1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2019 Joyent, Inc.
  25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
  26  */
  27 
  28 /*
  29  * MAC Services Module
  30  *
  31  * The GLDv3 framework locking -  The MAC layer
  32  * --------------------------------------------
  33  *
  34  * The MAC layer is central to the GLD framework and can provide the locking
  35  * framework needed for itself and for the use of MAC clients. MAC end points
  36  * are fairly disjoint and don't share a lot of state. So a coarse grained
  37  * multi-threading scheme is to single thread all create/modify/delete or set
  38  * type of control operations on a per mac end point while allowing data threads
  39  * concurrently.
  40  *
  41  * Control operations (set) that modify a mac end point are always serialized on
  42  * a per mac end point basis, We have at most 1 such thread per mac end point
  43  * at a time.
  44  *
  45  * All other operations that are not serialized are essentially multi-threaded.
  46  * For example a control operation (get) like getting statistics which may not
  47  * care about reading values atomically or data threads sending or receiving
  48  * data. Mostly these type of operations don't modify the control state. Any
  49  * state these operations care about are protected using traditional locks.
  50  *
  51  * The perimeter only serializes serial operations. It does not imply there
  52  * aren't any other concurrent operations. However a serialized operation may
  53  * sometimes need to make sure it is the only thread. In this case it needs
  54  * to use reference counting mechanisms to cv_wait until any current data
  55  * threads are done.
  56  *
  57  * The mac layer itself does not hold any locks across a call to another layer.
  58  * The perimeter is however held across a down call to the driver to make the
  59  * whole control operation atomic with respect to other control operations.
  60  * Also the data path and get type control operations may proceed concurrently.
  61  * These operations synchronize with the single serial operation on a given mac
  62  * end point using regular locks. The perimeter ensures that conflicting
  63  * operations like say a mac_multicast_add and a mac_multicast_remove on the
  64  * same mac end point don't interfere with each other and also ensures that the
  65  * changes in the mac layer and the call to the underlying driver to say add a
  66  * multicast address are done atomically without interference from a thread
  67  * trying to delete the same address.
  68  *
  69  * For example, consider
  70  * mac_multicst_add()
  71  * {
  72  *      mac_perimeter_enter();  serialize all control operations
  73  *
  74  *      grab list lock          protect against access by data threads
  75  *      add to list
  76  *      drop list lock
  77  *
  78  *      call driver's mi_multicst
  79  *
  80  *      mac_perimeter_exit();
  81  * }
  82  *
  83  * To lessen the number of serialization locks and simplify the lock hierarchy,
  84  * we serialize all the control operations on a per mac end point by using a
  85  * single serialization lock called the perimeter. We allow recursive entry into
  86  * the perimeter to facilitate use of this mechanism by both the mac client and
  87  * the MAC layer itself.
  88  *
  89  * MAC client means an entity that does an operation on a mac handle
  90  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
  91  * an entity that does an operation on a mac handle obtained from a
  92  * mac_register. An entity could be both client and driver but on different
  93  * handles eg. aggr. and should only make the corresponding mac interface calls
  94  * i.e. mac driver interface or mac client interface as appropriate for that
  95  * mac handle.
  96  *
  97  * General rules.
  98  * -------------
  99  *
 100  * R1. The lock order of upcall threads is natually opposite to downcall
 101  * threads. Hence upcalls must not hold any locks across layers for fear of
 102  * recursive lock enter and lock order violation. This applies to all layers.
 103  *
 104  * R2. The perimeter is just another lock. Since it is held in the down
 105  * direction, acquiring the perimeter in an upcall is prohibited as it would
 106  * cause a deadlock. This applies to all layers.
 107  *
 108  * Note that upcalls that need to grab the mac perimeter (for example
 109  * mac_notify upcalls) can still achieve that by posting the request to a
 110  * thread, which can then grab all the required perimeters and locks in the
 111  * right global order. Note that in the above example the mac layer iself
 112  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
 113  * to the client must do that. Please see the aggr code for an example.
 114  *
 115  * MAC client rules
 116  * ----------------
 117  *
 118  * R3. A MAC client may use the MAC provided perimeter facility to serialize
 119  * control operations on a per mac end point. It does this by by acquring
 120  * and holding the perimeter across a sequence of calls to the mac layer.
 121  * This ensures atomicity across the entire block of mac calls. In this
 122  * model the MAC client must not hold any client locks across the calls to
 123  * the mac layer. This model is the preferred solution.
 124  *
 125  * R4. However if a MAC client has a lot of global state across all mac end
 126  * points the per mac end point serialization may not be sufficient. In this
 127  * case the client may choose to use global locks or use its own serialization.
 128  * To avoid deadlocks, these client layer locks held across the mac calls
 129  * in the control path must never be acquired by the data path for the reason
 130  * mentioned below.
 131  *
 132  * (Assume that a control operation that holds a client lock blocks in the
 133  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
 134  * data thread that holds this reference count, tries to acquire the same
 135  * client lock subsequently it will deadlock).
 136  *
 137  * A MAC client may follow either the R3 model or the R4 model, but can't
 138  * mix both. In the former, the hierarchy is Perim -> client locks, but in
 139  * the latter it is client locks -> Perim.
 140  *
 141  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
 142  * context since they may block while trying to acquire the perimeter.
 143  * In addition some calls may block waiting for upcall refcnts to come down to
 144  * zero.
 145  *
 146  * R6. MAC clients must make sure that they are single threaded and all threads
 147  * from the top (in particular data threads) have finished before calling
 148  * mac_client_close. The MAC framework does not track the number of client
 149  * threads using the mac client handle. Also mac clients must make sure
 150  * they have undone all the control operations before calling mac_client_close.
 151  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
 152  * mac_unicast_add/mac_multicast_add.
 153  *
 154  * MAC framework rules
 155  * -------------------
 156  *
 157  * R7. The mac layer itself must not hold any mac layer locks (except the mac
 158  * perimeter) across a call to any other layer from the mac layer. The call to
 159  * any other layer could be via mi_* entry points, classifier entry points into
 160  * the driver or via upcall pointers into layers above. The mac perimeter may
 161  * be acquired or held only in the down direction, for e.g. when calling into
 162  * a mi_* driver enty point to provide atomicity of the operation.
 163  *
 164  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
 165  * mac driver interfaces, the MAC layer must provide a cut out for control
 166  * interfaces like upcall notifications and start them in a separate thread.
 167  *
 168  * R9. Note that locking order also implies a plumbing order. For example
 169  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
 170  * to plumb in any other order must be failed at mac_open time, otherwise it
 171  * could lead to deadlocks due to inverse locking order.
 172  *
 173  * R10. MAC driver interfaces must not block since the driver could call them
 174  * in interrupt context.
 175  *
 176  * R11. Walkers must preferably not hold any locks while calling walker
 177  * callbacks. Instead these can operate on reference counts. In simple
 178  * callbacks it may be ok to hold a lock and call the callbacks, but this is
 179  * harder to maintain in the general case of arbitrary callbacks.
 180  *
 181  * R12. The MAC layer must protect upcall notification callbacks using reference
 182  * counts rather than holding locks across the callbacks.
 183  *
 184  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
 185  * sure that any pointers (such as mac ring pointers) it passes to the driver
 186  * remain valid until mac unregister time. Currently the mac layer achieves
 187  * this by using generation numbers for rings and freeing the mac rings only
 188  * at unregister time.  The MAC layer must provide a layer of indirection and
 189  * must not expose underlying driver rings or driver data structures/pointers
 190  * directly to MAC clients.
 191  *
 192  * MAC driver rules
 193  * ----------------
 194  *
 195  * R14. It would be preferable if MAC drivers don't hold any locks across any
 196  * mac call. However at a minimum they must not hold any locks across data
 197  * upcalls. They must also make sure that all references to mac data structures
 198  * are cleaned up and that it is single threaded at mac_unregister time.
 199  *
 200  * R15. MAC driver interfaces don't block and so the action may be done
 201  * asynchronously in a separate thread as for example handling notifications.
 202  * The driver must not assume that the action is complete when the call
 203  * returns.
 204  *
 205  * R16. Drivers must maintain a generation number per Rx ring, and pass it
 206  * back to mac_rx_ring(); They are expected to increment the generation
 207  * number whenever the ring's stop routine is invoked.
 208  * See comments in mac_rx_ring();
 209  *
 210  * R17 Similarly mi_stop is another synchronization point and the driver must
 211  * ensure that all upcalls are done and there won't be any future upcall
 212  * before returning from mi_stop.
 213  *
 214  * R18. The driver may assume that all set/modify control operations via
 215  * the mi_* entry points are single threaded on a per mac end point.
 216  *
 217  * Lock and Perimeter hierarchy scenarios
 218  * ---------------------------------------
 219  *
 220  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
 221  *
 222  * ft_lock -> fe_lock [mac_flow_lookup]
 223  *
 224  * mi_rw_lock -> fe_lock [mac_bcast_send]
 225  *
 226  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
 227  *
 228  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
 229  *
 230  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
 231  *
 232  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
 233  * client to driver. In the case of clients that explictly use the mac provided
 234  * perimeter mechanism for its serialization, the hierarchy is
 235  * Perimeter -> mac layer locks, since the client never holds any locks across
 236  * the mac calls. In the case of clients that use its own locks the hierarchy
 237  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
 238  * calls mac_perim_enter/exit in this case.
 239  *
 240  * Subflow creation rules
 241  * ---------------------------
 242  * o In case of a user specified cpulist present on underlying link and flows,
 243  * the flows cpulist must be a subset of the underlying link.
 244  * o In case of a user specified fanout mode present on link and flow, the
 245  * subflow fanout count has to be less than or equal to that of the
 246  * underlying link. The cpu-bindings for the subflows will be a subset of
 247  * the underlying link.
 248  * o In case if no cpulist specified on both underlying link and flow, the
 249  * underlying link relies on a  MAC tunable to provide out of box fanout.
 250  * The subflow will have no cpulist (the subflow will be unbound)
 251  * o In case if no cpulist is specified on the underlying link, a subflow can
 252  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
 253  * for the subflow will not adhere to restriction that they need to be subset
 254  * of the underlying link.
 255  * o In case where the underlying link is carrying either a user specified
 256  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
 257  * created unbound.
 258  * o While creating unbound subflows, bandwidth mode changes attempt to
 259  * figure a right fanout count. In such cases the fanout count will override
 260  * the unbound cpu-binding behavior.
 261  * o In addition to this, while cycling between flow and link properties, we
 262  * impose a restriction that if a link property has a subflow with
 263  * user-specified attributes, we will not allow changing the link property.
 264  * The administrator needs to reset all the user specified properties for the
 265  * subflows before attempting a link property change.
 266  * Some of the above rules can be overridden by specifying additional command
 267  * line options while creating or modifying link or subflow properties.
 268  *
 269  * Datapath
 270  * --------
 271  *
 272  * For information on the datapath, the world of soft rings, hardware rings, how
 273  * it is structured, and the path of an mblk_t between a driver and a mac
 274  * client, see mac_sched.c.
 275  */
 276 
 277 #include <sys/types.h>
 278 #include <sys/conf.h>
 279 #include <sys/id_space.h>
 280 #include <sys/esunddi.h>
 281 #include <sys/stat.h>
 282 #include <sys/mkdev.h>
 283 #include <sys/stream.h>
 284 #include <sys/strsun.h>
 285 #include <sys/strsubr.h>
 286 #include <sys/dlpi.h>
 287 #include <sys/list.h>
 288 #include <sys/modhash.h>
 289 #include <sys/mac_provider.h>
 290 #include <sys/mac_client_impl.h>
 291 #include <sys/mac_soft_ring.h>
 292 #include <sys/mac_stat.h>
 293 #include <sys/mac_impl.h>
 294 #include <sys/mac.h>
 295 #include <sys/dls.h>
 296 #include <sys/dld.h>
 297 #include <sys/modctl.h>
 298 #include <sys/fs/dv_node.h>
 299 #include <sys/thread.h>
 300 #include <sys/proc.h>
 301 #include <sys/callb.h>
 302 #include <sys/cpuvar.h>
 303 #include <sys/atomic.h>
 304 #include <sys/bitmap.h>
 305 #include <sys/sdt.h>
 306 #include <sys/mac_flow.h>
 307 #include <sys/ddi_intr_impl.h>
 308 #include <sys/disp.h>
 309 #include <sys/sdt.h>
 310 #include <sys/vnic.h>
 311 #include <sys/vnic_impl.h>
 312 #include <sys/vlan.h>
 313 #include <inet/ip.h>
 314 #include <inet/ip6.h>
 315 #include <sys/exacct.h>
 316 #include <sys/exacct_impl.h>
 317 #include <inet/nd.h>
 318 #include <sys/ethernet.h>
 319 #include <sys/pool.h>
 320 #include <sys/pool_pset.h>
 321 #include <sys/cpupart.h>
 322 #include <inet/wifi_ioctl.h>
 323 #include <net/wpa.h>
 324 
 325 #define IMPL_HASHSZ     67      /* prime */
 326 
 327 kmem_cache_t            *i_mac_impl_cachep;
 328 mod_hash_t              *i_mac_impl_hash;
 329 krwlock_t               i_mac_impl_lock;
 330 uint_t                  i_mac_impl_count;
 331 static kmem_cache_t     *mac_ring_cache;
 332 static id_space_t       *minor_ids;
 333 static uint32_t         minor_count;
 334 static pool_event_cb_t  mac_pool_event_reg;
 335 
 336 /*
 337  * Logging stuff. Perhaps mac_logging_interval could be broken into
 338  * mac_flow_log_interval and mac_link_log_interval if we want to be
 339  * able to schedule them differently.
 340  */
 341 uint_t                  mac_logging_interval;
 342 boolean_t               mac_flow_log_enable;
 343 boolean_t               mac_link_log_enable;
 344 timeout_id_t            mac_logging_timer;
 345 
 346 #define MACTYPE_KMODDIR "mac"
 347 #define MACTYPE_HASHSZ  67
 348 static mod_hash_t       *i_mactype_hash;
 349 /*
 350  * i_mactype_lock synchronizes threads that obtain references to mactype_t
 351  * structures through i_mactype_getplugin().
 352  */
 353 static kmutex_t         i_mactype_lock;
 354 
 355 /*
 356  * mac_tx_percpu_cnt
 357  *
 358  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
 359  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
 360  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
 361  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
 362  */
 363 int mac_tx_percpu_cnt;
 364 int mac_tx_percpu_cnt_max = 128;
 365 
 366 /*
 367  * Call back functions for the bridge module.  These are guaranteed to be valid
 368  * when holding a reference on a link or when holding mip->mi_bridge_lock and
 369  * mi_bridge_link is non-NULL.
 370  */
 371 mac_bridge_tx_t mac_bridge_tx_cb;
 372 mac_bridge_rx_t mac_bridge_rx_cb;
 373 mac_bridge_ref_t mac_bridge_ref_cb;
 374 mac_bridge_ls_t mac_bridge_ls_cb;
 375 
 376 static int i_mac_constructor(void *, void *, int);
 377 static void i_mac_destructor(void *, void *);
 378 static int i_mac_ring_ctor(void *, void *, int);
 379 static void i_mac_ring_dtor(void *, void *);
 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
 381 void mac_tx_client_flush(mac_client_impl_t *);
 382 void mac_tx_client_block(mac_client_impl_t *);
 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
 384 static int mac_start_group_and_rings(mac_group_t *);
 385 static void mac_stop_group_and_rings(mac_group_t *);
 386 static void mac_pool_event_cb(pool_event_t, int, void *);
 387 
 388 typedef struct netinfo_s {
 389         list_node_t     ni_link;
 390         void            *ni_record;
 391         int             ni_size;
 392         int             ni_type;
 393 } netinfo_t;
 394 
 395 /*
 396  * Module initialization functions.
 397  */
 398 
 399 void
 400 mac_init(void)
 401 {
 402         mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
 403             boot_max_ncpus);
 404 
 405         /* Upper bound is mac_tx_percpu_cnt_max */
 406         if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
 407                 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
 408 
 409         if (mac_tx_percpu_cnt < 1) {
 410                 /* Someone set max_tx_percpu_cnt_max to 0 or less */
 411                 mac_tx_percpu_cnt = 1;
 412         }
 413 
 414         ASSERT(mac_tx_percpu_cnt >= 1);
 415         mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
 416         /*
 417          * Make it of the form 2**N - 1 in the range
 418          * [0 .. mac_tx_percpu_cnt_max - 1]
 419          */
 420         mac_tx_percpu_cnt--;
 421 
 422         i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
 423             sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
 424             NULL, NULL, NULL, 0);
 425         ASSERT(i_mac_impl_cachep != NULL);
 426 
 427         mac_ring_cache = kmem_cache_create("mac_ring_cache",
 428             sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
 429             NULL, NULL, 0);
 430         ASSERT(mac_ring_cache != NULL);
 431 
 432         i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
 433             IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
 434             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 435         rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
 436 
 437         mac_flow_init();
 438         mac_soft_ring_init();
 439         mac_bcast_init();
 440         mac_client_init();
 441 
 442         i_mac_impl_count = 0;
 443 
 444         i_mactype_hash = mod_hash_create_extended("mactype_hash",
 445             MACTYPE_HASHSZ,
 446             mod_hash_null_keydtor, mod_hash_null_valdtor,
 447             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 448 
 449         /*
 450          * Allocate an id space to manage minor numbers. The range of the
 451          * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
 452          * leaves half of the 32-bit minors available for driver private use.
 453          */
 454         minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
 455             MAC_PRIVATE_MINOR-1);
 456         ASSERT(minor_ids != NULL);
 457         minor_count = 0;
 458 
 459         /* Let's default to 20 seconds */
 460         mac_logging_interval = 20;
 461         mac_flow_log_enable = B_FALSE;
 462         mac_link_log_enable = B_FALSE;
 463         mac_logging_timer = NULL;
 464 
 465         /* Register to be notified of noteworthy pools events */
 466         mac_pool_event_reg.pec_func =  mac_pool_event_cb;
 467         mac_pool_event_reg.pec_arg = NULL;
 468         pool_event_cb_register(&mac_pool_event_reg);
 469 }
 470 
 471 int
 472 mac_fini(void)
 473 {
 474 
 475         if (i_mac_impl_count > 0 || minor_count > 0)
 476                 return (EBUSY);
 477 
 478         pool_event_cb_unregister(&mac_pool_event_reg);
 479 
 480         id_space_destroy(minor_ids);
 481         mac_flow_fini();
 482 
 483         mod_hash_destroy_hash(i_mac_impl_hash);
 484         rw_destroy(&i_mac_impl_lock);
 485 
 486         mac_client_fini();
 487         kmem_cache_destroy(mac_ring_cache);
 488 
 489         mod_hash_destroy_hash(i_mactype_hash);
 490         mac_soft_ring_finish();
 491 
 492 
 493         return (0);
 494 }
 495 
 496 /*
 497  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
 498  * (e.g. softmac) may pass in a NULL ops argument.
 499  */
 500 void
 501 mac_init_ops(struct dev_ops *ops, const char *name)
 502 {
 503         major_t major = ddi_name_to_major((char *)name);
 504 
 505         /*
 506          * By returning on error below, we are not letting the driver continue
 507          * in an undefined context.  The mac_register() function will faill if
 508          * DN_GLDV3_DRIVER isn't set.
 509          */
 510         if (major == DDI_MAJOR_T_NONE)
 511                 return;
 512         LOCK_DEV_OPS(&devnamesp[major].dn_lock);
 513         devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
 514         UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
 515         if (ops != NULL)
 516                 dld_init_ops(ops, name);
 517 }
 518 
 519 void
 520 mac_fini_ops(struct dev_ops *ops)
 521 {
 522         dld_fini_ops(ops);
 523 }
 524 
 525 /*ARGSUSED*/
 526 static int
 527 i_mac_constructor(void *buf, void *arg, int kmflag)
 528 {
 529         mac_impl_t      *mip = buf;
 530 
 531         bzero(buf, sizeof (mac_impl_t));
 532 
 533         mip->mi_linkstate = LINK_STATE_UNKNOWN;
 534 
 535         rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
 536         mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
 537         mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
 538         mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
 539 
 540         mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
 541         cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 542         mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
 543         cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 544 
 545         mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
 546 
 547         return (0);
 548 }
 549 
 550 /*ARGSUSED*/
 551 static void
 552 i_mac_destructor(void *buf, void *arg)
 553 {
 554         mac_impl_t      *mip = buf;
 555         mac_cb_info_t   *mcbi;
 556 
 557         ASSERT(mip->mi_ref == 0);
 558         ASSERT(mip->mi_active == 0);
 559         ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
 560         ASSERT(mip->mi_devpromisc == 0);
 561         ASSERT(mip->mi_ksp == NULL);
 562         ASSERT(mip->mi_kstat_count == 0);
 563         ASSERT(mip->mi_nclients == 0);
 564         ASSERT(mip->mi_nactiveclients == 0);
 565         ASSERT(mip->mi_single_active_client == NULL);
 566         ASSERT(mip->mi_state_flags == 0);
 567         ASSERT(mip->mi_factory_addr == NULL);
 568         ASSERT(mip->mi_factory_addr_num == 0);
 569         ASSERT(mip->mi_default_tx_ring == NULL);
 570 
 571         mcbi = &mip->mi_notify_cb_info;
 572         ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
 573         ASSERT(mip->mi_notify_bits == 0);
 574         ASSERT(mip->mi_notify_thread == NULL);
 575         ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
 576         mcbi->mcbi_lockp = NULL;
 577 
 578         mcbi = &mip->mi_promisc_cb_info;
 579         ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
 580         ASSERT(mip->mi_promisc_list == NULL);
 581         ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
 582         mcbi->mcbi_lockp = NULL;
 583 
 584         ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
 585         ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
 586 
 587         rw_destroy(&mip->mi_rw_lock);
 588 
 589         mutex_destroy(&mip->mi_promisc_lock);
 590         cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
 591         mutex_destroy(&mip->mi_notify_lock);
 592         cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
 593         mutex_destroy(&mip->mi_ring_lock);
 594 
 595         ASSERT(mip->mi_bridge_link == NULL);
 596 }
 597 
 598 /* ARGSUSED */
 599 static int
 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
 601 {
 602         mac_ring_t *ring = (mac_ring_t *)buf;
 603 
 604         bzero(ring, sizeof (mac_ring_t));
 605         cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
 606         mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
 607         ring->mr_state = MR_FREE;
 608         return (0);
 609 }
 610 
 611 /* ARGSUSED */
 612 static void
 613 i_mac_ring_dtor(void *buf, void *arg)
 614 {
 615         mac_ring_t *ring = (mac_ring_t *)buf;
 616 
 617         cv_destroy(&ring->mr_cv);
 618         mutex_destroy(&ring->mr_lock);
 619 }
 620 
 621 /*
 622  * Common functions to do mac callback addition and deletion. Currently this is
 623  * used by promisc callbacks and notify callbacks. List addition and deletion
 624  * need to take care of list walkers. List walkers in general, can't hold list
 625  * locks and make upcall callbacks due to potential lock order and recursive
 626  * reentry issues. Instead list walkers increment the list walker count to mark
 627  * the presence of a walker thread. Addition can be carefully done to ensure
 628  * that the list walker always sees either the old list or the new list.
 629  * However the deletion can't be done while the walker is active, instead the
 630  * deleting thread simply marks the entry as logically deleted. The last walker
 631  * physically deletes and frees up the logically deleted entries when the walk
 632  * is complete.
 633  */
 634 void
 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 636     mac_cb_t *mcb_elem)
 637 {
 638         mac_cb_t        *p;
 639         mac_cb_t        **pp;
 640 
 641         /* Verify it is not already in the list */
 642         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 643                 if (p == mcb_elem)
 644                         break;
 645         }
 646         VERIFY(p == NULL);
 647 
 648         /*
 649          * Add it to the head of the callback list. The membar ensures that
 650          * the following list pointer manipulations reach global visibility
 651          * in exactly the program order below.
 652          */
 653         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 654 
 655         mcb_elem->mcb_nextp = *mcb_head;
 656         membar_producer();
 657         *mcb_head = mcb_elem;
 658 }
 659 
 660 /*
 661  * Mark the entry as logically deleted. If there aren't any walkers unlink
 662  * from the list. In either case return the corresponding status.
 663  */
 664 boolean_t
 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 666     mac_cb_t *mcb_elem)
 667 {
 668         mac_cb_t        *p;
 669         mac_cb_t        **pp;
 670 
 671         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 672         /*
 673          * Search the callback list for the entry to be removed
 674          */
 675         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 676                 if (p == mcb_elem)
 677                         break;
 678         }
 679         VERIFY(p != NULL);
 680 
 681         /*
 682          * If there are walkers just mark it as deleted and the last walker
 683          * will remove from the list and free it.
 684          */
 685         if (mcbi->mcbi_walker_cnt != 0) {
 686                 p->mcb_flags |= MCB_CONDEMNED;
 687                 mcbi->mcbi_del_cnt++;
 688                 return (B_FALSE);
 689         }
 690 
 691         ASSERT(mcbi->mcbi_del_cnt == 0);
 692         *pp = p->mcb_nextp;
 693         p->mcb_nextp = NULL;
 694         return (B_TRUE);
 695 }
 696 
 697 /*
 698  * Wait for all pending callback removals to be completed
 699  */
 700 void
 701 mac_callback_remove_wait(mac_cb_info_t *mcbi)
 702 {
 703         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 704         while (mcbi->mcbi_del_cnt != 0) {
 705                 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
 706                 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
 707         }
 708 }
 709 
 710 /*
 711  * The last mac callback walker does the cleanup. Walk the list and unlik
 712  * all the logically deleted entries and construct a temporary list of
 713  * removed entries. Return the list of removed entries to the caller.
 714  */
 715 mac_cb_t *
 716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
 717 {
 718         mac_cb_t        *p;
 719         mac_cb_t        **pp;
 720         mac_cb_t        *rmlist = NULL;         /* List of removed elements */
 721         int     cnt = 0;
 722 
 723         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 724         ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
 725 
 726         pp = mcb_head;
 727         while (*pp != NULL) {
 728                 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
 729                         p = *pp;
 730                         *pp = p->mcb_nextp;
 731                         p->mcb_nextp = rmlist;
 732                         rmlist = p;
 733                         cnt++;
 734                         continue;
 735                 }
 736                 pp = &(*pp)->mcb_nextp;
 737         }
 738 
 739         ASSERT(mcbi->mcbi_del_cnt == cnt);
 740         mcbi->mcbi_del_cnt = 0;
 741         return (rmlist);
 742 }
 743 
 744 boolean_t
 745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 746 {
 747         mac_cb_t        *mcb;
 748 
 749         /* Verify it is not already in the list */
 750         for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
 751                 if (mcb == mcb_elem)
 752                         return (B_TRUE);
 753         }
 754 
 755         return (B_FALSE);
 756 }
 757 
 758 boolean_t
 759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 760 {
 761         boolean_t       found;
 762 
 763         mutex_enter(mcbi->mcbi_lockp);
 764         found = mac_callback_lookup(mcb_headp, mcb_elem);
 765         mutex_exit(mcbi->mcbi_lockp);
 766 
 767         return (found);
 768 }
 769 
 770 /* Free the list of removed callbacks */
 771 void
 772 mac_callback_free(mac_cb_t *rmlist)
 773 {
 774         mac_cb_t        *mcb;
 775         mac_cb_t        *mcb_next;
 776 
 777         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 778                 mcb_next = mcb->mcb_nextp;
 779                 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
 780         }
 781 }
 782 
 783 /*
 784  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
 785  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
 786  * is only a single shared total walker count, and an entry can't be physically
 787  * unlinked if a walker is active on either list. The last walker does this
 788  * cleanup of logically deleted entries.
 789  */
 790 void
 791 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
 792 {
 793         mac_cb_t        *rmlist;
 794         mac_cb_t        *mcb;
 795         mac_cb_t        *mcb_next;
 796         mac_promisc_impl_t      *mpip;
 797 
 798         /*
 799          * Construct a temporary list of deleted callbacks by walking the
 800          * the mi_promisc_list. Then for each entry in the temporary list,
 801          * remove it from the mci_promisc_list and free the entry.
 802          */
 803         rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
 804             &mip->mi_promisc_list);
 805 
 806         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 807                 mcb_next = mcb->mcb_nextp;
 808                 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
 809                 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
 810                     &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
 811                 mcb->mcb_flags = 0;
 812                 mcb->mcb_nextp = NULL;
 813                 kmem_cache_free(mac_promisc_impl_cache, mpip);
 814         }
 815 }
 816 
 817 void
 818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
 819 {
 820         mac_cb_info_t   *mcbi;
 821 
 822         /*
 823          * Signal the notify thread even after mi_ref has become zero and
 824          * mi_disabled is set. The synchronization with the notify thread
 825          * happens in mac_unregister and that implies the driver must make
 826          * sure it is single-threaded (with respect to mac calls) and that
 827          * all pending mac calls have returned before it calls mac_unregister
 828          */
 829         rw_enter(&i_mac_impl_lock, RW_READER);
 830         if (mip->mi_state_flags & MIS_DISABLED)
 831                 goto exit;
 832 
 833         /*
 834          * Guard against incorrect notifications.  (Running a newer
 835          * mac client against an older implementation?)
 836          */
 837         if (type >= MAC_NNOTE)
 838                 goto exit;
 839 
 840         mcbi = &mip->mi_notify_cb_info;
 841         mutex_enter(mcbi->mcbi_lockp);
 842         mip->mi_notify_bits |= (1 << type);
 843         cv_broadcast(&mcbi->mcbi_cv);
 844         mutex_exit(mcbi->mcbi_lockp);
 845 
 846 exit:
 847         rw_exit(&i_mac_impl_lock);
 848 }
 849 
 850 /*
 851  * Mac serialization primitives. Please see the block comment at the
 852  * top of the file.
 853  */
 854 void
 855 i_mac_perim_enter(mac_impl_t *mip)
 856 {
 857         mac_client_impl_t       *mcip;
 858 
 859         if (mip->mi_state_flags & MIS_IS_VNIC) {
 860                 /*
 861                  * This is a VNIC. Return the lower mac since that is what
 862                  * we want to serialize on.
 863                  */
 864                 mcip = mac_vnic_lower(mip);
 865                 mip = mcip->mci_mip;
 866         }
 867 
 868         mutex_enter(&mip->mi_perim_lock);
 869         if (mip->mi_perim_owner == curthread) {
 870                 mip->mi_perim_ocnt++;
 871                 mutex_exit(&mip->mi_perim_lock);
 872                 return;
 873         }
 874 
 875         while (mip->mi_perim_owner != NULL)
 876                 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
 877 
 878         mip->mi_perim_owner = curthread;
 879         ASSERT(mip->mi_perim_ocnt == 0);
 880         mip->mi_perim_ocnt++;
 881 #ifdef DEBUG
 882         mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
 883             MAC_PERIM_STACK_DEPTH);
 884 #endif
 885         mutex_exit(&mip->mi_perim_lock);
 886 }
 887 
 888 int
 889 i_mac_perim_enter_nowait(mac_impl_t *mip)
 890 {
 891         /*
 892          * The vnic is a special case, since the serialization is done based
 893          * on the lower mac. If the lower mac is busy, it does not imply the
 894          * vnic can't be unregistered. But in the case of other drivers,
 895          * a busy perimeter or open mac handles implies that the mac is busy
 896          * and can't be unregistered.
 897          */
 898         if (mip->mi_state_flags & MIS_IS_VNIC) {
 899                 i_mac_perim_enter(mip);
 900                 return (0);
 901         }
 902 
 903         mutex_enter(&mip->mi_perim_lock);
 904         if (mip->mi_perim_owner != NULL) {
 905                 mutex_exit(&mip->mi_perim_lock);
 906                 return (EBUSY);
 907         }
 908         ASSERT(mip->mi_perim_ocnt == 0);
 909         mip->mi_perim_owner = curthread;
 910         mip->mi_perim_ocnt++;
 911         mutex_exit(&mip->mi_perim_lock);
 912 
 913         return (0);
 914 }
 915 
 916 void
 917 i_mac_perim_exit(mac_impl_t *mip)
 918 {
 919         mac_client_impl_t *mcip;
 920 
 921         if (mip->mi_state_flags & MIS_IS_VNIC) {
 922                 /*
 923                  * This is a VNIC. Return the lower mac since that is what
 924                  * we want to serialize on.
 925                  */
 926                 mcip = mac_vnic_lower(mip);
 927                 mip = mcip->mci_mip;
 928         }
 929 
 930         ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
 931 
 932         mutex_enter(&mip->mi_perim_lock);
 933         if (--mip->mi_perim_ocnt == 0) {
 934                 mip->mi_perim_owner = NULL;
 935                 cv_signal(&mip->mi_perim_cv);
 936         }
 937         mutex_exit(&mip->mi_perim_lock);
 938 }
 939 
 940 /*
 941  * Returns whether the current thread holds the mac perimeter. Used in making
 942  * assertions.
 943  */
 944 boolean_t
 945 mac_perim_held(mac_handle_t mh)
 946 {
 947         mac_impl_t      *mip = (mac_impl_t *)mh;
 948         mac_client_impl_t *mcip;
 949 
 950         if (mip->mi_state_flags & MIS_IS_VNIC) {
 951                 /*
 952                  * This is a VNIC. Return the lower mac since that is what
 953                  * we want to serialize on.
 954                  */
 955                 mcip = mac_vnic_lower(mip);
 956                 mip = mcip->mci_mip;
 957         }
 958         return (mip->mi_perim_owner == curthread);
 959 }
 960 
 961 /*
 962  * mac client interfaces to enter the mac perimeter of a mac end point, given
 963  * its mac handle, or macname or linkid.
 964  */
 965 void
 966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
 967 {
 968         mac_impl_t      *mip = (mac_impl_t *)mh;
 969 
 970         i_mac_perim_enter(mip);
 971         /*
 972          * The mac_perim_handle_t returned encodes the 'mip' and whether a
 973          * mac_open has been done internally while entering the perimeter.
