1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2019 Joyent, Inc.
  25  * Copyright 2015 Garrett D'Amore <garrett@damore.org>
  26  */
  27 
  28 /*
  29  * MAC Services Module
  30  *
  31  * The GLDv3 framework locking -  The MAC layer
  32  * --------------------------------------------
  33  *
  34  * The MAC layer is central to the GLD framework and can provide the locking
  35  * framework needed for itself and for the use of MAC clients. MAC end points
  36  * are fairly disjoint and don't share a lot of state. So a coarse grained
  37  * multi-threading scheme is to single thread all create/modify/delete or set
  38  * type of control operations on a per mac end point while allowing data threads
  39  * concurrently.
  40  *
  41  * Control operations (set) that modify a mac end point are always serialized on
  42  * a per mac end point basis, We have at most 1 such thread per mac end point
  43  * at a time.
  44  *
  45  * All other operations that are not serialized are essentially multi-threaded.
  46  * For example a control operation (get) like getting statistics which may not
  47  * care about reading values atomically or data threads sending or receiving
  48  * data. Mostly these type of operations don't modify the control state. Any
  49  * state these operations care about are protected using traditional locks.
  50  *
  51  * The perimeter only serializes serial operations. It does not imply there
  52  * aren't any other concurrent operations. However a serialized operation may
  53  * sometimes need to make sure it is the only thread. In this case it needs
  54  * to use reference counting mechanisms to cv_wait until any current data
  55  * threads are done.
  56  *
  57  * The mac layer itself does not hold any locks across a call to another layer.
  58  * The perimeter is however held across a down call to the driver to make the
  59  * whole control operation atomic with respect to other control operations.
  60  * Also the data path and get type control operations may proceed concurrently.
  61  * These operations synchronize with the single serial operation on a given mac
  62  * end point using regular locks. The perimeter ensures that conflicting
  63  * operations like say a mac_multicast_add and a mac_multicast_remove on the
  64  * same mac end point don't interfere with each other and also ensures that the
  65  * changes in the mac layer and the call to the underlying driver to say add a
  66  * multicast address are done atomically without interference from a thread
  67  * trying to delete the same address.
  68  *
  69  * For example, consider
  70  * mac_multicst_add()
  71  * {
  72  *      mac_perimeter_enter();  serialize all control operations
  73  *
  74  *      grab list lock          protect against access by data threads
  75  *      add to list
  76  *      drop list lock
  77  *
  78  *      call driver's mi_multicst
  79  *
  80  *      mac_perimeter_exit();
  81  * }
  82  *
  83  * To lessen the number of serialization locks and simplify the lock hierarchy,
  84  * we serialize all the control operations on a per mac end point by using a
  85  * single serialization lock called the perimeter. We allow recursive entry into
  86  * the perimeter to facilitate use of this mechanism by both the mac client and
  87  * the MAC layer itself.
  88  *
  89  * MAC client means an entity that does an operation on a mac handle
  90  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
  91  * an entity that does an operation on a mac handle obtained from a
  92  * mac_register. An entity could be both client and driver but on different
  93  * handles eg. aggr. and should only make the corresponding mac interface calls
  94  * i.e. mac driver interface or mac client interface as appropriate for that
  95  * mac handle.
  96  *
  97  * General rules.
  98  * -------------
  99  *
 100  * R1. The lock order of upcall threads is natually opposite to downcall
 101  * threads. Hence upcalls must not hold any locks across layers for fear of
 102  * recursive lock enter and lock order violation. This applies to all layers.
 103  *
 104  * R2. The perimeter is just another lock. Since it is held in the down
 105  * direction, acquiring the perimeter in an upcall is prohibited as it would
 106  * cause a deadlock. This applies to all layers.
 107  *
 108  * Note that upcalls that need to grab the mac perimeter (for example
 109  * mac_notify upcalls) can still achieve that by posting the request to a
 110  * thread, which can then grab all the required perimeters and locks in the
 111  * right global order. Note that in the above example the mac layer iself
 112  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
 113  * to the client must do that. Please see the aggr code for an example.
 114  *
 115  * MAC client rules
 116  * ----------------
 117  *
 118  * R3. A MAC client may use the MAC provided perimeter facility to serialize
 119  * control operations on a per mac end point. It does this by by acquring
 120  * and holding the perimeter across a sequence of calls to the mac layer.
 121  * This ensures atomicity across the entire block of mac calls. In this
 122  * model the MAC client must not hold any client locks across the calls to
 123  * the mac layer. This model is the preferred solution.
 124  *
 125  * R4. However if a MAC client has a lot of global state across all mac end
 126  * points the per mac end point serialization may not be sufficient. In this
 127  * case the client may choose to use global locks or use its own serialization.
 128  * To avoid deadlocks, these client layer locks held across the mac calls
 129  * in the control path must never be acquired by the data path for the reason
 130  * mentioned below.
 131  *
 132  * (Assume that a control operation that holds a client lock blocks in the
 133  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
 134  * data thread that holds this reference count, tries to acquire the same
 135  * client lock subsequently it will deadlock).
 136  *
 137  * A MAC client may follow either the R3 model or the R4 model, but can't
 138  * mix both. In the former, the hierarchy is Perim -> client locks, but in
 139  * the latter it is client locks -> Perim.
 140  *
 141  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
 142  * context since they may block while trying to acquire the perimeter.
 143  * In addition some calls may block waiting for upcall refcnts to come down to
 144  * zero.
 145  *
 146  * R6. MAC clients must make sure that they are single threaded and all threads
 147  * from the top (in particular data threads) have finished before calling
 148  * mac_client_close. The MAC framework does not track the number of client
 149  * threads using the mac client handle. Also mac clients must make sure
 150  * they have undone all the control operations before calling mac_client_close.
 151  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
 152  * mac_unicast_add/mac_multicast_add.
 153  *
 154  * MAC framework rules
 155  * -------------------
 156  *
 157  * R7. The mac layer itself must not hold any mac layer locks (except the mac
 158  * perimeter) across a call to any other layer from the mac layer. The call to
 159  * any other layer could be via mi_* entry points, classifier entry points into
 160  * the driver or via upcall pointers into layers above. The mac perimeter may
 161  * be acquired or held only in the down direction, for e.g. when calling into
 162  * a mi_* driver enty point to provide atomicity of the operation.
 163  *
 164  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
 165  * mac driver interfaces, the MAC layer must provide a cut out for control
 166  * interfaces like upcall notifications and start them in a separate thread.
 167  *
 168  * R9. Note that locking order also implies a plumbing order. For example
 169  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
 170  * to plumb in any other order must be failed at mac_open time, otherwise it
 171  * could lead to deadlocks due to inverse locking order.
 172  *
 173  * R10. MAC driver interfaces must not block since the driver could call them
 174  * in interrupt context.
 175  *
 176  * R11. Walkers must preferably not hold any locks while calling walker
 177  * callbacks. Instead these can operate on reference counts. In simple
 178  * callbacks it may be ok to hold a lock and call the callbacks, but this is
 179  * harder to maintain in the general case of arbitrary callbacks.
 180  *
 181  * R12. The MAC layer must protect upcall notification callbacks using reference
 182  * counts rather than holding locks across the callbacks.
 183  *
 184  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
 185  * sure that any pointers (such as mac ring pointers) it passes to the driver
 186  * remain valid until mac unregister time. Currently the mac layer achieves
 187  * this by using generation numbers for rings and freeing the mac rings only
 188  * at unregister time.  The MAC layer must provide a layer of indirection and
 189  * must not expose underlying driver rings or driver data structures/pointers
 190  * directly to MAC clients.
 191  *
 192  * MAC driver rules
 193  * ----------------
 194  *
 195  * R14. It would be preferable if MAC drivers don't hold any locks across any
 196  * mac call. However at a minimum they must not hold any locks across data
 197  * upcalls. They must also make sure that all references to mac data structures
 198  * are cleaned up and that it is single threaded at mac_unregister time.
 199  *
 200  * R15. MAC driver interfaces don't block and so the action may be done
 201  * asynchronously in a separate thread as for example handling notifications.
 202  * The driver must not assume that the action is complete when the call
 203  * returns.
 204  *
 205  * R16. Drivers must maintain a generation number per Rx ring, and pass it
 206  * back to mac_rx_ring(); They are expected to increment the generation
 207  * number whenever the ring's stop routine is invoked.
 208  * See comments in mac_rx_ring();
 209  *
 210  * R17 Similarly mi_stop is another synchronization point and the driver must
 211  * ensure that all upcalls are done and there won't be any future upcall
 212  * before returning from mi_stop.
 213  *
 214  * R18. The driver may assume that all set/modify control operations via
 215  * the mi_* entry points are single threaded on a per mac end point.
 216  *
 217  * Lock and Perimeter hierarchy scenarios
 218  * ---------------------------------------
 219  *
 220  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
 221  *
 222  * ft_lock -> fe_lock [mac_flow_lookup]
 223  *
 224  * mi_rw_lock -> fe_lock [mac_bcast_send]
 225  *
 226  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
 227  *
 228  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
 229  *
 230  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
 231  *
 232  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
 233  * client to driver. In the case of clients that explictly use the mac provided
 234  * perimeter mechanism for its serialization, the hierarchy is
 235  * Perimeter -> mac layer locks, since the client never holds any locks across
 236  * the mac calls. In the case of clients that use its own locks the hierarchy
 237  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
 238  * calls mac_perim_enter/exit in this case.
 239  *
 240  * Subflow creation rules
 241  * ---------------------------
 242  * o In case of a user specified cpulist present on underlying link and flows,
 243  * the flows cpulist must be a subset of the underlying link.
 244  * o In case of a user specified fanout mode present on link and flow, the
 245  * subflow fanout count has to be less than or equal to that of the
 246  * underlying link. The cpu-bindings for the subflows will be a subset of
 247  * the underlying link.
 248  * o In case if no cpulist specified on both underlying link and flow, the
 249  * underlying link relies on a  MAC tunable to provide out of box fanout.
 250  * The subflow will have no cpulist (the subflow will be unbound)
 251  * o In case if no cpulist is specified on the underlying link, a subflow can
 252  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
 253  * for the subflow will not adhere to restriction that they need to be subset
 254  * of the underlying link.
 255  * o In case where the underlying link is carrying either a user specified
 256  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
 257  * created unbound.
 258  * o While creating unbound subflows, bandwidth mode changes attempt to
 259  * figure a right fanout count. In such cases the fanout count will override
 260  * the unbound cpu-binding behavior.
 261  * o In addition to this, while cycling between flow and link properties, we
 262  * impose a restriction that if a link property has a subflow with
 263  * user-specified attributes, we will not allow changing the link property.
 264  * The administrator needs to reset all the user specified properties for the
 265  * subflows before attempting a link property change.
 266  * Some of the above rules can be overridden by specifying additional command
 267  * line options while creating or modifying link or subflow properties.
