringp->s_ring_rx_arg1;
4713                 arg2 = ringp->s_ring_rx_arg2;
4714                 /*
4715                  * See if anything is already queued. If we are the
4716                  * first packet, do inline processing else queue the
4717                  * packet and do the drain.
4718                  */
4719                 if (ringp->s_ring_first == NULL) {
4720                         /*
4721                          * Fast-path, ok to process and nothing queued.
4722                          */
4723                         ringp->s_ring_run = curthread;
4724                         ringp->s_ring_state |= (S_RING_PROC);
4725 
4726                         mutex_exit(&ringp->s_ring_lock);
4727 
4728                         /*
4729                          * We are the chain of 1 packet so
4730                          * go through this fast path.
4731                          */
4732                         ASSERT(mp_chain->b_next == NULL);
4733 
4734                         (*proc)(arg1, arg2, mp_chain, NULL);
4735 
4736                         ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4737                         /*
4738                          * If we have an SRS performing bandwidth
4739                          * control then we need to decrement the size
4740                          * and count so the SRS has an accurate count
4741                          * of the data queued between the SRS and its
4742                          * soft rings. We decrement the counters only
4743                          * when the packet is processed by both the
4744                          * SRS and the soft ring.
4745                          */
4746                         mutex_enter(&mac_srs->srs_lock);
4747                         MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
4748                         MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
4749                         mutex_exit(&mac_srs->srs_lock);
4750 
4751                         mutex_enter(&ringp->s_ring_lock);
4752                         ringp->s_ring_run = NULL;
4753                         ringp->s_ring_state &= ~S_RING_PROC;
4754                         if (ringp->s_ring_state & S_RING_CLIENT_WAIT)
4755                                 cv_signal(&ringp->s_ring_client_cv);
4756 
4757                         if ((ringp->s_ring_first == NULL) ||
4758                             (ringp->s_ring_state & S_RING_BLANK)) {
4759                                 /*
4760                                  * We processed a single packet inline
4761                                  * and nothing new has arrived or our
4762                                  * receiver doesn't want to receive
4763                                  * any packets. We are done.
4764                                  */
4765                                 mutex_exit(&ringp->s_ring_lock);
4766                                 return;
4767                         }
4768                 } else {
4769                         SOFT_RING_ENQUEUE_CHAIN(ringp,
4770                             mp_chain, tail, cnt, sz);
4771                 }
4772 
4773                 /*
4774                  * We are here because either we couldn't do inline
4775                  * processing (because something was already
4776                  * queued), or we had a chain of more than one
4777                  * packet, or something else arrived after we were
4778                  * done with inline processing.
4779                  */
4780                 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4781                 ASSERT(ringp->s_ring_first != NULL);
4782 
4783                 ringp->s_ring_drain_func(ringp);
4784                 mutex_exit(&ringp->s_ring_lock);
4785                 return;
4786         } else {
4787                 /* ST_RING_WORKER_ONLY case */
4788                 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4789                 mac_soft_ring_worker_wakeup(ringp);
4790                 mutex_exit(&ringp->s_ring_lock);
4791         }
4792 }
4793 
4794 /*
4795  * TX SOFTRING RELATED FUNCTIONS
4796  *
4797  * These functions really belong in mac_soft_ring.c and here for
4798  * a short period.
4799  */
4800 
4801 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) {          \
4802         ASSERT(MUTEX_HELD(&ringp->s_ring_lock));                 \
4803         ringp->s_ring_state |= S_RING_ENQUEUED;                              \
4804         SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);        \
4805 }
4806 
4807 /*
4808  * mac_tx_sring_queued
4809  *
4810  * When we are out of transmit descriptors and we already have a
4811  * queue that exceeds hiwat (or the client called us with
4812  * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the
4813  * soft ring pointer as the opaque cookie for the client enable
4814  * flow control.
4815  */
4816 static mac_tx_cookie_t
4817 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag,
4818     mblk_t **ret_mp)
4819 {
4820         int cnt;
4821         size_t sz;
4822         mblk_t *tail;
4823         mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4824         mac_tx_cookie_t cookie = 0;
4825         boolean_t wakeup_worker = B_TRUE;
4826 
4827         ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
4828         MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4829         if (flag & MAC_DROP_ON_NO_DESC) {
4830                 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
4831                 /* increment freed stats */
4832                 ringp->s_ring_drops += cnt;
4833                 cookie = (mac_tx_cookie_t)ringp;
4834         } else {
4835                 if (ringp->s_ring_first != NULL)
4836                         wakeup_worker = B_FALSE;
4837 
4838                 if (flag & MAC_TX_NO_ENQUEUE) {
4839                         /*
4840                          * If QUEUED is not set, queue the packet
4841                          * and let mac_tx_soft_ring_drain() set
4842                          * the TX_BLOCKED bit for the reasons
4843                          * explained above. Otherwise, return the
4844                          * mblks.