 974          * This information is used in mac_perim_exit
 975          */
 976         MAC_ENCODE_MPH(*mphp, mip, 0);
 977 }
 978 
 979 int
 980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
 981 {
 982         int     err;
 983         mac_handle_t    mh;
 984 
 985         if ((err = mac_open(name, &mh)) != 0)
 986                 return (err);
 987 
 988         mac_perim_enter_by_mh(mh, mphp);
 989         MAC_ENCODE_MPH(*mphp, mh, 1);
 990         return (0);
 991 }
 992 
 993 int
 994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
 995 {
 996         int     err;
 997         mac_handle_t    mh;
 998 
 999         if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1000                 return (err);
1001 
1002         mac_perim_enter_by_mh(mh, mphp);
1003         MAC_ENCODE_MPH(*mphp, mh, 1);
1004         return (0);
1005 }
1006 
1007 void
1008 mac_perim_exit(mac_perim_handle_t mph)
1009 {
1010         mac_impl_t      *mip;
1011         boolean_t       need_close;
1012 
1013         MAC_DECODE_MPH(mph, mip, need_close);
1014         i_mac_perim_exit(mip);
1015         if (need_close)
1016                 mac_close((mac_handle_t)mip);
1017 }
1018 
1019 int
1020 mac_hold(const char *macname, mac_impl_t **pmip)
1021 {
1022         mac_impl_t      *mip;
1023         int             err;
1024 
1025         /*
1026          * Check the device name length to make sure it won't overflow our
1027          * buffer.
1028          */
1029         if (strlen(macname) >= MAXNAMELEN)
1030                 return (EINVAL);
1031 
1032         /*
1033          * Look up its entry in the global hash table.
1034          */
1035         rw_enter(&i_mac_impl_lock, RW_WRITER);
1036         err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1037             (mod_hash_val_t *)&mip);
1038 
1039         if (err != 0) {
1040                 rw_exit(&i_mac_impl_lock);
1041                 return (ENOENT);
1042         }
1043 
1044         if (mip->mi_state_flags & MIS_DISABLED) {
1045                 rw_exit(&i_mac_impl_lock);
1046                 return (ENOENT);
1047         }
1048 
1049         if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1050                 rw_exit(&i_mac_impl_lock);
1051                 return (EBUSY);
1052         }
1053 
1054         mip->mi_ref++;
1055         rw_exit(&i_mac_impl_lock);
1056 
1057         *pmip = mip;
1058         return (0);
1059 }
1060 
1061 void
1062 mac_rele(mac_impl_t *mip)
1063 {
1064         rw_enter(&i_mac_impl_lock, RW_WRITER);
1065         ASSERT(mip->mi_ref != 0);
1066         if (--mip->mi_ref == 0) {
1067                 ASSERT(mip->mi_nactiveclients == 0 &&
1068                     !(mip->mi_state_flags & MIS_EXCLUSIVE));
1069         }
1070         rw_exit(&i_mac_impl_lock);
1071 }
1072 
1073 /*
1074  * Private GLDv3 function to start a MAC instance.
1075  */
1076 int
1077 mac_start(mac_handle_t mh)
1078 {
1079         mac_impl_t      *mip = (mac_impl_t *)mh;
1080         int             err = 0;
1081         mac_group_t     *defgrp;
1082 
1083         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1084         ASSERT(mip->mi_start != NULL);
1085 
1086         /*
1087          * Check whether the device is already started.
1088          */
1089         if (mip->mi_active++ == 0) {
1090                 mac_ring_t *ring = NULL;
1091 
1092                 /*
1093                  * Start the device.
1094                  */
1095                 err = mip->mi_start(mip->mi_driver);
1096                 if (err != 0) {
1097                         mip->mi_active--;
1098                         return (err);
1099                 }
1100 
1101                 /*
1102                  * Start the default tx ring.
1103                  */
1104                 if (mip->mi_default_tx_ring != NULL) {
1105 
1106                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1107                         if (ring->mr_state != MR_INUSE) {
1108                                 err = mac_start_ring(ring);
1109                                 if (err != 0) {
1110                                         mip->mi_active--;
1111                                         return (err);
1112                                 }
1113                         }
1114                 }
1115 
1116                 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1117                         /*
1118                          * Start the default group which is responsible
1119                          * for receiving broadcast and multicast
1120                          * traffic for both primary and non-primary
1121                          * MAC clients.
1122                          */
1123                         ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1124                         err = mac_start_group_and_rings(defgrp);
1125                         if (err != 0) {
1126                                 mip->mi_active--;
1127                                 if ((ring != NULL) &&
1128                                     (ring->mr_state == MR_INUSE))
1129                                         mac_stop_ring(ring);
1130                                 return (err);
1131                         }
1132                         mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1133                 }
1134         }
1135 
1136         return (err);
1137 }
1138 
1139 /*
1140  * Private GLDv3 function to stop a MAC instance.
1141  */
1142 void
1143 mac_stop(mac_handle_t mh)
1144 {
1145         mac_impl_t      *mip = (mac_impl_t *)mh;
1146         mac_group_t     *grp;
1147 
1148         ASSERT(mip->mi_stop != NULL);
1149         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1150 
1151         /*
1152          * Check whether the device is still needed.
1153          */
1154         ASSERT(mip->mi_active != 0);
1155         if (--mip->mi_active == 0) {
1156                 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1157                         /*
1158                          * There should be no more active clients since the
1159                          * MAC is being stopped. Stop the default RX group
1160                          * and transition it back to registered state.
1161                          *
1162                          * When clients are torn down, the groups
1163                          * are release via mac_release_rx_group which
1164                          * knows the the default group is always in
1165                          * started mode since broadcast uses it. So
1166                          * we can assert that their are no clients
1167                          * (since mac_bcast_add doesn't register itself
1168                          * as a client) and group is in SHARED state.
1169                          */
1170                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1171                         ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1172                             mip->mi_nactiveclients == 0);
1173                         mac_stop_group_and_rings(grp);
1174                         mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1175                 }
1176 
1177                 if (mip->mi_default_tx_ring != NULL) {
1178                         mac_ring_t *ring;
1179 
1180                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1181                         if (ring->mr_state == MR_INUSE) {
1182                                 mac_stop_ring(ring);
1183                                 ring->mr_flag = 0;
1184                         }
1185                 }
1186 
1187                 /*
1188                  * Stop the device.
1189                  */
1190                 mip->mi_stop(mip->mi_driver);
1191         }
1192 }
1193 
1194 int
1195 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1196 {
1197         int             err = 0;
1198 
1199         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1200         ASSERT(mip->mi_setpromisc != NULL);
1201 
1202         if (on) {
1203                 /*
1204                  * Enable promiscuous mode on the device if not yet enabled.
1205                  */
1206                 if (mip->mi_devpromisc++ == 0) {
1207                         err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1208                         if (err != 0) {
1209                                 mip->mi_devpromisc--;
1210                                 return (err);
1211                         }
1212                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1213                 }
1214         } else {
1215                 if (mip->mi_devpromisc == 0)
1216                         return (EPROTO);
1217 
1218                 /*
1219                  * Disable promiscuous mode on the device if this is the last
1220                  * enabling.
1221                  */
1222                 if (--mip->mi_devpromisc == 0) {
1223                         err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1224                         if (err != 0) {
1225                                 mip->mi_devpromisc++;
1226                                 return (err);
1227                         }
1228                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1229                 }
1230         }
1231 
1232         return (0);
1233 }
1234 
1235 /*
1236  * The promiscuity state can change any time. If the caller needs to take
1237  * actions that are atomic with the promiscuity state, then the caller needs
1238  * to bracket the entire sequence with mac_perim_enter/exit
1239  */
1240 boolean_t
1241 mac_promisc_get(mac_handle_t mh)
1242 {
1243         mac_impl_t              *mip = (mac_impl_t *)mh;
1244 
1245         /*
1246          * Return the current promiscuity.
1247          */
1248         return (mip->mi_devpromisc != 0);
1249 }
1250 
1251 /*
1252  * Invoked at MAC instance attach time to initialize the list
1253  * of factory MAC addresses supported by a MAC instance. This function
1254  * builds a local cache in the mac_impl_t for the MAC addresses
1255  * supported by the underlying hardware. The MAC clients themselves
1256  * use the mac_addr_factory*() functions to query and reserve
1257  * factory MAC addresses.
1258  */
1259 void
1260 mac_addr_factory_init(mac_impl_t *mip)
1261 {
1262         mac_capab_multifactaddr_t capab;
1263         uint8_t *addr;
1264         int i;
1265 
1266         /*
1267          * First round to see how many factory MAC addresses are available.
1268          */
1269         bzero(&capab, sizeof (capab));
1270         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1271             &capab) || (capab.mcm_naddr == 0)) {
1272                 /*
1273                  * The MAC instance doesn't support multiple factory
1274                  * MAC addresses, we're done here.
1275                  */
1276                 return;
1277         }
1278 
1279         /*
1280          * Allocate the space and get all the factory addresses.
1281          */
1282         addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1283         capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1284 
1285         mip->mi_factory_addr_num = capab.mcm_naddr;
1286         mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1287             sizeof (mac_factory_addr_t), KM_SLEEP);
1288 
1289         for (i = 0; i < capab.mcm_naddr; i++) {
1290                 bcopy(addr + i * MAXMACADDRLEN,
1291                     mip->mi_factory_addr[i].mfa_addr,
1292                     mip->mi_type->mt_addr_length);
1293                 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1294         }
1295 
1296         kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1297 }
1298 
1299 void
1300 mac_addr_factory_fini(mac_impl_t *mip)
1301 {
1302         if (mip->mi_factory_addr == NULL) {
1303                 ASSERT(mip->mi_factory_addr_num == 0);
1304                 return;
1305         }
1306 
1307         kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1308             sizeof (mac_factory_addr_t));
1309 
1310         mip->mi_factory_addr = NULL;
1311         mip->mi_factory_addr_num = 0;
1312 }
1313 
1314 /*
1315  * Reserve a factory MAC address. If *slot is set to -1, the function
1316  * attempts to reserve any of the available factory MAC addresses and
1317  * returns the reserved slot id. If no slots are available, the function
1318  * returns ENOSPC. If *slot is not set to -1, the function reserves
1319  * the specified slot if it is available, or returns EBUSY is the slot
1320  * is already used. Returns ENOTSUP if the underlying MAC does not
1321  * support multiple factory addresses. If the slot number is not -1 but
1322  * is invalid, returns EINVAL.
1323  */
1324 int
1325 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1326 {
1327         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1328         mac_impl_t *mip = mcip->mci_mip;
1329         int i, ret = 0;
1330 
1331         i_mac_perim_enter(mip);
1332         /*
1333          * Protect against concurrent readers that may need a self-consistent
1334          * view of the factory addresses
1335          */
1336         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1337 
1338         if (mip->mi_factory_addr_num == 0) {
1339                 ret = ENOTSUP;
1340                 goto bail;
1341         }
1342 
1343         if (*slot != -1) {
1344                 /* check the specified slot */
1345                 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1346                         ret = EINVAL;
1347                         goto bail;
1348                 }
1349                 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1350                         ret = EBUSY;
1351                         goto bail;
1352                 }
1353         } else {
1354                 /* pick the next available slot */
1355                 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1356                         if (!mip->mi_factory_addr[i].mfa_in_use)
1357                                 break;
1358                 }
1359 
1360                 if (i == mip->mi_factory_addr_num) {
1361                         ret = ENOSPC;
1362                         goto bail;
1363                 }
1364                 *slot = i+1;
1365         }
1366 
1367         mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1368         mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1369 
1370 bail:
1371         rw_exit(&mip->mi_rw_lock);
1372         i_mac_perim_exit(mip);
1373         return (ret);
1374 }
1375 
1376 /*
1377  * Release the specified factory MAC address slot.
1378  */
1379 void
1380 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1381 {
1382         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1383         mac_impl_t *mip = mcip->mci_mip;
1384 
1385         i_mac_perim_enter(mip);
1386         /*
1387          * Protect against concurrent readers that may need a self-consistent
1388          * view of the factory addresses
1389          */
1390         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1391 
1392         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1393         ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1394 
1395         mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1396 
1397         rw_exit(&mip->mi_rw_lock);
1398         i_mac_perim_exit(mip);
1399 }
1400 
1401 /*
1402  * Stores in mac_addr the value of the specified MAC address. Returns
1403  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1404  * The caller must provide a string of at least MAXNAMELEN bytes.
1405  */
1406 void
1407 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1408     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1409 {
1410         mac_impl_t *mip = (mac_impl_t *)mh;
1411         boolean_t in_use;
1412 
1413         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1414 
1415         /*
1416          * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1417          * and mi_rw_lock
1418          */
1419         rw_enter(&mip->mi_rw_lock, RW_READER);
1420         bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1421         *addr_len = mip->mi_type->mt_addr_length;
1422         in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1423         if (in_use && client_name != NULL) {
1424                 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1425                     client_name, MAXNAMELEN);
1426         }
1427         if (in_use_arg != NULL)
1428                 *in_use_arg = in_use;
1429         rw_exit(&mip->mi_rw_lock);
1430 }
1431 
1432 /*
1433  * Returns the number of factory MAC addresses (in addition to the
1434  * primary MAC address), 0 if the underlying MAC doesn't support
1435  * that feature.
1436  */
1437 uint_t
1438 mac_addr_factory_num(mac_handle_t mh)
1439 {
1440         mac_impl_t *mip = (mac_impl_t *)mh;
1441 
1442         return (mip->mi_factory_addr_num);
1443 }
1444 
1445 
1446 void
1447 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1448 {
1449         mac_ring_t      *ring;
1450 
1451         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1452                 ring->mr_flag &= ~flag;
1453 }
1454 
1455 /*
1456  * The following mac_hwrings_xxx() functions are private mac client functions
1457  * used by the aggr driver to access and control the underlying HW Rx group
1458  * and rings. In this case, the aggr driver has exclusive control of the
1459  * underlying HW Rx group/rings, it calls the following functions to
1460  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1461  * addresses, or set up the Rx callback.
1462  */
1463 /* ARGSUSED */
1464 static void
1465 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1466     mblk_t *mp_chain, boolean_t loopback)
1467 {
1468         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
1469         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
1470         mac_direct_rx_t         proc;
1471         void                    *arg1;
1472         mac_resource_handle_t   arg2;
1473 
1474         proc = srs_rx->sr_func;
1475         arg1 = srs_rx->sr_arg1;
1476         arg2 = mac_srs->srs_mrh;
1477 
1478         proc(arg1, arg2, mp_chain, NULL);
1479 }
1480 
1481 /*
1482  * This function is called to get the list of HW rings that are reserved by
1483  * an exclusive mac client.
1484  *
1485  * Return value: the number of HW rings.
1486  */
1487 int
1488 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1489     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1490 {
1491         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
1492         flow_entry_t            *flent = mcip->mci_flent;
1493         mac_group_t             *grp;
1494         mac_ring_t              *ring;
1495         int                     cnt = 0;
1496 
1497         if (rtype == MAC_RING_TYPE_RX) {
1498                 grp = flent->fe_rx_ring_group;
1499         } else if (rtype == MAC_RING_TYPE_TX) {
1500                 grp = flent->fe_tx_ring_group;
1501         } else {
1502                 ASSERT(B_FALSE);
1503                 return (-1);
1504         }
1505         /*
1506          * The mac client did not reserve any RX group, return directly.
1507          * This is probably because the underlying MAC does not support
1508          * any groups.
1509          */
1510         if (hwgh != NULL)
1511                 *hwgh = NULL;
1512         if (grp == NULL)
1513                 return (0);
1514         /*
1515          * This group must be reserved by this mac client.
1516          */
1517         ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1518             (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1519 
1520         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1521                 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1522                 hwrh[cnt] = (mac_ring_handle_t)ring;
1523         }
1524         if (hwgh != NULL)
1525                 *hwgh = (mac_group_handle_t)grp;
1526 
1527         return (cnt);
1528 }
1529 
1530 /*
1531  * This function is called to get info about Tx/Rx rings.
1532  *
1533  * Return value: returns uint_t which will have various bits set
1534  * that indicates different properties of the ring.
1535  */
1536 uint_t
1537 mac_hwring_getinfo(mac_ring_handle_t rh)
1538 {
1539         mac_ring_t *ring = (mac_ring_t *)rh;
1540         mac_ring_info_t *info = &ring->mr_info;
1541 
1542         return (info->mri_flags);
1543 }
1544 
1545 /*
1546  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1547  * setup the RX callback of the mac client which exclusively controls
1548  * HW ring.
1549  */
1550 void
1551 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1552     mac_ring_handle_t pseudo_rh)
1553 {
1554         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1555         mac_ring_t              *pseudo_ring;
1556         mac_soft_ring_set_t     *mac_srs = hw_ring->mr_srs;
1557 
1558         if (pseudo_rh != NULL) {
1559                 pseudo_ring = (mac_ring_t *)pseudo_rh;
1560                 /* Export the ddi handles to pseudo ring */
1561                 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1562                     hw_ring->mr_info.mri_intr.mi_ddi_handle;
1563                 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1564                     hw_ring->mr_info.mri_intr.mi_ddi_shared;
1565                 /*
1566                  * Save a pointer to pseudo ring in the hw ring. If
1567                  * interrupt handle changes, the hw ring will be
1568                  * notified of the change (see mac_ring_intr_set())
1569                  * and the appropriate change has to be made to
1570                  * the pseudo ring that has exported the ddi handle.
1571                  */
1572                 hw_ring->mr_prh = pseudo_rh;
1573         }
1574 
1575         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1576                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1577                 mac_srs->srs_mrh = prh;
1578                 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1579         }
1580 }
1581 
1582 void
1583 mac_hwring_teardown(mac_ring_handle_t hwrh)
1584 {
1585         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1586         mac_soft_ring_set_t     *mac_srs;
1587 
1588         if (hw_ring == NULL)
1589                 return;
1590         hw_ring->mr_prh = NULL;
1591         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1592                 mac_srs = hw_ring->mr_srs;
1593                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1594                 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1595                 mac_srs->srs_mrh = NULL;
1596         }
1597 }
1598 
1599 int
1600 mac_hwring_disable_intr(mac_ring_handle_t rh)
1601 {
1602         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1603         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1604 
1605         return (intr->mi_disable(intr->mi_handle));
1606 }
1607 
1608 int
1609 mac_hwring_enable_intr(mac_ring_handle_t rh)
1610 {
1611         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1612         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1613 
1614         return (intr->mi_enable(intr->mi_handle));
1615 }
1616 
1617 int
1618 mac_hwring_start(mac_ring_handle_t rh)
1619 {
1620         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1621 
1622         MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1623         return (0);
1624 }
1625 
1626 void
1627 mac_hwring_stop(mac_ring_handle_t rh)
1628 {
1629         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1630 
1631         mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1632 }
1633 
1634 mblk_t *
1635 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1636 {
1637         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1638         mac_ring_info_t *info = &rr_ring->mr_info;
1639 
1640         return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1641 }
1642 
1643 /*
1644  * Send packets through a selected tx ring.
1645  */
1646 mblk_t *
1647 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1648 {
1649         mac_ring_t *ring = (mac_ring_t *)rh;
1650         mac_ring_info_t *info = &ring->mr_info;
1651 
1652         ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1653             ring->mr_state >= MR_INUSE);
1654         return (info->mri_tx(info->mri_driver, mp));
1655 }
1656 
1657 /*
1658  * Query stats for a particular rx/tx ring
1659  */
1660 int
1661 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1662 {
1663         mac_ring_t      *ring = (mac_ring_t *)rh;
1664         mac_ring_info_t *info = &ring->mr_info;
1665 
1666         return (info->mri_stat(info->mri_driver, stat, val));
1667 }
1668 
1669 /*
1670  * Private function that is only used by aggr to send packets through
1671  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1672  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1673  * access to mac_impl_t to send packets through m_tx() entry point.
1674  * It accomplishes this by calling mac_hwring_send_priv() function.
1675  */
1676 mblk_t *
1677 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1678 {
1679         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1680         mac_impl_t *mip = mcip->mci_mip;
1681 
1682         MAC_TX(mip, rh, mp, mcip);
1683         return (mp);
1684 }
1685 
1686 /*
1687  * Private function that is only used by aggr to update the default transmission
1688  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1689  * temporarily be down, it may need to update the default ring that is used by
1690  * MAC such that it refers to a link that can actively be used to send traffic.
1691  * Note that this is different from the case where the port has been removed
1692  * from the group. In those cases, all of the rings will be torn down because
1693  * the ring will no longer exist. It's important to give aggr a case where the
1694  * rings can still exist such that it may be able to continue to send LACP PDUs
1695  * to potentially restore the link.
1696  *
1697  * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1698  * This is to help out aggr which doesn't really know the internal state that
1699  * MAC does about the rings and can't know that it's not quite ready for use
1700  * yet.
1701  */
1702 void
1703 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1704 {
1705         mac_impl_t *mip = (mac_impl_t *)mh;
1706         mac_ring_t *ring = (mac_ring_t *)rh;
1707 
1708         ASSERT(MAC_PERIM_HELD(mh));
1709         VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1710 
1711         if (ring->mr_state != MR_INUSE)
1712                 return;
1713 
1714         mip->mi_default_tx_ring = rh;
1715 }
1716 
1717 int
1718 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1719 {
1720         mac_group_t *group = (mac_group_t *)gh;
1721 
1722         return (mac_group_addmac(group, addr));
1723 }
1724 
1725 int
1726 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1727 {
1728         mac_group_t *group = (mac_group_t *)gh;
1729 
1730         return (mac_group_remmac(group, addr));
1731 }
1732 
1733 /*
1734  * Program the group's HW VLAN filter if it has such support.
1735  * Otherwise, the group will implicitly accept tagged traffic and
1736  * there is nothing to do.
1737  */
1738 int
1739 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid)
1740 {
1741         mac_group_t *group = (mac_group_t *)gh;
1742 
1743         if (!MAC_GROUP_HW_VLAN(group))
1744                 return (0);
1745 
1746         return (mac_group_addvlan(group, vid));
1747 }
1748 
1749 int
1750 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid)
1751 {
1752         mac_group_t *group = (mac_group_t *)gh;
1753 
1754         if (!MAC_GROUP_HW_VLAN(group))
1755                 return (0);
1756 
1757         return (mac_group_remvlan(group, vid));
1758 }
1759 
1760 /*
1761  * Determine if a MAC has HW VLAN support. This is a private API
1762  * consumed by aggr. In the future it might be nice to have a bitfield
1763  * in mac_capab_rings_t to track which forms of HW filtering are
1764  * supported by the MAC.
1765  */
1766 boolean_t
1767 mac_has_hw_vlan(mac_handle_t mh)
1768 {
1769         mac_impl_t *mip = (mac_impl_t *)mh;
1770 
1771         return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups));
1772 }
1773 
1774 /*
1775  * Set the RX group to be shared/reserved. Note that the group must be
1776  * started/stopped outside of this function.
1777  */
1778 void
1779 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1780 {
1781         /*
1782          * If there is no change in the group state, just return.
1783          */
1784         if (grp->mrg_state == state)
1785                 return;
1786 
1787         switch (state) {
1788         case MAC_GROUP_STATE_RESERVED:
1789                 /*
1790                  * Successfully reserved the group.
1791                  *
1792                  * Given that there is an exclusive client controlling this
1793                  * group, we enable the group level polling when available,
1794                  * so that SRSs get to turn on/off individual rings they's
1795                  * assigned to.
1796                  */
1797                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1798 
1799                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1800                     GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1801                         GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1802                 }
1803                 break;
1804 
1805         case MAC_GROUP_STATE_SHARED:
1806                 /*
1807                  * Set all rings of this group to software classified.
1808                  * If the group has an overriding interrupt, then re-enable it.
1809                  */
1810                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1811 
1812                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1813                     GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1814                         GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1815                 }
1816                 /* The ring is not available for reservations any more */
1817                 break;
1818 
1819         case MAC_GROUP_STATE_REGISTERED:
1820                 /* Also callable from mac_register, perim is not held */
1821                 break;
1822 
1823         default:
1824                 ASSERT(B_FALSE);
1825                 break;
1826         }
1827 
1828         grp->mrg_state = state;
1829 }
1830 
1831 /*
1832  * Quiesce future hardware classified packets for the specified Rx ring
1833  */
1834 static void
1835 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1836 {
1837         ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1838         ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1839 
1840         mutex_enter(&rx_ring->mr_lock);
1841         rx_ring->mr_flag |= ring_flag;
1842         while (rx_ring->mr_refcnt != 0)
1843                 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1844         mutex_exit(&rx_ring->mr_lock);
1845 }
1846 
1847 /*
1848  * Please see mac_tx for details about the per cpu locking scheme
1849  */
1850 static void
1851 mac_tx_lock_all(mac_client_impl_t *mcip)
1852 {
1853         int     i;
1854 
1855         for (i = 0; i <= mac_tx_percpu_cnt; i++)
1856                 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1857 }
1858 
1859 static void
1860 mac_tx_unlock_all(mac_client_impl_t *mcip)
1861 {
1862         int     i;
1863 
1864         for (i = mac_tx_percpu_cnt; i >= 0; i--)
1865                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1866 }
1867 
1868 static void
1869 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1870 {
1871         int     i;
1872 
1873         for (i = mac_tx_percpu_cnt; i > 0; i--)
1874                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1875 }
1876 
1877 static int
1878 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1879 {
1880         int     i;
1881         int     refcnt = 0;
1882 
1883         for (i = 0; i <= mac_tx_percpu_cnt; i++)
1884                 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1885 
1886         return (refcnt);
1887 }
1888 
1889 /*
1890  * Stop future Tx packets coming down from the client in preparation for
1891  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1892  * of rings between clients
1893  */
1894 void
1895 mac_tx_client_block(mac_client_impl_t *mcip)
1896 {
1897         mac_tx_lock_all(mcip);
1898         mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1899         while (mac_tx_sum_refcnt(mcip) != 0) {
1900                 mac_tx_unlock_allbutzero(mcip);
1901                 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1902                 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1903                 mac_tx_lock_all(mcip);
1904         }
1905         mac_tx_unlock_all(mcip);
1906 }
1907 
1908 void
1909 mac_tx_client_unblock(mac_client_impl_t *mcip)
1910 {
1911         mac_tx_lock_all(mcip);
1912         mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1913         mac_tx_unlock_all(mcip);
1914         /*
1915          * We may fail to disable flow control for the last MAC_NOTE_TX
1916          * notification because the MAC client is quiesced. Send the
1917          * notification again.
1918          */
1919         i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1920 }
1921 
1922 /*
1923  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1924  * quiesce is done.
1925  */
1926 static void
1927 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1928 {
1929         mutex_enter(&srs->srs_lock);
1930         while (!(srs->srs_state & srs_flag))
1931                 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1932         mutex_exit(&srs->srs_lock);
1933 }
1934 
1935 /*
1936  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1937  * works bottom up by cutting off packet flow from the bottommost point in the
1938  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1939  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1940  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1941  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1942  * for the SRS and MR flags. In the former case the threads pause waiting for
1943  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1944  * is also mostly similar to the above.
1945  *
1946  * 1. Stop future hardware classified packets at the lowest level in the mac.
1947  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1948  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1949  *    from increasing. Upcalls from the driver that come through hardware
1950  *    classification will be dropped in mac_rx from now on. Then we wait for
1951  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1952  *    sure there aren't any upcall threads from the driver through hardware
1953  *    classification. In the case of SRS teardown we also remove the
1954  *    classification rule in the driver.
1955  *
1956  * 2. Stop future software classified packets by marking the flow entry with
1957  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1958  *    increasing. We also remove the flow entry from the table in the latter
1959  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1960  *    that indicates there aren't any active threads using that flow entry.
1961  *
1962  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1963  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1964  *    with the SRS worker thread serving as a master controller. This
1965  *    mechansim is explained in mac_srs_worker_quiesce().
1966  *
1967  * The restart mechanism to reactivate the SRS and softrings is explained
1968  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1969  * restart sequence.
1970  */
1971 void
1972 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1973 {
1974         flow_entry_t    *flent = srs->srs_flent;
1975         uint_t  mr_flag, srs_done_flag;
1976 
1977         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1978         ASSERT(!(srs->srs_type & SRST_TX));
1979 
1980         if (srs_quiesce_flag == SRS_CONDEMNED) {
1981                 mr_flag = MR_CONDEMNED;
1982                 srs_done_flag = SRS_CONDEMNED_DONE;
1983                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1984                         mac_srs_client_poll_disable(srs->srs_mcip, srs);
1985         } else {
1986                 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1987                 mr_flag = MR_QUIESCE;
1988                 srs_done_flag = SRS_QUIESCE_DONE;
1989                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1990                         mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1991         }
1992 
1993         if (srs->srs_ring != NULL) {
1994                 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1995         } else {
1996                 /*
1997                  * SRS is driven by software classification. In case
1998                  * of CONDEMNED, the top level teardown functions will
1999                  * deal with flow removal.
2000                  */
2001                 if (srs_quiesce_flag != SRS_CONDEMNED) {
2002                         FLOW_MARK(flent, FE_QUIESCE);
2003                         mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2004                 }
2005         }
2006 
2007         /*
2008          * Signal the SRS to quiesce itself, and then cv_wait for the
2009          * SRS quiesce to complete. The SRS worker thread will wake us
2010          * up when the quiesce is complete
2011          */
2012         mac_srs_signal(srs, srs_quiesce_flag);
2013         mac_srs_quiesce_wait(srs, srs_done_flag);
2014 }
2015 
2016 /*
2017  * Remove an SRS.
2018  */
2019 void
2020 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
2021 {
2022         flow_entry_t *flent = srs->srs_flent;
2023         int i;
2024 
2025         mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
2026         /*
2027          * Locate and remove our entry in the fe_rx_srs[] array, and
2028          * adjust the fe_rx_srs array entries and array count by
2029          * moving the last entry into the vacated spot.
2030          */
2031         mutex_enter(&flent->fe_lock);
2032         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2033                 if (flent->fe_rx_srs[i] == srs)
2034                         break;
2035         }
2036 
2037         ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
2038         if (i != flent->fe_rx_srs_cnt - 1) {
2039                 flent->fe_rx_srs[i] =
2040                     flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2041                 i = flent->fe_rx_srs_cnt - 1;
2042         }
2043 
2044         flent->fe_rx_srs[i] = NULL;
2045         flent->fe_rx_srs_cnt--;
2046         mutex_exit(&flent->fe_lock);
2047 
2048         mac_srs_free(srs);
2049 }
2050 
2051 static void
2052 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2053 {
2054         mutex_enter(&srs->srs_lock);
2055         srs->srs_state &= ~flag;
2056         mutex_exit(&srs->srs_lock);
2057 }
2058 
2059 void
2060 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2061 {
2062         flow_entry_t    *flent = srs->srs_flent;
2063         mac_ring_t      *mr;
2064 
2065         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2066         ASSERT((srs->srs_type & SRST_TX) == 0);
2067 
2068         /*
2069          * This handles a change in the number of SRSs between the quiesce and
2070          * and restart operation of a flow.
2071          */
2072         if (!SRS_QUIESCED(srs))
2073                 return;
2074 
2075         /*
2076          * Signal the SRS to restart itself. Wait for the restart to complete
2077          * Note that we only restart the SRS if it is not marked as
2078          * permanently quiesced.
2079          */
2080         if (!SRS_QUIESCED_PERMANENT(srs)) {
2081                 mac_srs_signal(srs, SRS_RESTART);
2082                 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2083                 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2084 
2085                 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2086         }
2087 
2088         /* Finally clear the flags to let the packets in */
2089         mr = srs->srs_ring;
2090         if (mr != NULL) {
2091                 MAC_RING_UNMARK(mr, MR_QUIESCE);
2092                 /* In case the ring was stopped, safely restart it */
2093                 if (mr->mr_state != MR_INUSE)
2094                         (void) mac_start_ring(mr);
2095         } else {
2096                 FLOW_UNMARK(flent, FE_QUIESCE);
2097         }
2098 }
2099 
2100 /*
2101  * Temporary quiesce of a flow and associated Rx SRS.
2102  * Please see block comment above mac_rx_classify_flow_rem.
2103  */
2104 /* ARGSUSED */
2105 int
2106 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2107 {
2108         int             i;
2109 
2110         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2111                 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2112                     SRS_QUIESCE);
2113         }
2114         return (0);
2115 }
2116 
2117 /*
2118  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2119  * Please see block comment above mac_rx_classify_flow_rem
2120  */
2121 /* ARGSUSED */
2122 int
2123 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2124 {
2125         int             i;
2126 
2127         for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2128                 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2129 
2130         return (0);
2131 }
2132 
2133 void
2134 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2135 {
2136         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2137         flow_entry_t            *flent = mcip->mci_flent;
2138         mac_impl_t              *mip = mcip->mci_mip;
2139         mac_soft_ring_set_t     *mac_srs;
2140         int                     i;
2141 
2142         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2143 
2144         if (flent == NULL)
2145                 return;
2146 
2147         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2148                 mac_srs = flent->fe_rx_srs[i];
2149                 mutex_enter(&mac_srs->srs_lock);
2150                 if (on)
2151                         mac_srs->srs_state |= SRS_QUIESCE_PERM;
2152                 else
2153                         mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2154                 mutex_exit(&mac_srs->srs_lock);
2155         }
2156 }
2157 
2158 void
2159 mac_rx_client_quiesce(mac_client_handle_t mch)
2160 {
2161         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2162         mac_impl_t              *mip = mcip->mci_mip;
2163 
2164         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2165 
2166         if (MCIP_DATAPATH_SETUP(mcip)) {
2167                 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2168                     NULL);
2169                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2170                     mac_rx_classify_flow_quiesce, NULL);
2171         }
2172 }
2173 
2174 void
2175 mac_rx_client_restart(mac_client_handle_t mch)
2176 {
2177         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2178         mac_impl_t              *mip = mcip->mci_mip;
2179 
2180         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2181 
2182         if (MCIP_DATAPATH_SETUP(mcip)) {
2183                 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2184                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2185                     mac_rx_classify_flow_restart, NULL);
2186         }
2187 }
2188 
2189 /*
2190  * This function only quiesces the Tx SRS and softring worker threads. Callers
2191  * need to make sure that there aren't any mac client threads doing current or
2192  * future transmits in the mac before calling this function.