 268  *
 269  * Datapath
 270  * --------
 271  *
 272  * For information on the datapath, the world of soft rings, hardware rings, how
 273  * it is structured, and the path of an mblk_t between a driver and a mac
 274  * client, see mac_sched.c.
 275  */
 276 
 277 #include <sys/types.h>
 278 #include <sys/conf.h>
 279 #include <sys/id_space.h>
 280 #include <sys/esunddi.h>
 281 #include <sys/stat.h>
 282 #include <sys/mkdev.h>
 283 #include <sys/stream.h>
 284 #include <sys/strsun.h>
 285 #include <sys/strsubr.h>
 286 #include <sys/dlpi.h>
 287 #include <sys/list.h>
 288 #include <sys/modhash.h>
 289 #include <sys/mac_provider.h>
 290 #include <sys/mac_client_impl.h>
 291 #include <sys/mac_soft_ring.h>
 292 #include <sys/mac_stat.h>
 293 #include <sys/mac_impl.h>
 294 #include <sys/mac.h>
 295 #include <sys/dls.h>
 296 #include <sys/dld.h>
 297 #include <sys/modctl.h>
 298 #include <sys/fs/dv_node.h>
 299 #include <sys/thread.h>
 300 #include <sys/proc.h>
 301 #include <sys/callb.h>
 302 #include <sys/cpuvar.h>
 303 #include <sys/atomic.h>
 304 #include <sys/bitmap.h>
 305 #include <sys/sdt.h>
 306 #include <sys/mac_flow.h>
 307 #include <sys/ddi_intr_impl.h>
 308 #include <sys/disp.h>
 309 #include <sys/sdt.h>
 310 #include <sys/vnic.h>
 311 #include <sys/vnic_impl.h>
 312 #include <sys/vlan.h>
 313 #include <inet/ip.h>
 314 #include <inet/ip6.h>
 315 #include <sys/exacct.h>
 316 #include <sys/exacct_impl.h>
 317 #include <inet/nd.h>
 318 #include <sys/ethernet.h>
 319 #include <sys/pool.h>
 320 #include <sys/pool_pset.h>
 321 #include <sys/cpupart.h>
 322 #include <inet/wifi_ioctl.h>
 323 #include <net/wpa.h>
 324 
 325 #define IMPL_HASHSZ     67      /* prime */
 326 
 327 kmem_cache_t            *i_mac_impl_cachep;
 328 mod_hash_t              *i_mac_impl_hash;
 329 krwlock_t               i_mac_impl_lock;
 330 uint_t                  i_mac_impl_count;
 331 static kmem_cache_t     *mac_ring_cache;
 332 static id_space_t       *minor_ids;
 333 static uint32_t         minor_count;
 334 static pool_event_cb_t  mac_pool_event_reg;
 335 
 336 /*
 337  * Logging stuff. Perhaps mac_logging_interval could be broken into
 338  * mac_flow_log_interval and mac_link_log_interval if we want to be
 339  * able to schedule them differently.
 340  */
 341 uint_t                  mac_logging_interval;
 342 boolean_t               mac_flow_log_enable;
 343 boolean_t               mac_link_log_enable;
 344 timeout_id_t            mac_logging_timer;
 345 
 346 #define MACTYPE_KMODDIR "mac"
 347 #define MACTYPE_HASHSZ  67
 348 static mod_hash_t       *i_mactype_hash;
 349 /*
 350  * i_mactype_lock synchronizes threads that obtain references to mactype_t
 351  * structures through i_mactype_getplugin().
 352  */
 353 static kmutex_t         i_mactype_lock;
 354 
 355 /*
 356  * mac_tx_percpu_cnt
 357  *
 358  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
 359  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
 360  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
 361  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
 362  */
 363 int mac_tx_percpu_cnt;
 364 int mac_tx_percpu_cnt_max = 128;
 365 
 366 /*
 367  * Call back functions for the bridge module.  These are guaranteed to be valid
 368  * when holding a reference on a link or when holding mip->mi_bridge_lock and
 369  * mi_bridge_link is non-NULL.
 370  */
 371 mac_bridge_tx_t mac_bridge_tx_cb;
 372 mac_bridge_rx_t mac_bridge_rx_cb;
 373 mac_bridge_ref_t mac_bridge_ref_cb;
 374 mac_bridge_ls_t mac_bridge_ls_cb;
 375 
 376 static int i_mac_constructor(void *, void *, int);
 377 static void i_mac_destructor(void *, void *);
 378 static int i_mac_ring_ctor(void *, void *, int);
 379 static void i_mac_ring_dtor(void *, void *);
 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
 381 void mac_tx_client_flush(mac_client_impl_t *);
 382 void mac_tx_client_block(mac_client_impl_t *);
 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
 384 static int mac_start_group_and_rings(mac_group_t *);
 385 static void mac_stop_group_and_rings(mac_group_t *);
 386 static void mac_pool_event_cb(pool_event_t, int, void *);
 387 
 388 typedef struct netinfo_s {
 389         list_node_t     ni_link;
 390         void            *ni_record;
 391         int             ni_size;
 392         int             ni_type;
 393 } netinfo_t;
 394 
 395 /*
 396  * Module initialization functions.
 397  */
 398 
 399 void
 400 mac_init(void)
 401 {
 402         mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
 403             boot_max_ncpus);
 404 
 405         /* Upper bound is mac_tx_percpu_cnt_max */
 406         if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
 407                 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
 408 
 409         if (mac_tx_percpu_cnt < 1) {
 410                 /* Someone set max_tx_percpu_cnt_max to 0 or less */
 411                 mac_tx_percpu_cnt = 1;
 412         }
 413 
 414         ASSERT(mac_tx_percpu_cnt >= 1);
 415         mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
 416         /*
 417          * Make it of the form 2**N - 1 in the range
 418          * [0 .. mac_tx_percpu_cnt_max - 1]
 419          */
 420         mac_tx_percpu_cnt--;
 421 
 422         i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
 423             sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
 424             NULL, NULL, NULL, 0);
 425         ASSERT(i_mac_impl_cachep != NULL);
 426 
 427         mac_ring_cache = kmem_cache_create("mac_ring_cache",
 428             sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
 429             NULL, NULL, 0);
 430         ASSERT(mac_ring_cache != NULL);
 431 
 432         i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
 433             IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
 434             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 435         rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
 436 
 437         mac_flow_init();
 438         mac_soft_ring_init();
 439         mac_bcast_init();
 440         mac_client_init();
 441 
 442         i_mac_impl_count = 0;
 443 
 444         i_mactype_hash = mod_hash_create_extended("mactype_hash",
 445             MACTYPE_HASHSZ,
 446             mod_hash_null_keydtor, mod_hash_null_valdtor,
 447             mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
 448 
 449         /*
 450          * Allocate an id space to manage minor numbers. The range of the
 451          * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1.  This
 452          * leaves half of the 32-bit minors available for driver private use.
 453          */
 454         minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
 455             MAC_PRIVATE_MINOR-1);
 456         ASSERT(minor_ids != NULL);
 457         minor_count = 0;
 458 
 459         /* Let's default to 20 seconds */
 460         mac_logging_interval = 20;
 461         mac_flow_log_enable = B_FALSE;
 462         mac_link_log_enable = B_FALSE;
 463         mac_logging_timer = NULL;
 464 
 465         /* Register to be notified of noteworthy pools events */
 466         mac_pool_event_reg.pec_func =  mac_pool_event_cb;
 467         mac_pool_event_reg.pec_arg = NULL;
 468         pool_event_cb_register(&mac_pool_event_reg);
 469 }
 470 
 471 int
 472 mac_fini(void)
 473 {
 474 
 475         if (i_mac_impl_count > 0 || minor_count > 0)
 476                 return (EBUSY);
 477 
 478         pool_event_cb_unregister(&mac_pool_event_reg);
 479 
 480         id_space_destroy(minor_ids);
 481         mac_flow_fini();
 482 
 483         mod_hash_destroy_hash(i_mac_impl_hash);
 484         rw_destroy(&i_mac_impl_lock);
 485 
 486         mac_client_fini();
 487         kmem_cache_destroy(mac_ring_cache);
 488 
 489         mod_hash_destroy_hash(i_mactype_hash);
 490         mac_soft_ring_finish();
 491 
 492 
 493         return (0);
 494 }
 495 
 496 /*
 497  * Initialize a GLDv3 driver's device ops.  A driver that manages its own ops
 498  * (e.g. softmac) may pass in a NULL ops argument.
 499  */
 500 void
 501 mac_init_ops(struct dev_ops *ops, const char *name)
 502 {
 503         major_t major = ddi_name_to_major((char *)name);
 504 
 505         /*
 506          * By returning on error below, we are not letting the driver continue
 507          * in an undefined context.  The mac_register() function will faill if
 508          * DN_GLDV3_DRIVER isn't set.
 509          */
 510         if (major == DDI_MAJOR_T_NONE)
 511                 return;
 512         LOCK_DEV_OPS(&devnamesp[major].dn_lock);
 513         devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
 514         UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
 515         if (ops != NULL)
 516                 dld_init_ops(ops, name);
 517 }
 518 
 519 void
 520 mac_fini_ops(struct dev_ops *ops)
 521 {
 522         dld_fini_ops(ops);
 523 }
 524 
 525 /*ARGSUSED*/
 526 static int
 527 i_mac_constructor(void *buf, void *arg, int kmflag)
 528 {
 529         mac_impl_t      *mip = buf;
 530 
 531         bzero(buf, sizeof (mac_impl_t));
 532 
 533         mip->mi_linkstate = LINK_STATE_UNKNOWN;
 534 
 535         rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
 536         mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
 537         mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
 538         mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
 539 
 540         mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
 541         cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 542         mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
 543         cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
 544 
 545         mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
 546 
 547         return (0);
 548 }
 549 
 550 /*ARGSUSED*/
 551 static void
 552 i_mac_destructor(void *buf, void *arg)
 553 {
 554         mac_impl_t      *mip = buf;
 555         mac_cb_info_t   *mcbi;
 556 
 557         ASSERT(mip->mi_ref == 0);
 558         ASSERT(mip->mi_active == 0);
 559         ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
 560         ASSERT(mip->mi_devpromisc == 0);
 561         ASSERT(mip->mi_ksp == NULL);
 562         ASSERT(mip->mi_kstat_count == 0);
 563         ASSERT(mip->mi_nclients == 0);
 564         ASSERT(mip->mi_nactiveclients == 0);
 565         ASSERT(mip->mi_single_active_client == NULL);
 566         ASSERT(mip->mi_state_flags == 0);
 567         ASSERT(mip->mi_factory_addr == NULL);
 568         ASSERT(mip->mi_factory_addr_num == 0);
 569         ASSERT(mip->mi_default_tx_ring == NULL);
 570 
 571         mcbi = &mip->mi_notify_cb_info;
 572         ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
 573         ASSERT(mip->mi_notify_bits == 0);
 574         ASSERT(mip->mi_notify_thread == NULL);
 575         ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
 576         mcbi->mcbi_lockp = NULL;
 577 
 578         mcbi = &mip->mi_promisc_cb_info;
 579         ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
 580         ASSERT(mip->mi_promisc_list == NULL);
 581         ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
 582         mcbi->mcbi_lockp = NULL;
 583 
 584         ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
 585         ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
 586 
 587         rw_destroy(&mip->mi_rw_lock);
 588 
 589         mutex_destroy(&mip->mi_promisc_lock);
 590         cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
 591         mutex_destroy(&mip->mi_notify_lock);
 592         cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
 593         mutex_destroy(&mip->mi_ring_lock);
 594 
 595         ASSERT(mip->mi_bridge_link == NULL);
 596 }
 597 
 598 /* ARGSUSED */
 599 static int
 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
 601 {
 602         mac_ring_t *ring = (mac_ring_t *)buf;
 603 
 604         bzero(ring, sizeof (mac_ring_t));
 605         cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
 606         mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
 607         ring->mr_state = MR_FREE;
 608         return (0);
 609 }
 610 
 611 /* ARGSUSED */
 612 static void
 613 i_mac_ring_dtor(void *buf, void *arg)
 614 {
 615         mac_ring_t *ring = (mac_ring_t *)buf;
 616 
 617         cv_destroy(&ring->mr_cv);
 618         mutex_destroy(&ring->mr_lock);
 619 }
 620 
 621 /*
 622  * Common functions to do mac callback addition and deletion. Currently this is
 623  * used by promisc callbacks and notify callbacks. List addition and deletion
 624  * need to take care of list walkers. List walkers in general, can't hold list
 625  * locks and make upcall callbacks due to potential lock order and recursive
 626  * reentry issues. Instead list walkers increment the list walker count to mark
 627  * the presence of a walker thread. Addition can be carefully done to ensure
 628  * that the list walker always sees either the old list or the new list.