4845                          */
4846                         if (wakeup_worker) {
4847                                 TX_SOFT_RING_ENQUEUE_CHAIN(ringp,
4848                                     mp_chain, tail, cnt, sz);
4849                         } else {
4850                                 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT;
4851                                 cookie = (mac_tx_cookie_t)ringp;
4852                                 *ret_mp = mp_chain;
4853                         }
4854                 } else {
4855                         boolean_t enqueue = B_TRUE;
4856 
4857                         if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4858                                 /*
4859                                  * flow-controlled. Store ringp in cookie
4860                                  * so that it can be returned as
4861                                  * mac_tx_cookie_t to client
4862                                  */
4863                                 ringp->s_ring_state |= S_RING_TX_HIWAT;
4864                                 cookie = (mac_tx_cookie_t)ringp;
4865                                 ringp->s_ring_hiwat_cnt++;
4866                                 if (ringp->s_ring_count >
4867                                     ringp->s_ring_tx_max_q_cnt) {
4868                                         /* increment freed stats */
4869                                         ringp->s_ring_drops += cnt;
4870                                         /*
4871                                          * b_prev may be set to the fanout hint
4872                                          * hence can't use freemsg directly
4873                                          */
4874                                         mac_pkt_drop(NULL, NULL,
4875                                             mp_chain, B_FALSE);
4876                                         DTRACE_PROBE1(tx_queued_hiwat,
4877                                             mac_soft_ring_t *, ringp);
4878                                         enqueue = B_FALSE;
4879                                 }
4880                         }
4881                         if (enqueue) {
4882                                 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain,
4883                                     tail, cnt, sz);
4884                         }
4885                 }
4886                 if (wakeup_worker)
4887                         cv_signal(&ringp->s_ring_async);
4888         }
4889         return (cookie);
4890 }
4891 
4892 
4893 /*
4894  * mac_tx_soft_ring_process
4895  *
4896  * This routine is called when fanning out outgoing traffic among
4897  * multipe Tx rings.
4898  * Note that a soft ring is associated with a h/w Tx ring.
4899  */
4900 mac_tx_cookie_t
4901 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain,
4902     uint16_t flag, mblk_t **ret_mp)
4903 {
4904         mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
4905         int     cnt;
4906         size_t  sz;
4907         mblk_t  *tail;
4908         mac_tx_cookie_t cookie = 0;
4909 
4910         ASSERT(ringp != NULL);
4911         ASSERT(mp_chain != NULL);
4912         ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
4913         /*
4914          * The following modes can come here: SRS_TX_BW_FANOUT,
4915          * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR.
4916          */
4917         ASSERT(MAC_TX_SOFT_RINGS(mac_srs));
4918         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
4919             mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT ||
4920             mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4921             mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4922 
4923         if (ringp->s_ring_type & ST_RING_WORKER_ONLY) {
4924                 /* Serialization mode */
4925 
4926                 mutex_enter(&ringp->s_ring_lock);
4927                 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
4928                         cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4929                             flag, ret_mp);
4930                         mutex_exit(&ringp->s_ring_lock);
4931                         return (cookie);
4932                 }
4933                 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
4934                 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
4935                 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) {
4936                         /*
4937                          * If ring is blocked due to lack of Tx
4938                          * descs, just return. Worker thread
4939                          * will get scheduled when Tx desc's
4940                          * become available.
4941                          */
4942                         mutex_exit(&ringp->s_ring_lock);
4943                         return (cookie);
4944                 }
4945                 mac_soft_ring_worker_wakeup(ringp);
4946                 mutex_exit(&ringp->s_ring_lock);
4947                 return (cookie);
4948         } else {
4949                 /* Default fanout mode */
4950                 /*
4951                  * S_RING_BLOCKED is set when underlying NIC runs
4952                  * out of Tx descs and messages start getting
4953                  * queued. It won't get reset until
4954                  * tx_srs_drain() completely drains out the
4955                  * messages.
4956                  */
4957                 mac_tx_stats_t          stats;
4958 
4959                 if (ringp->s_ring_state & S_RING_ENQUEUED) {
4960                         /* Tx descs/resources not available */
4961                         mutex_enter(&ringp->s_ring_lock);
4962                         if (ringp->s_ring_state & S_RING_ENQUEUED) {
4963                                 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
4964                                     flag, ret_mp);
4965                                 mutex_exit(&ringp->s_ring_lock);
4966                                 return (cookie);
4967                         }
4968                         /*
4969                          * While we were computing mblk count, the
4970                          * flow control condition got relieved.
4971                          * Continue with the transmission.
4972                          */
4973                         mutex_exit(&ringp->s_ring_lock);
4974                 }
4975 
4976                 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1,
4977                     ringp->s_ring_tx_arg2, mp_chain, &stats);
4978 
4979                 /*
4980                  * Multiple threads could be here sending packets.
4981                  * Under such conditions, it is not possible to
4982                  * automically set S_RING_BLOCKED bit to indicate
4983                  * out of tx desc condition. To atomically set
4984                  * this, we queue the returned packet and do
4985                  * the setting of S_RING_BLOCKED in
4986                  * mac_tx_soft_ring_drain().
4987                  */
4988                 if (mp_chain != NULL) {
4989                         mutex_enter(&ringp->s_ring_lock);
4990                         cookie =
4991                             mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp);
4992                         mutex_exit(&ringp->s_ring_lock);
4993                         return (cookie);
4994                 }
4995                 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4996                 SOFTRING_TX_STATS_UPDATE(ringp, &stats);
4997 
4998                 return (0);
4999         }
5000 }