2193  */
2194 void
2195 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2196 {
2197         mac_client_impl_t       *mcip = srs->srs_mcip;
2198 
2199         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2200 
2201         ASSERT(srs->srs_type & SRST_TX);
2202         ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2203             srs_quiesce_flag == SRS_QUIESCE);
2204 
2205         /*
2206          * Signal the SRS to quiesce itself, and then cv_wait for the
2207          * SRS quiesce to complete. The SRS worker thread will wake us
2208          * up when the quiesce is complete
2209          */
2210         mac_srs_signal(srs, srs_quiesce_flag);
2211         mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2212             SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2213 }
2214 
2215 void
2216 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2217 {
2218         /*
2219          * Resizing the fanout could result in creation of new SRSs.
2220          * They may not necessarily be in the quiesced state in which
2221          * case it need be restarted
2222          */
2223         if (!SRS_QUIESCED(srs))
2224                 return;
2225 
2226         mac_srs_signal(srs, SRS_RESTART);
2227         mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2228         mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2229 }
2230 
2231 /*
2232  * Temporary quiesce of a flow and associated Rx SRS.
2233  * Please see block comment above mac_rx_srs_quiesce
2234  */
2235 /* ARGSUSED */
2236 int
2237 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2238 {
2239         /*
2240          * The fe_tx_srs is null for a subflow on an interface that is
2241          * not plumbed
2242          */
2243         if (flent->fe_tx_srs != NULL)
2244                 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2245         return (0);
2246 }
2247 
2248 /* ARGSUSED */
2249 int
2250 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2251 {
2252         /*
2253          * The fe_tx_srs is null for a subflow on an interface that is
2254          * not plumbed
2255          */
2256         if (flent->fe_tx_srs != NULL)
2257                 mac_tx_srs_restart(flent->fe_tx_srs);
2258         return (0);
2259 }
2260 
2261 static void
2262 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2263 {
2264         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2265 
2266         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2267 
2268         mac_tx_client_block(mcip);
2269         if (MCIP_TX_SRS(mcip) != NULL) {
2270                 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2271                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2272                     mac_tx_flow_quiesce, NULL);
2273         }
2274 }
2275 
2276 void
2277 mac_tx_client_quiesce(mac_client_handle_t mch)
2278 {
2279         i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2280 }
2281 
2282 void
2283 mac_tx_client_condemn(mac_client_handle_t mch)
2284 {
2285         i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2286 }
2287 
2288 void
2289 mac_tx_client_restart(mac_client_handle_t mch)
2290 {
2291         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2292 
2293         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2294 
2295         mac_tx_client_unblock(mcip);
2296         if (MCIP_TX_SRS(mcip) != NULL) {
2297                 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2298                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2299                     mac_tx_flow_restart, NULL);
2300         }
2301 }
2302 
2303 void
2304 mac_tx_client_flush(mac_client_impl_t *mcip)
2305 {
2306         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2307 
2308         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2309         mac_tx_client_restart((mac_client_handle_t)mcip);
2310 }
2311 
2312 void
2313 mac_client_quiesce(mac_client_impl_t *mcip)
2314 {
2315         mac_rx_client_quiesce((mac_client_handle_t)mcip);
2316         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2317 }
2318 
2319 void
2320 mac_client_restart(mac_client_impl_t *mcip)
2321 {
2322         mac_rx_client_restart((mac_client_handle_t)mcip);
2323         mac_tx_client_restart((mac_client_handle_t)mcip);
2324 }
2325 
2326 /*
2327  * Allocate a minor number.
2328  */
2329 minor_t
2330 mac_minor_hold(boolean_t sleep)
2331 {
2332         id_t id;
2333 
2334         /*
2335          * Grab a value from the arena.
2336          */
2337         atomic_inc_32(&minor_count);
2338 
2339         if (sleep)
2340                 return ((uint_t)id_alloc(minor_ids));
2341 
2342         if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2343                 atomic_dec_32(&minor_count);
2344                 return (0);
2345         }
2346 
2347         return ((uint_t)id);
2348 }
2349 
2350 /*
2351  * Release a previously allocated minor number.
2352  */
2353 void
2354 mac_minor_rele(minor_t minor)
2355 {
2356         /*
2357          * Return the value to the arena.
2358          */
2359         id_free(minor_ids, minor);
2360         atomic_dec_32(&minor_count);
2361 }
2362 
2363 uint32_t
2364 mac_no_notification(mac_handle_t mh)
2365 {
2366         mac_impl_t *mip = (mac_impl_t *)mh;
2367 
2368         return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2369             mip->mi_capab_legacy.ml_unsup_note : 0);
2370 }
2371 
2372 /*
2373  * Prevent any new opens of this mac in preparation for unregister
2374  */
2375 int
2376 i_mac_disable(mac_impl_t *mip)
2377 {
2378         mac_client_impl_t       *mcip;
2379 
2380         rw_enter(&i_mac_impl_lock, RW_WRITER);
2381         if (mip->mi_state_flags & MIS_DISABLED) {
2382                 /* Already disabled, return success */
2383                 rw_exit(&i_mac_impl_lock);
2384                 return (0);
2385         }
2386         /*
2387          * See if there are any other references to this mac_t (e.g., VLAN's).
2388          * If so return failure. If all the other checks below pass, then
2389          * set mi_disabled atomically under the i_mac_impl_lock to prevent
2390          * any new VLAN's from being created or new mac client opens of this
2391          * mac end point.
2392          */
2393         if (mip->mi_ref > 0) {
2394                 rw_exit(&i_mac_impl_lock);
2395                 return (EBUSY);
2396         }
2397 
2398         /*
2399          * mac clients must delete all multicast groups they join before
2400          * closing. bcast groups are reference counted, the last client
2401          * to delete the group will wait till the group is physically
2402          * deleted. Since all clients have closed this mac end point
2403          * mi_bcast_ngrps must be zero at this point
2404          */
2405         ASSERT(mip->mi_bcast_ngrps == 0);
2406 
2407         /*
2408          * Don't let go of this if it has some flows.
2409          * All other code guarantees no flows are added to a disabled
2410          * mac, therefore it is sufficient to check for the flow table
2411          * only here.
2412          */
2413         mcip = mac_primary_client_handle(mip);
2414         if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2415                 rw_exit(&i_mac_impl_lock);
2416                 return (ENOTEMPTY);
2417         }
2418 
2419         mip->mi_state_flags |= MIS_DISABLED;
2420         rw_exit(&i_mac_impl_lock);
2421         return (0);
2422 }
2423 
2424 int
2425 mac_disable_nowait(mac_handle_t mh)
2426 {
2427         mac_impl_t      *mip = (mac_impl_t *)mh;
2428         int err;
2429 
2430         if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2431                 return (err);
2432         err = i_mac_disable(mip);
2433         i_mac_perim_exit(mip);
2434         return (err);
2435 }
2436 
2437 int
2438 mac_disable(mac_handle_t mh)
2439 {
2440         mac_impl_t      *mip = (mac_impl_t *)mh;
2441         int err;
2442 
2443         i_mac_perim_enter(mip);
2444         err = i_mac_disable(mip);
2445         i_mac_perim_exit(mip);
2446 
2447         /*
2448          * Clean up notification thread and wait for it to exit.
2449          */
2450         if (err == 0)
2451                 i_mac_notify_exit(mip);
2452 
2453         return (err);
2454 }
2455 
2456 /*
2457  * Called when the MAC instance has a non empty flow table, to de-multiplex
2458  * incoming packets to the right flow.
2459  */
2460 /* ARGSUSED */
2461 static mblk_t *
2462 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2463 {
2464         flow_entry_t    *flent = NULL;
2465         uint_t          flags = FLOW_INBOUND;
2466         int             err;
2467 
2468         /*
2469          * If the MAC is a port of an aggregation, pass FLOW_IGNORE_VLAN
2470          * to mac_flow_lookup() so that the VLAN packets can be successfully
2471          * passed to the non-VLAN aggregation flows.
2472          *
2473          * Note that there is possibly a race between this and
2474          * mac_unicast_remove/add() and VLAN packets could be incorrectly
2475          * classified to non-VLAN flows of non-aggregation MAC clients. These
2476          * VLAN packets will be then filtered out by the MAC module.
2477          */
2478         if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2479                 flags |= FLOW_IGNORE_VLAN;
2480 
2481         err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2482         if (err != 0) {
2483                 /* no registered receive function */
2484                 return (mp);
2485         } else {
2486                 mac_client_impl_t       *mcip;
2487 
2488                 /*
2489                  * This flent might just be an additional one on the MAC client,
2490                  * i.e. for classification purposes (different fdesc), however
2491                  * the resources, SRS et. al., are in the mci_flent, so if
2492                  * this isn't the mci_flent, we need to get it.
2493                  */
2494                 if ((mcip = flent->fe_mcip) != NULL &&
2495                     mcip->mci_flent != flent) {
2496                         FLOW_REFRELE(flent);
2497                         flent = mcip->mci_flent;
2498                         FLOW_TRY_REFHOLD(flent, err);
2499                         if (err != 0)
2500                                 return (mp);
2501                 }
2502                 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2503                     B_FALSE);
2504                 FLOW_REFRELE(flent);
2505         }
2506         return (NULL);
2507 }
2508 
2509 mblk_t *
2510 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2511 {
2512         mac_impl_t      *mip = (mac_impl_t *)mh;
2513         mblk_t          *bp, *bp1, **bpp, *list = NULL;
2514 
2515         /*
2516          * We walk the chain and attempt to classify each packet.
2517          * The packets that couldn't be classified will be returned
2518          * back to the caller.
2519          */
2520         bp = mp_chain;
2521         bpp = &list;
2522         while (bp != NULL) {
2523                 bp1 = bp;
2524                 bp = bp->b_next;
2525                 bp1->b_next = NULL;
2526 
2527                 if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2528                         *bpp = bp1;
2529                         bpp = &bp1->b_next;
2530                 }
2531         }
2532         return (list);
2533 }
2534 
2535 static int
2536 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2537 {
2538         mac_ring_handle_t ring = arg;
2539 
2540         if (flent->fe_tx_srs)
2541                 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2542         return (0);
2543 }
2544 
2545 void
2546 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2547 {
2548         mac_client_impl_t       *cclient;
2549         mac_soft_ring_set_t     *mac_srs;
2550 
2551         /*
2552          * After grabbing the mi_rw_lock, the list of clients can't change.
2553          * If there are any clients mi_disabled must be B_FALSE and can't
2554          * get set since there are clients. If there aren't any clients we
2555          * don't do anything. In any case the mip has to be valid. The driver
2556          * must make sure that it goes single threaded (with respect to mac
2557          * calls) and wait for all pending mac calls to finish before calling
2558          * mac_unregister.
2559          */
2560         rw_enter(&i_mac_impl_lock, RW_READER);
2561         if (mip->mi_state_flags & MIS_DISABLED) {
2562                 rw_exit(&i_mac_impl_lock);
2563                 return;
2564         }
2565 
2566         /*
2567          * Get MAC tx srs from walking mac_client_handle list.
2568          */
2569         rw_enter(&mip->mi_rw_lock, RW_READER);
2570         for (cclient = mip->mi_clients_list; cclient != NULL;
2571             cclient = cclient->mci_client_next) {
2572                 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2573                         mac_tx_srs_wakeup(mac_srs, ring);
2574                 } else {
2575                         /*
2576                          * Aggr opens underlying ports in exclusive mode
2577                          * and registers flow control callbacks using
2578                          * mac_tx_client_notify(). When opened in
2579                          * exclusive mode, Tx SRS won't be created
2580                          * during mac_unicast_add().
2581                          */
2582                         if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2583                                 mac_tx_invoke_callbacks(cclient,
2584                                     (mac_tx_cookie_t)ring);
2585                         }
2586                 }
2587                 (void) mac_flow_walk(cclient->mci_subflow_tab,
2588                     mac_tx_flow_srs_wakeup, ring);
2589         }
2590         rw_exit(&mip->mi_rw_lock);
2591         rw_exit(&i_mac_impl_lock);
2592 }
2593 
2594 /* ARGSUSED */
2595 void
2596 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2597     boolean_t add)
2598 {
2599         mac_impl_t *mip = (mac_impl_t *)mh;
2600 
2601         i_mac_perim_enter((mac_impl_t *)mh);
2602         /*
2603          * If no specific refresh function was given then default to the
2604          * driver's m_multicst entry point.
2605          */
2606         if (refresh == NULL) {
2607                 refresh = mip->mi_multicst;
2608                 arg = mip->mi_driver;
2609         }
2610 
2611         mac_bcast_refresh(mip, refresh, arg, add);
2612         i_mac_perim_exit((mac_impl_t *)mh);
2613 }
2614 
2615 void
2616 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2617 {
2618         mac_impl_t      *mip = (mac_impl_t *)mh;
2619 
2620         /*
2621          * If no specific refresh function was given then default to the
2622          * driver's m_promisc entry point.
2623          */
2624         if (refresh == NULL) {
2625                 refresh = mip->mi_setpromisc;
2626                 arg = mip->mi_driver;
2627         }
2628         ASSERT(refresh != NULL);
2629 
2630         /*
2631          * Call the refresh function with the current promiscuity.
2632          */
2633         refresh(arg, (mip->mi_devpromisc != 0));
2634 }
2635 
2636 /*
2637  * The mac client requests that the mac not to change its margin size to
2638  * be less than the specified value.  If "current" is B_TRUE, then the client
2639  * requests the mac not to change its margin size to be smaller than the
2640  * current size. Further, return the current margin size value in this case.
2641  *
2642  * We keep every requested size in an ordered list from largest to smallest.
2643  */
2644 int
2645 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2646 {
2647         mac_impl_t              *mip = (mac_impl_t *)mh;
2648         mac_margin_req_t        **pp, *p;
2649         int                     err = 0;
2650 
2651         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2652         if (current)
2653                 *marginp = mip->mi_margin;
2654 
2655         /*
2656          * If the current margin value cannot satisfy the margin requested,
2657          * return ENOTSUP directly.
2658          */
2659         if (*marginp > mip->mi_margin) {
2660                 err = ENOTSUP;
2661                 goto done;
2662         }
2663 
2664         /*
2665          * Check whether the given margin is already in the list. If so,
2666          * bump the reference count.
2667          */
2668         for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2669                 if (p->mmr_margin == *marginp) {
2670                         /*
2671                          * The margin requested is already in the list,
2672                          * so just bump the reference count.
2673                          */
2674                         p->mmr_ref++;
2675                         goto done;
2676                 }
2677                 if (p->mmr_margin < *marginp)
2678                         break;
2679         }
2680 
2681 
2682         p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2683         p->mmr_margin = *marginp;
2684         p->mmr_ref++;
2685         p->mmr_nextp = *pp;
2686         *pp = p;
2687 
2688 done:
2689         rw_exit(&(mip->mi_rw_lock));
2690         return (err);
2691 }
2692 
2693 /*
2694  * The mac client requests to cancel its previous mac_margin_add() request.
2695  * We remove the requested margin size from the list.
2696  */
2697 int
2698 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2699 {
2700         mac_impl_t              *mip = (mac_impl_t *)mh;
2701         mac_margin_req_t        **pp, *p;
2702         int                     err = 0;
2703 
2704         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2705         /*
2706          * Find the entry in the list for the given margin.
2707          */
2708         for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2709                 if (p->mmr_margin == margin) {
2710                         if (--p->mmr_ref == 0)
2711                                 break;
2712 
2713                         /*
2714                          * There is still a reference to this address so
2715                          * there's nothing more to do.
2716                          */
2717                         goto done;
2718                 }
2719         }
2720 
2721         /*
2722          * We did not find an entry for the given margin.
2723          */
2724         if (p == NULL) {
2725                 err = ENOENT;
2726                 goto done;
2727         }
2728 
2729         ASSERT(p->mmr_ref == 0);
2730 
2731         /*
2732          * Remove it from the list.
2733          */
2734         *pp = p->mmr_nextp;
2735         kmem_free(p, sizeof (mac_margin_req_t));
2736 done:
2737         rw_exit(&(mip->mi_rw_lock));
2738         return (err);
2739 }
2740 
2741 boolean_t
2742 mac_margin_update(mac_handle_t mh, uint32_t margin)
2743 {
2744         mac_impl_t      *mip = (mac_impl_t *)mh;
2745         uint32_t        margin_needed = 0;
2746 
2747         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2748 
2749         if (mip->mi_mmrp != NULL)
2750                 margin_needed = mip->mi_mmrp->mmr_margin;
2751 
2752         if (margin_needed <= margin)
2753                 mip->mi_margin = margin;
2754 
2755         rw_exit(&(mip->mi_rw_lock));
2756 
2757         if (margin_needed <= margin)
2758                 i_mac_notify(mip, MAC_NOTE_MARGIN);
2759 
2760         return (margin_needed <= margin);
2761 }
2762 
2763 /*
2764  * MAC clients use this interface to request that a MAC device not change its
2765  * MTU below the specified amount. At this time, that amount must be within the
2766  * range of the device's current minimum and the device's current maximum. eg. a
2767  * client cannot request a 3000 byte MTU when the device's MTU is currently
2768  * 2000.
2769  *
2770  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2771  * current underlying mac's maximum for this mac client and return it in mtup.
2772  */
2773 int
2774 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2775 {
2776         mac_impl_t              *mip = (mac_impl_t *)mh;
2777         mac_mtu_req_t           *prev, *cur;
2778         mac_propval_range_t     mpr;
2779         int                     err;
2780 
2781         i_mac_perim_enter(mip);
2782         rw_enter(&mip->mi_rw_lock, RW_WRITER);
2783 
2784         if (current == B_TRUE)
2785                 *mtup = mip->mi_sdu_max;
2786         mpr.mpr_count = 1;
2787         err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2788         if (err != 0) {
2789                 rw_exit(&mip->mi_rw_lock);
2790                 i_mac_perim_exit(mip);
2791                 return (err);
2792         }
2793 
2794         if (*mtup > mip->mi_sdu_max ||
2795             *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2796                 rw_exit(&mip->mi_rw_lock);
2797                 i_mac_perim_exit(mip);
2798                 return (ENOTSUP);
2799         }
2800 
2801         prev = NULL;
2802         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2803                 if (*mtup == cur->mtr_mtu) {
2804                         cur->mtr_ref++;
2805                         rw_exit(&mip->mi_rw_lock);
2806                         i_mac_perim_exit(mip);
2807                         return (0);
2808                 }
2809 
2810                 if (*mtup > cur->mtr_mtu)
2811                         break;
2812 
2813                 prev = cur;
2814         }
2815 
2816         cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2817         cur->mtr_mtu = *mtup;
2818         cur->mtr_ref = 1;
2819         if (prev != NULL) {
2820                 cur->mtr_nextp = prev->mtr_nextp;
2821                 prev->mtr_nextp = cur;
2822         } else {
2823                 cur->mtr_nextp = mip->mi_mtrp;
2824                 mip->mi_mtrp = cur;
2825         }
2826 
2827         rw_exit(&mip->mi_rw_lock);
2828         i_mac_perim_exit(mip);
2829         return (0);
2830 }
2831 
2832 int
2833 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2834 {
2835         mac_impl_t *mip = (mac_impl_t *)mh;
2836         mac_mtu_req_t *cur, *prev;
2837 
2838         i_mac_perim_enter(mip);
2839         rw_enter(&mip->mi_rw_lock, RW_WRITER);
2840 
2841         prev = NULL;
2842         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2843                 if (cur->mtr_mtu == mtu) {
2844                         ASSERT(cur->mtr_ref > 0);
2845                         cur->mtr_ref--;
2846                         if (cur->mtr_ref == 0) {
2847                                 if (prev == NULL) {
2848                                         mip->mi_mtrp = cur->mtr_nextp;
2849                                 } else {
2850                                         prev->mtr_nextp = cur->mtr_nextp;
2851                                 }
2852                                 kmem_free(cur, sizeof (mac_mtu_req_t));
2853                         }
2854                         rw_exit(&mip->mi_rw_lock);
2855                         i_mac_perim_exit(mip);
2856                         return (0);
2857                 }
2858 
2859                 prev = cur;
2860         }
2861 
2862         rw_exit(&mip->mi_rw_lock);
2863         i_mac_perim_exit(mip);
2864         return (ENOENT);
2865 }
2866 
2867 /*
2868  * MAC Type Plugin functions.
2869  */
2870 
2871 mactype_t *
2872 mactype_getplugin(const char *pname)
2873 {
2874         mactype_t       *mtype = NULL;
2875         boolean_t       tried_modload = B_FALSE;
2876 
2877         mutex_enter(&i_mactype_lock);
2878 
2879 find_registered_mactype:
2880         if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2881             (mod_hash_val_t *)&mtype) != 0) {
2882                 if (!tried_modload) {
2883                         /*
2884                          * If the plugin has not yet been loaded, then
2885                          * attempt to load it now.  If modload() succeeds,
2886                          * the plugin should have registered using
2887                          * mactype_register(), in which case we can go back
2888                          * and attempt to find it again.
2889                          */
2890                         if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2891                                 tried_modload = B_TRUE;
2892                                 goto find_registered_mactype;
2893                         }
2894                 }
2895         } else {
2896                 /*
2897                  * Note that there's no danger that the plugin we've loaded
2898                  * could be unloaded between the modload() step and the
2899                  * reference count bump here, as we're holding
2900                  * i_mactype_lock, which mactype_unregister() also holds.
2901                  */
2902                 atomic_inc_32(&mtype->mt_ref);
2903         }
2904 
2905         mutex_exit(&i_mactype_lock);
2906         return (mtype);
2907 }
2908 
2909 mactype_register_t *
2910 mactype_alloc(uint_t mactype_version)
2911 {
2912         mactype_register_t *mtrp;
2913 
2914         /*
2915          * Make sure there isn't a version mismatch between the plugin and
2916          * the framework.  In the future, if multiple versions are
2917          * supported, this check could become more sophisticated.
2918          */
2919         if (mactype_version != MACTYPE_VERSION)
2920                 return (NULL);
2921 
2922         mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2923         mtrp->mtr_version = mactype_version;
2924         return (mtrp);
2925 }
2926 
2927 void
2928 mactype_free(mactype_register_t *mtrp)
2929 {
2930         kmem_free(mtrp, sizeof (mactype_register_t));
2931 }
2932 
2933 int
2934 mactype_register(mactype_register_t *mtrp)
2935 {
2936         mactype_t       *mtp;
2937         mactype_ops_t   *ops = mtrp->mtr_ops;
2938 
2939         /* Do some sanity checking before we register this MAC type. */
2940         if (mtrp->mtr_ident == NULL || ops == NULL)
2941                 return (EINVAL);
2942 
2943         /*
2944          * Verify that all mandatory callbacks are set in the ops
2945          * vector.
2946          */
2947         if (ops->mtops_unicst_verify == NULL ||
2948             ops->mtops_multicst_verify == NULL ||
2949             ops->mtops_sap_verify == NULL ||
2950             ops->mtops_header == NULL ||
2951             ops->mtops_header_info == NULL) {
2952                 return (EINVAL);
2953         }
2954 
2955         mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2956         mtp->mt_ident = mtrp->mtr_ident;
2957         mtp->mt_ops = *ops;
2958         mtp->mt_type = mtrp->mtr_mactype;
2959         mtp->mt_nativetype = mtrp->mtr_nativetype;
2960         mtp->mt_addr_length = mtrp->mtr_addrlen;
2961         if (mtrp->mtr_brdcst_addr != NULL) {
2962                 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2963                 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2964                     mtrp->mtr_addrlen);
2965         }
2966 
2967         mtp->mt_stats = mtrp->mtr_stats;
2968         mtp->mt_statcount = mtrp->mtr_statcount;
2969 
2970         mtp->mt_mapping = mtrp->mtr_mapping;
2971         mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2972 
2973         if (mod_hash_insert(i_mactype_hash,
2974             (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2975                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2976                 kmem_free(mtp, sizeof (*mtp));
2977                 return (EEXIST);
2978         }
2979         return (0);
2980 }
2981 
2982 int
2983 mactype_unregister(const char *ident)
2984 {
2985         mactype_t       *mtp;
2986         mod_hash_val_t  val;
2987         int             err;
2988 
2989         /*
2990          * Let's not allow MAC drivers to use this plugin while we're
2991          * trying to unregister it.  Holding i_mactype_lock also prevents a
2992          * plugin from unregistering while a MAC driver is attempting to
2993          * hold a reference to it in i_mactype_getplugin().
2994          */
2995         mutex_enter(&i_mactype_lock);
2996 
2997         if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2998             (mod_hash_val_t *)&mtp)) != 0) {
2999                 /* A plugin is trying to unregister, but it never registered. */
3000                 err = ENXIO;
3001                 goto done;
3002         }
3003 
3004         if (mtp->mt_ref != 0) {
3005                 err = EBUSY;
3006                 goto done;
3007         }
3008 
3009         err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
3010         ASSERT(err == 0);
3011         if (err != 0) {
3012                 /* This should never happen, thus the ASSERT() above. */
3013                 err = EINVAL;
3014                 goto done;
3015         }
3016         ASSERT(mtp == (mactype_t *)val);
3017 
3018         if (mtp->mt_brdcst_addr != NULL)
3019                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3020         kmem_free(mtp, sizeof (mactype_t));
3021 done:
3022         mutex_exit(&i_mactype_lock);
3023         return (err);
3024 }
3025 
3026 /*
3027  * Checks the size of the value size specified for a property as
3028  * part of a property operation. Returns B_TRUE if the size is
3029  * correct, B_FALSE otherwise.
3030  */
3031 boolean_t
3032 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
3033 {
3034         uint_t minsize = 0;
3035 
3036         if (is_range)
3037                 return (valsize >= sizeof (mac_propval_range_t));
3038 
3039         switch (id) {
3040         case MAC_PROP_ZONE:
3041                 minsize = sizeof (dld_ioc_zid_t);
3042                 break;
3043         case MAC_PROP_AUTOPUSH:
3044                 if (valsize != 0)
3045                         minsize = sizeof (struct dlautopush);
3046                 break;
3047         case MAC_PROP_TAGMODE:
3048                 minsize = sizeof (link_tagmode_t);
3049                 break;
3050         case MAC_PROP_RESOURCE:
3051         case MAC_PROP_RESOURCE_EFF:
3052                 minsize = sizeof (mac_resource_props_t);
3053                 break;
3054         case MAC_PROP_DUPLEX:
3055                 minsize = sizeof (link_duplex_t);
3056                 break;
3057         case MAC_PROP_SPEED:
3058                 minsize = sizeof (uint64_t);
3059                 break;
3060         case MAC_PROP_STATUS:
3061                 minsize = sizeof (link_state_t);
3062                 break;
3063         case MAC_PROP_AUTONEG:
3064         case MAC_PROP_EN_AUTONEG:
3065                 minsize = sizeof (uint8_t);
3066                 break;
3067         case MAC_PROP_MTU:
3068         case MAC_PROP_LLIMIT:
3069         case MAC_PROP_LDECAY:
3070                 minsize = sizeof (uint32_t);
3071                 break;
3072         case MAC_PROP_FLOWCTRL:
3073                 minsize = sizeof (link_flowctrl_t);
3074                 break;
3075         case MAC_PROP_ADV_5000FDX_CAP:
3076         case MAC_PROP_EN_5000FDX_CAP:
3077         case MAC_PROP_ADV_2500FDX_CAP:
3078         case MAC_PROP_EN_2500FDX_CAP:
3079         case MAC_PROP_ADV_100GFDX_CAP:
3080         case MAC_PROP_EN_100GFDX_CAP:
3081         case MAC_PROP_ADV_50GFDX_CAP:
3082         case MAC_PROP_EN_50GFDX_CAP:
3083         case MAC_PROP_ADV_40GFDX_CAP:
3084         case MAC_PROP_EN_40GFDX_CAP:
3085         case MAC_PROP_ADV_25GFDX_CAP:
3086         case MAC_PROP_EN_25GFDX_CAP:
3087         case MAC_PROP_ADV_10GFDX_CAP:
3088         case MAC_PROP_EN_10GFDX_CAP:
3089         case MAC_PROP_ADV_1000HDX_CAP:
3090         case MAC_PROP_EN_1000HDX_CAP:
3091         case MAC_PROP_ADV_100FDX_CAP:
3092         case MAC_PROP_EN_100FDX_CAP:
3093         case MAC_PROP_ADV_100HDX_CAP:
3094         case MAC_PROP_EN_100HDX_CAP:
3095         case MAC_PROP_ADV_10FDX_CAP:
3096         case MAC_PROP_EN_10FDX_CAP:
3097         case MAC_PROP_ADV_10HDX_CAP:
3098         case MAC_PROP_EN_10HDX_CAP:
3099         case MAC_PROP_ADV_100T4_CAP:
3100         case MAC_PROP_EN_100T4_CAP:
3101                 minsize = sizeof (uint8_t);
3102                 break;
3103         case MAC_PROP_PVID:
3104                 minsize = sizeof (uint16_t);
3105                 break;
3106         case MAC_PROP_IPTUN_HOPLIMIT:
3107                 minsize = sizeof (uint32_t);
3108                 break;
3109         case MAC_PROP_IPTUN_ENCAPLIMIT:
3110                 minsize = sizeof (uint32_t);
3111                 break;
3112         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3113         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3114         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3115         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3116                 minsize = sizeof (uint_t);
3117                 break;
3118         case MAC_PROP_WL_ESSID:
3119                 minsize = sizeof (wl_linkstatus_t);
3120                 break;
3121         case MAC_PROP_WL_BSSID:
3122                 minsize = sizeof (wl_bssid_t);
3123                 break;
3124         case MAC_PROP_WL_BSSTYPE:
3125                 minsize = sizeof (wl_bss_type_t);
3126                 break;
3127         case MAC_PROP_WL_LINKSTATUS:
3128                 minsize = sizeof (wl_linkstatus_t);
3129                 break;
3130         case MAC_PROP_WL_DESIRED_RATES:
3131                 minsize = sizeof (wl_rates_t);
3132                 break;
3133         case MAC_PROP_WL_SUPPORTED_RATES:
3134                 minsize = sizeof (wl_rates_t);
3135                 break;
3136         case MAC_PROP_WL_AUTH_MODE:
3137                 minsize = sizeof (wl_authmode_t);
3138                 break;
3139         case MAC_PROP_WL_ENCRYPTION:
3140                 minsize = sizeof (wl_encryption_t);
3141                 break;
3142         case MAC_PROP_WL_RSSI:
3143                 minsize = sizeof (wl_rssi_t);
3144                 break;
3145         case MAC_PROP_WL_PHY_CONFIG:
3146                 minsize = sizeof (wl_phy_conf_t);
3147                 break;
3148         case MAC_PROP_WL_CAPABILITY:
3149                 minsize = sizeof (wl_capability_t);
3150                 break;
3151         case MAC_PROP_WL_WPA:
3152                 minsize = sizeof (wl_wpa_t);
3153                 break;
3154         case MAC_PROP_WL_SCANRESULTS:
3155                 minsize = sizeof (wl_wpa_ess_t);
3156                 break;
3157         case MAC_PROP_WL_POWER_MODE:
3158                 minsize = sizeof (wl_ps_mode_t);
3159                 break;
3160         case MAC_PROP_WL_RADIO:
3161                 minsize = sizeof (wl_radio_t);
3162                 break;
3163         case MAC_PROP_WL_ESS_LIST:
3164                 minsize = sizeof (wl_ess_list_t);
3165                 break;
3166         case MAC_PROP_WL_KEY_TAB:
3167                 minsize = sizeof (wl_wep_key_tab_t);
3168                 break;
3169         case MAC_PROP_WL_CREATE_IBSS:
3170                 minsize = sizeof (wl_create_ibss_t);
3171                 break;
3172         case MAC_PROP_WL_SETOPTIE:
3173                 minsize = sizeof (wl_wpa_ie_t);
3174                 break;
3175         case MAC_PROP_WL_DELKEY:
3176                 minsize = sizeof (wl_del_key_t);
3177                 break;
3178         case MAC_PROP_WL_KEY:
3179                 minsize = sizeof (wl_key_t);
3180                 break;
3181         case MAC_PROP_WL_MLME:
3182                 minsize = sizeof (wl_mlme_t);
3183                 break;
3184         case MAC_PROP_VN_PROMISC_FILTERED:
3185                 minsize = sizeof (boolean_t);
3186                 break;
3187         }
3188 
3189         return (valsize >= minsize);
3190 }
3191 
3192 /*
3193  * mac_set_prop() sets MAC or hardware driver properties:
3194  *
3195  * - MAC-managed properties such as resource properties include maxbw,
3196  *   priority, and cpu binding list, as well as the default port VID
3197  *   used by bridging. These properties are consumed by the MAC layer
3198  *   itself and not passed down to the driver. For resource control
3199  *   properties, this function invokes mac_set_resources() which will
3200  *   cache the property value in mac_impl_t and may call
3201  *   mac_client_set_resource() to update property value of the primary
3202  *   mac client, if it exists.