 629  * However the deletion can't be done while the walker is active, instead the
 630  * deleting thread simply marks the entry as logically deleted. The last walker
 631  * physically deletes and frees up the logically deleted entries when the walk
 632  * is complete.
 633  */
 634 void
 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 636     mac_cb_t *mcb_elem)
 637 {
 638         mac_cb_t        *p;
 639         mac_cb_t        **pp;
 640 
 641         /* Verify it is not already in the list */
 642         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 643                 if (p == mcb_elem)
 644                         break;
 645         }
 646         VERIFY(p == NULL);
 647 
 648         /*
 649          * Add it to the head of the callback list. The membar ensures that
 650          * the following list pointer manipulations reach global visibility
 651          * in exactly the program order below.
 652          */
 653         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 654 
 655         mcb_elem->mcb_nextp = *mcb_head;
 656         membar_producer();
 657         *mcb_head = mcb_elem;
 658 }
 659 
 660 /*
 661  * Mark the entry as logically deleted. If there aren't any walkers unlink
 662  * from the list. In either case return the corresponding status.
 663  */
 664 boolean_t
 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
 666     mac_cb_t *mcb_elem)
 667 {
 668         mac_cb_t        *p;
 669         mac_cb_t        **pp;
 670 
 671         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 672         /*
 673          * Search the callback list for the entry to be removed
 674          */
 675         for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
 676                 if (p == mcb_elem)
 677                         break;
 678         }
 679         VERIFY(p != NULL);
 680 
 681         /*
 682          * If there are walkers just mark it as deleted and the last walker
 683          * will remove from the list and free it.
 684          */
 685         if (mcbi->mcbi_walker_cnt != 0) {
 686                 p->mcb_flags |= MCB_CONDEMNED;
 687                 mcbi->mcbi_del_cnt++;
 688                 return (B_FALSE);
 689         }
 690 
 691         ASSERT(mcbi->mcbi_del_cnt == 0);
 692         *pp = p->mcb_nextp;
 693         p->mcb_nextp = NULL;
 694         return (B_TRUE);
 695 }
 696 
 697 /*
 698  * Wait for all pending callback removals to be completed
 699  */
 700 void
 701 mac_callback_remove_wait(mac_cb_info_t *mcbi)
 702 {
 703         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 704         while (mcbi->mcbi_del_cnt != 0) {
 705                 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
 706                 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
 707         }
 708 }
 709 
 710 /*
 711  * The last mac callback walker does the cleanup. Walk the list and unlik
 712  * all the logically deleted entries and construct a temporary list of
 713  * removed entries. Return the list of removed entries to the caller.
 714  */
 715 mac_cb_t *
 716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
 717 {
 718         mac_cb_t        *p;
 719         mac_cb_t        **pp;
 720         mac_cb_t        *rmlist = NULL;         /* List of removed elements */
 721         int     cnt = 0;
 722 
 723         ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
 724         ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
 725 
 726         pp = mcb_head;
 727         while (*pp != NULL) {
 728                 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
 729                         p = *pp;
 730                         *pp = p->mcb_nextp;
 731                         p->mcb_nextp = rmlist;
 732                         rmlist = p;
 733                         cnt++;
 734                         continue;
 735                 }
 736                 pp = &(*pp)->mcb_nextp;
 737         }
 738 
 739         ASSERT(mcbi->mcbi_del_cnt == cnt);
 740         mcbi->mcbi_del_cnt = 0;
 741         return (rmlist);
 742 }
 743 
 744 boolean_t
 745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 746 {
 747         mac_cb_t        *mcb;
 748 
 749         /* Verify it is not already in the list */
 750         for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
 751                 if (mcb == mcb_elem)
 752                         return (B_TRUE);
 753         }
 754 
 755         return (B_FALSE);
 756 }
 757 
 758 boolean_t
 759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
 760 {
 761         boolean_t       found;
 762 
 763         mutex_enter(mcbi->mcbi_lockp);
 764         found = mac_callback_lookup(mcb_headp, mcb_elem);
 765         mutex_exit(mcbi->mcbi_lockp);
 766 
 767         return (found);
 768 }
 769 
 770 /* Free the list of removed callbacks */
 771 void
 772 mac_callback_free(mac_cb_t *rmlist)
 773 {
 774         mac_cb_t        *mcb;
 775         mac_cb_t        *mcb_next;
 776 
 777         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 778                 mcb_next = mcb->mcb_nextp;
 779                 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
 780         }
 781 }
 782 
 783 /*
 784  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
 785  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
 786  * is only a single shared total walker count, and an entry can't be physically
 787  * unlinked if a walker is active on either list. The last walker does this
 788  * cleanup of logically deleted entries.
 789  */
 790 void
 791 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
 792 {
 793         mac_cb_t        *rmlist;
 794         mac_cb_t        *mcb;
 795         mac_cb_t        *mcb_next;
 796         mac_promisc_impl_t      *mpip;
 797 
 798         /*
 799          * Construct a temporary list of deleted callbacks by walking the
 800          * the mi_promisc_list. Then for each entry in the temporary list,
 801          * remove it from the mci_promisc_list and free the entry.
 802          */
 803         rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
 804             &mip->mi_promisc_list);
 805 
 806         for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
 807                 mcb_next = mcb->mcb_nextp;
 808                 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
 809                 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
 810                     &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
 811                 mcb->mcb_flags = 0;
 812                 mcb->mcb_nextp = NULL;
 813                 kmem_cache_free(mac_promisc_impl_cache, mpip);
 814         }
 815 }
 816 
 817 void
 818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
 819 {
 820         mac_cb_info_t   *mcbi;
 821 
 822         /*
 823          * Signal the notify thread even after mi_ref has become zero and
 824          * mi_disabled is set. The synchronization with the notify thread
 825          * happens in mac_unregister and that implies the driver must make
 826          * sure it is single-threaded (with respect to mac calls) and that
 827          * all pending mac calls have returned before it calls mac_unregister
 828          */
 829         rw_enter(&i_mac_impl_lock, RW_READER);
 830         if (mip->mi_state_flags & MIS_DISABLED)
 831                 goto exit;
 832 
 833         /*
 834          * Guard against incorrect notifications.  (Running a newer
 835          * mac client against an older implementation?)
 836          */
 837         if (type >= MAC_NNOTE)
 838                 goto exit;
 839 
 840         mcbi = &mip->mi_notify_cb_info;
 841         mutex_enter(mcbi->mcbi_lockp);
 842         mip->mi_notify_bits |= (1 << type);
 843         cv_broadcast(&mcbi->mcbi_cv);
 844         mutex_exit(mcbi->mcbi_lockp);
 845 
 846 exit:
 847         rw_exit(&i_mac_impl_lock);
 848 }
 849 
 850 /*
 851  * Mac serialization primitives. Please see the block comment at the
 852  * top of the file.
 853  */
 854 void
 855 i_mac_perim_enter(mac_impl_t *mip)
 856 {
 857         mac_client_impl_t       *mcip;
 858 
 859         if (mip->mi_state_flags & MIS_IS_VNIC) {
 860                 /*
 861                  * This is a VNIC. Return the lower mac since that is what
 862                  * we want to serialize on.
 863                  */
 864                 mcip = mac_vnic_lower(mip);
 865                 mip = mcip->mci_mip;
 866         }
 867 
 868         mutex_enter(&mip->mi_perim_lock);
 869         if (mip->mi_perim_owner == curthread) {
 870                 mip->mi_perim_ocnt++;
 871                 mutex_exit(&mip->mi_perim_lock);
 872                 return;
 873         }
 874 
 875         while (mip->mi_perim_owner != NULL)
 876                 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
 877 
 878         mip->mi_perim_owner = curthread;
 879         ASSERT(mip->mi_perim_ocnt == 0);
 880         mip->mi_perim_ocnt++;
 881 #ifdef DEBUG
 882         mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
 883             MAC_PERIM_STACK_DEPTH);
 884 #endif
 885         mutex_exit(&mip->mi_perim_lock);
 886 }
 887 
 888 int
 889 i_mac_perim_enter_nowait(mac_impl_t *mip)
 890 {
 891         /*
 892          * The vnic is a special case, since the serialization is done based
 893          * on the lower mac. If the lower mac is busy, it does not imply the
 894          * vnic can't be unregistered. But in the case of other drivers,
 895          * a busy perimeter or open mac handles implies that the mac is busy
 896          * and can't be unregistered.