3203  *
3204  * - Properties which act on the hardware and must be passed to the
3205  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3206  */
3207 int
3208 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3209     uint_t valsize)
3210 {
3211         int err = ENOTSUP;
3212         mac_impl_t *mip = (mac_impl_t *)mh;
3213 
3214         ASSERT(MAC_PERIM_HELD(mh));
3215 
3216         switch (id) {
3217         case MAC_PROP_RESOURCE: {
3218                 mac_resource_props_t *mrp;
3219 
3220                 /* call mac_set_resources() for MAC properties */
3221                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3222                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3223                 bcopy(val, mrp, sizeof (*mrp));
3224                 err = mac_set_resources(mh, mrp);
3225                 kmem_free(mrp, sizeof (*mrp));
3226                 break;
3227         }
3228 
3229         case MAC_PROP_PVID:
3230                 ASSERT(valsize >= sizeof (uint16_t));
3231                 if (mip->mi_state_flags & MIS_IS_VNIC)
3232                         return (EINVAL);
3233                 err = mac_set_pvid(mh, *(uint16_t *)val);
3234                 break;
3235 
3236         case MAC_PROP_MTU: {
3237                 uint32_t mtu;
3238 
3239                 ASSERT(valsize >= sizeof (uint32_t));
3240                 bcopy(val, &mtu, sizeof (mtu));
3241                 err = mac_set_mtu(mh, mtu, NULL);
3242                 break;
3243         }
3244 
3245         case MAC_PROP_LLIMIT:
3246         case MAC_PROP_LDECAY: {
3247                 uint32_t learnval;
3248 
3249                 if (valsize < sizeof (learnval) ||
3250                     (mip->mi_state_flags & MIS_IS_VNIC))
3251                         return (EINVAL);
3252                 bcopy(val, &learnval, sizeof (learnval));
3253                 if (learnval == 0 && id == MAC_PROP_LDECAY)
3254                         return (EINVAL);
3255                 if (id == MAC_PROP_LLIMIT)
3256                         mip->mi_llimit = learnval;
3257                 else
3258                         mip->mi_ldecay = learnval;
3259                 err = 0;
3260                 break;
3261         }
3262 
3263         default:
3264                 /* For other driver properties, call driver's callback */
3265                 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3266                         err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3267                             name, id, valsize, val);
3268                 }
3269         }
3270         return (err);
3271 }
3272 
3273 /*
3274  * mac_get_prop() gets MAC or device driver properties.
3275  *
3276  * If the property is a driver property, mac_get_prop() calls driver's callback
3277  * entry point to get it.
3278  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3279  * which returns the cached value in mac_impl_t.
3280  */
3281 int
3282 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3283     uint_t valsize)
3284 {
3285         int err = ENOTSUP;
3286         mac_impl_t *mip = (mac_impl_t *)mh;
3287         uint_t  rings;
3288         uint_t  vlinks;
3289 
3290         bzero(val, valsize);
3291 
3292         switch (id) {
3293         case MAC_PROP_RESOURCE: {
3294                 mac_resource_props_t *mrp;
3295 
3296                 /* If mac property, read from cache */
3297                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3298                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3299                 mac_get_resources(mh, mrp);
3300                 bcopy(mrp, val, sizeof (*mrp));
3301                 kmem_free(mrp, sizeof (*mrp));
3302                 return (0);
3303         }
3304         case MAC_PROP_RESOURCE_EFF: {
3305                 mac_resource_props_t *mrp;
3306 
3307                 /* If mac effective property, read from client */
3308                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3309                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3310                 mac_get_effective_resources(mh, mrp);
3311                 bcopy(mrp, val, sizeof (*mrp));
3312                 kmem_free(mrp, sizeof (*mrp));
3313                 return (0);
3314         }
3315 
3316         case MAC_PROP_PVID:
3317                 ASSERT(valsize >= sizeof (uint16_t));
3318                 if (mip->mi_state_flags & MIS_IS_VNIC)
3319                         return (EINVAL);
3320                 *(uint16_t *)val = mac_get_pvid(mh);
3321                 return (0);
3322 
3323         case MAC_PROP_LLIMIT:
3324         case MAC_PROP_LDECAY:
3325                 ASSERT(valsize >= sizeof (uint32_t));
3326                 if (mip->mi_state_flags & MIS_IS_VNIC)
3327                         return (EINVAL);
3328                 if (id == MAC_PROP_LLIMIT)
3329                         bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3330                 else
3331                         bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3332                 return (0);
3333 
3334         case MAC_PROP_MTU: {
3335                 uint32_t sdu;
3336 
3337                 ASSERT(valsize >= sizeof (uint32_t));
3338                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3339                 bcopy(&sdu, val, sizeof (sdu));
3340 
3341                 return (0);
3342         }
3343         case MAC_PROP_STATUS: {
3344                 link_state_t link_state;
3345 
3346                 if (valsize < sizeof (link_state))
3347                         return (EINVAL);
3348                 link_state = mac_link_get(mh);
3349                 bcopy(&link_state, val, sizeof (link_state));
3350 
3351                 return (0);
3352         }
3353 
3354         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3355         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3356                 ASSERT(valsize >= sizeof (uint_t));
3357                 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3358                     mac_rxavail_get(mh) : mac_txavail_get(mh);
3359                 bcopy(&rings, val, sizeof (uint_t));
3360                 return (0);
3361 
3362         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3363         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3364                 ASSERT(valsize >= sizeof (uint_t));
3365                 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3366                     mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3367                 bcopy(&vlinks, val, sizeof (uint_t));
3368                 return (0);
3369 
3370         case MAC_PROP_RXRINGSRANGE:
3371         case MAC_PROP_TXRINGSRANGE:
3372                 /*
3373                  * The value for these properties are returned through
3374                  * the MAC_PROP_RESOURCE property.
3375                  */
3376                 return (0);
3377 
3378         default:
3379                 break;
3380 
3381         }
3382 
3383         /* If driver property, request from driver */
3384         if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3385                 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3386                     valsize, val);
3387         }
3388 
3389         return (err);
3390 }
3391 
3392 /*
3393  * Helper function to initialize the range structure for use in
3394  * mac_get_prop. If the type can be other than uint32, we can
3395  * pass that as an arg.
3396  */
3397 static void
3398 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3399 {
3400         range->mpr_count = 1;
3401         range->mpr_type = MAC_PROPVAL_UINT32;
3402         range->mpr_range_uint32[0].mpur_min = min;
3403         range->mpr_range_uint32[0].mpur_max = max;
3404 }
3405 
3406 /*
3407  * Returns information about the specified property, such as default
3408  * values or permissions.
3409  */
3410 int
3411 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3412     void *default_val, uint_t default_size, mac_propval_range_t *range,
3413     uint_t *perm)
3414 {
3415         mac_prop_info_state_t state;
3416         mac_impl_t *mip = (mac_impl_t *)mh;
3417         uint_t  max;
3418 
3419         /*
3420          * A property is read/write by default unless the driver says
3421          * otherwise.
3422          */
3423         if (perm != NULL)
3424                 *perm = MAC_PROP_PERM_RW;
3425 
3426         if (default_val != NULL)
3427                 bzero(default_val, default_size);
3428 
3429         /*
3430          * First, handle framework properties for which we don't need to
3431          * involve the driver.
3432          */
3433         switch (id) {
3434         case MAC_PROP_RESOURCE:
3435         case MAC_PROP_PVID:
3436         case MAC_PROP_LLIMIT:
3437         case MAC_PROP_LDECAY:
3438                 return (0);
3439 
3440         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3441         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3442         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3443         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3444                 if (perm != NULL)
3445                         *perm = MAC_PROP_PERM_READ;
3446                 return (0);
3447 
3448         case MAC_PROP_RXRINGSRANGE:
3449         case MAC_PROP_TXRINGSRANGE:
3450                 /*
3451                  * Currently, we support range for RX and TX rings properties.
3452                  * When we extend this support to maxbw, cpus and priority,
3453                  * we should move this to mac_get_resources.
3454                  * There is no default value for RX or TX rings.
3455                  */
3456                 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3457                     mac_is_vnic_primary(mh)) {
3458                         /*
3459                          * We don't support setting rings for a VLAN
3460                          * data link because it shares its ring with the
3461                          * primary MAC client.
3462                          */
3463                         if (perm != NULL)
3464                                 *perm = MAC_PROP_PERM_READ;
3465                         if (range != NULL)
3466                                 range->mpr_count = 0;
3467                 } else if (range != NULL) {
3468                         if (mip->mi_state_flags & MIS_IS_VNIC)
3469                                 mh = mac_get_lower_mac_handle(mh);
3470                         mip = (mac_impl_t *)mh;
3471                         if ((id == MAC_PROP_RXRINGSRANGE &&
3472                             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3473                             (id == MAC_PROP_TXRINGSRANGE &&
3474                             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3475                                 if (id == MAC_PROP_RXRINGSRANGE) {
3476                                         if ((mac_rxhwlnksavail_get(mh) +
3477                                             mac_rxhwlnksrsvd_get(mh)) <= 1) {
3478                                                 /*
3479                                                  * doesn't support groups or
3480                                                  * rings
3481                                                  */
3482                                                 range->mpr_count = 0;
3483                                         } else {
3484                                                 /*
3485                                                  * supports specifying groups,
3486                                                  * but not rings
3487                                                  */
3488                                                 _mac_set_range(range, 0, 0);
3489                                         }
3490                                 } else {
3491                                         if ((mac_txhwlnksavail_get(mh) +
3492                                             mac_txhwlnksrsvd_get(mh)) <= 1) {
3493                                                 /*
3494                                                  * doesn't support groups or
3495                                                  * rings
3496                                                  */
3497                                                 range->mpr_count = 0;
3498                                         } else {
3499                                                 /*
3500                                                  * supports specifying groups,
3501                                                  * but not rings
3502                                                  */
3503                                                 _mac_set_range(range, 0, 0);
3504                                         }
3505                                 }
3506                         } else {
3507                                 max = id == MAC_PROP_RXRINGSRANGE ?
3508                                     mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3509                                     mac_txavail_get(mh) + mac_txrsvd_get(mh);
3510                                 if (max <= 1) {
3511                                         /*
3512                                          * doesn't support groups or
3513                                          * rings
3514                                          */
3515                                         range->mpr_count = 0;
3516                                 } else  {
3517                                         /*
3518                                          * -1 because we have to leave out the
3519                                          * default ring.
3520                                          */
3521                                         _mac_set_range(range, 1, max - 1);
3522                                 }
3523                         }
3524                 }
3525                 return (0);
3526 
3527         case MAC_PROP_STATUS:
3528                 if (perm != NULL)
3529                         *perm = MAC_PROP_PERM_READ;
3530                 return (0);
3531         }
3532 
3533         /*
3534          * Get the property info from the driver if it implements the
3535          * property info entry point.
3536          */
3537         bzero(&state, sizeof (state));
3538 
3539         if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3540                 state.pr_default = default_val;
3541                 state.pr_default_size = default_size;
3542 
3543                 /*
3544                  * The caller specifies the maximum number of ranges
3545                  * it can accomodate using mpr_count. We don't touch
3546                  * this value until the driver returns from its
3547                  * mc_propinfo() callback, and ensure we don't exceed
3548                  * this number of range as the driver defines
3549                  * supported range from its mc_propinfo().
3550                  *
3551                  * pr_range_cur_count keeps track of how many ranges
3552                  * were defined by the driver from its mc_propinfo()
3553                  * entry point.
3554                  *
3555                  * On exit, the user-specified range mpr_count returns
3556                  * the number of ranges specified by the driver on
3557                  * success, or the number of ranges it wanted to
3558                  * define if that number of ranges could not be
3559                  * accomodated by the specified range structure.  In
3560                  * the latter case, the caller will be able to
3561                  * allocate a larger range structure, and query the
3562                  * property again.
3563                  */
3564                 state.pr_range_cur_count = 0;
3565                 state.pr_range = range;
3566 
3567                 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3568                     (mac_prop_info_handle_t)&state);
3569 
3570                 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3571                         range->mpr_count = state.pr_range_cur_count;
3572 
3573                 /*
3574                  * The operation could fail if the buffer supplied by
3575                  * the user was too small for the range or default
3576                  * value of the property.
3577                  */
3578                 if (state.pr_errno != 0)
3579                         return (state.pr_errno);
3580 
3581                 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3582                         *perm = state.pr_perm;
3583         }
3584 
3585         /*
3586          * The MAC layer may want to provide default values or allowed
3587          * ranges for properties if the driver does not provide a
3588          * property info entry point, or that entry point exists, but
3589          * it did not provide a default value or allowed ranges for
3590          * that property.
3591          */
3592         switch (id) {
3593         case MAC_PROP_MTU: {
3594                 uint32_t sdu;
3595 
3596                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3597 
3598                 if (range != NULL && !(state.pr_flags &
3599                     MAC_PROP_INFO_RANGE)) {
3600                         /* MTU range */
3601                         _mac_set_range(range, sdu, sdu);
3602                 }
3603 
3604                 if (default_val != NULL && !(state.pr_flags &
3605                     MAC_PROP_INFO_DEFAULT)) {
3606                         if (mip->mi_info.mi_media == DL_ETHER)
3607                                 sdu = ETHERMTU;
3608                         /* default MTU value */
3609                         bcopy(&sdu, default_val, sizeof (sdu));
3610                 }
3611         }
3612         }
3613 
3614         return (0);
3615 }
3616 
3617 int
3618 mac_fastpath_disable(mac_handle_t mh)
3619 {
3620         mac_impl_t      *mip = (mac_impl_t *)mh;
3621 
3622         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3623                 return (0);
3624 
3625         return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3626 }
3627 
3628 void
3629 mac_fastpath_enable(mac_handle_t mh)
3630 {
3631         mac_impl_t      *mip = (mac_impl_t *)mh;
3632 
3633         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3634                 return;
3635 
3636         mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3637 }
3638 
3639 void
3640 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3641 {
3642         uint_t nprops, i;
3643 
3644         if (priv_props == NULL)
3645                 return;
3646 
3647         nprops = 0;
3648         while (priv_props[nprops] != NULL)
3649                 nprops++;
3650         if (nprops == 0)
3651                 return;
3652 
3653 
3654         mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3655 
3656         for (i = 0; i < nprops; i++) {
3657                 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3658                 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3659                     MAXLINKPROPNAME);
3660         }
3661 
3662         mip->mi_priv_prop_count = nprops;
3663 }
3664 
3665 void
3666 mac_unregister_priv_prop(mac_impl_t *mip)
3667 {
3668         uint_t i;
3669 
3670         if (mip->mi_priv_prop_count == 0) {
3671                 ASSERT(mip->mi_priv_prop == NULL);
3672                 return;
3673         }
3674 
3675         for (i = 0; i < mip->mi_priv_prop_count; i++)
3676                 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3677         kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3678             sizeof (char *));
3679 
3680         mip->mi_priv_prop = NULL;
3681         mip->mi_priv_prop_count = 0;
3682 }
3683 
3684 /*
3685  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3686  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3687  * cases if MAC free's the ring structure after mac_stop_ring(), any
3688  * illegal access to the ring structure coming from the driver will panic
3689  * the system. In order to protect the system from such inadverent access,
3690  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3691  * When packets are received on free'd up rings, MAC (through the generation
3692  * count mechanism) will drop such packets.
3693  */
3694 static mac_ring_t *
3695 mac_ring_alloc(mac_impl_t *mip)
3696 {
3697         mac_ring_t *ring;
3698 
3699         mutex_enter(&mip->mi_ring_lock);
3700         if (mip->mi_ring_freelist != NULL) {
3701                 ring = mip->mi_ring_freelist;
3702                 mip->mi_ring_freelist = ring->mr_next;
3703                 bzero(ring, sizeof (mac_ring_t));
3704                 mutex_exit(&mip->mi_ring_lock);
3705         } else {
3706                 mutex_exit(&mip->mi_ring_lock);
3707                 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3708         }
3709         ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3710         return (ring);
3711 }
3712 
3713 static void
3714 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3715 {
3716         ASSERT(ring->mr_state == MR_FREE);
3717 
3718         mutex_enter(&mip->mi_ring_lock);
3719         ring->mr_state = MR_FREE;
3720         ring->mr_flag = 0;
3721         ring->mr_next = mip->mi_ring_freelist;
3722         ring->mr_mip = NULL;
3723         mip->mi_ring_freelist = ring;
3724         mac_ring_stat_delete(ring);
3725         mutex_exit(&mip->mi_ring_lock);
3726 }
3727 
3728 static void
3729 mac_ring_freeall(mac_impl_t *mip)
3730 {
3731         mac_ring_t *ring_next;
3732         mutex_enter(&mip->mi_ring_lock);
3733         mac_ring_t *ring = mip->mi_ring_freelist;
3734         while (ring != NULL) {
3735                 ring_next = ring->mr_next;
3736                 kmem_cache_free(mac_ring_cache, ring);
3737                 ring = ring_next;
3738         }
3739         mip->mi_ring_freelist = NULL;
3740         mutex_exit(&mip->mi_ring_lock);
3741 }
3742 
3743 int
3744 mac_start_ring(mac_ring_t *ring)
3745 {
3746         int rv = 0;
3747 
3748         ASSERT(ring->mr_state == MR_FREE);
3749 
3750         if (ring->mr_start != NULL) {
3751                 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3752                 if (rv != 0)
3753                         return (rv);
3754         }
3755 
3756         ring->mr_state = MR_INUSE;
3757         return (rv);
3758 }
3759 
3760 void
3761 mac_stop_ring(mac_ring_t *ring)
3762 {
3763         ASSERT(ring->mr_state == MR_INUSE);
3764 
3765         if (ring->mr_stop != NULL)
3766                 ring->mr_stop(ring->mr_driver);
3767 
3768         ring->mr_state = MR_FREE;
3769 
3770         /*
3771          * Increment the ring generation number for this ring.
3772          */
3773         ring->mr_gen_num++;
3774 }
3775 
3776 int
3777 mac_start_group(mac_group_t *group)
3778 {
3779         int rv = 0;
3780 
3781         if (group->mrg_start != NULL)
3782                 rv = group->mrg_start(group->mrg_driver);
3783 
3784         return (rv);
3785 }
3786 
3787 void
3788 mac_stop_group(mac_group_t *group)
3789 {
3790         if (group->mrg_stop != NULL)
3791                 group->mrg_stop(group->mrg_driver);
3792 }
3793 
3794 /*
3795  * Called from mac_start() on the default Rx group. Broadcast and multicast
3796  * packets are received only on the default group. Hence the default group
3797  * needs to be up even if the primary client is not up, for the other groups
3798  * to be functional. We do this by calling this function at mac_start time
3799  * itself. However the broadcast packets that are received can't make their
3800  * way beyond mac_rx until a mac client creates a broadcast flow.
3801  */
3802 static int
3803 mac_start_group_and_rings(mac_group_t *group)
3804 {
3805         mac_ring_t      *ring;
3806         int             rv = 0;
3807 
3808         ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3809         if ((rv = mac_start_group(group)) != 0)
3810                 return (rv);
3811 
3812         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3813                 ASSERT(ring->mr_state == MR_FREE);
3814                 if ((rv = mac_start_ring(ring)) != 0)
3815                         goto error;
3816                 ring->mr_classify_type = MAC_SW_CLASSIFIER;
3817         }
3818         return (0);
3819 
3820 error:
3821         mac_stop_group_and_rings(group);
3822         return (rv);
3823 }
3824 
3825 /* Called from mac_stop on the default Rx group */
3826 static void
3827 mac_stop_group_and_rings(mac_group_t *group)
3828 {
3829         mac_ring_t      *ring;
3830 
3831         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3832                 if (ring->mr_state != MR_FREE) {
3833                         mac_stop_ring(ring);
3834                         ring->mr_flag = 0;
3835                         ring->mr_classify_type = MAC_NO_CLASSIFIER;
3836                 }
3837         }
3838         mac_stop_group(group);
3839 }
3840 
3841 
3842 static mac_ring_t *
3843 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3844     mac_capab_rings_t *cap_rings)
3845 {
3846         mac_ring_t *ring, *rnext;
3847         mac_ring_info_t ring_info;
3848         ddi_intr_handle_t ddi_handle;
3849 
3850         ring = mac_ring_alloc(mip);
3851 
3852         /* Prepare basic information of ring */
3853 
3854         /*
3855          * Ring index is numbered to be unique across a particular device.
3856          * Ring index computation makes following assumptions:
3857          *      - For drivers with static grouping (e.g. ixgbe, bge),
3858          *      ring index exchanged with the driver (e.g. during mr_rget)
3859          *      is unique only across the group the ring belongs to.
3860          *      - Drivers with dynamic grouping (e.g. nxge), start
3861          *      with single group (mrg_index = 0).
3862          */
3863         ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3864         ring->mr_type = group->mrg_type;
3865         ring->mr_gh = (mac_group_handle_t)group;
3866 
3867         /* Insert the new ring to the list. */
3868         ring->mr_next = group->mrg_rings;
3869         group->mrg_rings = ring;
3870 
3871         /* Zero to reuse the info data structure */
3872         bzero(&ring_info, sizeof (ring_info));
3873 
3874         /* Query ring information from driver */
3875         cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3876             index, &ring_info, (mac_ring_handle_t)ring);
3877 
3878         ring->mr_info = ring_info;
3879 
3880         /*
3881          * The interrupt handle could be shared among multiple rings.
3882          * Thus if there is a bunch of rings that are sharing an
3883          * interrupt, then only one ring among the bunch will be made
3884          * available for interrupt re-targeting; the rest will have
3885          * ddi_shared flag set to TRUE and would not be available for
3886          * be interrupt re-targeting.
3887          */
3888         if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3889                 rnext = ring->mr_next;
3890                 while (rnext != NULL) {
3891                         if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3892                             ddi_handle) {
3893                                 /*
3894                                  * If default ring (mr_index == 0) is part
3895                                  * of a group of rings sharing an
3896                                  * interrupt, then set ddi_shared flag for
3897                                  * the default ring and give another ring
3898                                  * the chance to be re-targeted.
3899                                  */
3900                                 if (rnext->mr_index == 0 &&
3901                                     !rnext->mr_info.mri_intr.mi_ddi_shared) {
3902                                         rnext->mr_info.mri_intr.mi_ddi_shared =
3903                                             B_TRUE;
3904                                 } else {
3905                                         ring->mr_info.mri_intr.mi_ddi_shared =
3906                                             B_TRUE;
3907                                 }
3908                                 break;
3909                         }
3910                         rnext = rnext->mr_next;
3911                 }
3912                 /*
3913                  * If rnext is NULL, then no matching ddi_handle was found.
3914                  * Rx rings get registered first. So if this is a Tx ring,
3915                  * then go through all the Rx rings and see if there is a
3916                  * matching ddi handle.
3917                  */
3918                 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3919                         mac_compare_ddi_handle(mip->mi_rx_groups,
3920                             mip->mi_rx_group_count, ring);
3921                 }
3922         }
3923 
3924         /* Update ring's status */
3925         ring->mr_state = MR_FREE;
3926         ring->mr_flag = 0;
3927 
3928         /* Update the ring count of the group */
3929         group->mrg_cur_count++;
3930 
3931         /* Create per ring kstats */
3932         if (ring->mr_stat != NULL) {
3933                 ring->mr_mip = mip;
3934                 mac_ring_stat_create(ring);
3935         }
3936 
3937         return (ring);
3938 }
3939 
3940 /*
3941  * Rings are chained together for easy regrouping.
3942  */
3943 static void
3944 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3945     mac_capab_rings_t *cap_rings)
3946 {
3947         int index;
3948 
3949         /*
3950          * Initialize all ring members of this group. Size of zero will not
3951          * enter the loop, so it's safe for initializing an empty group.
3952          */
3953         for (index = size - 1; index >= 0; index--)
3954                 (void) mac_init_ring(mip, group, index, cap_rings);
3955 }
3956 
3957 int
3958 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3959 {
3960         mac_capab_rings_t       *cap_rings;
3961         mac_group_t             *group;
3962         mac_group_t             *groups;
3963         mac_group_info_t        group_info;
3964         uint_t                  group_free = 0;
3965         uint_t                  ring_left;
3966         mac_ring_t              *ring;
3967         int                     g;
3968         int                     err = 0;
3969         uint_t                  grpcnt;
3970         boolean_t               pseudo_txgrp = B_FALSE;
3971 
3972         switch (rtype) {
3973         case MAC_RING_TYPE_RX:
3974                 ASSERT(mip->mi_rx_groups == NULL);
3975 
3976                 cap_rings = &mip->mi_rx_rings_cap;
3977                 cap_rings->mr_type = MAC_RING_TYPE_RX;
3978                 break;
3979         case MAC_RING_TYPE_TX:
3980                 ASSERT(mip->mi_tx_groups == NULL);
3981 
3982                 cap_rings = &mip->mi_tx_rings_cap;
3983                 cap_rings->mr_type = MAC_RING_TYPE_TX;
3984                 break;
3985         default:
3986                 ASSERT(B_FALSE);
3987         }
3988 
3989         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3990                 return (0);
3991         grpcnt = cap_rings->mr_gnum;
3992 
3993         /*
3994          * If we have multiple TX rings, but only one TX group, we can
3995          * create pseudo TX groups (one per TX ring) in the MAC layer,
3996          * except for an aggr. For an aggr currently we maintain only
3997          * one group with all the rings (for all its ports), going
3998          * forwards we might change this.
3999          */
4000         if (rtype == MAC_RING_TYPE_TX &&
4001             cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
4002             (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
4003                 /*
4004                  * The -1 here is because we create a default TX group
4005                  * with all the rings in it.
4006                  */
4007                 grpcnt = cap_rings->mr_rnum - 1;
4008                 pseudo_txgrp = B_TRUE;
4009         }
4010 
4011         /*
4012          * Allocate a contiguous buffer for all groups.
4013          */
4014         groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
4015 
4016         ring_left = cap_rings->mr_rnum;
4017 
4018         /*
4019          * Get all ring groups if any, and get their ring members
4020          * if any.
4021          */
4022         for (g = 0; g < grpcnt; g++) {
4023                 group = groups + g;
4024 
4025                 /* Prepare basic information of the group */
4026                 group->mrg_index = g;
4027                 group->mrg_type = rtype;
4028                 group->mrg_state = MAC_GROUP_STATE_UNINIT;
4029                 group->mrg_mh = (mac_handle_t)mip;
4030                 group->mrg_next = group + 1;
4031 
4032                 /* Zero to reuse the info data structure */
4033                 bzero(&group_info, sizeof (group_info));
4034 
4035                 if (pseudo_txgrp) {
4036                         /*
4037                          * This is a pseudo group that we created, apart
4038                          * from setting the state there is nothing to be
4039                          * done.
4040                          */
4041                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4042                         group_free++;
4043                         continue;
4044                 }
4045                 /* Query group information from driver */
4046                 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4047                     (mac_group_handle_t)group);
4048 
4049                 switch (cap_rings->mr_group_type) {
4050                 case MAC_GROUP_TYPE_DYNAMIC:
4051                         if (cap_rings->mr_gaddring == NULL ||
4052                             cap_rings->mr_gremring == NULL) {
4053                                 DTRACE_PROBE3(
4054                                     mac__init__rings_no_addremring,
4055                                     char *, mip->mi_name,
4056                                     mac_group_add_ring_t,
4057                                     cap_rings->mr_gaddring,
4058                                     mac_group_add_ring_t,
4059                                     cap_rings->mr_gremring);
4060                                 err = EINVAL;
4061                                 goto bail;
4062                         }
4063 
4064                         switch (rtype) {
4065                         case MAC_RING_TYPE_RX:
4066                                 /*
4067                                  * The first RX group must have non-zero
4068                                  * rings, and the following groups must
4069                                  * have zero rings.
4070                                  */
4071                                 if (g == 0 && group_info.mgi_count == 0) {
4072                                         DTRACE_PROBE1(
4073                                             mac__init__rings__rx__def__zero,
4074                                             char *, mip->mi_name);
4075                                         err = EINVAL;
4076                                         goto bail;
4077                                 }
4078                                 if (g > 0 && group_info.mgi_count != 0) {
4079                                         DTRACE_PROBE3(
4080                                             mac__init__rings__rx__nonzero,
4081                                             char *, mip->mi_name,
4082                                             int, g, int, group_info.mgi_count);
4083                                         err = EINVAL;
4084                                         goto bail;
4085                                 }
4086                                 break;
4087                         case MAC_RING_TYPE_TX:
4088                                 /*
4089                                  * All TX ring groups must have zero rings.
4090                                  */
4091                                 if (group_info.mgi_count != 0) {
4092                                         DTRACE_PROBE3(
4093                                             mac__init__rings__tx__nonzero,
4094                                             char *, mip->mi_name,
4095                                             int, g, int, group_info.mgi_count);
4096                                         err = EINVAL;
4097                                         goto bail;
4098                                 }
4099                                 break;
4100                         }
4101                         break;
4102                 case MAC_GROUP_TYPE_STATIC:
4103                         /*
4104                          * Note that an empty group is allowed, e.g., an aggr
4105                          * would start with an empty group.
4106                          */
4107                         break;
4108                 default:
4109                         /* unknown group type */
4110                         DTRACE_PROBE2(mac__init__rings__unknown__type,
4111                             char *, mip->mi_name,
4112                             int, cap_rings->mr_group_type);
4113                         err = EINVAL;
4114                         goto bail;
4115                 }
4116 
4117 
4118                 /*
4119                  * The driver must register some form of hardware MAC
4120                  * filter in order for Rx groups to support multiple
4121                  * MAC addresses.
4122                  */
4123                 if (rtype == MAC_RING_TYPE_RX &&
4124                     (group_info.mgi_addmac == NULL ||
4125                     group_info.mgi_remmac == NULL)) {
4126                         DTRACE_PROBE1(mac__init__rings__no__mac__filter,
4127                             char *, mip->mi_name);
4128                         err = EINVAL;
4129                         goto bail;
4130                 }
4131 
4132                 /* Cache driver-supplied information */
4133                 group->mrg_info = group_info;
4134 
4135                 /* Update the group's status and group count. */
4136                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4137                 group_free++;
4138 
4139                 group->mrg_rings = NULL;
4140                 group->mrg_cur_count = 0;
4141                 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4142                 ring_left -= group_info.mgi_count;
4143 
4144                 /* The current group size should be equal to default value */
4145                 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4146         }
4147 
4148         /* Build up a dummy group for free resources as a pool */
4149         group = groups + grpcnt;
4150 
4151         /* Prepare basic information of the group */
4152         group->mrg_index = -1;
4153         group->mrg_type = rtype;
4154         group->mrg_state = MAC_GROUP_STATE_UNINIT;
4155         group->mrg_mh = (mac_handle_t)mip;
4156         group->mrg_next = NULL;
4157 
4158         /*
4159          * If there are ungrouped rings, allocate a continuous buffer for
4160          * remaining resources.
4161          */
4162         if (ring_left != 0) {
4163                 group->mrg_rings = NULL;
4164                 group->mrg_cur_count = 0;
4165                 mac_init_group(mip, group, ring_left, cap_rings);
4166 
4167                 /* The current group size should be equal to ring_left */
4168                 ASSERT(group->mrg_cur_count == ring_left);
4169 
4170                 ring_left = 0;
4171 
4172                 /* Update this group's status */
4173                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4174         } else {
4175                 group->mrg_rings = NULL;
4176         }
4177 
4178         ASSERT(ring_left == 0);
4179 
4180 bail:
4181 
4182         /* Cache other important information to finalize the initialization */
4183         switch (rtype) {
4184         case MAC_RING_TYPE_RX:
4185                 mip->mi_rx_group_type = cap_rings->mr_group_type;
4186                 mip->mi_rx_group_count = cap_rings->mr_gnum;
4187                 mip->mi_rx_groups = groups;
4188                 mip->mi_rx_donor_grp = groups;
4189                 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4190                         /*
4191                          * The default ring is reserved since it is
4192                          * used for sending the broadcast etc. packets.
4193                          */
4194                         mip->mi_rxrings_avail =
4195                             mip->mi_rx_groups->mrg_cur_count - 1;
4196                         mip->mi_rxrings_rsvd = 1;
4197                 }
4198                 /*
4199                  * The default group cannot be reserved. It is used by
4200                  * all the clients that do not have an exclusive group.
4201                  */
4202                 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4203                 mip->mi_rxhwclnt_used = 1;
4204                 break;
4205         case MAC_RING_TYPE_TX:
4206                 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4207                     cap_rings->mr_group_type;
4208                 mip->mi_tx_group_count = grpcnt;
4209                 mip->mi_tx_group_free = group_free;
4210                 mip->mi_tx_groups = groups;
4211 
4212                 group = groups + grpcnt;
4213                 ring = group->mrg_rings;
4214                 /*
4215                  * The ring can be NULL in the case of aggr. Aggr will
4216                  * have an empty Tx group which will get populated
4217                  * later when pseudo Tx rings are added after
4218                  * mac_register() is done.
4219                  */
4220                 if (ring == NULL) {
4221                         ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4222                         /*
4223                          * pass the group to aggr so it can add Tx
4224                          * rings to the group later.
4225                          */
4226                         cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4227                             (mac_group_handle_t)group);
4228                         /*
4229                          * Even though there are no rings at this time
4230                          * (rings will come later), set the group
4231                          * state to registered.
4232                          */
4233                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4234                 } else {
4235                         /*
4236                          * Ring 0 is used as the default one and it could be
4237                          * assigned to a client as well.
4238                          */
4239                         while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4240                                 ring = ring->mr_next;
4241                         ASSERT(ring->mr_index == 0);
4242                         mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4243                 }
4244                 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4245                         mip->mi_txrings_avail = group->mrg_cur_count - 1;
4246                         /*
4247                          * The default ring cannot be reserved.
4248                          */
4249                         mip->mi_txrings_rsvd = 1;
4250                 }
4251                 /*
4252                  * The default group cannot be reserved. It will be shared
4253                  * by clients that do not have an exclusive group.
4254                  */
4255                 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4256                 mip->mi_txhwclnt_used = 1;
4257                 break;
4258         default:
4259                 ASSERT(B_FALSE);
4260         }
4261 
4262         if (err != 0)
4263                 mac_free_rings(mip, rtype);
4264 
4265         return (err);
4266 }
4267 
4268 /*
4269  * The ddi interrupt handle could be shared amoung rings. If so, compare
4270  * the new ring's ddi handle with the existing ones and set ddi_shared
4271  * flag.
4272  */
4273 void
4274 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4275 {
4276         mac_group_t *group;
4277         mac_ring_t *ring;
4278         ddi_intr_handle_t ddi_handle;
4279         int g;
4280 
4281         ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4282         for (g = 0; g < grpcnt; g++) {
4283                 group = groups + g;
4284                 for (ring = group->mrg_rings; ring != NULL;
4285                     ring = ring->mr_next) {
4286                         if (ring == cring)
4287                                 continue;
4288                         if (ring->mr_info.mri_intr.mi_ddi_handle ==
4289                             ddi_handle) {
4290                                 if (cring->mr_type == MAC_RING_TYPE_RX &&
4291                                     ring->mr_index == 0 &&
4292                                     !ring->mr_info.mri_intr.mi_ddi_shared) {
4293                                         ring->mr_info.mri_intr.mi_ddi_shared =
4294                                             B_TRUE;
4295                                 } else {
4296                                         cring->mr_info.mri_intr.mi_ddi_shared =
4297                                             B_TRUE;
4298                                 }
4299                                 return;
4300                         }
4301                 }
4302         }
4303 }
4304 
4305 /*
4306  * Called to free all groups of particular type (RX or TX). It's assumed that
4307  * no clients are using these groups.