 897          */
 898         if (mip->mi_state_flags & MIS_IS_VNIC) {
 899                 i_mac_perim_enter(mip);
 900                 return (0);
 901         }
 902 
 903         mutex_enter(&mip->mi_perim_lock);
 904         if (mip->mi_perim_owner != NULL) {
 905                 mutex_exit(&mip->mi_perim_lock);
 906                 return (EBUSY);
 907         }
 908         ASSERT(mip->mi_perim_ocnt == 0);
 909         mip->mi_perim_owner = curthread;
 910         mip->mi_perim_ocnt++;
 911         mutex_exit(&mip->mi_perim_lock);
 912 
 913         return (0);
 914 }
 915 
 916 void
 917 i_mac_perim_exit(mac_impl_t *mip)
 918 {
 919         mac_client_impl_t *mcip;
 920 
 921         if (mip->mi_state_flags & MIS_IS_VNIC) {
 922                 /*
 923                  * This is a VNIC. Return the lower mac since that is what
 924                  * we want to serialize on.
 925                  */
 926                 mcip = mac_vnic_lower(mip);
 927                 mip = mcip->mci_mip;
 928         }
 929 
 930         ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
 931 
 932         mutex_enter(&mip->mi_perim_lock);
 933         if (--mip->mi_perim_ocnt == 0) {
 934                 mip->mi_perim_owner = NULL;
 935                 cv_signal(&mip->mi_perim_cv);
 936         }
 937         mutex_exit(&mip->mi_perim_lock);
 938 }
 939 
 940 /*
 941  * Returns whether the current thread holds the mac perimeter. Used in making
 942  * assertions.
 943  */
 944 boolean_t
 945 mac_perim_held(mac_handle_t mh)
 946 {
 947         mac_impl_t      *mip = (mac_impl_t *)mh;
 948         mac_client_impl_t *mcip;
 949 
 950         if (mip->mi_state_flags & MIS_IS_VNIC) {
 951                 /*
 952                  * This is a VNIC. Return the lower mac since that is what
 953                  * we want to serialize on.
 954                  */
 955                 mcip = mac_vnic_lower(mip);
 956                 mip = mcip->mci_mip;
 957         }
 958         return (mip->mi_perim_owner == curthread);
 959 }
 960 
 961 /*
 962  * mac client interfaces to enter the mac perimeter of a mac end point, given
 963  * its mac handle, or macname or linkid.
 964  */
 965 void
 966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
 967 {
 968         mac_impl_t      *mip = (mac_impl_t *)mh;
 969 
 970         i_mac_perim_enter(mip);
 971         /*
 972          * The mac_perim_handle_t returned encodes the 'mip' and whether a
 973          * mac_open has been done internally while entering the perimeter.
 974          * This information is used in mac_perim_exit
 975          */
 976         MAC_ENCODE_MPH(*mphp, mip, 0);
 977 }
 978 
 979 int
 980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
 981 {
 982         int     err;
 983         mac_handle_t    mh;
 984 
 985         if ((err = mac_open(name, &mh)) != 0)
 986                 return (err);
 987 
 988         mac_perim_enter_by_mh(mh, mphp);
 989         MAC_ENCODE_MPH(*mphp, mh, 1);
 990         return (0);
 991 }
 992 
 993 int
 994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
 995 {
 996         int     err;
 997         mac_handle_t    mh;
 998 
 999         if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1000                 return (err);
1001 
1002         mac_perim_enter_by_mh(mh, mphp);
1003         MAC_ENCODE_MPH(*mphp, mh, 1);
1004         return (0);
1005 }
1006 
1007 void
1008 mac_perim_exit(mac_perim_handle_t mph)
1009 {
1010         mac_impl_t      *mip;
1011         boolean_t       need_close;
1012 
1013         MAC_DECODE_MPH(mph, mip, need_close);
1014         i_mac_perim_exit(mip);
1015         if (need_close)
1016                 mac_close((mac_handle_t)mip);
1017 }
1018 
1019 int
1020 mac_hold(const char *macname, mac_impl_t **pmip)
1021 {
1022         mac_impl_t      *mip;
1023         int             err;
1024 
1025         /*
1026          * Check the device name length to make sure it won't overflow our
1027          * buffer.
1028          */
1029         if (strlen(macname) >= MAXNAMELEN)
1030                 return (EINVAL);
1031 
1032         /*
1033          * Look up its entry in the global hash table.
1034          */
1035         rw_enter(&i_mac_impl_lock, RW_WRITER);
1036         err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1037             (mod_hash_val_t *)&mip);
1038 
1039         if (err != 0) {
1040                 rw_exit(&i_mac_impl_lock);
1041                 return (ENOENT);
1042         }
1043 
1044         if (mip->mi_state_flags & MIS_DISABLED) {
1045                 rw_exit(&i_mac_impl_lock);
1046                 return (ENOENT);
1047         }
1048 
1049         if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1050                 rw_exit(&i_mac_impl_lock);
1051                 return (EBUSY);
1052         }
1053 
1054         mip->mi_ref++;
1055         rw_exit(&i_mac_impl_lock);
1056 
1057         *pmip = mip;
1058         return (0);
1059 }
1060 
1061 void
1062 mac_rele(mac_impl_t *mip)
1063 {
1064         rw_enter(&i_mac_impl_lock, RW_WRITER);
1065         ASSERT(mip->mi_ref != 0);
1066         if (--mip->mi_ref == 0) {
1067                 ASSERT(mip->mi_nactiveclients == 0 &&
1068                     !(mip->mi_state_flags & MIS_EXCLUSIVE));
1069         }
1070         rw_exit(&i_mac_impl_lock);
1071 }
1072 
1073 /*
1074  * Private GLDv3 function to start a MAC instance.
1075  */
1076 int
1077 mac_start(mac_handle_t mh)
1078 {
1079         mac_impl_t      *mip = (mac_impl_t *)mh;
1080         int             err = 0;
1081         mac_group_t     *defgrp;
1082 
1083         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1084         ASSERT(mip->mi_start != NULL);
1085 
1086         /*
1087          * Check whether the device is already started.
1088          */
1089         if (mip->mi_active++ == 0) {
1090                 mac_ring_t *ring = NULL;
1091 
1092                 /*
1093                  * Start the device.
1094                  */
1095                 err = mip->mi_start(mip->mi_driver);
1096                 if (err != 0) {
1097                         mip->mi_active--;
1098                         return (err);
1099                 }
1100 
1101                 /*
1102                  * Start the default tx ring.
1103                  */
1104                 if (mip->mi_default_tx_ring != NULL) {
1105 
1106                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1107                         if (ring->mr_state != MR_INUSE) {
1108                                 err = mac_start_ring(ring);
1109                                 if (err != 0) {
1110                                         mip->mi_active--;
1111                                         return (err);
1112                                 }
1113                         }
1114                 }
1115 
1116                 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1117                         /*
1118                          * Start the default group which is responsible
1119                          * for receiving broadcast and multicast
1120                          * traffic for both primary and non-primary
1121                          * MAC clients.
1122                          */
1123                         ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1124                         err = mac_start_group_and_rings(defgrp);
1125                         if (err != 0) {
1126                                 mip->mi_active--;
1127                                 if ((ring != NULL) &&
1128                                     (ring->mr_state == MR_INUSE))
1129                                         mac_stop_ring(ring);
1130                                 return (err);
1131                         }
1132                         mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1133                 }
1134         }
1135 
1136         return (err);
1137 }
1138 
1139 /*
1140  * Private GLDv3 function to stop a MAC instance.
1141  */
1142 void
1143 mac_stop(mac_handle_t mh)
1144 {
1145         mac_impl_t      *mip = (mac_impl_t *)mh;
1146         mac_group_t     *grp;
1147 
1148         ASSERT(mip->mi_stop != NULL);
1149         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1150 
1151         /*
1152          * Check whether the device is still needed.
1153          */
1154         ASSERT(mip->mi_active != 0);
1155         if (--mip->mi_active == 0) {
1156                 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1157                         /*
1158                          * There should be no more active clients since the
1159                          * MAC is being stopped. Stop the default RX group
1160                          * and transition it back to registered state.
1161                          *
1162                          * When clients are torn down, the groups
1163                          * are release via mac_release_rx_group which
1164                          * knows the the default group is always in
1165                          * started mode since broadcast uses it. So
1166                          * we can assert that their are no clients
1167                          * (since mac_bcast_add doesn't register itself
1168                          * as a client) and group is in SHARED state.
1169                          */
1170                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1171                         ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1172                             mip->mi_nactiveclients == 0);
1173                         mac_stop_group_and_rings(grp);
1174                         mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1175                 }
1176 
1177                 if (mip->mi_default_tx_ring != NULL) {
1178                         mac_ring_t *ring;
1179 
1180                         ring = (mac_ring_t *)mip->mi_default_tx_ring;
1181                         if (ring->mr_state == MR_INUSE) {
1182                                 mac_stop_ring(ring);
1183                                 ring->mr_flag = 0;
1184                         }
1185                 }
1186 
1187                 /*
1188                  * Stop the device.
1189                  */
1190                 mip->mi_stop(mip->mi_driver);
1191         }
1192 }
1193 
1194 int
1195 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1196 {
1197         int             err = 0;
1198 
1199         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1200         ASSERT(mip->mi_setpromisc != NULL);
1201 
1202         if (on) {
1203                 /*
1204                  * Enable promiscuous mode on the device if not yet enabled.
1205                  */
1206                 if (mip->mi_devpromisc++ == 0) {
1207                         err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1208                         if (err != 0) {
1209                                 mip->mi_devpromisc--;
1210                                 return (err);
1211                         }
1212                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1213                 }
1214         } else {
1215                 if (mip->mi_devpromisc == 0)
1216                         return (EPROTO);
1217 
1218                 /*
1219                  * Disable promiscuous mode on the device if this is the last
1220                  * enabling.
1221                  */
1222                 if (--mip->mi_devpromisc == 0) {
1223                         err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1224                         if (err != 0) {
1225                                 mip->mi_devpromisc++;
1226                                 return (err);
1227                         }
1228                         i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1229                 }
1230         }
1231 
1232         return (0);
1233 }
1234 
1235 /*
1236  * The promiscuity state can change any time. If the caller needs to take
1237  * actions that are atomic with the promiscuity state, then the caller needs
1238  * to bracket the entire sequence with mac_perim_enter/exit
1239  */
1240 boolean_t
1241 mac_promisc_get(mac_handle_t mh)
1242 {
1243         mac_impl_t              *mip = (mac_impl_t *)mh;
1244 
1245         /*
1246          * Return the current promiscuity.
1247          */
1248         return (mip->mi_devpromisc != 0);
1249 }
1250 
1251 /*
1252  * Invoked at MAC instance attach time to initialize the list
1253  * of factory MAC addresses supported by a MAC instance. This function
1254  * builds a local cache in the mac_impl_t for the MAC addresses
1255  * supported by the underlying hardware. The MAC clients themselves
1256  * use the mac_addr_factory*() functions to query and reserve
1257  * factory MAC addresses.
1258  */
1259 void
1260 mac_addr_factory_init(mac_impl_t *mip)
1261 {
1262         mac_capab_multifactaddr_t capab;
1263         uint8_t *addr;
1264         int i;
1265 
1266         /*
1267          * First round to see how many factory MAC addresses are available.