4308  */
4309 void
4310 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4311 {
4312         mac_group_t *group, *groups;
4313         uint_t group_count;
4314 
4315         switch (rtype) {
4316         case MAC_RING_TYPE_RX:
4317                 if (mip->mi_rx_groups == NULL)
4318                         return;
4319 
4320                 groups = mip->mi_rx_groups;
4321                 group_count = mip->mi_rx_group_count;
4322 
4323                 mip->mi_rx_groups = NULL;
4324                 mip->mi_rx_donor_grp = NULL;
4325                 mip->mi_rx_group_count = 0;
4326                 break;
4327         case MAC_RING_TYPE_TX:
4328                 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4329 
4330                 if (mip->mi_tx_groups == NULL)
4331                         return;
4332 
4333                 groups = mip->mi_tx_groups;
4334                 group_count = mip->mi_tx_group_count;
4335 
4336                 mip->mi_tx_groups = NULL;
4337                 mip->mi_tx_group_count = 0;
4338                 mip->mi_tx_group_free = 0;
4339                 mip->mi_default_tx_ring = NULL;
4340                 break;
4341         default:
4342                 ASSERT(B_FALSE);
4343         }
4344 
4345         for (group = groups; group != NULL; group = group->mrg_next) {
4346                 mac_ring_t *ring;
4347 
4348                 if (group->mrg_cur_count == 0)
4349                         continue;
4350 
4351                 ASSERT(group->mrg_rings != NULL);
4352 
4353                 while ((ring = group->mrg_rings) != NULL) {
4354                         group->mrg_rings = ring->mr_next;
4355                         mac_ring_free(mip, ring);
4356                 }
4357         }
4358 
4359         /* Free all the cached rings */
4360         mac_ring_freeall(mip);
4361         /* Free the block of group data strutures */
4362         kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4363 }
4364 
4365 /*
4366  * Associate the VLAN filter to the receive group.
4367  */
4368 int
4369 mac_group_addvlan(mac_group_t *group, uint16_t vlan)
4370 {
4371         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4372         VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL);
4373 
4374         if (vlan > VLAN_ID_MAX)
4375                 return (EINVAL);
4376 
4377         vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4378         return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan));
4379 }
4380 
4381 /*
4382  * Dissociate the VLAN from the receive group.
4383  */
4384 int
4385 mac_group_remvlan(mac_group_t *group, uint16_t vlan)
4386 {
4387         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4388         VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL);
4389 
4390         if (vlan > VLAN_ID_MAX)
4391                 return (EINVAL);
4392 
4393         vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4394         return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan));
4395 }
4396 
4397 /*
4398  * Associate a MAC address with a receive group.
4399  *
4400  * The return value of this function should always be checked properly, because
4401  * any type of failure could cause unexpected results. A group can be added
4402  * or removed with a MAC address only after it has been reserved. Ideally,
4403  * a successful reservation always leads to calling mac_group_addmac() to
4404  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4405  * always imply that the group is functioning abnormally.
4406  *
4407  * Currently this function is called everywhere, and it reflects assumptions
4408  * about MAC addresses in the implementation. CR 6735196.
4409  */
4410 int
4411 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4412 {
4413         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4414         VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL);
4415 
4416         return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4417 }
4418 
4419 /*
4420  * Remove the association between MAC address and receive group.
4421  */
4422 int
4423 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4424 {
4425         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4426         VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL);
4427 
4428         return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4429 }
4430 
4431 /*
4432  * This is the entry point for packets transmitted through the bridging code.
4433  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4434  * pointer may be NULL to select the default ring.
4435  */
4436 mblk_t *
4437 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4438 {
4439         mac_handle_t mh;
4440 
4441         /*
4442          * Once we take a reference on the bridge link, the bridge
4443          * module itself can't unload, so the callback pointers are
4444          * stable.
4445          */
4446         mutex_enter(&mip->mi_bridge_lock);
4447         if ((mh = mip->mi_bridge_link) != NULL)
4448                 mac_bridge_ref_cb(mh, B_TRUE);
4449         mutex_exit(&mip->mi_bridge_lock);
4450         if (mh == NULL) {
4451                 MAC_RING_TX(mip, rh, mp, mp);
4452         } else {
4453                 mp = mac_bridge_tx_cb(mh, rh, mp);
4454                 mac_bridge_ref_cb(mh, B_FALSE);
4455         }
4456 
4457         return (mp);
4458 }
4459 
4460 /*
4461  * Find a ring from its index.
4462  */
4463 mac_ring_handle_t
4464 mac_find_ring(mac_group_handle_t gh, int index)
4465 {
4466         mac_group_t *group = (mac_group_t *)gh;
4467         mac_ring_t *ring = group->mrg_rings;
4468 
4469         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4470                 if (ring->mr_index == index)
4471                         break;
4472 
4473         return ((mac_ring_handle_t)ring);
4474 }
4475 /*
4476  * Add a ring to an existing group.
4477  *
4478  * The ring must be either passed directly (for example if the ring
4479  * movement is initiated by the framework), or specified through a driver
4480  * index (for example when the ring is added by the driver.
4481  *
4482  * The caller needs to call mac_perim_enter() before calling this function.
4483  */
4484 int
4485 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4486 {
4487         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4488         mac_capab_rings_t *cap_rings;
4489         boolean_t driver_call = (ring == NULL);
4490         mac_group_type_t group_type;
4491         int ret = 0;
4492         flow_entry_t *flent;
4493 
4494         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4495 
4496         switch (group->mrg_type) {
4497         case MAC_RING_TYPE_RX:
4498                 cap_rings = &mip->mi_rx_rings_cap;
4499                 group_type = mip->mi_rx_group_type;
4500                 break;
4501         case MAC_RING_TYPE_TX:
4502                 cap_rings = &mip->mi_tx_rings_cap;
4503                 group_type = mip->mi_tx_group_type;
4504                 break;
4505         default:
4506                 ASSERT(B_FALSE);
4507         }
4508 
4509         /*
4510          * There should be no ring with the same ring index in the target
4511          * group.
4512          */
4513         ASSERT(mac_find_ring((mac_group_handle_t)group,
4514             driver_call ? index : ring->mr_index) == NULL);
4515 
4516         if (driver_call) {
4517                 /*
4518                  * The function is called as a result of a request from
4519                  * a driver to add a ring to an existing group, for example
4520                  * from the aggregation driver. Allocate a new mac_ring_t
4521                  * for that ring.
4522                  */
4523                 ring = mac_init_ring(mip, group, index, cap_rings);
4524                 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4525         } else {
4526                 /*
4527                  * The function is called as a result of a MAC layer request
4528                  * to add a ring to an existing group. In this case the
4529                  * ring is being moved between groups, which requires
4530                  * the underlying driver to support dynamic grouping,
4531                  * and the mac_ring_t already exists.
4532                  */
4533                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4534                 ASSERT(group->mrg_driver == NULL ||
4535                     cap_rings->mr_gaddring != NULL);
4536                 ASSERT(ring->mr_gh == NULL);
4537         }
4538 
4539         /*
4540          * At this point the ring should not be in use, and it should be
4541          * of the right for the target group.
4542          */
4543         ASSERT(ring->mr_state < MR_INUSE);
4544         ASSERT(ring->mr_srs == NULL);
4545         ASSERT(ring->mr_type == group->mrg_type);
4546 
4547         if (!driver_call) {
4548                 /*
4549                  * Add the driver level hardware ring if the process was not
4550                  * initiated by the driver, and the target group is not the
4551                  * group.
4552                  */
4553                 if (group->mrg_driver != NULL) {
4554                         cap_rings->mr_gaddring(group->mrg_driver,
4555                             ring->mr_driver, ring->mr_type);
4556                 }
4557 
4558                 /*
4559                  * Insert the ring ahead existing rings.
4560                  */
4561                 ring->mr_next = group->mrg_rings;
4562                 group->mrg_rings = ring;
4563                 ring->mr_gh = (mac_group_handle_t)group;
4564                 group->mrg_cur_count++;
4565         }
4566 
4567         /*
4568          * If the group has not been actively used, we're done.
4569          */
4570         if (group->mrg_index != -1 &&
4571             group->mrg_state < MAC_GROUP_STATE_RESERVED)
4572                 return (0);
4573 
4574         /*
4575          * Start the ring if needed. Failure causes to undo the grouping action.
4576          */
4577         if (ring->mr_state != MR_INUSE) {
4578                 if ((ret = mac_start_ring(ring)) != 0) {
4579                         if (!driver_call) {
4580                                 cap_rings->mr_gremring(group->mrg_driver,
4581                                     ring->mr_driver, ring->mr_type);
4582                         }
4583                         group->mrg_cur_count--;
4584                         group->mrg_rings = ring->mr_next;
4585 
4586                         ring->mr_gh = NULL;
4587 
4588                         if (driver_call)
4589                                 mac_ring_free(mip, ring);
4590 
4591                         return (ret);
4592                 }
4593         }
4594 
4595         /*
4596          * Set up SRS/SR according to the ring type.
4597          */
4598         switch (ring->mr_type) {
4599         case MAC_RING_TYPE_RX:
4600                 /*
4601                  * Setup an SRS on top of the new ring if the group is
4602                  * reserved for someone's exclusive use.
4603                  */
4604                 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4605                         mac_client_impl_t *mcip =  MAC_GROUP_ONLY_CLIENT(group);
4606 
4607                         VERIFY3P(mcip, !=, NULL);
4608                         flent = mcip->mci_flent;
4609                         VERIFY3S(flent->fe_rx_srs_cnt, >, 0);
4610                         mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4611                         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4612                             mac_rx_deliver, mcip, NULL, NULL);
4613                 } else {
4614                         ring->mr_classify_type = MAC_SW_CLASSIFIER;
4615                 }
4616                 break;
4617         case MAC_RING_TYPE_TX:
4618         {
4619                 mac_grp_client_t        *mgcp = group->mrg_clients;
4620                 mac_client_impl_t       *mcip;
4621                 mac_soft_ring_set_t     *mac_srs;
4622                 mac_srs_tx_t            *tx;
4623 
4624                 if (MAC_GROUP_NO_CLIENT(group)) {
4625                         if (ring->mr_state == MR_INUSE)
4626                                 mac_stop_ring(ring);
4627                         ring->mr_flag = 0;
4628                         break;
4629                 }
4630                 /*
4631                  * If the rings are being moved to a group that has
4632                  * clients using it, then add the new rings to the
4633                  * clients SRS.
4634                  */
4635                 while (mgcp != NULL) {
4636                         boolean_t       is_aggr;
4637 
4638                         mcip = mgcp->mgc_client;
4639                         flent = mcip->mci_flent;
4640                         is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
4641                         mac_srs = MCIP_TX_SRS(mcip);
4642                         tx = &mac_srs->srs_tx;
4643                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4644                         /*
4645                          * If we are  growing from 1 to multiple rings.
4646                          */
4647                         if (tx->st_mode == SRS_TX_BW ||
4648                             tx->st_mode == SRS_TX_SERIALIZE ||
4649                             tx->st_mode == SRS_TX_DEFAULT) {
4650                                 mac_ring_t      *tx_ring = tx->st_arg2;
4651 
4652                                 tx->st_arg2 = NULL;
4653                                 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4654                                 mac_tx_srs_add_ring(mac_srs, tx_ring);
4655                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4656                                         tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4657                                             SRS_TX_BW_FANOUT;
4658                                 } else {
4659                                         tx->st_mode = is_aggr ? SRS_TX_AGGR :
4660                                             SRS_TX_FANOUT;
4661                                 }
4662                                 tx->st_func = mac_tx_get_func(tx->st_mode);
4663                         }
4664                         mac_tx_srs_add_ring(mac_srs, ring);
4665                         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4666                             mac_rx_deliver, mcip, NULL, NULL);
4667                         mac_tx_client_restart((mac_client_handle_t)mcip);
4668                         mgcp = mgcp->mgc_next;
4669                 }
4670                 break;
4671         }
4672         default:
4673                 ASSERT(B_FALSE);
4674         }
4675         /*
4676          * For aggr, the default ring will be NULL to begin with. If it
4677          * is NULL, then pick the first ring that gets added as the
4678          * default ring. Any ring in an aggregation can be removed at
4679          * any time (by the user action of removing a link) and if the
4680          * current default ring gets removed, then a new one gets
4681          * picked (see i_mac_group_rem_ring()).
4682          */
4683         if (mip->mi_state_flags & MIS_IS_AGGR &&
4684             mip->mi_default_tx_ring == NULL &&
4685             ring->mr_type == MAC_RING_TYPE_TX) {
4686                 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4687         }
4688 
4689         MAC_RING_UNMARK(ring, MR_INCIPIENT);
4690         return (0);
4691 }
4692 
4693 /*
4694  * Remove a ring from it's current group. MAC internal function for dynamic
4695  * grouping.
4696  *
4697  * The caller needs to call mac_perim_enter() before calling this function.
4698  */
4699 void
4700 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4701     boolean_t driver_call)
4702 {
4703         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4704         mac_capab_rings_t *cap_rings = NULL;
4705         mac_group_type_t group_type;
4706 
4707         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4708 
4709         ASSERT(mac_find_ring((mac_group_handle_t)group,
4710             ring->mr_index) == (mac_ring_handle_t)ring);
4711         ASSERT((mac_group_t *)ring->mr_gh == group);
4712         ASSERT(ring->mr_type == group->mrg_type);
4713 
4714         if (ring->mr_state == MR_INUSE)
4715                 mac_stop_ring(ring);
4716         switch (ring->mr_type) {
4717         case MAC_RING_TYPE_RX:
4718                 group_type = mip->mi_rx_group_type;
4719                 cap_rings = &mip->mi_rx_rings_cap;
4720 
4721                 /*
4722                  * Only hardware classified packets hold a reference to the
4723                  * ring all the way up the Rx path. mac_rx_srs_remove()
4724                  * will take care of quiescing the Rx path and removing the
4725                  * SRS. The software classified path neither holds a reference
4726                  * nor any association with the ring in mac_rx.
4727                  */
4728                 if (ring->mr_srs != NULL) {
4729                         mac_rx_srs_remove(ring->mr_srs);
4730                         ring->mr_srs = NULL;
4731                 }
4732 
4733                 break;
4734         case MAC_RING_TYPE_TX:
4735         {
4736                 mac_grp_client_t        *mgcp;
4737                 mac_client_impl_t       *mcip;
4738                 mac_soft_ring_set_t     *mac_srs;
4739                 mac_srs_tx_t            *tx;
4740                 mac_ring_t              *rem_ring;
4741                 mac_group_t             *defgrp;
4742                 uint_t                  ring_info = 0;
4743 
4744                 /*
4745                  * For TX this function is invoked in three
4746                  * cases:
4747                  *
4748                  * 1) In the case of a failure during the
4749                  * initial creation of a group when a share is
4750                  * associated with a MAC client. So the SRS is not
4751                  * yet setup, and will be setup later after the
4752                  * group has been reserved and populated.
4753                  *
4754                  * 2) From mac_release_tx_group() when freeing
4755                  * a TX SRS.
4756                  *
4757                  * 3) In the case of aggr, when a port gets removed,
4758                  * the pseudo Tx rings that it exposed gets removed.
4759                  *
4760                  * In the first two cases the SRS and its soft
4761                  * rings are already quiesced.
4762                  */
4763                 if (driver_call) {
4764                         mac_client_impl_t *mcip;
4765                         mac_soft_ring_set_t *mac_srs;
4766                         mac_soft_ring_t *sringp;
4767                         mac_srs_tx_t *srs_tx;
4768 
4769                         if (mip->mi_state_flags & MIS_IS_AGGR &&
4770                             mip->mi_default_tx_ring ==
4771                             (mac_ring_handle_t)ring) {
4772                                 /* pick a new default Tx ring */
4773                                 mip->mi_default_tx_ring =
4774                                     (group->mrg_rings != ring) ?
4775                                     (mac_ring_handle_t)group->mrg_rings :
4776                                     (mac_ring_handle_t)(ring->mr_next);
4777                         }
4778                         /* Presently only aggr case comes here */
4779                         if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4780                                 break;
4781 
4782                         mcip = MAC_GROUP_ONLY_CLIENT(group);
4783                         ASSERT(mcip != NULL);
4784                         ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
4785                         mac_srs = MCIP_TX_SRS(mcip);
4786                         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4787                             mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4788                         srs_tx = &mac_srs->srs_tx;
4789                         /*
4790                          * Wakeup any callers blocked on this
4791                          * Tx ring due to flow control.
4792                          */
4793                         sringp = srs_tx->st_soft_rings[ring->mr_index];
4794                         ASSERT(sringp != NULL);
4795                         mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4796                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4797                         mac_tx_srs_del_ring(mac_srs, ring);
4798                         mac_tx_client_restart((mac_client_handle_t)mcip);
4799                         break;
4800                 }
4801                 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4802                 group_type = mip->mi_tx_group_type;
4803                 cap_rings = &mip->mi_tx_rings_cap;
4804                 /*
4805                  * See if we need to take it out of the MAC clients using
4806                  * this group
4807                  */
4808                 if (MAC_GROUP_NO_CLIENT(group))
4809                         break;
4810                 mgcp = group->mrg_clients;
4811                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
4812                 while (mgcp != NULL) {
4813                         mcip = mgcp->mgc_client;
4814                         mac_srs = MCIP_TX_SRS(mcip);
4815                         tx = &mac_srs->srs_tx;
4816                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4817                         /*
4818                          * If we are here when removing rings from the
4819                          * defgroup, mac_reserve_tx_ring would have
4820                          * already deleted the ring from the MAC
4821                          * clients in the group.
4822                          */
4823                         if (group != defgrp) {
4824                                 mac_tx_invoke_callbacks(mcip,
4825                                     (mac_tx_cookie_t)
4826                                     mac_tx_srs_get_soft_ring(mac_srs, ring));
4827                                 mac_tx_srs_del_ring(mac_srs, ring);
4828                         }
4829                         /*
4830                          * Additionally, if  we are left with only
4831                          * one ring in the group after this, we need
4832                          * to modify the mode etc. to. (We haven't
4833                          * yet taken the ring out, so we check with 2).
4834                          */
4835                         if (group->mrg_cur_count == 2) {
4836                                 if (ring->mr_next == NULL)
4837                                         rem_ring = group->mrg_rings;
4838                                 else
4839                                         rem_ring = ring->mr_next;
4840                                 mac_tx_invoke_callbacks(mcip,
4841                                     (mac_tx_cookie_t)
4842                                     mac_tx_srs_get_soft_ring(mac_srs,
4843                                     rem_ring));
4844                                 mac_tx_srs_del_ring(mac_srs, rem_ring);
4845                                 if (rem_ring->mr_state != MR_INUSE) {
4846                                         (void) mac_start_ring(rem_ring);
4847                                 }
4848                                 tx->st_arg2 = (void *)rem_ring;
4849                                 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4850                                 ring_info = mac_hwring_getinfo(
4851                                     (mac_ring_handle_t)rem_ring);
4852                                 /*
4853                                  * We are  shrinking from multiple
4854                                  * to 1 ring.
4855                                  */
4856                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4857                                         tx->st_mode = SRS_TX_BW;
4858                                 } else if (mac_tx_serialize ||
4859                                     (ring_info & MAC_RING_TX_SERIALIZE)) {
4860                                         tx->st_mode = SRS_TX_SERIALIZE;
4861                                 } else {
4862                                         tx->st_mode = SRS_TX_DEFAULT;
4863                                 }
4864                                 tx->st_func = mac_tx_get_func(tx->st_mode);
4865                         }
4866                         mac_tx_client_restart((mac_client_handle_t)mcip);
4867                         mgcp = mgcp->mgc_next;
4868                 }
4869                 break;
4870         }
4871         default:
4872                 ASSERT(B_FALSE);
4873         }
4874 
4875         /*
4876          * Remove the ring from the group.
4877          */
4878         if (ring == group->mrg_rings)
4879                 group->mrg_rings = ring->mr_next;
4880         else {
4881                 mac_ring_t *pre;
4882 
4883                 pre = group->mrg_rings;
4884                 while (pre->mr_next != ring)
4885                         pre = pre->mr_next;
4886                 pre->mr_next = ring->mr_next;
4887         }
4888         group->mrg_cur_count--;
4889 
4890         if (!driver_call) {
4891                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4892                 ASSERT(group->mrg_driver == NULL ||
4893                     cap_rings->mr_gremring != NULL);
4894 
4895                 /*
4896                  * Remove the driver level hardware ring.
4897                  */
4898                 if (group->mrg_driver != NULL) {
4899                         cap_rings->mr_gremring(group->mrg_driver,
4900                             ring->mr_driver, ring->mr_type);
4901                 }
4902         }
4903 
4904         ring->mr_gh = NULL;
4905         if (driver_call)
4906                 mac_ring_free(mip, ring);
4907         else
4908                 ring->mr_flag = 0;
4909 }
4910 
4911 /*
4912  * Move a ring to the target group. If needed, remove the ring from the group
4913  * that it currently belongs to.
4914  *
4915  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4916  */
4917 static int
4918 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4919 {
4920         mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4921         int rv;
4922 
4923         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4924         ASSERT(d_group != NULL);
4925         ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh);
4926 
4927         if (s_group == d_group)
4928                 return (0);
4929 
4930         /*
4931          * Remove it from current group first.
4932          */
4933         if (s_group != NULL)
4934                 i_mac_group_rem_ring(s_group, ring, B_FALSE);
4935 
4936         /*
4937          * Add it to the new group.
4938          */
4939         rv = i_mac_group_add_ring(d_group, ring, 0);
4940         if (rv != 0) {
4941                 /*
4942                  * Failed to add ring back to source group. If
4943                  * that fails, the ring is stuck in limbo, log message.
4944                  */
4945                 if (i_mac_group_add_ring(s_group, ring, 0)) {
4946                         cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4947                             mip->mi_name, (void *)ring);
4948                 }
4949         }
4950 
4951         return (rv);
4952 }
4953 
4954 /*
4955  * Find a MAC address according to its value.
4956  */
4957 mac_address_t *
4958 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4959 {
4960         mac_address_t *map;
4961 
4962         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4963 
4964         for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4965                 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4966                         break;
4967         }
4968 
4969         return (map);
4970 }
4971 
4972 /*
4973  * Check whether the MAC address is shared by multiple clients.
4974  */
4975 boolean_t
4976 mac_check_macaddr_shared(mac_address_t *map)
4977 {
4978         ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4979 
4980         return (map->ma_nusers > 1);
4981 }
4982 
4983 /*
4984  * Remove the specified MAC address from the MAC address list and free it.
4985  */
4986 static void
4987 mac_free_macaddr(mac_address_t *map)
4988 {
4989         mac_impl_t *mip = map->ma_mip;
4990 
4991         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4992         VERIFY3P(mip->mi_addresses, !=, NULL);
4993 
4994         VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
4995         VERIFY3P(map, !=, NULL);
4996         VERIFY3S(map->ma_nusers, ==, 0);
4997         VERIFY3P(map->ma_vlans, ==, NULL);
4998 
4999         if (map == mip->mi_addresses) {
5000                 mip->mi_addresses = map->ma_next;
5001         } else {
5002                 mac_address_t *pre;
5003 
5004                 pre = mip->mi_addresses;
5005                 while (pre->ma_next != map)
5006                         pre = pre->ma_next;
5007                 pre->ma_next = map->ma_next;
5008         }
5009 
5010         kmem_free(map, sizeof (mac_address_t));
5011 }
5012 
5013 static mac_vlan_t *
5014 mac_find_vlan(mac_address_t *map, uint16_t vid)
5015 {
5016         mac_vlan_t *mvp;
5017 
5018         for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) {
5019                 if (mvp->mv_vid == vid)
5020                         return (mvp);
5021         }
5022 
5023         return (NULL);
5024 }
5025 
5026 static mac_vlan_t *
5027 mac_add_vlan(mac_address_t *map, uint16_t vid)
5028 {
5029         mac_vlan_t *mvp;
5030 
5031         /*
5032          * We should never add the same {addr, VID} tuple more
5033          * than once, but let's be sure.
5034          */
5035         for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next)
5036                 VERIFY3U(mvp->mv_vid, !=, vid);
5037 
5038         /* Add the VLAN to the head of the VLAN list. */
5039         mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP);
5040         mvp->mv_vid = vid;
5041         mvp->mv_next = map->ma_vlans;
5042         map->ma_vlans = mvp;
5043 
5044         return (mvp);
5045 }
5046 
5047 static void
5048 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp)
5049 {
5050         mac_vlan_t *pre;
5051 
5052         if (map->ma_vlans == mvp) {
5053                 map->ma_vlans = mvp->mv_next;
5054         } else {
5055                 pre = map->ma_vlans;
5056                 while (pre->mv_next != mvp) {
5057                         pre = pre->mv_next;
5058 
5059                         /*
5060                          * We've reached the end of the list without
5061                          * finding mvp.
5062                          */
5063                         VERIFY3P(pre, !=, NULL);
5064                 }
5065                 pre->mv_next = mvp->mv_next;
5066         }
5067 
5068         kmem_free(mvp, sizeof (mac_vlan_t));
5069 }
5070 
5071 /*
5072  * Create a new mac_address_t if this is the first use of the address
5073  * or add a VID to an existing address. In either case, the
5074  * mac_address_t acts as a list of {addr, VID} tuples where each tuple
5075  * shares the same addr. If group is non-NULL then attempt to program
5076  * the MAC's HW filters for this group. Otherwise, if group is NULL,
5077  * then the MAC has no rings and there is nothing to program.
5078  */
5079 int
5080 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr,
5081     uint16_t vid, boolean_t use_hw)
5082 {
5083         mac_address_t   *map;
5084         mac_vlan_t      *mvp;
5085         int             err = 0;
5086         boolean_t       allocated_map = B_FALSE;
5087         boolean_t       hw_mac = B_FALSE;
5088         boolean_t       hw_vlan = B_FALSE;
5089 
5090         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5091 
5092         map = mac_find_macaddr(mip, addr);
5093 
5094         /*
5095          * If this is the first use of this MAC address then allocate
5096          * and initialize a new structure.
5097          */
5098         if (map == NULL) {
5099                 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5100                 map->ma_len = mip->mi_type->mt_addr_length;
5101                 bcopy(addr, map->ma_addr, map->ma_len);
5102                 map->ma_nusers = 0;
5103                 map->ma_group = group;
5104                 map->ma_mip = mip;
5105                 map->ma_untagged = B_FALSE;
5106 
5107                 /* Add the new MAC address to the head of the address list. */
5108                 map->ma_next = mip->mi_addresses;
5109                 mip->mi_addresses = map;
5110 
5111                 allocated_map = B_TRUE;
5112         }
5113 
5114         VERIFY(map->ma_group == NULL || map->ma_group == group);
5115         if (map->ma_group == NULL)
5116                 map->ma_group = group;
5117 
5118         if (vid == VLAN_ID_NONE) {
5119                 map->ma_untagged = B_TRUE;
5120                 mvp = NULL;
5121         } else {
5122                 mvp = mac_add_vlan(map, vid);
5123         }
5124 
5125         /*
5126          * Set the VLAN HW filter if:
5127          *
5128          * o the MAC's VLAN HW filtering is enabled, and
5129          * o the address does not currently rely on promisc mode.
5130          *
5131          * This is called even when the client specifies an untagged
5132          * address (VLAN_ID_NONE) because some MAC providers require
5133          * setting additional bits to accept untagged traffic when
5134          * VLAN HW filtering is enabled.
5135          */
5136         if (MAC_GROUP_HW_VLAN(group) &&
5137             map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) {
5138                 if ((err = mac_group_addvlan(group, vid)) != 0)
5139                         goto bail;
5140 
5141                 hw_vlan = B_TRUE;
5142         }
5143 
5144         VERIFY3S(map->ma_nusers, >=, 0);
5145         map->ma_nusers++;
5146 
5147         /*
5148          * If this MAC address already has a HW filter then simply
5149          * increment the counter.
5150          */
5151         if (map->ma_nusers > 1)
5152                 return (0);
5153 
5154         /*
5155          * All logic from here on out is executed during initial
5156          * creation only.
5157          */
5158         VERIFY3S(map->ma_nusers, ==, 1);
5159 
5160         /*
5161          * Activate this MAC address by adding it to the reserved group.
5162          */
5163         if (group != NULL) {
5164                 err = mac_group_addmac(group, (const uint8_t *)addr);
5165 
5166                 /*
5167                  * If the driver is out of filters then we can
5168                  * continue and use promisc mode. For any other error,
5169                  * assume the driver is in a state where we can't
5170                  * program the filters or use promisc mode; so we must
5171                  * bail.
5172                  */
5173                 if (err != 0 && err != ENOSPC) {
5174                         map->ma_nusers--;
5175                         goto bail;
5176                 }
5177 
5178                 hw_mac = (err == 0);
5179         }
5180 
5181         if (hw_mac) {
5182                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5183                 return (0);
5184         }
5185 
5186         /*
5187          * The MAC address addition failed. If the client requires a
5188          * hardware classified MAC address, fail the operation. This
5189          * feature is only used by sun4v vsw.
5190          */
5191         if (use_hw && !hw_mac) {
5192                 err = ENOSPC;
5193                 map->ma_nusers--;
5194                 goto bail;
5195         }
5196 
5197         /*
5198          * If we reach this point then either the MAC doesn't have
5199          * RINGS capability or we are out of MAC address HW filters.
5200          * In any case we must put the MAC into promiscuous mode.
5201          */
5202         VERIFY(group == NULL || !hw_mac);
5203 
5204         /*
5205          * The one exception is the primary address. A non-RINGS
5206          * driver filters the primary address by default; promisc mode
5207          * is not needed.
5208          */
5209         if ((group == NULL) &&
5210             (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5211                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5212                 return (0);
5213         }
5214 
5215         /*
5216          * Enable promiscuous mode in order to receive traffic to the
5217          * new MAC address. All existing HW filters still send their
5218          * traffic to their respective group/SRSes. But with promisc
5219          * enabled all unknown traffic is delivered to the default
5220          * group where it is SW classified via mac_rx_classify().
5221          */
5222         if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5223                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5224                 return (0);
5225         }
5226 
5227 bail:
5228         if (hw_vlan) {
5229                 int err2 = mac_group_remvlan(group, vid);
5230 
5231                 if (err2 != 0) {
5232                         cmn_err(CE_WARN, "Failed to remove VLAN %u from group"
5233                             " %d on MAC %s: %d.", vid, group->mrg_index,
5234                             mip->mi_name, err2);
5235                 }
5236         }
5237 
5238         if (mvp != NULL)
5239                 mac_rem_vlan(map, mvp);
5240 
5241         if (allocated_map)
5242                 mac_free_macaddr(map);
5243 
5244         return (err);
5245 }
5246 
5247 int
5248 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid)
5249 {
5250         mac_vlan_t      *mvp;
5251         mac_impl_t      *mip = map->ma_mip;
5252         mac_group_t     *group = map->ma_group;
5253         int             err = 0;
5254 
5255         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5256         VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5257 
5258         if (vid == VLAN_ID_NONE) {
5259                 map->ma_untagged = B_FALSE;
5260                 mvp = NULL;
5261         } else {
5262                 mvp = mac_find_vlan(map, vid);
5263                 VERIFY3P(mvp, !=, NULL);
5264         }
5265 
5266         if (MAC_GROUP_HW_VLAN(group) &&
5267             map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED &&
5268             ((err = mac_group_remvlan(group, vid)) != 0))
5269                 return (err);
5270 
5271         if (mvp != NULL)
5272                 mac_rem_vlan(map, mvp);
5273 
5274         /*
5275          * If it's not the last client using this MAC address, only update
5276          * the MAC clients count.
5277          */
5278         map->ma_nusers--;
5279         if (map->ma_nusers > 0)
5280                 return (0);
5281 
5282         /*
5283          * The MAC address is no longer used by any MAC client, so
5284          * remove it from its associated group. Turn off promiscuous
5285          * mode if this is the last address relying on it.
5286          */
5287         switch (map->ma_type) {
5288         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5289                 /*
5290                  * Don't free the preset primary address for drivers that
5291                  * don't advertise RINGS capability.
5292                  */
5293                 if (group == NULL)
5294                         return (0);
5295 
5296                 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) {
5297                         if (vid == VLAN_ID_NONE)
5298                                 map->ma_untagged = B_TRUE;
5299                         else
5300                                 (void) mac_add_vlan(map, vid);
5301 
5302                         /*
5303                          * If we fail to remove the MAC address HW
5304                          * filter but then also fail to re-add the
5305                          * VLAN HW filter then we are in a busted
5306                          * state and should just crash.
5307                          */
5308                         if (MAC_GROUP_HW_VLAN(group)) {
5309                                 int err2;
5310 
5311                                 err2 = mac_group_addvlan(group, vid);
5312                                 if (err2 != 0) {
5313                                         cmn_err(CE_WARN, "Failed to readd VLAN"
5314                                             " %u to group %d on MAC %s: %d.",
5315                                             vid, group->mrg_index, mip->mi_name,
5316                                             err2);
5317                                 }
5318                         }
5319 
5320                         return (err);
5321                 }
5322 
5323                 map->ma_group = NULL;
5324                 break;
5325         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5326                 err = i_mac_promisc_set(mip, B_FALSE);
5327                 break;
5328         default:
5329                 panic("Unexpected ma_type 0x%x, file: %s, line %d",
5330                     map->ma_type, __FILE__, __LINE__);
5331         }
5332 
5333         if (err != 0)
5334                 return (err);
5335 
5336         /*
5337          * We created MAC address for the primary one at registration, so we
5338          * won't free it here. mac_fini_macaddr() will take care of it.