1268          */
1269         bzero(&capab, sizeof (capab));
1270         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1271             &capab) || (capab.mcm_naddr == 0)) {
1272                 /*
1273                  * The MAC instance doesn't support multiple factory
1274                  * MAC addresses, we're done here.
1275                  */
1276                 return;
1277         }
1278 
1279         /*
1280          * Allocate the space and get all the factory addresses.
1281          */
1282         addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1283         capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1284 
1285         mip->mi_factory_addr_num = capab.mcm_naddr;
1286         mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1287             sizeof (mac_factory_addr_t), KM_SLEEP);
1288 
1289         for (i = 0; i < capab.mcm_naddr; i++) {
1290                 bcopy(addr + i * MAXMACADDRLEN,
1291                     mip->mi_factory_addr[i].mfa_addr,
1292                     mip->mi_type->mt_addr_length);
1293                 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1294         }
1295 
1296         kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1297 }
1298 
1299 void
1300 mac_addr_factory_fini(mac_impl_t *mip)
1301 {
1302         if (mip->mi_factory_addr == NULL) {
1303                 ASSERT(mip->mi_factory_addr_num == 0);
1304                 return;
1305         }
1306 
1307         kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1308             sizeof (mac_factory_addr_t));
1309 
1310         mip->mi_factory_addr = NULL;
1311         mip->mi_factory_addr_num = 0;
1312 }
1313 
1314 /*
1315  * Reserve a factory MAC address. If *slot is set to -1, the function
1316  * attempts to reserve any of the available factory MAC addresses and
1317  * returns the reserved slot id. If no slots are available, the function
1318  * returns ENOSPC. If *slot is not set to -1, the function reserves
1319  * the specified slot if it is available, or returns EBUSY is the slot
1320  * is already used. Returns ENOTSUP if the underlying MAC does not
1321  * support multiple factory addresses. If the slot number is not -1 but
1322  * is invalid, returns EINVAL.
1323  */
1324 int
1325 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1326 {
1327         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1328         mac_impl_t *mip = mcip->mci_mip;
1329         int i, ret = 0;
1330 
1331         i_mac_perim_enter(mip);
1332         /*
1333          * Protect against concurrent readers that may need a self-consistent
1334          * view of the factory addresses
1335          */
1336         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1337 
1338         if (mip->mi_factory_addr_num == 0) {
1339                 ret = ENOTSUP;
1340                 goto bail;
1341         }
1342 
1343         if (*slot != -1) {
1344                 /* check the specified slot */
1345                 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1346                         ret = EINVAL;
1347                         goto bail;
1348                 }
1349                 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1350                         ret = EBUSY;
1351                         goto bail;
1352                 }
1353         } else {
1354                 /* pick the next available slot */
1355                 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1356                         if (!mip->mi_factory_addr[i].mfa_in_use)
1357                                 break;
1358                 }
1359 
1360                 if (i == mip->mi_factory_addr_num) {
1361                         ret = ENOSPC;
1362                         goto bail;
1363                 }
1364                 *slot = i+1;
1365         }
1366 
1367         mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1368         mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1369 
1370 bail:
1371         rw_exit(&mip->mi_rw_lock);
1372         i_mac_perim_exit(mip);
1373         return (ret);
1374 }
1375 
1376 /*
1377  * Release the specified factory MAC address slot.
1378  */
1379 void
1380 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1381 {
1382         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1383         mac_impl_t *mip = mcip->mci_mip;
1384 
1385         i_mac_perim_enter(mip);
1386         /*
1387          * Protect against concurrent readers that may need a self-consistent
1388          * view of the factory addresses
1389          */
1390         rw_enter(&mip->mi_rw_lock, RW_WRITER);
1391 
1392         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1393         ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1394 
1395         mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1396 
1397         rw_exit(&mip->mi_rw_lock);
1398         i_mac_perim_exit(mip);
1399 }
1400 
1401 /*
1402  * Stores in mac_addr the value of the specified MAC address. Returns
1403  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1404  * The caller must provide a string of at least MAXNAMELEN bytes.
1405  */
1406 void
1407 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1408     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1409 {
1410         mac_impl_t *mip = (mac_impl_t *)mh;
1411         boolean_t in_use;
1412 
1413         ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1414 
1415         /*
1416          * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1417          * and mi_rw_lock
1418          */
1419         rw_enter(&mip->mi_rw_lock, RW_READER);
1420         bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1421         *addr_len = mip->mi_type->mt_addr_length;
1422         in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1423         if (in_use && client_name != NULL) {
1424                 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1425                     client_name, MAXNAMELEN);
1426         }
1427         if (in_use_arg != NULL)
1428                 *in_use_arg = in_use;
1429         rw_exit(&mip->mi_rw_lock);
1430 }
1431 
1432 /*
1433  * Returns the number of factory MAC addresses (in addition to the
1434  * primary MAC address), 0 if the underlying MAC doesn't support
1435  * that feature.
1436  */
1437 uint_t
1438 mac_addr_factory_num(mac_handle_t mh)
1439 {
1440         mac_impl_t *mip = (mac_impl_t *)mh;
1441 
1442         return (mip->mi_factory_addr_num);
1443 }
1444 
1445 
1446 void
1447 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1448 {
1449         mac_ring_t      *ring;
1450 
1451         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1452                 ring->mr_flag &= ~flag;
1453 }
1454 
1455 /*
1456  * The following mac_hwrings_xxx() functions are private mac client functions
1457  * used by the aggr driver to access and control the underlying HW Rx group
1458  * and rings. In this case, the aggr driver has exclusive control of the
1459  * underlying HW Rx group/rings, it calls the following functions to
1460  * start/stop the HW Rx rings, disable/enable polling, add/remove MAC
1461  * addresses, or set up the Rx callback.
1462  */
1463 /* ARGSUSED */
1464 static void
1465 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1466     mblk_t *mp_chain, boolean_t loopback)
1467 {
1468         mac_soft_ring_set_t     *mac_srs = (mac_soft_ring_set_t *)srs;
1469         mac_srs_rx_t            *srs_rx = &mac_srs->srs_rx;
1470         mac_direct_rx_t         proc;
1471         void                    *arg1;
1472         mac_resource_handle_t   arg2;
1473 
1474         proc = srs_rx->sr_func;
1475         arg1 = srs_rx->sr_arg1;
1476         arg2 = mac_srs->srs_mrh;
1477 
1478         proc(arg1, arg2, mp_chain, NULL);
1479 }
1480 
1481 /*
1482  * This function is called to get the list of HW rings that are reserved by
1483  * an exclusive mac client.
1484  *
1485  * Return value: the number of HW rings.
1486  */
1487 int
1488 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1489     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1490 {
1491         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
1492         flow_entry_t            *flent = mcip->mci_flent;
1493         mac_group_t             *grp;
1494         mac_ring_t              *ring;
1495         int                     cnt = 0;
1496 
1497         if (rtype == MAC_RING_TYPE_RX) {
1498                 grp = flent->fe_rx_ring_group;
1499         } else if (rtype == MAC_RING_TYPE_TX) {
1500                 grp = flent->fe_tx_ring_group;
1501         } else {
1502                 ASSERT(B_FALSE);
1503                 return (-1);
1504         }
1505 
1506         /*
1507          * The MAC client did not reserve an Rx group, return directly.
1508          * This is probably because the underlying MAC does not support
1509          * any groups.
1510          */
1511         if (hwgh != NULL)
1512                 *hwgh = NULL;
1513         if (grp == NULL)
1514                 return (0);
1515         /*
1516          * This group must be reserved by this MAC client.
1517          */
1518         ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1519             (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1520 
1521         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1522                 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1523                 hwrh[cnt] = (mac_ring_handle_t)ring;
1524         }
1525         if (hwgh != NULL)
1526                 *hwgh = (mac_group_handle_t)grp;
1527 
1528         return (cnt);
1529 }
1530 
1531 /*
1532  * Get the HW ring handles of the given group index. If the MAC
1533  * doesn't have a group at this index, or any groups at all, then 0 is
1534  * returned and hwgh is set to NULL. This is a private client API. The
1535  * MAC perimeter must be held when calling this function.
1536  *
1537  * mh: A handle to the MAC that owns the group.
1538  *
1539  * idx: The index of the HW group to be read.
1540  *
1541  * hwgh: If non-NULL, contains a handle to the HW group on return.
1542  *
1543  * hwrh: An array of ring handles pointing to the HW rings in the
1544  * group. The array must be large enough to hold a handle to each ring
1545  * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP.
1546  *
1547  * rtype: Used to determine if we are fetching Rx or Tx rings.
1548  *
1549  * Returns the number of rings in the group.
1550  */
1551 uint_t
1552 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh,
1553     mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1554 {
1555         mac_impl_t              *mip = (mac_impl_t *)mh;
1556         mac_group_t             *grp;
1557         mac_ring_t              *ring;
1558         uint_t                  cnt = 0;
1559 
1560         /*
1561          * The MAC perimeter must be held when accessing the
1562          * mi_{rx,tx}_groups fields.
1563          */
1564         ASSERT(MAC_PERIM_HELD(mh));
1565         ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX);
1566 
1567         if (rtype == MAC_RING_TYPE_RX) {
1568                 grp = mip->mi_rx_groups;
1569         } else if (rtype == MAC_RING_TYPE_TX) {
1570                 grp = mip->mi_tx_groups;
1571         }
1572 
1573         while (grp != NULL && grp->mrg_index != idx)
1574                 grp = grp->mrg_next;
1575 
1576         /*
1577          * If the MAC doesn't have a group at this index or doesn't
1578          * impelement RINGS capab, then set hwgh to NULL and return 0.
1579          */
1580         if (hwgh != NULL)
1581                 *hwgh = NULL;
1582 
1583         if (grp == NULL)
1584                 return (0);
1585 
1586         ASSERT3U(idx, ==, grp->mrg_index);
1587 
1588         for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1589                 ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP);
1590                 hwrh[cnt] = (mac_ring_handle_t)ring;
1591         }
1592 
1593         /* A group should always have at least one ring. */
1594         ASSERT3U(cnt, >, 0);
1595 
1596         if (hwgh != NULL)
1597                 *hwgh = (mac_group_handle_t)grp;
1598 
1599         return (cnt);
1600 }
1601 
1602 /*
1603  * This function is called to get info about Tx/Rx rings.
1604  *
1605  * Return value: returns uint_t which will have various bits set
1606  * that indicates different properties of the ring.
1607  */
1608 uint_t
1609 mac_hwring_getinfo(mac_ring_handle_t rh)
1610 {
1611         mac_ring_t *ring = (mac_ring_t *)rh;
1612         mac_ring_info_t *info = &ring->mr_info;
1613 
1614         return (info->mri_flags);
1615 }
1616 
1617 /*
1618  * Set the passthru callback on the hardware ring.