5339          */
5340         if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5341                 mac_free_macaddr(map);
5342 
5343         return (0);
5344 }
5345 
5346 /*
5347  * Update an existing MAC address. The caller need to make sure that the new
5348  * value has not been used.
5349  */
5350 int
5351 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5352 {
5353         mac_impl_t *mip = map->ma_mip;
5354         int err = 0;
5355 
5356         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5357         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5358 
5359         switch (map->ma_type) {
5360         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5361                 /*
5362                  * Update the primary address for drivers that are not
5363                  * RINGS capable.
5364                  */
5365                 if (mip->mi_rx_groups == NULL) {
5366                         err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5367                             mac_addr);
5368                         if (err != 0)
5369                                 return (err);
5370                         break;
5371                 }
5372 
5373                 /*
5374                  * If this MAC address is not currently in use,
5375                  * simply break out and update the value.
5376                  */
5377                 if (map->ma_nusers == 0)
5378                         break;
5379 
5380                 /*
5381                  * Need to replace the MAC address associated with a group.
5382                  */
5383                 err = mac_group_remmac(map->ma_group, map->ma_addr);
5384                 if (err != 0)
5385                         return (err);
5386 
5387                 err = mac_group_addmac(map->ma_group, mac_addr);
5388 
5389                 /*
5390                  * Failure hints hardware error. The MAC layer needs to
5391                  * have error notification facility to handle this.
5392                  * Now, simply try to restore the value.
5393                  */
5394                 if (err != 0)
5395                         (void) mac_group_addmac(map->ma_group, map->ma_addr);
5396 
5397                 break;
5398         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5399                 /*
5400                  * Need to do nothing more if in promiscuous mode.
5401                  */
5402                 break;
5403         default:
5404                 ASSERT(B_FALSE);
5405         }
5406 
5407         /*
5408          * Successfully replaced the MAC address.
5409          */
5410         if (err == 0)
5411                 bcopy(mac_addr, map->ma_addr, map->ma_len);
5412 
5413         return (err);
5414 }
5415 
5416 /*
5417  * Freshen the MAC address with new value. Its caller must have updated the
5418  * hardware MAC address before calling this function.
5419  * This funcitons is supposed to be used to handle the MAC address change
5420  * notification from underlying drivers.
5421  */
5422 void
5423 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5424 {
5425         mac_impl_t *mip = map->ma_mip;
5426 
5427         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5428         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5429 
5430         /*
5431          * Freshen the MAC address with new value.
5432          */
5433         bcopy(mac_addr, map->ma_addr, map->ma_len);
5434         bcopy(mac_addr, mip->mi_addr, map->ma_len);
5435 
5436         /*
5437          * Update all MAC clients that share this MAC address.
5438          */
5439         mac_unicast_update_clients(mip, map);
5440 }
5441 
5442 /*
5443  * Set up the primary MAC address.
5444  */
5445 void
5446 mac_init_macaddr(mac_impl_t *mip)
5447 {
5448         mac_address_t *map;
5449 
5450         /*
5451          * The reference count is initialized to zero, until it's really
5452          * activated.
5453          */
5454         map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5455         map->ma_len = mip->mi_type->mt_addr_length;
5456         bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5457 
5458         /*
5459          * If driver advertises RINGS capability, it shouldn't have initialized
5460          * its primary MAC address. For other drivers, including VNIC, the
5461          * primary address must work after registration.
5462          */
5463         if (mip->mi_rx_groups == NULL)
5464                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5465 
5466         map->ma_mip = mip;
5467 
5468         mip->mi_addresses = map;
5469 }
5470 
5471 /*
5472  * Clean up the primary MAC address. Note, only one primary MAC address
5473  * is allowed. All other MAC addresses must have been freed appropriately.
5474  */
5475 void
5476 mac_fini_macaddr(mac_impl_t *mip)
5477 {
5478         mac_address_t *map = mip->mi_addresses;
5479 
5480         if (map == NULL)
5481                 return;
5482 
5483         /*
5484          * If mi_addresses is initialized, there should be exactly one
5485          * entry left on the list with no users.
5486          */
5487         VERIFY3S(map->ma_nusers, ==, 0);
5488         VERIFY3P(map->ma_next, ==, NULL);
5489         VERIFY3P(map->ma_vlans, ==, NULL);
5490 
5491         kmem_free(map, sizeof (mac_address_t));
5492         mip->mi_addresses = NULL;
5493 }
5494 
5495 /*
5496  * Logging related functions.
5497  *
5498  * Note that Kernel statistics have been extended to maintain fine
5499  * granularity of statistics viz. hardware lane, software lane, fanout
5500  * stats etc. However, extended accounting continues to support only
5501  * aggregate statistics like before.
5502  */
5503 
5504 /* Write the flow description to a netinfo_t record */
5505 static netinfo_t *
5506 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5507 {
5508         netinfo_t               *ninfo;
5509         net_desc_t              *ndesc;
5510         flow_desc_t             *fdesc;
5511         mac_resource_props_t    *mrp;
5512 
5513         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5514         if (ninfo == NULL)
5515                 return (NULL);
5516         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5517         if (ndesc == NULL) {
5518                 kmem_free(ninfo, sizeof (netinfo_t));
5519                 return (NULL);
5520         }
5521 
5522         /*
5523          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5524          * Updates to the fe_flow_desc are done under the fe_lock
5525          */
5526         mutex_enter(&flent->fe_lock);
5527         fdesc = &flent->fe_flow_desc;
5528         mrp = &flent->fe_resource_props;
5529 
5530         ndesc->nd_name = flent->fe_flow_name;
5531         ndesc->nd_devname = mcip->mci_name;
5532         bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5533         bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5534         ndesc->nd_sap = htonl(fdesc->fd_sap);
5535         ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5536         ndesc->nd_bw_limit = mrp->mrp_maxbw;
5537         if (ndesc->nd_isv4) {
5538                 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5539                 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5540         } else {
5541                 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5542                 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5543         }
5544         ndesc->nd_sport = htons(fdesc->fd_local_port);
5545         ndesc->nd_dport = htons(fdesc->fd_remote_port);
5546         ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5547         mutex_exit(&flent->fe_lock);
5548 
5549         ninfo->ni_record = ndesc;
5550         ninfo->ni_size = sizeof (net_desc_t);
5551         ninfo->ni_type = EX_NET_FLDESC_REC;
5552 
5553         return (ninfo);
5554 }
5555 
5556 /* Write the flow statistics to a netinfo_t record */
5557 static netinfo_t *
5558 mac_write_flow_stats(flow_entry_t *flent)
5559 {
5560         netinfo_t               *ninfo;
5561         net_stat_t              *nstat;
5562         mac_soft_ring_set_t     *mac_srs;
5563         mac_rx_stats_t          *mac_rx_stat;
5564         mac_tx_stats_t          *mac_tx_stat;
5565         int                     i;
5566 
5567         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5568         if (ninfo == NULL)
5569                 return (NULL);
5570         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5571         if (nstat == NULL) {
5572                 kmem_free(ninfo, sizeof (netinfo_t));
5573                 return (NULL);
5574         }
5575 
5576         nstat->ns_name = flent->fe_flow_name;
5577         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5578                 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5579                 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5580 
5581                 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5582                     mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5583                 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5584                     mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5585                 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5586         }
5587 
5588         mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5589         if (mac_srs != NULL) {
5590                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5591 
5592                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5593                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5594                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5595         }
5596 
5597         ninfo->ni_record = nstat;
5598         ninfo->ni_size = sizeof (net_stat_t);
5599         ninfo->ni_type = EX_NET_FLSTAT_REC;
5600 
5601         return (ninfo);
5602 }
5603 
5604 /* Write the link description to a netinfo_t record */
5605 static netinfo_t *
5606 mac_write_link_desc(mac_client_impl_t *mcip)
5607 {
5608         netinfo_t               *ninfo;
5609         net_desc_t              *ndesc;
5610         flow_entry_t            *flent = mcip->mci_flent;
5611 
5612         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5613         if (ninfo == NULL)
5614                 return (NULL);
5615         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5616         if (ndesc == NULL) {
5617                 kmem_free(ninfo, sizeof (netinfo_t));
5618                 return (NULL);
5619         }
5620 
5621         ndesc->nd_name = mcip->mci_name;
5622         ndesc->nd_devname = mcip->mci_name;
5623         ndesc->nd_isv4 = B_TRUE;
5624         /*
5625          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5626          * Updates to the fe_flow_desc are done under the fe_lock
5627          * after removing the flent from the flow table.
5628          */
5629         mutex_enter(&flent->fe_lock);
5630         bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5631         mutex_exit(&flent->fe_lock);
5632 
5633         ninfo->ni_record = ndesc;
5634         ninfo->ni_size = sizeof (net_desc_t);
5635         ninfo->ni_type = EX_NET_LNDESC_REC;
5636 
5637         return (ninfo);
5638 }
5639 
5640 /* Write the link statistics to a netinfo_t record */
5641 static netinfo_t *
5642 mac_write_link_stats(mac_client_impl_t *mcip)
5643 {
5644         netinfo_t               *ninfo;
5645         net_stat_t              *nstat;
5646         flow_entry_t            *flent;
5647         mac_soft_ring_set_t     *mac_srs;
5648         mac_rx_stats_t          *mac_rx_stat;
5649         mac_tx_stats_t          *mac_tx_stat;
5650         int                     i;
5651 
5652         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5653         if (ninfo == NULL)
5654                 return (NULL);
5655         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5656         if (nstat == NULL) {
5657                 kmem_free(ninfo, sizeof (netinfo_t));
5658                 return (NULL);
5659         }
5660 
5661         nstat->ns_name = mcip->mci_name;
5662         flent = mcip->mci_flent;
5663         if (flent != NULL)  {
5664                 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5665                         mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5666                         mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5667 
5668                         nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5669                             mac_rx_stat->mrs_pollbytes +
5670                             mac_rx_stat->mrs_lclbytes;
5671                         nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5672                             mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5673                         nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5674                 }
5675         }
5676 
5677         mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5678         if (mac_srs != NULL) {
5679                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5680 
5681                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5682                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5683                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5684         }
5685 
5686         ninfo->ni_record = nstat;
5687         ninfo->ni_size = sizeof (net_stat_t);
5688         ninfo->ni_type = EX_NET_LNSTAT_REC;
5689 
5690         return (ninfo);
5691 }
5692 
5693 typedef struct i_mac_log_state_s {
5694         boolean_t       mi_last;
5695         int             mi_fenable;
5696         int             mi_lenable;
5697         list_t          *mi_list;
5698 } i_mac_log_state_t;
5699 
5700 /*
5701  * For a given flow, if the description has not been logged before, do it now.
5702  * If it is a VNIC, then we have collected information about it from the MAC
5703  * table, so skip it.
5704  *
5705  * Called through mac_flow_walk_nolock()
5706  *
5707  * Return 0 if successful.
5708  */
5709 static int
5710 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5711 {
5712         mac_client_impl_t       *mcip = flent->fe_mcip;
5713         i_mac_log_state_t       *lstate = arg;
5714         netinfo_t               *ninfo;
5715 
5716         if (mcip == NULL)
5717                 return (0);
5718 
5719         /*
5720          * If the name starts with "vnic", and fe_user_generated is true (to
5721          * exclude the mcast and active flow entries created implicitly for
5722          * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5723          * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5724          */
5725         if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5726             (flent->fe_type & FLOW_USER) != 0) {
5727                 return (0);
5728         }
5729 
5730         if (!flent->fe_desc_logged) {
5731                 /*
5732                  * We don't return error because we want to continue the
5733                  * walk in case this is the last walk which means we
5734                  * need to reset fe_desc_logged in all the flows.
5735                  */
5736                 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5737                         return (0);
5738                 list_insert_tail(lstate->mi_list, ninfo);
5739                 flent->fe_desc_logged = B_TRUE;
5740         }
5741 
5742         /*
5743          * Regardless of the error, we want to proceed in case we have to
5744          * reset fe_desc_logged.
5745          */
5746         ninfo = mac_write_flow_stats(flent);
5747         if (ninfo == NULL)
5748                 return (-1);
5749 
5750         list_insert_tail(lstate->mi_list, ninfo);
5751 
5752         if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5753                 flent->fe_desc_logged = B_FALSE;
5754 
5755         return (0);
5756 }
5757 
5758 /*
5759  * Log the description for each mac client of this mac_impl_t, if it
5760  * hasn't already been done. Additionally, log statistics for the link as
5761  * well. Walk the flow table and log information for each flow as well.
5762  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5763  * also fe_desc_logged, if flow logging is on) since we want to log the
5764  * description if and when logging is restarted.
5765  *
5766  * Return 0 upon success or -1 upon failure
5767  */
5768 static int
5769 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5770 {
5771         mac_client_impl_t       *mcip;
5772         netinfo_t               *ninfo;
5773 
5774         i_mac_perim_enter(mip);
5775         /*
5776          * Only walk the client list for NIC and etherstub
5777          */
5778         if ((mip->mi_state_flags & MIS_DISABLED) ||
5779             ((mip->mi_state_flags & MIS_IS_VNIC) &&
5780             (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5781                 i_mac_perim_exit(mip);
5782                 return (0);
5783         }
5784 
5785         for (mcip = mip->mi_clients_list; mcip != NULL;
5786             mcip = mcip->mci_client_next) {
5787                 if (!MCIP_DATAPATH_SETUP(mcip))
5788                         continue;
5789                 if (lstate->mi_lenable) {
5790                         if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5791                                 ninfo = mac_write_link_desc(mcip);
5792                                 if (ninfo == NULL) {
5793                                 /*
5794                                  * We can't terminate it if this is the last
5795                                  * walk, else there might be some links with
5796                                  * mi_desc_logged set to true, which means
5797                                  * their description won't be logged the next
5798                                  * time logging is started (similarly for the
5799                                  * flows within such links). We can continue
5800                                  * without walking the flow table (i.e. to
5801                                  * set fe_desc_logged to false) because we
5802                                  * won't have written any flow stuff for this
5803                                  * link as we haven't logged the link itself.
5804                                  */
5805                                         i_mac_perim_exit(mip);
5806                                         if (lstate->mi_last)
5807                                                 return (0);
5808                                         else
5809                                                 return (-1);
5810                                 }
5811                                 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5812                                 list_insert_tail(lstate->mi_list, ninfo);
5813                         }
5814                 }
5815 
5816                 ninfo = mac_write_link_stats(mcip);
5817                 if (ninfo == NULL && !lstate->mi_last) {
5818                         i_mac_perim_exit(mip);
5819                         return (-1);
5820                 }
5821                 list_insert_tail(lstate->mi_list, ninfo);
5822 
5823                 if (lstate->mi_last)
5824                         mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5825 
5826                 if (lstate->mi_fenable) {
5827                         if (mcip->mci_subflow_tab != NULL) {
5828                                 (void) mac_flow_walk_nolock(
5829                                     mcip->mci_subflow_tab, mac_log_flowinfo,
5830                                     lstate);
5831                         }
5832                 }
5833         }
5834         i_mac_perim_exit(mip);
5835         return (0);
5836 }
5837 
5838 /*
5839  * modhash walker function to add a mac_impl_t to a list
5840  */
5841 /*ARGSUSED*/
5842 static uint_t
5843 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5844 {
5845         list_t                  *list = (list_t *)arg;
5846         mac_impl_t              *mip = (mac_impl_t *)val;
5847 
5848         if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5849                 list_insert_tail(list, mip);
5850                 mip->mi_ref++;
5851         }
5852 
5853         return (MH_WALK_CONTINUE);
5854 }
5855 
5856 void
5857 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5858 {
5859         list_t                  mac_impl_list;
5860         mac_impl_t              *mip;
5861         netinfo_t               *ninfo;
5862 
5863         /* Create list of mac_impls */
5864         ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5865         list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5866             mi_node));
5867         mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5868         rw_exit(&i_mac_impl_lock);
5869 
5870         /* Create log entries for each mac_impl */
5871         for (mip = list_head(&mac_impl_list); mip != NULL;
5872             mip = list_next(&mac_impl_list, mip)) {
5873                 if (i_mac_impl_log(mip, lstate) != 0)
5874                         continue;
5875         }
5876 
5877         /* Remove elements and destroy list of mac_impls */
5878         rw_enter(&i_mac_impl_lock, RW_WRITER);
5879         while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5880                 mip->mi_ref--;
5881         }
5882         rw_exit(&i_mac_impl_lock);
5883         list_destroy(&mac_impl_list);
5884 
5885         /*
5886          * Write log entries to files outside of locks, free associated
5887          * structures, and remove entries from the list.
5888          */
5889         while ((ninfo = list_head(net_log_list)) != NULL) {
5890                 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5891                 list_remove(net_log_list, ninfo);
5892                 kmem_free(ninfo->ni_record, ninfo->ni_size);
5893                 kmem_free(ninfo, sizeof (*ninfo));
5894         }
5895         list_destroy(net_log_list);
5896 }
5897 
5898 /*
5899  * The timer thread that runs every mac_logging_interval seconds and logs
5900  * link and/or flow information.
5901  */
5902 /* ARGSUSED */
5903 void
5904 mac_log_linkinfo(void *arg)
5905 {
5906         i_mac_log_state_t       lstate;
5907         list_t                  net_log_list;
5908 
5909         list_create(&net_log_list, sizeof (netinfo_t),
5910             offsetof(netinfo_t, ni_link));
5911 
5912         rw_enter(&i_mac_impl_lock, RW_READER);
5913         if (!mac_flow_log_enable && !mac_link_log_enable) {
5914                 rw_exit(&i_mac_impl_lock);
5915                 return;
5916         }
5917         lstate.mi_fenable = mac_flow_log_enable;
5918         lstate.mi_lenable = mac_link_log_enable;
5919         lstate.mi_last = B_FALSE;
5920         lstate.mi_list = &net_log_list;
5921 
5922         /* Write log entries for each mac_impl in the list */
5923         i_mac_log_info(&net_log_list, &lstate);
5924 
5925         if (mac_flow_log_enable || mac_link_log_enable) {
5926                 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5927                     SEC_TO_TICK(mac_logging_interval));
5928         }
5929 }
5930 
5931 typedef struct i_mac_fastpath_state_s {
5932         boolean_t       mf_disable;
5933         int             mf_err;
5934 } i_mac_fastpath_state_t;
5935 
5936 /* modhash walker function to enable or disable fastpath */
5937 /*ARGSUSED*/
5938 static uint_t
5939 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5940     void *arg)
5941 {
5942         i_mac_fastpath_state_t  *state = arg;
5943         mac_handle_t            mh = (mac_handle_t)val;
5944 
5945         if (state->mf_disable)
5946                 state->mf_err = mac_fastpath_disable(mh);
5947         else
5948                 mac_fastpath_enable(mh);
5949 
5950         return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5951 }
5952 
5953 /*
5954  * Start the logging timer.
5955  */
5956 int
5957 mac_start_logusage(mac_logtype_t type, uint_t interval)
5958 {
5959         i_mac_fastpath_state_t  dstate = {B_TRUE, 0};
5960         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
5961         int                     err;
5962 
5963         rw_enter(&i_mac_impl_lock, RW_WRITER);
5964         switch (type) {
5965         case MAC_LOGTYPE_FLOW:
5966                 if (mac_flow_log_enable) {
5967                         rw_exit(&i_mac_impl_lock);
5968                         return (0);
5969                 }
5970                 /* FALLTHRU */
5971         case MAC_LOGTYPE_LINK:
5972                 if (mac_link_log_enable) {
5973                         rw_exit(&i_mac_impl_lock);
5974                         return (0);
5975                 }
5976                 break;
5977         default:
5978                 ASSERT(0);
5979         }
5980 
5981         /* Disable fastpath */
5982         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5983         if ((err = dstate.mf_err) != 0) {
5984                 /* Reenable fastpath  */
5985                 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5986                 rw_exit(&i_mac_impl_lock);
5987                 return (err);
5988         }
5989 
5990         switch (type) {
5991         case MAC_LOGTYPE_FLOW:
5992                 mac_flow_log_enable = B_TRUE;
5993                 /* FALLTHRU */
5994         case MAC_LOGTYPE_LINK:
5995                 mac_link_log_enable = B_TRUE;
5996                 break;
5997         }
5998 
5999         mac_logging_interval = interval;
6000         rw_exit(&i_mac_impl_lock);
6001         mac_log_linkinfo(NULL);
6002         return (0);
6003 }
6004 
6005 /*
6006  * Stop the logging timer if both link and flow logging are turned off.
6007  */
6008 void
6009 mac_stop_logusage(mac_logtype_t type)
6010 {
6011         i_mac_log_state_t       lstate;
6012         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
6013         list_t                  net_log_list;
6014 
6015         list_create(&net_log_list, sizeof (netinfo_t),
6016             offsetof(netinfo_t, ni_link));
6017 
6018         rw_enter(&i_mac_impl_lock, RW_WRITER);
6019 
6020         lstate.mi_fenable = mac_flow_log_enable;
6021         lstate.mi_lenable = mac_link_log_enable;
6022         lstate.mi_list = &net_log_list;
6023 
6024         /* Last walk */
6025         lstate.mi_last = B_TRUE;
6026 
6027         switch (type) {
6028         case MAC_LOGTYPE_FLOW:
6029                 if (lstate.mi_fenable) {
6030                         ASSERT(mac_link_log_enable);
6031                         mac_flow_log_enable = B_FALSE;
6032                         mac_link_log_enable = B_FALSE;
6033                         break;
6034                 }
6035                 /* FALLTHRU */
6036         case MAC_LOGTYPE_LINK:
6037                 if (!lstate.mi_lenable || mac_flow_log_enable) {
6038                         rw_exit(&i_mac_impl_lock);
6039                         return;
6040                 }
6041                 mac_link_log_enable = B_FALSE;
6042                 break;
6043         default:
6044                 ASSERT(0);
6045         }
6046 
6047         /* Reenable fastpath */
6048         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6049 
6050         (void) untimeout(mac_logging_timer);
6051         mac_logging_timer = NULL;
6052 
6053         /* Write log entries for each mac_impl in the list */
6054         i_mac_log_info(&net_log_list, &lstate);
6055 }
6056 
6057 /*
6058  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
6059  */
6060 void
6061 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
6062 {
6063         pri_t                   pri;
6064         int                     count;
6065         mac_soft_ring_set_t     *mac_srs;
6066 
6067         if (flent->fe_rx_srs_cnt <= 0)
6068                 return;
6069 
6070         if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
6071             SRST_FLOW) {
6072                 pri = FLOW_PRIORITY(mcip->mci_min_pri,
6073                     mcip->mci_max_pri,
6074                     flent->fe_resource_props.mrp_priority);
6075         } else {
6076                 pri = mcip->mci_max_pri;
6077         }
6078 
6079         for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
6080                 mac_srs = flent->fe_rx_srs[count];
6081                 mac_update_srs_priority(mac_srs, pri);
6082         }
6083         /*
6084          * If we have a Tx SRS, we need to modify all the threads associated
6085          * with it.
6086          */
6087         if (flent->fe_tx_srs != NULL)
6088                 mac_update_srs_priority(flent->fe_tx_srs, pri);
6089 }
6090 
6091 /*
6092  * RX and TX rings are reserved according to different semantics depending
6093  * on the requests from the MAC clients and type of rings:
6094  *
6095  * On the Tx side, by default we reserve individual rings, independently from
6096  * the groups.
6097  *
6098  * On the Rx side, the reservation is at the granularity of the group
6099  * of rings, and used for v12n level 1 only. It has a special case for the
6100  * primary client.
6101  *
6102  * If a share is allocated to a MAC client, we allocate a TX group and an
6103  * RX group to the client, and assign TX rings and RX rings to these
6104  * groups according to information gathered from the driver through
6105  * the share capability.
6106  *
6107  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
6108  * to allocate individual rings out of a group and program the hw classifier
6109  * based on IP address or higher level criteria.
6110  */
6111 
6112 /*
6113  * mac_reserve_tx_ring()
6114  * Reserve a unused ring by marking it with MR_INUSE state.
6115  * As reserved, the ring is ready to function.
6116  *
6117  * Notes for Hybrid I/O:
6118  *
6119  * If a specific ring is needed, it is specified through the desired_ring
6120  * argument. Otherwise that argument is set to NULL.
6121  * If the desired ring was previous allocated to another client, this
6122  * function swaps it with a new ring from the group of unassigned rings.
6123  */
6124 mac_ring_t *
6125 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
6126 {
6127         mac_group_t             *group;
6128         mac_grp_client_t        *mgcp;
6129         mac_client_impl_t       *mcip;
6130         mac_soft_ring_set_t     *srs;
6131 
6132         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6133 
6134         /*
6135          * Find an available ring and start it before changing its status.
6136          * The unassigned rings are at the end of the mi_tx_groups
6137          * array.
6138          */
6139         group = MAC_DEFAULT_TX_GROUP(mip);
6140 
6141         /* Can't take the default ring out of the default group */
6142         ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
6143 
6144         if (desired_ring->mr_state == MR_FREE) {
6145                 ASSERT(MAC_GROUP_NO_CLIENT(group));
6146                 if (mac_start_ring(desired_ring) != 0)
6147                         return (NULL);
6148                 return (desired_ring);
6149         }
6150         /*
6151          * There are clients using this ring, so let's move the clients
6152          * away from using this ring.
6153          */
6154         for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6155                 mcip = mgcp->mgc_client;
6156                 mac_tx_client_quiesce((mac_client_handle_t)mcip);
6157                 srs = MCIP_TX_SRS(mcip);
6158                 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
6159                 mac_tx_invoke_callbacks(mcip,
6160                     (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
6161                     desired_ring));
6162                 mac_tx_srs_del_ring(srs, desired_ring);
6163                 mac_tx_client_restart((mac_client_handle_t)mcip);
6164         }
6165         return (desired_ring);
6166 }
6167 
6168 /*
6169  * For a non-default group with multiple clients, return the primary client.
6170  */
6171 static mac_client_impl_t *
6172 mac_get_grp_primary(mac_group_t *grp)
6173 {
6174         mac_grp_client_t        *mgcp = grp->mrg_clients;
6175         mac_client_impl_t       *mcip;
6176 
6177         while (mgcp != NULL) {
6178                 mcip = mgcp->mgc_client;
6179                 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
6180                         return (mcip);
6181                 mgcp = mgcp->mgc_next;
6182         }
6183         return (NULL);
6184 }
6185 
6186 /*
6187  * Hybrid I/O specifies the ring that should be given to a share.
6188  * If the ring is already used by clients, then we need to release
6189  * the ring back to the default group so that we can give it to
6190  * the share. This means the clients using this ring now get a
6191  * replacement ring. If there aren't any replacement rings, this
6192  * function returns a failure.
6193  */
6194 static int
6195 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
6196     mac_ring_t *ring, mac_ring_t **rings, int nrings)
6197 {
6198         mac_group_t             *group = (mac_group_t *)ring->mr_gh;
6199         mac_resource_props_t    *mrp;
6200         mac_client_impl_t       *mcip;
6201         mac_group_t             *defgrp;
6202         mac_ring_t              *tring;
6203         mac_group_t             *tgrp;
6204         int                     i;
6205         int                     j;
6206 
6207         mcip = MAC_GROUP_ONLY_CLIENT(group);
6208         if (mcip == NULL)
6209                 mcip = mac_get_grp_primary(group);
6210         ASSERT(mcip != NULL);
6211         ASSERT(mcip->mci_share == 0);
6212 
6213         mrp = MCIP_RESOURCE_PROPS(mcip);
6214         if (ring_type == MAC_RING_TYPE_RX) {
6215                 defgrp = mip->mi_rx_donor_grp;
6216                 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
6217                         /* Need to put this mac client in the default group */
6218                         if (mac_rx_switch_group(mcip, group, defgrp) != 0)
6219                                 return (ENOSPC);
6220                 } else {
6221                         /*
6222                          * Switch this ring with some other ring from
6223                          * the default group.
6224                          */
6225                         for (tring = defgrp->mrg_rings; tring != NULL;
6226                             tring = tring->mr_next) {
6227                                 if (tring->mr_index == 0)
6228                                         continue;
6229                                 for (j = 0; j < nrings; j++) {
6230                                         if (rings[j] == tring)
6231                                                 break;
6232                                 }
6233                                 if (j >= nrings)
6234                                         break;
6235                         }
6236                         if (tring == NULL)
6237                                 return (ENOSPC);
6238                         if (mac_group_mov_ring(mip, group, tring) != 0)
6239                                 return (ENOSPC);
6240                         if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6241                                 (void) mac_group_mov_ring(mip, defgrp, tring);
6242                                 return (ENOSPC);
6243                         }
6244                 }
6245                 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6246                 return (0);
6247         }
6248 
6249         defgrp = MAC_DEFAULT_TX_GROUP(mip);
6250         if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6251                 /*
6252                  * See if we can get a spare ring to replace the default
6253                  * ring.
6254                  */
6255                 if (defgrp->mrg_cur_count == 1) {
6256                         /*
6257                          * Need to get a ring from another client, see if
6258                          * there are any clients that can be moved to
6259                          * the default group, thereby freeing some rings.
6260                          */
6261                         for (i = 0; i < mip->mi_tx_group_count; i++) {
6262                                 tgrp = &mip->mi_tx_groups[i];
6263                                 if (tgrp->mrg_state ==
6264                                     MAC_GROUP_STATE_REGISTERED) {
6265                                         continue;
6266                                 }
6267                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6268                                 if (mcip == NULL)
6269                                         mcip = mac_get_grp_primary(tgrp);
6270                                 ASSERT(mcip != NULL);
6271                                 mrp = MCIP_RESOURCE_PROPS(mcip);
6272                                 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6273                                         ASSERT(tgrp->mrg_cur_count == 1);
6274                                         /*
6275                                          * If this ring is part of the
6276                                          * rings asked by the share we cannot
6277                                          * use it as the default ring.
6278                                          */
6279                                         for (j = 0; j < nrings; j++) {
6280                                                 if (rings[j] == tgrp->mrg_rings)
6281                                                         break;
6282                                         }
6283                                         if (j < nrings)
6284                                                 continue;
6285                                         mac_tx_client_quiesce(
6286                                             (mac_client_handle_t)mcip);
6287                                         mac_tx_switch_group(mcip, tgrp,
6288                                             defgrp);
6289                                         mac_tx_client_restart(
6290                                             (mac_client_handle_t)mcip);
6291                                         break;
6292                                 }
6293                         }
6294                         /*
6295                          * All the rings are reserved, can't give up the
6296                          * default ring.
6297                          */
6298                         if (defgrp->mrg_cur_count <= 1)
6299                                 return (ENOSPC);
6300                 }
6301                 /*
6302                  * Swap the default ring with another.
6303                  */
6304                 for (tring = defgrp->mrg_rings; tring != NULL;
6305                     tring = tring->mr_next) {
6306                         /*
6307                          * If this ring is part of the rings asked by the
6308                          * share we cannot use it as the default ring.
6309                          */
6310                         for (j = 0; j < nrings; j++) {
6311                                 if (rings[j] == tring)
6312                                         break;
6313                         }
6314                         if (j >= nrings)
6315                                 break;
6316                 }
6317                 ASSERT(tring != NULL);
6318                 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6319                 return (0);
6320         }
6321         /*
6322          * The Tx ring is with a group reserved by a MAC client. See if
6323          * we can swap it.
6324          */
6325         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6326         mcip = MAC_GROUP_ONLY_CLIENT(group);
6327         if (mcip == NULL)
6328                 mcip = mac_get_grp_primary(group);
6329         ASSERT(mcip !=  NULL);
6330         mrp = MCIP_RESOURCE_PROPS(mcip);
6331         mac_tx_client_quiesce((mac_client_handle_t)mcip);
6332         if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6333                 ASSERT(group->mrg_cur_count == 1);
6334                 /* Put this mac client in the default group */
6335                 mac_tx_switch_group(mcip, group, defgrp);
6336         } else {
6337                 /*
6338                  * Switch this ring with some other ring from
6339                  * the default group.
6340                  */
6341                 for (tring = defgrp->mrg_rings; tring != NULL;
6342                     tring = tring->mr_next) {
6343                         if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6344                                 continue;
6345                         /*
6346                          * If this ring is part of the rings asked by the
6347                          * share we cannot use it for swapping.
6348                          */
6349                         for (j = 0; j < nrings; j++) {
6350                                 if (rings[j] == tring)
6351                                         break;
6352                         }
6353                         if (j >= nrings)
6354                                 break;
6355                 }
6356                 if (tring == NULL) {
6357                         mac_tx_client_restart((mac_client_handle_t)mcip);
6358                         return (ENOSPC);
6359                 }
6360                 if (mac_group_mov_ring(mip, group, tring) != 0) {
6361                         mac_tx_client_restart((mac_client_handle_t)mcip);
6362                         return (ENOSPC);
6363                 }
6364                 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6365                         (void) mac_group_mov_ring(mip, defgrp, tring);
6366                         mac_tx_client_restart((mac_client_handle_t)mcip);
6367                         return (ENOSPC);
6368                 }
6369         }
6370         mac_tx_client_restart((mac_client_handle_t)mcip);
6371         ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6372         return (0);
6373 }
6374 
6375 /*
6376  * Populate a zero-ring group with rings. If the share is non-NULL,
6377  * the rings are chosen according to that share.
6378  * Invoked after allocating a new RX or TX group through
6379  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6380  * Returns zero on success, an errno otherwise.
6381  */
6382 int
6383 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6384     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6385     uint32_t ringcnt)
6386 {
6387         mac_ring_t **rings, *ring;
6388         uint_t nrings;
6389         int rv = 0, i = 0, j;
6390 
6391         ASSERT((ring_type == MAC_RING_TYPE_RX &&
6392             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6393             (ring_type == MAC_RING_TYPE_TX &&
6394             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6395 
6396         /*
6397          * First find the rings to allocate to the group.
6398          */
6399         if (share != 0) {
6400                 /* get rings through ms_squery() */
6401                 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6402                 ASSERT(nrings != 0);
6403                 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6404                     KM_SLEEP);
6405                 mip->mi_share_capab.ms_squery(share, ring_type,
6406                     (mac_ring_handle_t *)rings, &nrings);
6407                 for (i = 0; i < nrings; i++) {
6408                         /*
6409                          * If we have given this ring to a non-default
6410                          * group, we need to check if we can get this
6411                          * ring.