1619  */
1620 void
1621 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1,
1622     mac_resource_handle_t arg2)
1623 {
1624         mac_ring_t *hwring = (mac_ring_t *)hwrh;
1625 
1626         ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1627 
1628         hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER;
1629 
1630         hwring->mr_pt_fn = fn;
1631         hwring->mr_pt_arg1 = arg1;
1632         hwring->mr_pt_arg2 = arg2;
1633 }
1634 
1635 /*
1636  * Clear the passthru callback on the hardware ring.
1637  */
1638 void
1639 mac_hwring_clear_passthru(mac_ring_handle_t hwrh)
1640 {
1641         mac_ring_t *hwring = (mac_ring_t *)hwrh;
1642 
1643         ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1644 
1645         hwring->mr_classify_type = MAC_NO_CLASSIFIER;
1646 
1647         hwring->mr_pt_fn = NULL;
1648         hwring->mr_pt_arg1 = NULL;
1649         hwring->mr_pt_arg2 = NULL;
1650 }
1651 
1652 void
1653 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1)
1654 {
1655         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
1656         flow_entry_t            *flent = mcip->mci_flent;
1657 
1658         mutex_enter(&flent->fe_lock);
1659         flent->fe_cb_fn = (flow_fn_t)func;
1660         flent->fe_cb_arg1 = arg1;
1661         flent->fe_cb_arg2 = NULL;
1662         flent->fe_flags &= ~FE_MC_NO_DATAPATH;
1663         mutex_exit(&flent->fe_lock);
1664 }
1665 
1666 void
1667 mac_client_clear_flow_cb(mac_client_handle_t mch)
1668 {
1669         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
1670         flow_entry_t            *flent = mcip->mci_flent;
1671 
1672         mutex_enter(&flent->fe_lock);
1673         flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
1674         flent->fe_cb_arg1 = NULL;
1675         flent->fe_cb_arg2 = NULL;
1676         flent->fe_flags |= FE_MC_NO_DATAPATH;
1677         mutex_exit(&flent->fe_lock);
1678 }
1679 
1680 /*
1681  * Export ddi interrupt handles from the HW ring to the pseudo ring and
1682  * setup the RX callback of the mac client which exclusively controls
1683  * HW ring.
1684  */
1685 void
1686 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1687     mac_ring_handle_t pseudo_rh)
1688 {
1689         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1690         mac_ring_t              *pseudo_ring;
1691         mac_soft_ring_set_t     *mac_srs = hw_ring->mr_srs;
1692 
1693         if (pseudo_rh != NULL) {
1694                 pseudo_ring = (mac_ring_t *)pseudo_rh;
1695                 /* Export the ddi handles to pseudo ring */
1696                 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1697                     hw_ring->mr_info.mri_intr.mi_ddi_handle;
1698                 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1699                     hw_ring->mr_info.mri_intr.mi_ddi_shared;
1700                 /*
1701                  * Save a pointer to pseudo ring in the hw ring. If
1702                  * interrupt handle changes, the hw ring will be
1703                  * notified of the change (see mac_ring_intr_set())
1704                  * and the appropriate change has to be made to
1705                  * the pseudo ring that has exported the ddi handle.
1706                  */
1707                 hw_ring->mr_prh = pseudo_rh;
1708         }
1709 
1710         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1711                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1712                 mac_srs->srs_mrh = prh;
1713                 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1714         }
1715 }
1716 
1717 void
1718 mac_hwring_teardown(mac_ring_handle_t hwrh)
1719 {
1720         mac_ring_t              *hw_ring = (mac_ring_t *)hwrh;
1721         mac_soft_ring_set_t     *mac_srs;
1722 
1723         if (hw_ring == NULL)
1724                 return;
1725         hw_ring->mr_prh = NULL;
1726         if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1727                 mac_srs = hw_ring->mr_srs;
1728                 ASSERT(!(mac_srs->srs_type & SRST_TX));
1729                 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1730                 mac_srs->srs_mrh = NULL;
1731         }
1732 }
1733 
1734 int
1735 mac_hwring_disable_intr(mac_ring_handle_t rh)
1736 {
1737         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1738         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1739 
1740         return (intr->mi_disable(intr->mi_handle));
1741 }
1742 
1743 int
1744 mac_hwring_enable_intr(mac_ring_handle_t rh)
1745 {
1746         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1747         mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1748 
1749         return (intr->mi_enable(intr->mi_handle));
1750 }
1751 
1752 /*
1753  * Start the HW ring pointed to by rh.
1754  *
1755  * This is used by special MAC clients that are MAC themselves and
1756  * need to exert control over the underlying HW rings of the NIC.
1757  */
1758 int
1759 mac_hwring_start(mac_ring_handle_t rh)
1760 {
1761         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1762         int rv = 0;
1763 
1764         if (rr_ring->mr_state != MR_INUSE)
1765                 rv = mac_start_ring(rr_ring);
1766 
1767         return (rv);
1768 }
1769 
1770 /*
1771  * Stop the HW ring pointed to by rh. Also see mac_hwring_start().
1772  */
1773 void
1774 mac_hwring_stop(mac_ring_handle_t rh)
1775 {
1776         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1777 
1778         if (rr_ring->mr_state != MR_FREE)
1779                 mac_stop_ring(rr_ring);
1780 }
1781 
1782 /*
1783  * Remove the quiesced flag from the HW ring pointed to by rh.
1784  *
1785  * This is used by special MAC clients that are MAC themselves and
1786  * need to exert control over the underlying HW rings of the NIC.
1787  */
1788 int
1789 mac_hwring_activate(mac_ring_handle_t rh)
1790 {
1791         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1792 
1793         MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1794         return (0);
1795 }
1796 
1797 /*
1798  * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate().
1799  */
1800 void
1801 mac_hwring_quiesce(mac_ring_handle_t rh)
1802 {
1803         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1804 
1805         mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1806 }
1807 
1808 mblk_t *
1809 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1810 {
1811         mac_ring_t *rr_ring = (mac_ring_t *)rh;
1812         mac_ring_info_t *info = &rr_ring->mr_info;
1813 
1814         return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1815 }
1816 
1817 /*
1818  * Send packets through a selected tx ring.
1819  */
1820 mblk_t *
1821 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1822 {
1823         mac_ring_t *ring = (mac_ring_t *)rh;
1824         mac_ring_info_t *info = &ring->mr_info;
1825 
1826         ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1827             ring->mr_state >= MR_INUSE);
1828         return (info->mri_tx(info->mri_driver, mp));
1829 }
1830 
1831 /*
1832  * Query stats for a particular rx/tx ring
1833  */
1834 int
1835 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1836 {
1837         mac_ring_t      *ring = (mac_ring_t *)rh;
1838         mac_ring_info_t *info = &ring->mr_info;
1839 
1840         return (info->mri_stat(info->mri_driver, stat, val));
1841 }
1842 
1843 /*
1844  * Private function that is only used by aggr to send packets through
1845  * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1846  * that does not expose Tx rings, aggr_ring_tx() entry point needs
1847  * access to mac_impl_t to send packets through m_tx() entry point.
1848  * It accomplishes this by calling mac_hwring_send_priv() function.
1849  */
1850 mblk_t *
1851 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1852 {
1853         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1854         mac_impl_t *mip = mcip->mci_mip;
1855 
1856         MAC_TX(mip, rh, mp, mcip);
1857         return (mp);
1858 }
1859 
1860 /*
1861  * Private function that is only used by aggr to update the default transmission
1862  * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1863  * temporarily be down, it may need to update the default ring that is used by
1864  * MAC such that it refers to a link that can actively be used to send traffic.
1865  * Note that this is different from the case where the port has been removed
1866  * from the group. In those cases, all of the rings will be torn down because
1867  * the ring will no longer exist. It's important to give aggr a case where the
1868  * rings can still exist such that it may be able to continue to send LACP PDUs
1869  * to potentially restore the link.
1870  *
1871  * Finally, we explicitly don't do anything if the ring hasn't been enabled yet.
1872  * This is to help out aggr which doesn't really know the internal state that
1873  * MAC does about the rings and can't know that it's not quite ready for use
1874  * yet.
1875  */
1876 void
1877 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1878 {
1879         mac_impl_t *mip = (mac_impl_t *)mh;
1880         mac_ring_t *ring = (mac_ring_t *)rh;
1881 
1882         ASSERT(MAC_PERIM_HELD(mh));
1883         VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1884 
1885         if (ring->mr_state != MR_INUSE)
1886                 return;
1887 
1888         mip->mi_default_tx_ring = rh;
1889 }
1890 
1891 int
1892 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1893 {
1894         mac_group_t *group = (mac_group_t *)gh;
1895 
1896         return (mac_group_addmac(group, addr));
1897 }
1898 
1899 int
1900 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1901 {
1902         mac_group_t *group = (mac_group_t *)gh;
1903 
1904         return (mac_group_remmac(group, addr));
1905 }
1906 
1907 /*
1908  * Program the group's HW VLAN filter if it has such support.
1909  * Otherwise, the group will implicitly accept tagged traffic and
1910  * there is nothing to do.
1911  */
1912 int
1913 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid)
1914 {
1915         mac_group_t *group = (mac_group_t *)gh;
1916 
1917         if (!MAC_GROUP_HW_VLAN(group))
1918                 return (0);
1919 
1920         return (mac_group_addvlan(group, vid));
1921 }
1922 
1923 int
1924 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid)
1925 {
1926         mac_group_t *group = (mac_group_t *)gh;
1927 
1928         if (!MAC_GROUP_HW_VLAN(group))
1929                 return (0);
1930 
1931         return (mac_group_remvlan(group, vid));
1932 }
1933 
1934 /*
1935  * Determine if a MAC has HW VLAN support. This is a private API
1936  * consumed by aggr. In the future it might be nice to have a bitfield
1937  * in mac_capab_rings_t to track which forms of HW filtering are
1938  * supported by the MAC.
1939  */
1940 boolean_t
1941 mac_has_hw_vlan(mac_handle_t mh)
1942 {
1943         mac_impl_t *mip = (mac_impl_t *)mh;
1944 
1945         return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups));
1946 }
1947 
1948 /*
1949  * Get the number of Rx HW groups on this MAC.
1950  */
1951 uint_t
1952 mac_get_num_rx_groups(mac_handle_t mh)
1953 {
1954         mac_impl_t *mip = (mac_impl_t *)mh;
1955 
1956         ASSERT(MAC_PERIM_HELD(mh));
1957         return (mip->mi_rx_group_count);
1958 }
1959 
1960 int
1961 mac_set_promisc(mac_handle_t mh, boolean_t value)
1962 {
1963         mac_impl_t *mip = (mac_impl_t *)mh;
1964 
1965         ASSERT(MAC_PERIM_HELD(mh));
1966         return (i_mac_promisc_set(mip, value));
1967 }
1968 
1969 /*
1970  * Set the RX group to be shared/reserved. Note that the group must be
1971  * started/stopped outside of this function.