6412                          */
6413                         ring = rings[i];
6414                         if (ring->mr_gh != (mac_group_handle_t)src_group ||
6415                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6416                                 if (mac_reclaim_ring_from_grp(mip, ring_type,
6417                                     ring, rings, nrings) != 0) {
6418                                         rv = ENOSPC;
6419                                         goto bail;
6420                                 }
6421                         }
6422                 }
6423         } else {
6424                 /*
6425                  * Pick one ring from default group.
6426                  *
6427                  * for now pick the second ring which requires the first ring
6428                  * at index 0 to stay in the default group, since it is the
6429                  * ring which carries the multicast traffic.
6430                  * We need a better way for a driver to indicate this,
6431                  * for example a per-ring flag.
6432                  */
6433                 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6434                     KM_SLEEP);
6435                 for (ring = src_group->mrg_rings; ring != NULL;
6436                     ring = ring->mr_next) {
6437                         if (ring_type == MAC_RING_TYPE_RX &&
6438                             ring->mr_index == 0) {
6439                                 continue;
6440                         }
6441                         if (ring_type == MAC_RING_TYPE_TX &&
6442                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6443                                 continue;
6444                         }
6445                         rings[i++] = ring;
6446                         if (i == ringcnt)
6447                                 break;
6448                 }
6449                 ASSERT(ring != NULL);
6450                 nrings = i;
6451                 /* Not enough rings as required */
6452                 if (nrings != ringcnt) {
6453                         rv = ENOSPC;
6454                         goto bail;
6455                 }
6456         }
6457 
6458         switch (ring_type) {
6459         case MAC_RING_TYPE_RX:
6460                 if (src_group->mrg_cur_count - nrings < 1) {
6461                         /* we ran out of rings */
6462                         rv = ENOSPC;
6463                         goto bail;
6464                 }
6465 
6466                 /* move receive rings to new group */
6467                 for (i = 0; i < nrings; i++) {
6468                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6469                         if (rv != 0) {
6470                                 /* move rings back on failure */
6471                                 for (j = 0; j < i; j++) {
6472                                         (void) mac_group_mov_ring(mip,
6473                                             src_group, rings[j]);
6474                                 }
6475                                 goto bail;
6476                         }
6477                 }
6478                 break;
6479 
6480         case MAC_RING_TYPE_TX: {
6481                 mac_ring_t *tmp_ring;
6482 
6483                 /* move the TX rings to the new group */
6484                 for (i = 0; i < nrings; i++) {
6485                         /* get the desired ring */
6486                         tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6487                         if (tmp_ring == NULL) {
6488                                 rv = ENOSPC;
6489                                 goto bail;
6490                         }
6491                         ASSERT(tmp_ring == rings[i]);
6492                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6493                         if (rv != 0) {
6494                                 /* cleanup on failure */
6495                                 for (j = 0; j < i; j++) {
6496                                         (void) mac_group_mov_ring(mip,
6497                                             MAC_DEFAULT_TX_GROUP(mip),
6498                                             rings[j]);
6499                                 }
6500                                 goto bail;
6501                         }
6502                 }
6503                 break;
6504         }
6505         }
6506 
6507         /* add group to share */
6508         if (share != 0)
6509                 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6510 
6511 bail:
6512         /* free temporary array of rings */
6513         kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6514 
6515         return (rv);
6516 }
6517 
6518 void
6519 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6520 {
6521         mac_grp_client_t *mgcp;
6522 
6523         for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6524                 if (mgcp->mgc_client == mcip)
6525                         break;
6526         }
6527 
6528         ASSERT(mgcp == NULL);
6529 
6530         mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6531         mgcp->mgc_client = mcip;
6532         mgcp->mgc_next = grp->mrg_clients;
6533         grp->mrg_clients = mgcp;
6534 }
6535 
6536 void
6537 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6538 {
6539         mac_grp_client_t *mgcp, **pprev;
6540 
6541         for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6542             pprev = &mgcp->mgc_next, mgcp = *pprev) {
6543                 if (mgcp->mgc_client == mcip)
6544                         break;
6545         }
6546 
6547         ASSERT(mgcp != NULL);
6548 
6549         *pprev = mgcp->mgc_next;
6550         kmem_free(mgcp, sizeof (mac_grp_client_t));
6551 }
6552 
6553 /*
6554  * Return true if any client on this group explicitly asked for HW
6555  * rings (of type mask) or have a bound share.
6556  */
6557 static boolean_t
6558 i_mac_clients_hw(mac_group_t *grp, uint32_t mask)
6559 {
6560         mac_grp_client_t        *mgcip;
6561         mac_client_impl_t       *mcip;
6562         mac_resource_props_t    *mrp;
6563 
6564         for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) {
6565                 mcip = mgcip->mgc_client;
6566                 mrp = MCIP_RESOURCE_PROPS(mcip);
6567                 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0)
6568                         return (B_TRUE);
6569         }
6570 
6571         return (B_FALSE);
6572 }
6573 
6574 /*
6575  * Finds an available group and exclusively reserves it for a client.
6576  * The group is chosen to suit the flow's resource controls (bandwidth and
6577  * fanout requirements) and the address type.
6578  * If the requestor is the pimary MAC then return the group with the
6579  * largest number of rings, otherwise the default ring when available.
6580  */
6581 mac_group_t *
6582 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6583 {
6584         mac_share_handle_t      share = mcip->mci_share;
6585         mac_impl_t              *mip = mcip->mci_mip;
6586         mac_group_t             *grp = NULL;
6587         int                     i;
6588         int                     err = 0;
6589         mac_address_t           *map;
6590         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6591         int                     nrings;
6592         int                     donor_grp_rcnt;
6593         boolean_t               need_exclgrp = B_FALSE;
6594         int                     need_rings = 0;
6595         mac_group_t             *candidate_grp = NULL;
6596         mac_client_impl_t       *gclient;
6597         mac_group_t             *donorgrp = NULL;
6598         boolean_t               rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6599         boolean_t               unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6600         boolean_t               isprimary;
6601 
6602         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6603 
6604         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6605 
6606         /*
6607          * Check if a group already has this MAC address (case of VLANs)
6608          * unless we are moving this MAC client from one group to another.
6609          */
6610         if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6611                 if (map->ma_group != NULL)
6612                         return (map->ma_group);
6613         }
6614 
6615         if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6616                 return (NULL);
6617 
6618         /*
6619          * If this client is requesting exclusive MAC access then
6620          * return NULL to ensure the client uses the default group.
6621          */
6622         if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6623                 return (NULL);
6624 
6625         /* For dynamic groups default unspecified to 1 */
6626         if (rxhw && unspec &&
6627             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6628                 mrp->mrp_nrxrings = 1;
6629         }
6630 
6631         /*
6632          * For static grouping we allow only specifying rings=0 and
6633          * unspecified
6634          */
6635         if (rxhw && mrp->mrp_nrxrings > 0 &&
6636             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6637                 return (NULL);
6638         }
6639 
6640         if (rxhw) {
6641                 /*
6642                  * We have explicitly asked for a group (with nrxrings,
6643                  * if unspec).
6644                  */
6645                 if (unspec || mrp->mrp_nrxrings > 0) {
6646                         need_exclgrp = B_TRUE;
6647                         need_rings = mrp->mrp_nrxrings;
6648                 } else if (mrp->mrp_nrxrings == 0) {
6649                         /*
6650                          * We have asked for a software group.
6651                          */
6652                         return (NULL);
6653                 }
6654         } else if (isprimary && mip->mi_nactiveclients == 1 &&
6655             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6656                 /*
6657                  * If the primary is the only active client on this
6658                  * mip and we have not asked for any rings, we give
6659                  * it the default group so that the primary gets to
6660                  * use all the rings.
6661                  */
6662                 return (NULL);
6663         }
6664 
6665         /* The group that can donate rings */
6666         donorgrp = mip->mi_rx_donor_grp;
6667 
6668         /*
6669          * The number of rings that the default group can donate.
6670          * We need to leave at least one ring.
6671          */
6672         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6673 
6674         /*
6675          * Try to exclusively reserve a RX group.
6676          *
6677          * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6678          * client), try to reserve the a non-default RX group and give
6679          * it all the rings from the donor group, except the default ring
6680          *
6681          * For flows requiring HW_RING (unicast flow of other clients), try
6682          * to reserve non-default RX group with the specified number of
6683          * rings, if available.
6684          *
6685          * For flows that have not asked for software or hardware ring,
6686          * try to reserve a non-default group with 1 ring, if available.
6687          */
6688         for (i = 1; i < mip->mi_rx_group_count; i++) {
6689                 grp = &mip->mi_rx_groups[i];
6690 
6691                 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6692                     int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6693 
6694                 /*
6695                  * Check if this group could be a candidate group for
6696                  * eviction if we need a group for this MAC client,
6697                  * but there aren't any. A candidate group is one
6698                  * that didn't ask for an exclusive group, but got
6699                  * one and it has enough rings (combined with what
6700                  * the donor group can donate) for the new MAC
6701                  * client.
6702                  */
6703                 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6704                         /*
6705                          * If the donor group is not the default
6706                          * group, don't bother looking for a candidate
6707                          * group. If we don't have enough rings we
6708                          * will check if the primary group can be
6709                          * vacated.
6710                          */
6711                         if (candidate_grp == NULL &&
6712                             donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6713                                 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) &&
6714                                     (unspec ||
6715                                     (grp->mrg_cur_count + donor_grp_rcnt >=
6716                                     need_rings))) {
6717                                         candidate_grp = grp;
6718                                 }
6719                         }
6720                         continue;
6721                 }
6722                 /*
6723                  * This group could already be SHARED by other multicast
6724                  * flows on this client. In that case, the group would
6725                  * be shared and has already been started.
6726                  */
6727                 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6728 
6729                 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6730                     (mac_start_group(grp) != 0)) {
6731                         continue;
6732                 }
6733 
6734                 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6735                         break;
6736                 ASSERT(grp->mrg_cur_count == 0);
6737 
6738                 /*
6739                  * Populate the group. Rings should be taken
6740                  * from the donor group.
6741                  */
6742                 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6743 
6744                 /*
6745                  * If the donor group can't donate, let's just walk and
6746                  * see if someone can vacate a group, so that we have
6747                  * enough rings for this, unless we already have
6748                  * identified a candiate group..
6749                  */
6750                 if (nrings <= donor_grp_rcnt) {
6751                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6752                             donorgrp, grp, share, nrings);
6753                         if (err == 0) {
6754                                 /*
6755                                  * For a share i_mac_group_allocate_rings gets
6756                                  * the rings from the driver, let's populate
6757                                  * the property for the client now.
6758                                  */
6759                                 if (share != 0) {
6760                                         mac_client_set_rings(
6761                                             (mac_client_handle_t)mcip,
6762                                             grp->mrg_cur_count, -1);
6763                                 }
6764                                 if (mac_is_primary_client(mcip) && !rxhw)
6765                                         mip->mi_rx_donor_grp = grp;
6766                                 break;
6767                         }
6768                 }
6769 
6770                 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6771                     mip->mi_name, int, grp->mrg_index, int, err);
6772 
6773                 /*
6774                  * It's a dynamic group but the grouping operation
6775                  * failed.
6776                  */
6777                 mac_stop_group(grp);
6778         }
6779 
6780         /* We didn't find an exclusive group for this MAC client */
6781         if (i >= mip->mi_rx_group_count) {
6782 
6783                 if (!need_exclgrp)
6784                         return (NULL);
6785 
6786                 /*
6787                  * If we found a candidate group then move the
6788                  * existing MAC client from the candidate_group to the
6789                  * default group and give the candidate_group to the
6790                  * new MAC client. If we didn't find a candidate
6791                  * group, then check if the primary is in its own
6792                  * group and if it can make way for this MAC client.
6793                  */
6794                 if (candidate_grp == NULL &&
6795                     donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6796                     donorgrp->mrg_cur_count >= need_rings) {
6797                         candidate_grp = donorgrp;
6798                 }
6799                 if (candidate_grp != NULL) {
6800                         boolean_t       prim_grp = B_FALSE;
6801 
6802                         /*
6803                          * Switch the existing MAC client from the
6804                          * candidate group to the default group. If
6805                          * the candidate group is the donor group,
6806                          * then after the switch we need to update the
6807                          * donor group too.
6808                          */
6809                         grp = candidate_grp;
6810                         gclient = grp->mrg_clients->mgc_client;
6811                         VERIFY3P(gclient, !=, NULL);
6812                         if (grp == mip->mi_rx_donor_grp)
6813                                 prim_grp = B_TRUE;
6814                         if (mac_rx_switch_group(gclient, grp,
6815                             MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6816                                 return (NULL);
6817                         }
6818                         if (prim_grp) {
6819                                 mip->mi_rx_donor_grp =
6820                                     MAC_DEFAULT_RX_GROUP(mip);
6821                                 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6822                         }
6823 
6824                         /*
6825                          * Now give this group with the required rings
6826                          * to this MAC client.
6827                          */
6828                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6829                         if (mac_start_group(grp) != 0)
6830                                 return (NULL);
6831 
6832                         if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6833                                 return (grp);
6834 
6835                         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6836                         ASSERT(grp->mrg_cur_count == 0);
6837                         ASSERT(donor_grp_rcnt >= need_rings);
6838                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6839                             donorgrp, grp, share, need_rings);
6840                         if (err == 0) {
6841                                 /*
6842                                  * For a share i_mac_group_allocate_rings gets
6843                                  * the rings from the driver, let's populate
6844                                  * the property for the client now.
6845                                  */
6846                                 if (share != 0) {
6847                                         mac_client_set_rings(
6848                                             (mac_client_handle_t)mcip,
6849                                             grp->mrg_cur_count, -1);
6850                                 }
6851                                 DTRACE_PROBE2(rx__group__reserved,
6852                                     char *, mip->mi_name, int, grp->mrg_index);
6853                                 return (grp);
6854                         }
6855                         DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6856                             mip->mi_name, int, grp->mrg_index, int, err);
6857                         mac_stop_group(grp);
6858                 }
6859                 return (NULL);
6860         }
6861         ASSERT(grp != NULL);
6862 
6863         DTRACE_PROBE2(rx__group__reserved,
6864             char *, mip->mi_name, int, grp->mrg_index);
6865         return (grp);
6866 }
6867 
6868 /*
6869  * mac_rx_release_group()
6870  *
6871  * Release the group when it has no remaining clients. The group is
6872  * stopped and its shares are removed and all rings are assigned back
6873  * to default group. This should never be called against the default
6874  * group.
6875  */
6876 void
6877 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6878 {
6879         mac_impl_t              *mip = mcip->mci_mip;
6880         mac_ring_t              *ring;
6881 
6882         ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6883         ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE);
6884 
6885         if (mip->mi_rx_donor_grp == group)
6886                 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6887 
6888         /*
6889          * This is the case where there are no clients left. Any
6890          * SRS etc on this group have also be quiesced.
6891          */
6892         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6893                 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6894                         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6895                         /*
6896                          * Remove the SRS associated with the HW ring.
6897                          * As a result, polling will be disabled.
6898                          */
6899                         ring->mr_srs = NULL;
6900                 }
6901                 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6902                     ring->mr_state == MR_INUSE);
6903                 if (ring->mr_state == MR_INUSE) {
6904                         mac_stop_ring(ring);
6905                         ring->mr_flag = 0;
6906                 }
6907         }
6908 
6909         /* remove group from share */
6910         if (mcip->mci_share != 0) {
6911                 mip->mi_share_capab.ms_sremove(mcip->mci_share,
6912                     group->mrg_driver);
6913         }
6914 
6915         if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6916                 mac_ring_t *ring;
6917 
6918                 /*
6919                  * Rings were dynamically allocated to group.
6920                  * Move rings back to default group.
6921                  */
6922                 while ((ring = group->mrg_rings) != NULL) {
6923                         (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6924                             ring);
6925                 }
6926         }
6927         mac_stop_group(group);
6928         /*
6929          * Possible improvement: See if we can assign the group just released
6930          * to a another client of the mip
6931          */
6932 }
6933 
6934 /*
6935  * Move the MAC address from fgrp to tgrp.
6936  */
6937 static int
6938 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6939     mac_group_t *tgrp)
6940 {
6941         mac_impl_t              *mip = mcip->mci_mip;
6942         uint8_t                 maddr[MAXMACADDRLEN];
6943         int                     err = 0;
6944         uint16_t                vid;
6945         mac_unicast_impl_t      *muip;
6946         boolean_t               use_hw;
6947 
6948         mac_rx_client_quiesce((mac_client_handle_t)mcip);
6949         VERIFY3P(mcip->mci_unicast, !=, NULL);
6950         bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6951 
6952         /*
6953          * Does the client require MAC address hardware classifiction?
6954          */
6955         use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6956         vid = i_mac_flow_vid(mcip->mci_flent);
6957 
6958         /*
6959          * You can never move an address that is shared by multiple
6960          * clients. mac_datapath_setup() ensures that clients sharing
6961          * an address are placed on the default group. This guarantees
6962          * that a non-default group will only ever have one client and
6963          * thus make full use of HW filters.
6964          */
6965         if (mac_check_macaddr_shared(mcip->mci_unicast))
6966                 return (EINVAL);
6967 
6968         err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid);
6969 
6970         if (err != 0) {
6971                 mac_rx_client_restart((mac_client_handle_t)mcip);
6972                 return (err);
6973         }
6974 
6975         /*
6976          * If this isn't the primary MAC address then the
6977          * mac_address_t has been freed by the last call to
6978          * mac_remove_macaddr_vlan(). In any case, NULL the reference
6979          * to avoid a dangling pointer.
6980          */
6981         mcip->mci_unicast = NULL;
6982 
6983         /*
6984          * We also have to NULL all the mui_map references -- sun4v
6985          * strikes again!
6986          */
6987         rw_enter(&mcip->mci_rw_lock, RW_WRITER);
6988         for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
6989                 muip->mui_map = NULL;
6990         rw_exit(&mcip->mci_rw_lock);
6991 
6992         /*
6993          * Program the H/W Classifier first, if this fails we need not
6994          * proceed with the other stuff.
6995          */
6996         if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) {
6997                 int err2;
6998 
6999                 /* Revert back the H/W Classifier */
7000                 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw);
7001 
7002                 if (err2 != 0) {
7003                         cmn_err(CE_WARN, "Failed to revert HW classification"
7004                             " on MAC %s, for client %s: %d.", mip->mi_name,
7005                             mcip->mci_name, err2);
7006                 }
7007 
7008                 mac_rx_client_restart((mac_client_handle_t)mcip);
7009                 return (err);
7010         }
7011 
7012         /*
7013          * Get a reference to the new mac_address_t and update the
7014          * client's reference. Then restart the client and add the
7015          * other clients of this MAC addr (if they exsit).
7016          */
7017         mcip->mci_unicast = mac_find_macaddr(mip, maddr);
7018         rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7019         for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7020                 muip->mui_map = mcip->mci_unicast;
7021         rw_exit(&mcip->mci_rw_lock);
7022         mac_rx_client_restart((mac_client_handle_t)mcip);
7023         return (0);
7024 }
7025 
7026 /*
7027  * Switch the MAC client from one group to another. This means we need
7028  * to remove the MAC address from the group, remove the MAC client,
7029  * teardown the SRSs and revert the group state. Then, we add the client
7030  * to the destination group, set the SRSs, and add the MAC address to the
7031  * group.
7032  */
7033 int
7034 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7035     mac_group_t *tgrp)
7036 {
7037         int                     err;
7038         mac_group_state_t       next_state;
7039         mac_client_impl_t       *group_only_mcip;
7040         mac_client_impl_t       *gmcip;
7041         mac_impl_t              *mip = mcip->mci_mip;
7042         mac_grp_client_t        *mgcp;
7043 
7044         VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group);
7045 
7046         if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
7047                 return (err);
7048 
7049         /*
7050          * If the group is marked as reserved and in use by a single
7051          * client, then there is an SRS to teardown.
7052          */
7053         if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7054             MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7055                 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
7056         }
7057 
7058         /*
7059          * If we are moving the client from a non-default group, then
7060          * we know that any additional clients on this group share the
7061          * same MAC address. Since we moved the MAC address filter, we
7062          * need to move these clients too.
7063          *
7064          * If we are moving the client from the default group and its
7065          * MAC address has VLAN clients, then we must move those
7066          * clients as well.
7067          *
7068          * In both cases the idea is the same: we moved the MAC
7069          * address filter to the tgrp, so we must move all clients
7070          * using that MAC address to tgrp as well.
7071          */
7072         if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
7073                 mgcp = fgrp->mrg_clients;
7074                 while (mgcp != NULL) {
7075                         gmcip = mgcp->mgc_client;
7076                         mgcp = mgcp->mgc_next;
7077                         mac_group_remove_client(fgrp, gmcip);
7078                         mac_group_add_client(tgrp, gmcip);
7079                         gmcip->mci_flent->fe_rx_ring_group = tgrp;
7080                 }
7081                 mac_release_rx_group(mcip, fgrp);
7082                 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE);
7083                 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
7084         } else {
7085                 mac_group_remove_client(fgrp, mcip);
7086                 mac_group_add_client(tgrp, mcip);
7087                 mcip->mci_flent->fe_rx_ring_group = tgrp;
7088 
7089                 /*
7090                  * If there are other clients (VLANs) sharing this address
7091                  * then move them too.
7092                  */
7093                 if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7094                         /*
7095                          * We need to move all the clients that are using
7096                          * this MAC address.
7097                          */
7098                         mgcp = fgrp->mrg_clients;
7099                         while (mgcp != NULL) {
7100                                 gmcip = mgcp->mgc_client;
7101                                 mgcp = mgcp->mgc_next;
7102                                 if (mcip->mci_unicast == gmcip->mci_unicast) {
7103                                         mac_group_remove_client(fgrp, gmcip);
7104                                         mac_group_add_client(tgrp, gmcip);
7105                                         gmcip->mci_flent->fe_rx_ring_group =
7106                                             tgrp;
7107                                 }
7108                         }
7109                 }
7110 
7111                 /*
7112                  * The default group still handles multicast and
7113                  * broadcast traffic; it won't transition to
7114                  * MAC_GROUP_STATE_REGISTERED.
7115                  */
7116                 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
7117                         mac_rx_group_unmark(fgrp, MR_CONDEMNED);
7118                 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
7119         }
7120 
7121         next_state = mac_group_next_state(tgrp, &group_only_mcip,
7122             MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
7123         mac_set_group_state(tgrp, next_state);
7124 
7125         /*
7126          * If the destination group is reserved, then setup the SRSes.
7127          * Otherwise make sure to use SW classification.
7128          */
7129         if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7130                 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
7131                 mac_fanout_setup(mcip, mcip->mci_flent,
7132                     MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
7133                     NULL);
7134                 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
7135         } else {
7136                 mac_rx_switch_grp_to_sw(tgrp);
7137         }
7138 
7139         return (0);
7140 }
7141 
7142 /*
7143  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
7144  * when a share was allocated to the client.
7145  */
7146 mac_group_t *
7147 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
7148 {
7149         mac_impl_t              *mip = mcip->mci_mip;
7150         mac_group_t             *grp = NULL;
7151         int                     rv;
7152         int                     i;
7153         int                     err;
7154         mac_group_t             *defgrp;
7155         mac_share_handle_t      share = mcip->mci_share;
7156         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7157         int                     nrings;
7158         int                     defnrings;
7159         boolean_t               need_exclgrp = B_FALSE;
7160         int                     need_rings = 0;
7161         mac_group_t             *candidate_grp = NULL;
7162         mac_client_impl_t       *gclient;
7163         mac_resource_props_t    *gmrp;
7164         boolean_t               txhw = mrp->mrp_mask & MRP_TX_RINGS;
7165         boolean_t               unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
7166         boolean_t               isprimary;
7167 
7168         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
7169 
7170         /*
7171          * When we come here for a VLAN on the primary (dladm create-vlan),
7172          * we need to pair it along with the primary (to keep it consistent
7173          * with the RX side). So, we check if the primary is already assigned
7174          * to a group and return the group if so. The other way is also
7175          * true, i.e. the VLAN is already created and now we are plumbing
7176          * the primary.
7177          */
7178         if (!move && isprimary) {
7179                 for (gclient = mip->mi_clients_list; gclient != NULL;
7180                     gclient = gclient->mci_client_next) {
7181                         if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
7182                             gclient->mci_flent->fe_tx_ring_group != NULL) {
7183                                 return (gclient->mci_flent->fe_tx_ring_group);
7184                         }
7185                 }
7186         }
7187 
7188         if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
7189                 return (NULL);
7190 
7191         /* For dynamic groups, default unspec to 1 */
7192         if (txhw && unspec &&
7193             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7194                 mrp->mrp_ntxrings = 1;
7195         }
7196         /*
7197          * For static grouping we allow only specifying rings=0 and
7198          * unspecified
7199          */
7200         if (txhw && mrp->mrp_ntxrings > 0 &&
7201             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
7202                 return (NULL);
7203         }
7204 
7205         if (txhw) {
7206                 /*
7207                  * We have explicitly asked for a group (with ntxrings,
7208                  * if unspec).
7209                  */
7210                 if (unspec || mrp->mrp_ntxrings > 0) {
7211                         need_exclgrp = B_TRUE;
7212                         need_rings = mrp->mrp_ntxrings;
7213                 } else if (mrp->mrp_ntxrings == 0) {
7214                         /*
7215                          * We have asked for a software group.
7216                          */
7217                         return (NULL);
7218                 }
7219         }
7220         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7221         /*
7222          * The number of rings that the default group can donate.
7223          * We need to leave at least one ring - the default ring - in
7224          * this group.
7225          */
7226         defnrings = defgrp->mrg_cur_count - 1;
7227 
7228         /*
7229          * Primary gets default group unless explicitly told not
7230          * to  (i.e. rings > 0).
7231          */
7232         if (isprimary && !need_exclgrp)
7233                 return (NULL);
7234 
7235         nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
7236         for (i = 0; i <  mip->mi_tx_group_count; i++) {
7237                 grp = &mip->mi_tx_groups[i];
7238                 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
7239                     (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
7240                         /*
7241                          * Select a candidate for replacement if we don't
7242                          * get an exclusive group. A candidate group is one
7243                          * that didn't ask for an exclusive group, but got
7244                          * one and it has enough rings (combined with what
7245                          * the default group can donate) for the new MAC
7246                          * client.
7247                          */
7248                         if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7249                             candidate_grp == NULL) {
7250                                 gclient = MAC_GROUP_ONLY_CLIENT(grp);
7251                                 VERIFY3P(gclient, !=, NULL);
7252                                 gmrp = MCIP_RESOURCE_PROPS(gclient);
7253                                 if (gclient->mci_share == 0 &&
7254                                     (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7255                                     (unspec ||
7256                                     (grp->mrg_cur_count + defnrings) >=
7257                                     need_rings)) {
7258                                         candidate_grp = grp;
7259                                 }
7260                         }
7261                         continue;
7262                 }
7263                 /*
7264                  * If the default can't donate let's just walk and
7265                  * see if someone can vacate a group, so that we have
7266                  * enough rings for this.
7267                  */
7268                 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7269                     nrings <= defnrings) {
7270                         if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7271                                 rv = mac_start_group(grp);
7272                                 ASSERT(rv == 0);
7273                         }
7274                         break;
7275                 }
7276         }
7277 
7278         /* The default group */
7279         if (i >= mip->mi_tx_group_count) {
7280                 /*
7281                  * If we need an exclusive group and have identified a
7282                  * candidate group we switch the MAC client from the
7283                  * candidate group to the default group and give the
7284                  * candidate group to this client.
7285                  */
7286                 if (need_exclgrp && candidate_grp != NULL) {
7287                         /*
7288                          * Switch the MAC client from the candidate
7289                          * group to the default group. We know the
7290                          * candidate_grp came from a reserved group
7291                          * and thus only has one client.
7292                          */
7293                         grp = candidate_grp;
7294                         gclient = MAC_GROUP_ONLY_CLIENT(grp);
7295                         VERIFY3P(gclient, !=, NULL);
7296                         mac_tx_client_quiesce((mac_client_handle_t)gclient);
7297                         mac_tx_switch_group(gclient, grp, defgrp);
7298                         mac_tx_client_restart((mac_client_handle_t)gclient);
7299 
7300                         /*
7301                          * Give the candidate group with the specified number
7302                          * of rings to this MAC client.
7303                          */
7304                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7305                         rv = mac_start_group(grp);
7306                         ASSERT(rv == 0);
7307 
7308                         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7309                                 return (grp);
7310 
7311                         ASSERT(grp->mrg_cur_count == 0);
7312                         ASSERT(defgrp->mrg_cur_count > need_rings);
7313 
7314                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7315                             defgrp, grp, share, need_rings);
7316                         if (err == 0) {
7317                                 /*
7318                                  * For a share i_mac_group_allocate_rings gets
7319                                  * the rings from the driver, let's populate
7320                                  * the property for the client now.
7321                                  */
7322                                 if (share != 0) {
7323                                         mac_client_set_rings(
7324                                             (mac_client_handle_t)mcip, -1,
7325                                             grp->mrg_cur_count);
7326                                 }
7327                                 mip->mi_tx_group_free--;
7328                                 return (grp);
7329                         }
7330                         DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7331                             mip->mi_name, int, grp->mrg_index, int, err);
7332                         mac_stop_group(grp);
7333                 }
7334                 return (NULL);
7335         }
7336         /*
7337          * We got an exclusive group, but it is not dynamic.
7338          */
7339         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7340                 mip->mi_tx_group_free--;
7341                 return (grp);
7342         }
7343 
7344         rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7345             share, nrings);
7346         if (rv != 0) {
7347                 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7348                     char *, mip->mi_name, int, grp->mrg_index, int, rv);
7349                 mac_stop_group(grp);
7350                 return (NULL);
7351         }
7352         /*
7353          * For a share i_mac_group_allocate_rings gets the rings from the
7354          * driver, let's populate the property for the client now.
7355          */
7356         if (share != 0) {
7357                 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7358                     grp->mrg_cur_count);
7359         }
7360         mip->mi_tx_group_free--;
7361         return (grp);
7362 }
7363 
7364 void
7365 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7366 {
7367         mac_impl_t              *mip = mcip->mci_mip;
7368         mac_share_handle_t      share = mcip->mci_share;
7369         mac_ring_t              *ring;
7370         mac_soft_ring_set_t     *srs = MCIP_TX_SRS(mcip);
7371         mac_group_t             *defgrp;
7372 
7373         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7374         if (srs != NULL) {
7375                 if (srs->srs_soft_ring_count > 0) {
7376                         for (ring = grp->mrg_rings; ring != NULL;
7377                             ring = ring->mr_next) {
7378                                 ASSERT(mac_tx_srs_ring_present(srs, ring));
7379                                 mac_tx_invoke_callbacks(mcip,
7380                                     (mac_tx_cookie_t)
7381                                     mac_tx_srs_get_soft_ring(srs, ring));
7382                                 mac_tx_srs_del_ring(srs, ring);
7383                         }
7384                 } else {
7385                         ASSERT(srs->srs_tx.st_arg2 != NULL);
7386                         srs->srs_tx.st_arg2 = NULL;
7387                         mac_srs_stat_delete(srs);
7388                 }
7389         }
7390         if (share != 0)
7391                 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7392 
7393         /* move the ring back to the pool */
7394         if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7395                 while ((ring = grp->mrg_rings) != NULL)
7396                         (void) mac_group_mov_ring(mip, defgrp, ring);
7397         }
7398         mac_stop_group(grp);
7399         mip->mi_tx_group_free++;
7400 }
7401 
7402 /*
7403  * Disassociate a MAC client from a group, i.e go through the rings in the
7404  * group and delete all the soft rings tied to them.
7405  */
7406 static void
7407 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7408 {
7409         mac_client_impl_t       *mcip = flent->fe_mcip;
7410         mac_soft_ring_set_t     *tx_srs;
7411         mac_srs_tx_t            *tx;
7412         mac_ring_t              *ring;
7413 
7414         tx_srs = flent->fe_tx_srs;
7415         tx = &tx_srs->srs_tx;
7416 
7417         /* Single ring case we haven't created any soft rings */
7418         if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7419             tx->st_mode == SRS_TX_DEFAULT) {
7420                 tx->st_arg2 = NULL;
7421                 mac_srs_stat_delete(tx_srs);
7422         /* Fanout case, where we have to dismantle the soft rings */
7423         } else {
7424                 for (ring = fgrp->mrg_rings; ring != NULL;
7425                     ring = ring->mr_next) {
7426                         ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7427                         mac_tx_invoke_callbacks(mcip,
7428                             (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7429                             ring));
7430                         mac_tx_srs_del_ring(tx_srs, ring);
7431                 }
7432                 ASSERT(tx->st_arg2 == NULL);
7433         }
7434 }
7435 
7436 /*
7437  * Switch the MAC client from one group to another. This means we need
7438  * to remove the MAC client, teardown the SRSs and revert the group state.
7439  * Then, we add the client to the destination roup, set the SRSs etc.
7440  */
7441 void
7442 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7443     mac_group_t *tgrp)
7444 {
7445         mac_client_impl_t       *group_only_mcip;
7446         mac_impl_t              *mip = mcip->mci_mip;
7447         flow_entry_t            *flent = mcip->mci_flent;
7448         mac_group_t             *defgrp;
7449         mac_grp_client_t        *mgcp;
7450         mac_client_impl_t       *gmcip;
7451         flow_entry_t            *gflent;
7452 
7453         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7454         ASSERT(fgrp == flent->fe_tx_ring_group);
7455 
7456         if (fgrp == defgrp) {
7457                 /*
7458                  * If this is the primary we need to find any VLANs on
7459                  * the primary and move them too.