1972  */
1973 void
1974 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1975 {
1976         /*
1977          * If there is no change in the group state, just return.
1978          */
1979         if (grp->mrg_state == state)
1980                 return;
1981 
1982         switch (state) {
1983         case MAC_GROUP_STATE_RESERVED:
1984                 /*
1985                  * Successfully reserved the group.
1986                  *
1987                  * Given that there is an exclusive client controlling this
1988                  * group, we enable the group level polling when available,
1989                  * so that SRSs get to turn on/off individual rings they's
1990                  * assigned to.
1991                  */
1992                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1993 
1994                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1995                     GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1996                         GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1997                 }
1998                 break;
1999 
2000         case MAC_GROUP_STATE_SHARED:
2001                 /*
2002                  * Set all rings of this group to software classified.
2003                  * If the group has an overriding interrupt, then re-enable it.
2004                  */
2005                 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2006 
2007                 if (grp->mrg_type == MAC_RING_TYPE_RX &&
2008                     GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
2009                         GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2010                 }
2011                 /* The ring is not available for reservations any more */
2012                 break;
2013 
2014         case MAC_GROUP_STATE_REGISTERED:
2015                 /* Also callable from mac_register, perim is not held */
2016                 break;
2017 
2018         default:
2019                 ASSERT(B_FALSE);
2020                 break;
2021         }
2022 
2023         grp->mrg_state = state;
2024 }
2025 
2026 /*
2027  * Quiesce future hardware classified packets for the specified Rx ring
2028  */
2029 static void
2030 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
2031 {
2032         ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
2033         ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
2034 
2035         mutex_enter(&rx_ring->mr_lock);
2036         rx_ring->mr_flag |= ring_flag;
2037         while (rx_ring->mr_refcnt != 0)
2038                 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
2039         mutex_exit(&rx_ring->mr_lock);
2040 }
2041 
2042 /*
2043  * Please see mac_tx for details about the per cpu locking scheme
2044  */
2045 static void
2046 mac_tx_lock_all(mac_client_impl_t *mcip)
2047 {
2048         int     i;
2049 
2050         for (i = 0; i <= mac_tx_percpu_cnt; i++)
2051                 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2052 }
2053 
2054 static void
2055 mac_tx_unlock_all(mac_client_impl_t *mcip)
2056 {
2057         int     i;
2058 
2059         for (i = mac_tx_percpu_cnt; i >= 0; i--)
2060                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2061 }
2062 
2063 static void
2064 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
2065 {
2066         int     i;
2067 
2068         for (i = mac_tx_percpu_cnt; i > 0; i--)
2069                 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2070 }
2071 
2072 static int
2073 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
2074 {
2075         int     i;
2076         int     refcnt = 0;
2077 
2078         for (i = 0; i <= mac_tx_percpu_cnt; i++)
2079                 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
2080 
2081         return (refcnt);
2082 }
2083 
2084 /*
2085  * Stop future Tx packets coming down from the client in preparation for
2086  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
2087  * of rings between clients
2088  */
2089 void
2090 mac_tx_client_block(mac_client_impl_t *mcip)
2091 {
2092         mac_tx_lock_all(mcip);
2093         mcip->mci_tx_flag |= MCI_TX_QUIESCE;
2094         while (mac_tx_sum_refcnt(mcip) != 0) {
2095                 mac_tx_unlock_allbutzero(mcip);
2096                 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2097                 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2098                 mac_tx_lock_all(mcip);
2099         }
2100         mac_tx_unlock_all(mcip);
2101 }
2102 
2103 void
2104 mac_tx_client_unblock(mac_client_impl_t *mcip)
2105 {
2106         mac_tx_lock_all(mcip);
2107         mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
2108         mac_tx_unlock_all(mcip);
2109         /*
2110          * We may fail to disable flow control for the last MAC_NOTE_TX
2111          * notification because the MAC client is quiesced. Send the
2112          * notification again.
2113          */
2114         i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
2115 }
2116 
2117 /*
2118  * Wait for an SRS to quiesce. The SRS worker will signal us when the
2119  * quiesce is done.
2120  */
2121 static void
2122 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
2123 {
2124         mutex_enter(&srs->srs_lock);
2125         while (!(srs->srs_state & srs_flag))
2126                 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
2127         mutex_exit(&srs->srs_lock);
2128 }
2129 
2130 /*
2131  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
2132  * works bottom up by cutting off packet flow from the bottommost point in the
2133  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
2134  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
2135  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
2136  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
2137  * for the SRS and MR flags. In the former case the threads pause waiting for
2138  * a restart, while in the latter case the threads exit. The Tx SRS teardown
2139  * is also mostly similar to the above.
2140  *
2141  * 1. Stop future hardware classified packets at the lowest level in the mac.
2142  *    Remove any hardware classification rule (CONDEMNED case) and mark the
2143  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
2144  *    from increasing. Upcalls from the driver that come through hardware
2145  *    classification will be dropped in mac_rx from now on. Then we wait for
2146  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
2147  *    sure there aren't any upcall threads from the driver through hardware
2148  *    classification. In the case of SRS teardown we also remove the
2149  *    classification rule in the driver.
2150  *
2151  * 2. Stop future software classified packets by marking the flow entry with
2152  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
2153  *    increasing. We also remove the flow entry from the table in the latter
2154  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
2155  *    that indicates there aren't any active threads using that flow entry.
2156  *
2157  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
2158  *    SRS worker thread, and the soft ring threads are quiesced in sequence
2159  *    with the SRS worker thread serving as a master controller. This
2160  *    mechansim is explained in mac_srs_worker_quiesce().
2161  *
2162  * The restart mechanism to reactivate the SRS and softrings is explained
2163  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
2164  * restart sequence.
2165  */
2166 void
2167 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2168 {
2169         flow_entry_t    *flent = srs->srs_flent;
2170         uint_t  mr_flag, srs_done_flag;
2171 
2172         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2173         ASSERT(!(srs->srs_type & SRST_TX));
2174 
2175         if (srs_quiesce_flag == SRS_CONDEMNED) {
2176                 mr_flag = MR_CONDEMNED;
2177                 srs_done_flag = SRS_CONDEMNED_DONE;
2178                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2179                         mac_srs_client_poll_disable(srs->srs_mcip, srs);
2180         } else {
2181                 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
2182                 mr_flag = MR_QUIESCE;
2183                 srs_done_flag = SRS_QUIESCE_DONE;
2184                 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2185                         mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
2186         }
2187 
2188         if (srs->srs_ring != NULL) {
2189                 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
2190         } else {
2191                 /*
2192                  * SRS is driven by software classification. In case
2193                  * of CONDEMNED, the top level teardown functions will
2194                  * deal with flow removal.
2195                  */
2196                 if (srs_quiesce_flag != SRS_CONDEMNED) {
2197                         FLOW_MARK(flent, FE_QUIESCE);
2198                         mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2199                 }
2200         }
2201 
2202         /*
2203          * Signal the SRS to quiesce itself, and then cv_wait for the
2204          * SRS quiesce to complete. The SRS worker thread will wake us
2205          * up when the quiesce is complete
2206          */
2207         mac_srs_signal(srs, srs_quiesce_flag);
2208         mac_srs_quiesce_wait(srs, srs_done_flag);
2209 }
2210 
2211 /*
2212  * Remove an SRS.
2213  */
2214 void
2215 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
2216 {
2217         flow_entry_t *flent = srs->srs_flent;
2218         int i;
2219 
2220         mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
2221         /*
2222          * Locate and remove our entry in the fe_rx_srs[] array, and
2223          * adjust the fe_rx_srs array entries and array count by
2224          * moving the last entry into the vacated spot.
2225          */
2226         mutex_enter(&flent->fe_lock);
2227         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2228                 if (flent->fe_rx_srs[i] == srs)
2229                         break;
2230         }
2231 
2232         ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
2233         if (i != flent->fe_rx_srs_cnt - 1) {
2234                 flent->fe_rx_srs[i] =
2235                     flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2236                 i = flent->fe_rx_srs_cnt - 1;
2237         }
2238 
2239         flent->fe_rx_srs[i] = NULL;
2240         flent->fe_rx_srs_cnt--;
2241         mutex_exit(&flent->fe_lock);
2242 
2243         mac_srs_free(srs);
2244 }
2245 
2246 static void
2247 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2248 {
2249         mutex_enter(&srs->srs_lock);
2250         srs->srs_state &= ~flag;
2251         mutex_exit(&srs->srs_lock);
2252 }
2253 
2254 void
2255 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2256 {
2257         flow_entry_t    *flent = srs->srs_flent;
2258         mac_ring_t      *mr;
2259 
2260         ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2261         ASSERT((srs->srs_type & SRST_TX) == 0);
2262 
2263         /*
2264          * This handles a change in the number of SRSs between the quiesce and
2265          * and restart operation of a flow.
2266          */
2267         if (!SRS_QUIESCED(srs))
2268                 return;
2269 
2270         /*
2271          * Signal the SRS to restart itself. Wait for the restart to complete
2272          * Note that we only restart the SRS if it is not marked as
2273          * permanently quiesced.
2274          */
2275         if (!SRS_QUIESCED_PERMANENT(srs)) {
2276                 mac_srs_signal(srs, SRS_RESTART);
2277                 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2278                 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2279 
2280                 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2281         }
2282 
2283         /* Finally clear the flags to let the packets in */
2284         mr = srs->srs_ring;
2285         if (mr != NULL) {
2286                 MAC_RING_UNMARK(mr, MR_QUIESCE);
2287                 /* In case the ring was stopped, safely restart it */
2288                 if (mr->mr_state != MR_INUSE)
2289                         (void) mac_start_ring(mr);
2290         } else {
2291                 FLOW_UNMARK(flent, FE_QUIESCE);
2292         }
2293 }
2294 
2295 /*
2296  * Temporary quiesce of a flow and associated Rx SRS.
2297  * Please see block comment above mac_rx_classify_flow_rem.