7460                  */
7461                 mac_group_remove_client(fgrp, mcip);
7462                 mac_tx_dismantle_soft_rings(fgrp, flent);
7463                 if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7464                         mgcp = fgrp->mrg_clients;
7465                         while (mgcp != NULL) {
7466                                 gmcip = mgcp->mgc_client;
7467                                 mgcp = mgcp->mgc_next;
7468                                 if (mcip->mci_unicast != gmcip->mci_unicast)
7469                                         continue;
7470                                 mac_tx_client_quiesce(
7471                                     (mac_client_handle_t)gmcip);
7472 
7473                                 gflent = gmcip->mci_flent;
7474                                 mac_group_remove_client(fgrp, gmcip);
7475                                 mac_tx_dismantle_soft_rings(fgrp, gflent);
7476 
7477                                 mac_group_add_client(tgrp, gmcip);
7478                                 gflent->fe_tx_ring_group = tgrp;
7479                                 /* We could directly set this to SHARED */
7480                                 tgrp->mrg_state = mac_group_next_state(tgrp,
7481                                     &group_only_mcip, defgrp, B_FALSE);
7482 
7483                                 mac_tx_srs_group_setup(gmcip, gflent,
7484                                     SRST_LINK);
7485                                 mac_fanout_setup(gmcip, gflent,
7486                                     MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7487                                     gmcip, NULL, NULL);
7488 
7489                                 mac_tx_client_restart(
7490                                     (mac_client_handle_t)gmcip);
7491                         }
7492                 }
7493                 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7494                         mac_ring_t      *ring;
7495                         int             cnt;
7496                         int             ringcnt;
7497 
7498                         fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7499                         /*
7500                          * Additionally, we also need to stop all
7501                          * the rings in the default group, except
7502                          * the default ring. The reason being
7503                          * this group won't be released since it is
7504                          * the default group, so the rings won't
7505                          * be stopped otherwise.
7506                          */
7507                         ringcnt = fgrp->mrg_cur_count;
7508                         ring = fgrp->mrg_rings;
7509                         for (cnt = 0; cnt < ringcnt; cnt++) {
7510                                 if (ring->mr_state == MR_INUSE &&
7511                                     ring !=
7512                                     (mac_ring_t *)mip->mi_default_tx_ring) {
7513                                         mac_stop_ring(ring);
7514                                         ring->mr_flag = 0;
7515                                 }
7516                                 ring = ring->mr_next;
7517                         }
7518                 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7519                         fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7520                 } else {
7521                         ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7522                 }
7523         } else {
7524                 /*
7525                  * We could have VLANs sharing the non-default group with
7526                  * the primary.
7527                  */
7528                 mgcp = fgrp->mrg_clients;
7529                 while (mgcp != NULL) {
7530                         gmcip = mgcp->mgc_client;
7531                         mgcp = mgcp->mgc_next;
7532                         if (gmcip == mcip)
7533                                 continue;
7534                         mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7535                         gflent = gmcip->mci_flent;
7536 
7537                         mac_group_remove_client(fgrp, gmcip);
7538                         mac_tx_dismantle_soft_rings(fgrp, gflent);
7539 
7540                         mac_group_add_client(tgrp, gmcip);
7541                         gflent->fe_tx_ring_group = tgrp;
7542                         /* We could directly set this to SHARED */
7543                         tgrp->mrg_state = mac_group_next_state(tgrp,
7544                             &group_only_mcip, defgrp, B_FALSE);
7545                         mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7546                         mac_fanout_setup(gmcip, gflent,
7547                             MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7548                             gmcip, NULL, NULL);
7549 
7550                         mac_tx_client_restart((mac_client_handle_t)gmcip);
7551                 }
7552                 mac_group_remove_client(fgrp, mcip);
7553                 mac_release_tx_group(mcip, fgrp);
7554                 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7555         }
7556 
7557         /* Add it to the tgroup */
7558         mac_group_add_client(tgrp, mcip);
7559         flent->fe_tx_ring_group = tgrp;
7560         tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7561             defgrp, B_FALSE);
7562 
7563         mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7564         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7565             mac_rx_deliver, mcip, NULL, NULL);
7566 }
7567 
7568 /*
7569  * This is a 1-time control path activity initiated by the client (IP).
7570  * The mac perimeter protects against other simultaneous control activities,
7571  * for example an ioctl that attempts to change the degree of fanout and
7572  * increase or decrease the number of softrings associated with this Tx SRS.
7573  */
7574 static mac_tx_notify_cb_t *
7575 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7576     mac_tx_notify_t notify, void *arg)
7577 {
7578         mac_cb_info_t *mcbi;
7579         mac_tx_notify_cb_t *mtnfp;
7580 
7581         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7582 
7583         mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7584         mtnfp->mtnf_fn = notify;
7585         mtnfp->mtnf_arg = arg;
7586         mtnfp->mtnf_link.mcb_objp = mtnfp;
7587         mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7588         mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7589 
7590         mcbi = &mcip->mci_tx_notify_cb_info;
7591         mutex_enter(mcbi->mcbi_lockp);
7592         mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7593         mutex_exit(mcbi->mcbi_lockp);
7594         return (mtnfp);
7595 }
7596 
7597 static void
7598 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7599 {
7600         mac_cb_info_t   *mcbi;
7601         mac_cb_t        **cblist;
7602 
7603         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7604 
7605         if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7606             &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7607                 cmn_err(CE_WARN,
7608                     "mac_client_tx_notify_remove: callback not "
7609                     "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7610                 return;
7611         }
7612 
7613         mcbi = &mcip->mci_tx_notify_cb_info;
7614         cblist = &mcip->mci_tx_notify_cb_list;
7615         mutex_enter(mcbi->mcbi_lockp);
7616         if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7617                 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7618         else
7619                 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7620         mutex_exit(mcbi->mcbi_lockp);
7621 }
7622 
7623 /*
7624  * mac_client_tx_notify():
7625  * call to add and remove flow control callback routine.
7626  */
7627 mac_tx_notify_handle_t
7628 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7629     void *ptr)
7630 {
7631         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
7632         mac_tx_notify_cb_t      *mtnfp = NULL;
7633 
7634         i_mac_perim_enter(mcip->mci_mip);
7635 
7636         if (callb_func != NULL) {
7637                 /* Add a notify callback */
7638                 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7639         } else {
7640                 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7641         }
7642         i_mac_perim_exit(mcip->mci_mip);
7643 
7644         return ((mac_tx_notify_handle_t)mtnfp);
7645 }
7646 
7647 void
7648 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7649     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7650 {
7651         mac_bridge_tx_cb = txf;
7652         mac_bridge_rx_cb = rxf;
7653         mac_bridge_ref_cb = reff;
7654         mac_bridge_ls_cb = lsf;
7655 }
7656 
7657 int
7658 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7659 {
7660         mac_impl_t *mip = (mac_impl_t *)mh;
7661         int retv;
7662 
7663         mutex_enter(&mip->mi_bridge_lock);
7664         if (mip->mi_bridge_link == NULL) {
7665                 mip->mi_bridge_link = link;
7666                 retv = 0;
7667         } else {
7668                 retv = EBUSY;
7669         }
7670         mutex_exit(&mip->mi_bridge_lock);
7671         if (retv == 0) {
7672                 mac_poll_state_change(mh, B_FALSE);
7673                 mac_capab_update(mh);
7674         }
7675         return (retv);
7676 }
7677 
7678 /*
7679  * Disable bridging on the indicated link.
7680  */
7681 void
7682 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7683 {
7684         mac_impl_t *mip = (mac_impl_t *)mh;
7685 
7686         mutex_enter(&mip->mi_bridge_lock);
7687         ASSERT(mip->mi_bridge_link == link);
7688         mip->mi_bridge_link = NULL;
7689         mutex_exit(&mip->mi_bridge_lock);
7690         mac_poll_state_change(mh, B_TRUE);
7691         mac_capab_update(mh);
7692 }
7693 
7694 void
7695 mac_no_active(mac_handle_t mh)
7696 {
7697         mac_impl_t *mip = (mac_impl_t *)mh;
7698 
7699         i_mac_perim_enter(mip);
7700         mip->mi_state_flags |= MIS_NO_ACTIVE;
7701         i_mac_perim_exit(mip);
7702 }
7703 
7704 /*
7705  * Walk the primary VLAN clients whenever the primary's rings property
7706  * changes and update the mac_resource_props_t for the VLAN's client.
7707  * We need to do this since we don't support setting these properties
7708  * on the primary's VLAN clients, but the VLAN clients have to
7709  * follow the primary w.r.t the rings property.
7710  */
7711 void
7712 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7713 {
7714         mac_client_impl_t       *vmcip;
7715         mac_resource_props_t    *vmrp;
7716 
7717         for (vmcip = mip->mi_clients_list; vmcip != NULL;
7718             vmcip = vmcip->mci_client_next) {
7719                 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7720                     mac_client_vid((mac_client_handle_t)vmcip) ==
7721                     VLAN_ID_NONE) {
7722                         continue;
7723                 }
7724                 vmrp = MCIP_RESOURCE_PROPS(vmcip);
7725 
7726                 vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7727                 if (mrp->mrp_mask & MRP_RX_RINGS)
7728                         vmrp->mrp_mask |= MRP_RX_RINGS;
7729                 else if (vmrp->mrp_mask & MRP_RX_RINGS)
7730                         vmrp->mrp_mask &= ~MRP_RX_RINGS;
7731 
7732                 vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7733                 if (mrp->mrp_mask & MRP_TX_RINGS)
7734                         vmrp->mrp_mask |= MRP_TX_RINGS;
7735                 else if (vmrp->mrp_mask & MRP_TX_RINGS)
7736                         vmrp->mrp_mask &= ~MRP_TX_RINGS;
7737 
7738                 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7739                         vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7740                 else
7741                         vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7742 
7743                 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7744                         vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7745                 else
7746                         vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7747         }
7748 }
7749 
7750 /*
7751  * We are adding or removing ring(s) from a group. The source for taking
7752  * rings is the default group. The destination for giving rings back is
7753  * the default group.
7754  */
7755 int
7756 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7757     mac_group_t *defgrp)
7758 {
7759         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7760         uint_t                  modify;
7761         int                     count;
7762         mac_ring_t              *ring;
7763         mac_ring_t              *next;
7764         mac_impl_t              *mip = mcip->mci_mip;
7765         mac_ring_t              **rings;
7766         uint_t                  ringcnt;
7767         int                     i = 0;
7768         boolean_t               rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7769         int                     start;
7770         int                     end;
7771         mac_group_t             *tgrp;
7772         int                     j;
7773         int                     rv = 0;
7774 
7775         /*
7776          * If we are asked for just a group, we give 1 ring, else
7777          * the specified number of rings.
7778          */
7779         if (rx_group) {
7780                 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7781                     mrp->mrp_nrxrings;
7782         } else {
7783                 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7784                     mrp->mrp_ntxrings;
7785         }
7786 
7787         /* don't allow modifying rings for a share for now. */
7788         ASSERT(mcip->mci_share == 0);
7789 
7790         if (ringcnt == group->mrg_cur_count)
7791                 return (0);
7792 
7793         if (group->mrg_cur_count > ringcnt) {
7794                 modify = group->mrg_cur_count - ringcnt;
7795                 if (rx_group) {
7796                         if (mip->mi_rx_donor_grp == group) {
7797                                 ASSERT(mac_is_primary_client(mcip));
7798                                 mip->mi_rx_donor_grp = defgrp;
7799                         } else {
7800                                 defgrp = mip->mi_rx_donor_grp;
7801                         }
7802                 }
7803                 ring = group->mrg_rings;
7804                 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7805                     KM_SLEEP);
7806                 j = 0;
7807                 for (count = 0; count < modify; count++) {
7808                         next = ring->mr_next;
7809                         rv = mac_group_mov_ring(mip, defgrp, ring);
7810                         if (rv != 0) {
7811                                 /* cleanup on failure */
7812                                 for (j = 0; j < count; j++) {
7813                                         (void) mac_group_mov_ring(mip, group,
7814                                             rings[j]);
7815                                 }
7816                                 break;
7817                         }
7818                         rings[j++] = ring;
7819                         ring = next;
7820                 }
7821                 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7822                 return (rv);
7823         }
7824         if (ringcnt >= MAX_RINGS_PER_GROUP)
7825                 return (EINVAL);
7826 
7827         modify = ringcnt - group->mrg_cur_count;
7828 
7829         if (rx_group) {
7830                 if (group != mip->mi_rx_donor_grp)
7831                         defgrp = mip->mi_rx_donor_grp;
7832                 else
7833                         /*
7834                          * This is the donor group with all the remaining
7835                          * rings. Default group now gets to be the donor
7836                          */
7837                         mip->mi_rx_donor_grp = defgrp;
7838                 start = 1;
7839                 end = mip->mi_rx_group_count;
7840         } else {
7841                 start = 0;
7842                 end = mip->mi_tx_group_count - 1;
7843         }
7844         /*
7845          * If the default doesn't have any rings, lets see if we can
7846          * take rings given to an h/w client that doesn't need it.
7847          * For now, we just see if there is  any one client that can donate
7848          * all the required rings.
7849          */
7850         if (defgrp->mrg_cur_count < (modify + 1)) {
7851                 for (i = start; i < end; i++) {
7852                         if (rx_group) {
7853                                 tgrp = &mip->mi_rx_groups[i];
7854                                 if (tgrp == group || tgrp->mrg_state <
7855                                     MAC_GROUP_STATE_RESERVED) {
7856                                         continue;
7857                                 }
7858                                 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS))
7859                                         continue;
7860                                 mcip = tgrp->mrg_clients->mgc_client;
7861                                 VERIFY3P(mcip, !=, NULL);
7862                                 if ((tgrp->mrg_cur_count +
7863                                     defgrp->mrg_cur_count) < (modify + 1)) {
7864                                         continue;
7865                                 }
7866                                 if (mac_rx_switch_group(mcip, tgrp,
7867                                     defgrp) != 0) {
7868                                         return (ENOSPC);
7869                                 }
7870                         } else {
7871                                 tgrp = &mip->mi_tx_groups[i];
7872                                 if (tgrp == group || tgrp->mrg_state <
7873                                     MAC_GROUP_STATE_RESERVED) {
7874                                         continue;
7875                                 }
7876                                 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS))
7877                                         continue;
7878                                 mcip = tgrp->mrg_clients->mgc_client;
7879                                 VERIFY3P(mcip, !=, NULL);
7880                                 if ((tgrp->mrg_cur_count +
7881                                     defgrp->mrg_cur_count) < (modify + 1)) {
7882                                         continue;
7883                                 }
7884                                 /* OK, we can switch this to s/w */
7885                                 mac_tx_client_quiesce(
7886                                     (mac_client_handle_t)mcip);
7887                                 mac_tx_switch_group(mcip, tgrp, defgrp);
7888                                 mac_tx_client_restart(
7889                                     (mac_client_handle_t)mcip);
7890                         }
7891                 }
7892                 if (defgrp->mrg_cur_count < (modify + 1))
7893                         return (ENOSPC);
7894         }
7895         if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7896             group, mcip->mci_share, modify)) != 0) {
7897                 return (rv);
7898         }
7899         return (0);
7900 }
7901 
7902 /*
7903  * Given the poolname in mac_resource_props, find the cpupart
7904  * that is associated with this pool.  The cpupart will be used
7905  * later for finding the cpus to be bound to the networking threads.
7906  *
7907  * use_default is set B_TRUE if pools are enabled and pool_default
7908  * is returned.  This avoids a 2nd lookup to set the poolname
7909  * for pool-effective.
7910  *
7911  * returns:
7912  *
7913  *    NULL -   pools are disabled or if the 'cpus' property is set.
7914  *    cpupart of pool_default  - pools are enabled and the pool
7915  *             is not available or poolname is blank
7916  *    cpupart of named pool    - pools are enabled and the pool
7917  *             is available.
7918  */
7919 cpupart_t *
7920 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7921 {
7922         pool_t          *pool;
7923         cpupart_t       *cpupart;
7924 
7925         *use_default = B_FALSE;
7926 
7927         /* CPUs property is set */
7928         if (mrp->mrp_mask & MRP_CPUS)
7929                 return (NULL);
7930 
7931         ASSERT(pool_lock_held());
7932 
7933         /* Pools are disabled, no pset */
7934         if (pool_state == POOL_DISABLED)
7935                 return (NULL);
7936 
7937         /* Pools property is set */
7938         if (mrp->mrp_mask & MRP_POOL) {
7939                 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7940                         /* Pool not found */
7941                         DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7942                             mrp->mrp_pool);
7943                         *use_default = B_TRUE;
7944                         pool = pool_default;
7945                 }
7946         /* Pools property is not set */
7947         } else {
7948                 *use_default = B_TRUE;
7949                 pool = pool_default;
7950         }
7951 
7952         /* Find the CPU pset that corresponds to the pool */
7953         mutex_enter(&cpu_lock);
7954         if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7955                 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7956                     pool->pool_pset->pset_id);
7957         }
7958         mutex_exit(&cpu_lock);
7959 
7960         return (cpupart);
7961 }
7962 
7963 void
7964 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7965     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7966 {
7967         ASSERT(pool_lock_held());
7968 
7969         if (cpupart != NULL) {
7970                 emrp->mrp_mask |= MRP_POOL;
7971                 if (use_default) {
7972                         (void) strcpy(emrp->mrp_pool,
7973                             "pool_default");
7974                 } else {
7975                         ASSERT(strlen(mrp->mrp_pool) != 0);
7976                         (void) strcpy(emrp->mrp_pool,
7977                             mrp->mrp_pool);
7978                 }
7979         } else {
7980                 emrp->mrp_mask &= ~MRP_POOL;
7981                 bzero(emrp->mrp_pool, MAXPATHLEN);
7982         }
7983 }
7984 
7985 struct mac_pool_arg {
7986         char            mpa_poolname[MAXPATHLEN];
7987         pool_event_t    mpa_what;
7988 };
7989 
7990 /*ARGSUSED*/
7991 static uint_t
7992 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7993 {
7994         struct mac_pool_arg     *mpa = arg;
7995         mac_impl_t              *mip = (mac_impl_t *)val;
7996         mac_client_impl_t       *mcip;
7997         mac_resource_props_t    *mrp, *emrp;
7998         boolean_t               pool_update = B_FALSE;
7999         boolean_t               pool_clear = B_FALSE;
8000         boolean_t               use_default = B_FALSE;
8001         cpupart_t               *cpupart = NULL;
8002 
8003         mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
8004         i_mac_perim_enter(mip);
8005         for (mcip = mip->mi_clients_list; mcip != NULL;
8006             mcip = mcip->mci_client_next) {
8007                 pool_update = B_FALSE;
8008                 pool_clear = B_FALSE;
8009                 use_default = B_FALSE;
8010                 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
8011                 emrp = MCIP_EFFECTIVE_PROPS(mcip);
8012 
8013                 /*
8014                  * When pools are enabled
8015                  */
8016                 if ((mpa->mpa_what == POOL_E_ENABLE) &&
8017                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8018                         mrp->mrp_mask |= MRP_POOL;
8019                         pool_update = B_TRUE;
8020                 }
8021 
8022                 /*
8023                  * When pools are disabled
8024                  */
8025                 if ((mpa->mpa_what == POOL_E_DISABLE) &&
8026                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8027                         mrp->mrp_mask |= MRP_POOL;
8028                         pool_clear = B_TRUE;
8029                 }
8030 
8031                 /*
8032                  * Look for links with the pool property set and the poolname
8033                  * matching the one which is changing.
8034                  */
8035                 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
8036                         /*
8037                          * The pool associated with the link has changed.
8038                          */
8039                         if (mpa->mpa_what == POOL_E_CHANGE) {
8040                                 mrp->mrp_mask |= MRP_POOL;
8041                                 pool_update = B_TRUE;
8042                         }
8043                 }
8044 
8045                 /*
8046                  * This link is associated with pool_default and
8047                  * pool_default has changed.
8048                  */
8049                 if ((mpa->mpa_what == POOL_E_CHANGE) &&
8050                     (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
8051                     (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
8052                         mrp->mrp_mask |= MRP_POOL;
8053                         pool_update = B_TRUE;
8054                 }
8055 
8056                 /*
8057                  * Get new list of cpus for the pool, bind network
8058                  * threads to new list of cpus and update resources.
8059                  */
8060                 if (pool_update) {
8061                         if (MCIP_DATAPATH_SETUP(mcip)) {
8062                                 pool_lock();
8063                                 cpupart = mac_pset_find(mrp, &use_default);
8064                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8065                                     mac_rx_deliver, mcip, NULL, cpupart);
8066                                 mac_set_pool_effective(use_default, cpupart,
8067                                     mrp, emrp);
8068                                 pool_unlock();
8069                         }
8070                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8071                             B_FALSE);
8072                 }
8073 
8074                 /*
8075                  * Clear the effective pool and bind network threads
8076                  * to any available CPU.
8077                  */
8078                 if (pool_clear) {
8079                         if (MCIP_DATAPATH_SETUP(mcip)) {
8080                                 emrp->mrp_mask &= ~MRP_POOL;
8081                                 bzero(emrp->mrp_pool, MAXPATHLEN);
8082                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8083                                     mac_rx_deliver, mcip, NULL, NULL);
8084                         }
8085                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8086                             B_FALSE);
8087                 }
8088         }
8089         i_mac_perim_exit(mip);
8090         kmem_free(mrp, sizeof (*mrp));
8091         return (MH_WALK_CONTINUE);
8092 }
8093 
8094 static void
8095 mac_pool_update(void *arg)
8096 {
8097         mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
8098         kmem_free(arg, sizeof (struct mac_pool_arg));
8099 }
8100 
8101 /*
8102  * Callback function to be executed when a noteworthy pool event
8103  * takes place.
8104  */
8105 /* ARGSUSED */
8106 static void
8107 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
8108 {
8109         pool_t                  *pool;
8110         char                    *poolname = NULL;
8111         struct mac_pool_arg     *mpa;
8112 
8113         pool_lock();
8114         mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
8115 
8116         switch (what) {
8117         case POOL_E_ENABLE:
8118         case POOL_E_DISABLE:
8119                 break;
8120 
8121         case POOL_E_CHANGE:
8122                 pool = pool_lookup_pool_by_id(id);
8123                 if (pool == NULL) {
8124                         kmem_free(mpa, sizeof (struct mac_pool_arg));
8125                         pool_unlock();
8126                         return;
8127                 }
8128                 pool_get_name(pool, &poolname);
8129                 (void) strlcpy(mpa->mpa_poolname, poolname,
8130                     sizeof (mpa->mpa_poolname));
8131                 break;
8132 
8133         default:
8134                 kmem_free(mpa, sizeof (struct mac_pool_arg));
8135                 pool_unlock();
8136                 return;
8137         }
8138         pool_unlock();
8139 
8140         mpa->mpa_what = what;
8141 
8142         mac_pool_update(mpa);
8143 }
8144 
8145 /*
8146  * Set effective rings property. This could be called from datapath_setup/
8147  * datapath_teardown or set-linkprop.
8148  * If the group is reserved we just go ahead and set the effective rings.
8149  * Additionally, for TX this could mean the default group has lost/gained
8150  * some rings, so if the default group is reserved, we need to adjust the
8151  * effective rings for the default group clients. For RX, if we are working
8152  * with the non-default group, we just need to reset the effective props
8153  * for the default group clients.
8154  */
8155 void
8156 mac_set_rings_effective(mac_client_impl_t *mcip)
8157 {
8158         mac_impl_t              *mip = mcip->mci_mip;
8159         mac_group_t             *grp;
8160         mac_group_t             *defgrp;
8161         flow_entry_t            *flent = mcip->mci_flent;
8162         mac_resource_props_t    *emrp = MCIP_EFFECTIVE_PROPS(mcip);
8163         mac_grp_client_t        *mgcp;
8164         mac_client_impl_t       *gmcip;
8165 
8166         grp = flent->fe_rx_ring_group;
8167         if (grp != NULL) {
8168                 defgrp = MAC_DEFAULT_RX_GROUP(mip);
8169                 /*
8170                  * If we have reserved a group, set the effective rings
8171                  * to the ring count in the group.
8172                  */
8173                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8174                         emrp->mrp_mask |= MRP_RX_RINGS;
8175                         emrp->mrp_nrxrings = grp->mrg_cur_count;
8176                 }
8177 
8178                 /*
8179                  * We go through the clients in the shared group and
8180                  * reset the effective properties. It is possible this
8181                  * might have already been done for some client (i.e.
8182                  * if some client is being moved to a group that is
8183                  * already shared). The case where the default group is
8184                  * RESERVED is taken care of above (note in the RX side if
8185                  * there is a non-default group, the default group is always
8186                  * SHARED).
8187                  */
8188                 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8189                         if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
8190                                 mgcp = grp->mrg_clients;
8191                         else
8192                                 mgcp = defgrp->mrg_clients;
8193                         while (mgcp != NULL) {
8194                                 gmcip = mgcp->mgc_client;
8195                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8196                                 if (emrp->mrp_mask & MRP_RX_RINGS) {
8197                                         emrp->mrp_mask &= ~MRP_RX_RINGS;
8198                                         emrp->mrp_nrxrings = 0;
8199                                 }
8200                                 mgcp = mgcp->mgc_next;
8201                         }
8202                 }
8203         }
8204 
8205         /* Now the TX side */
8206         grp = flent->fe_tx_ring_group;
8207         if (grp != NULL) {
8208                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
8209 
8210                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8211                         emrp->mrp_mask |= MRP_TX_RINGS;
8212                         emrp->mrp_ntxrings = grp->mrg_cur_count;
8213                 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8214                         mgcp = grp->mrg_clients;
8215                         while (mgcp != NULL) {
8216                                 gmcip = mgcp->mgc_client;
8217                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8218                                 if (emrp->mrp_mask & MRP_TX_RINGS) {
8219                                         emrp->mrp_mask &= ~MRP_TX_RINGS;
8220                                         emrp->mrp_ntxrings = 0;
8221                                 }
8222                                 mgcp = mgcp->mgc_next;
8223                         }
8224                 }
8225 
8226                 /*
8227                  * If the group is not the default group and the default
8228                  * group is reserved, the ring count in the default group
8229                  * might have changed, update it.
8230                  */
8231                 if (grp != defgrp &&
8232                     defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8233                         gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
8234                         emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8235                         emrp->mrp_ntxrings = defgrp->mrg_cur_count;
8236                 }
8237         }
8238         emrp = MCIP_EFFECTIVE_PROPS(mcip);
8239 }
8240 
8241 /*
8242  * Check if the primary is in the default group. If so, see if we
8243  * can give it a an exclusive group now that another client is
8244  * being configured. We take the primary out of the default group
8245  * because the multicast/broadcast packets for the all the clients
8246  * will land in the default ring in the default group which means
8247  * any client in the default group, even if it is the only on in
8248  * the group, will lose exclusive access to the rings, hence
8249  * polling.
8250  */
8251 mac_client_impl_t *
8252 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8253 {
8254         mac_impl_t              *mip = mcip->mci_mip;
8255         mac_group_t             *defgrp = MAC_DEFAULT_RX_GROUP(mip);
8256         flow_entry_t            *flent = mcip->mci_flent;
8257         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
8258         uint8_t                 *mac_addr;
8259         mac_group_t             *ngrp;
8260 
8261         /*
8262          * Check if the primary is in the default group, if not
8263          * or if it is explicitly configured to be in the default
8264          * group OR set the RX rings property, return.
8265          */
8266         if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8267                 return (NULL);
8268 
8269         /*
8270          * If the new client needs an exclusive group and we
8271          * don't have another for the primary, return.
8272          */
8273         if (rxhw && mip->mi_rxhwclnt_avail < 2)
8274                 return (NULL);
8275 
8276         mac_addr = flent->fe_flow_desc.fd_dst_mac;
8277         /*
8278          * We call this when we are setting up the datapath for
8279          * the first non-primary.
8280          */
8281         ASSERT(mip->mi_nactiveclients == 2);
8282 
8283         /*
8284          * OK, now we have the primary that needs to be relocated.
8285          */
8286         ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8287         if (ngrp == NULL)
8288                 return (NULL);
8289         if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8290                 mac_stop_group(ngrp);
8291                 return (NULL);
8292         }
8293         return (mcip);
8294 }
8295 
8296 void
8297 mac_transceiver_init(mac_impl_t *mip)
8298 {
8299         if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8300             &mip->mi_transceiver)) {
8301                 /*
8302                  * The driver set a flag that we don't know about. In this case,
8303                  * we need to warn about that case and ignore this capability.
8304                  */
8305                 if (mip->mi_transceiver.mct_flags != 0) {
8306                         dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8307                             "flags to invalid value: 0x%x, ignoring "
8308                             "capability", mip->mi_transceiver.mct_flags);
8309                         bzero(&mip->mi_transceiver,
8310                             sizeof (mac_capab_transceiver_t));
8311                 }
8312         } else {
8313                         bzero(&mip->mi_transceiver,
8314                             sizeof (mac_capab_transceiver_t));
8315         }
8316 }
8317 
8318 int
8319 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8320 {
8321         mac_impl_t *mip = (mac_impl_t *)mh;
8322 
8323         ASSERT(MAC_PERIM_HELD(mh));
8324 
8325         if (mip->mi_transceiver.mct_ntransceivers == 0)
8326                 return (ENOTSUP);
8327 
8328         *countp = mip->mi_transceiver.mct_ntransceivers;
8329         return (0);
8330 }
8331 
8332 int
8333 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8334     boolean_t *usable)
8335 {
8336         int ret;
8337         mac_transceiver_info_t info;
8338 
8339         mac_impl_t *mip = (mac_impl_t *)mh;
8340 
8341         ASSERT(MAC_PERIM_HELD(mh));
8342 
8343         if (mip->mi_transceiver.mct_info == NULL ||
8344             mip->mi_transceiver.mct_ntransceivers == 0)
8345                 return (ENOTSUP);
8346 
8347         if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8348                 return (EINVAL);
8349 
8350         bzero(&info, sizeof (mac_transceiver_info_t));
8351         if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8352             &info)) != 0) {
8353                 return (ret);
8354         }
8355 
8356         *present = info.mti_present;
8357         *usable = info.mti_usable;
8358         return (0);
8359 }
8360 
8361 int
8362 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8363     size_t nbytes, off_t offset, size_t *nread)
8364 {
8365         int ret;
8366         size_t nr;
8367         mac_impl_t *mip = (mac_impl_t *)mh;
8368 
8369         ASSERT(MAC_PERIM_HELD(mh));
8370 
8371         if (mip->mi_transceiver.mct_read == NULL)
8372                 return (ENOTSUP);
8373 
8374         if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8375                 return (EINVAL);
8376 
8377         /*
8378          * All supported pages today are 256 bytes wide. Make sure offset +
8379          * nbytes never exceeds that.
8380          */
8381         if (offset < 0 || offset >= 256 || nbytes > 256 ||
8382             offset + nbytes > 256)
8383                 return (EINVAL);
8384 
8385         if (nread == NULL)
8386                 nread = &nr;
8387         ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8388             nbytes, offset, nread);
8389         if (ret == 0 && *nread > nbytes) {
8390                 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8391                     "%lu byte sized buffer, possible memory corruption",
8392                     *nread, nbytes);
8393         }
8394 
8395         return (ret);
8396 }
8397 
8398 void
8399 mac_led_init(mac_impl_t *mip)
8400 {
8401         mip->mi_led_modes = MAC_LED_DEFAULT;
8402 
8403         if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8404                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8405                 return;
8406         }
8407 
8408         if (mip->mi_led.mcl_flags != 0) {
8409                 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8410                     "flags to invalid value: 0x%x, ignoring "
8411                     "capability", mip->mi_transceiver.mct_flags);
8412                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8413                 return;
8414         }
8415 
8416         if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8417                 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8418                     "supported modes to invalid value: 0x%x, ignoring "
8419                     "capability", mip->mi_transceiver.mct_flags);
8420                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8421                 return;
8422         }
8423 }
8424 
8425 int
8426 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8427 {
8428         mac_impl_t *mip = (mac_impl_t *)mh;
8429 
8430         ASSERT(MAC_PERIM_HELD(mh));
8431 
8432         if (mip->mi_led.mcl_set == NULL)
8433                 return (ENOTSUP);
8434 
8435         *supported = mip->mi_led.mcl_modes;
8436         *active = mip->mi_led_modes;
8437 
8438         return (0);
8439 }
8440 
8441 /*
8442  * Update and multiplex the various LED requests. We only ever send one LED to
8443  * the underlying driver at a time. As such, we end up multiplexing all
8444  * requested states and picking one to send down to the driver.
8445  */
8446 int
8447 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8448 {
8449         int ret;
8450         mac_led_mode_t driver;
8451 
8452         mac_impl_t *mip = (mac_impl_t *)mh;
8453 
8454         ASSERT(MAC_PERIM_HELD(mh));
8455 
8456         /*
8457          * If we've been passed a desired value of zero, that indicates that
8458          * we're basically resetting to the value of zero, which is our default
8459          * value.
8460          */
8461         if (desired == 0)
8462                 desired = MAC_LED_DEFAULT;
8463 
8464         if (mip->mi_led.mcl_set == NULL)
8465                 return (ENOTSUP);
8466 
8467         /*
8468          * Catch both values that we don't know about and those that the driver
8469          * doesn't support.
8470          */
8471         if ((desired & ~MAC_LED_ALL) != 0)
8472                 return (EINVAL);
8473 
8474         if ((desired & ~mip->mi_led.mcl_modes) != 0)
8475                 return (ENOTSUP);
8476 
8477         /*
8478          * If we have the same value, then there is nothing to do.
8479          */
8480         if (desired == mip->mi_led_modes)
8481                 return (0);
8482 
8483         /*
8484          * Based on the desired value, determine what to send to the driver. We
8485          * only will send a single bit to the driver at any given time. IDENT
8486          * takes priority over OFF or ON. We also let OFF take priority over the
8487          * rest.
8488          */
8489         if (desired & MAC_LED_IDENT) {
8490                 driver = MAC_LED_IDENT;
8491         } else if (desired & MAC_LED_OFF) {
8492                 driver = MAC_LED_OFF;
8493         } else if (desired & MAC_LED_ON) {
8494                 driver = MAC_LED_ON;
8495         } else {
8496                 driver = MAC_LED_DEFAULT;
8497         }
8498 
8499         if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8500                 mip->mi_led_modes = desired;
8501         }
8502 
8503         return (ret);
8504 }