2298  */
2299 /* ARGSUSED */
2300 int
2301 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2302 {
2303         int             i;
2304 
2305         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2306                 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2307                     SRS_QUIESCE);
2308         }
2309         return (0);
2310 }
2311 
2312 /*
2313  * Restart a flow and associated Rx SRS that has been quiesced temporarily
2314  * Please see block comment above mac_rx_classify_flow_rem
2315  */
2316 /* ARGSUSED */
2317 int
2318 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2319 {
2320         int             i;
2321 
2322         for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2323                 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2324 
2325         return (0);
2326 }
2327 
2328 void
2329 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2330 {
2331         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2332         flow_entry_t            *flent = mcip->mci_flent;
2333         mac_impl_t              *mip = mcip->mci_mip;
2334         mac_soft_ring_set_t     *mac_srs;
2335         int                     i;
2336 
2337         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2338 
2339         if (flent == NULL)
2340                 return;
2341 
2342         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2343                 mac_srs = flent->fe_rx_srs[i];
2344                 mutex_enter(&mac_srs->srs_lock);
2345                 if (on)
2346                         mac_srs->srs_state |= SRS_QUIESCE_PERM;
2347                 else
2348                         mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2349                 mutex_exit(&mac_srs->srs_lock);
2350         }
2351 }
2352 
2353 void
2354 mac_rx_client_quiesce(mac_client_handle_t mch)
2355 {
2356         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2357         mac_impl_t              *mip = mcip->mci_mip;
2358 
2359         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2360 
2361         if (MCIP_DATAPATH_SETUP(mcip)) {
2362                 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2363                     NULL);
2364                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2365                     mac_rx_classify_flow_quiesce, NULL);
2366         }
2367 }
2368 
2369 void
2370 mac_rx_client_restart(mac_client_handle_t mch)
2371 {
2372         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2373         mac_impl_t              *mip = mcip->mci_mip;
2374 
2375         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2376 
2377         if (MCIP_DATAPATH_SETUP(mcip)) {
2378                 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2379                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2380                     mac_rx_classify_flow_restart, NULL);
2381         }
2382 }
2383 
2384 /*
2385  * This function only quiesces the Tx SRS and softring worker threads. Callers
2386  * need to make sure that there aren't any mac client threads doing current or
2387  * future transmits in the mac before calling this function.
2388  */
2389 void
2390 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2391 {
2392         mac_client_impl_t       *mcip = srs->srs_mcip;
2393 
2394         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2395 
2396         ASSERT(srs->srs_type & SRST_TX);
2397         ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2398             srs_quiesce_flag == SRS_QUIESCE);
2399 
2400         /*
2401          * Signal the SRS to quiesce itself, and then cv_wait for the
2402          * SRS quiesce to complete. The SRS worker thread will wake us
2403          * up when the quiesce is complete
2404          */
2405         mac_srs_signal(srs, srs_quiesce_flag);
2406         mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2407             SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2408 }
2409 
2410 void
2411 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2412 {
2413         /*
2414          * Resizing the fanout could result in creation of new SRSs.
2415          * They may not necessarily be in the quiesced state in which
2416          * case it need be restarted
2417          */
2418         if (!SRS_QUIESCED(srs))
2419                 return;
2420 
2421         mac_srs_signal(srs, SRS_RESTART);
2422         mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2423         mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2424 }
2425 
2426 /*
2427  * Temporary quiesce of a flow and associated Rx SRS.
2428  * Please see block comment above mac_rx_srs_quiesce
2429  */
2430 /* ARGSUSED */
2431 int
2432 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2433 {
2434         /*
2435          * The fe_tx_srs is null for a subflow on an interface that is
2436          * not plumbed
2437          */
2438         if (flent->fe_tx_srs != NULL)
2439                 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2440         return (0);
2441 }
2442 
2443 /* ARGSUSED */
2444 int
2445 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2446 {
2447         /*
2448          * The fe_tx_srs is null for a subflow on an interface that is
2449          * not plumbed
2450          */
2451         if (flent->fe_tx_srs != NULL)
2452                 mac_tx_srs_restart(flent->fe_tx_srs);
2453         return (0);
2454 }
2455 
2456 static void
2457 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2458 {
2459         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
2460 
2461         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2462 
2463         mac_tx_client_block(mcip);
2464         if (MCIP_TX_SRS(mcip) != NULL) {
2465                 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2466                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2467                     mac_tx_flow_quiesce, NULL);
2468         }
2469 }
2470 
2471 void
2472 mac_tx_client_quiesce(mac_client_handle_t mch)
2473 {
2474         i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2475 }
2476 
2477 void
2478 mac_tx_client_condemn(mac_client_handle_t mch)
2479 {
2480         i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2481 }
2482 
2483 void
2484 mac_tx_client_restart(mac_client_handle_t mch)
2485 {
2486         mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2487 
2488         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2489 
2490         mac_tx_client_unblock(mcip);
2491         if (MCIP_TX_SRS(mcip) != NULL) {
2492                 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2493                 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2494                     mac_tx_flow_restart, NULL);
2495         }
2496 }
2497 
2498 void
2499 mac_tx_client_flush(mac_client_impl_t *mcip)
2500 {
2501         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2502 
2503         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2504         mac_tx_client_restart((mac_client_handle_t)mcip);
2505 }
2506 
2507 void
2508 mac_client_quiesce(mac_client_impl_t *mcip)
2509 {
2510         mac_rx_client_quiesce((mac_client_handle_t)mcip);
2511         mac_tx_client_quiesce((mac_client_handle_t)mcip);
2512 }
2513 
2514 void
2515 mac_client_restart(mac_client_impl_t *mcip)
2516 {
2517         mac_rx_client_restart((mac_client_handle_t)mcip);
2518         mac_tx_client_restart((mac_client_handle_t)mcip);
2519 }
2520 
2521 /*
2522  * Allocate a minor number.
2523  */
2524 minor_t
2525 mac_minor_hold(boolean_t sleep)
2526 {
2527         id_t id;
2528 
2529         /*
2530          * Grab a value from the arena.
2531          */
2532         atomic_inc_32(&minor_count);
2533 
2534         if (sleep)
2535                 return ((uint_t)id_alloc(minor_ids));
2536 
2537         if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2538                 atomic_dec_32(&minor_count);
2539                 return (0);
2540         }
2541 
2542         return ((uint_t)id);
2543 }
2544 
2545 /*
2546  * Release a previously allocated minor number.
2547  */
2548 void
2549 mac_minor_rele(minor_t minor)
2550 {
2551         /*
2552          * Return the value to the arena.
2553          */
2554         id_free(minor_ids, minor);
2555         atomic_dec_32(&minor_count);
2556 }
2557 
2558 uint32_t
2559 mac_no_notification(mac_handle_t mh)
2560 {
2561         mac_impl_t *mip = (mac_impl_t *)mh;
2562 
2563         return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2564             mip->mi_capab_legacy.ml_unsup_note : 0);
2565 }
2566 
2567 /*
2568  * Prevent any new opens of this mac in preparation for unregister
2569  */
2570 int
2571 i_mac_disable(mac_impl_t *mip)
2572 {
2573         mac_client_impl_t       *mcip;
2574 
2575         rw_enter(&i_mac_impl_lock, RW_WRITER);
2576         if (mip->mi_state_flags & MIS_DISABLED) {
2577                 /* Already disabled, return success */
2578                 rw_exit(&i_mac_impl_lock);
2579                 return (0);
2580         }
2581         /*
2582          * See if there are any other references to this mac_t (e.g., VLAN's).
2583          * If so return failure. If all the other checks below pass, then
2584          * set mi_disabled atomically under the i_mac_impl_lock to prevent
2585          * any new VLAN's from being created or new mac client opens of this
2586          * mac end point.
2587          */
2588         if (mip->mi_ref > 0) {
2589                 rw_exit(&i_mac_impl_lock);
2590                 return (EBUSY);
2591         }
2592 
2593         /*
2594          * mac clients must delete all multicast groups they join before
2595          * closing. bcast groups are reference counted, the last client
2596          * to delete the group will wait till the group is physically
2597          * deleted. Since all clients have closed this mac end point
2598          * mi_bcast_ngrps must be zero at this point
2599          */
2600         ASSERT(mip->mi_bcast_ngrps == 0);
2601 
2602         /*
2603          * Don't let go of this if it has some flows.
2604          * All other code guarantees no flows are added to a disabled
2605          * mac, therefore it is sufficient to check for the flow table
2606          * only here.
2607          */
2608         mcip = mac_primary_client_handle(mip);
2609         if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2610                 rw_exit(&i_mac_impl_lock);
2611                 return (ENOTEMPTY);
2612         }
2613 
2614         mip->mi_state_flags |= MIS_DISABLED;
2615         rw_exit(&i_mac_impl_lock);
2616         return (0);
2617 }
2618 
2619 int
2620 mac_disable_nowait(mac_handle_t mh)
2621 {
2622         mac_impl_t      *mip = (mac_impl_t *)mh;
2623         int err;
2624 
2625         if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2626                 return (err);
2627         err = i_mac_disable(mip);
2628         i_mac_perim_exit(mip);
2629         return (err);
2630 }
2631 
2632 int
2633 mac_disable(mac_handle_t mh)
2634 {
2635         mac_impl_t      *mip = (mac_impl_t *)mh;
2636         int err;
2637 
2638         i_mac_perim_enter(mip);
2639         err = i_mac_disable(mip);
2640         i_mac_perim_exit(mip);
2641 
2642         /*
2643          * Clean up notification thread and wait for it to exit.
2644          */
2645         if (err == 0)
2646                 i_mac_notify_exit(mip);
2647 
2648         return (err);
2649 }
2650 
2651 /*
2652  * Called when the MAC instance has a non empty flow table, to de-multiplex
2653  * incoming packets to the right flow.
2654  */
2655 /* ARGSUSED */
2656 static mblk_t *
2657 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2658 {
2659         flow_entry_t    *flent = NULL;
2660         uint_t          flags = FLOW_INBOUND;
2661         int             err;
2662 
2663         err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2664         if (err != 0) {
2665                 /* no registered receive function */
2666                 return (mp);
2667         } else {
2668                 mac_client_impl_t       *mcip;
2669 
2670                 /*
2671                  * This flent might just be an additional one on the MAC client,
2672                  * i.e. for classification purposes (different fdesc), however
2673                  * the resources, SRS et. al., are in the mci_flent, so if
2674                  * this isn't the mci_flent, we need to get it.
2675                  */
2676                 if ((mcip = flent->fe_mcip) != NULL &&
2677                     mcip->mci_flent != flent) {
2678                         FLOW_REFRELE(flent);
2679                         flent = mcip->mci_flent;
2680                         FLOW_TRY_REFHOLD(flent, err);
2681                         if (err != 0)
2682                                 return (mp);
2683                 }
2684                 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2685                     B_FALSE);
2686                 FLOW_REFRELE(flent);
2687         }
2688         return (NULL);
2689 }
2690 
2691 mblk_t *
2692 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2693 {
2694         mac_impl_t      *mip = (mac_impl_t *)mh;
2695         mblk_t          *bp, *bp1, **bpp, *list = NULL;
2696 
2697         /*
2698          * We walk the chain and attempt to classify each packet.
2699          * The packets that couldn't be classified will be returned
2700          * back to the caller.
2701          */
2702         bp = mp_chain;
2703         bpp = &list;
2704         while (bp != NULL) {
2705                 bp1 = bp;
2706                 bp = bp->b_next;
2707                 bp1->b_next = NULL;
2708 
2709                 if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2710                         *bpp = bp1;
2711                         bpp = &bp1->b_next;
2712                 }
2713         }
2714         return (list);
2715 }
2716 
2717 static int
2718 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2719 {
2720         mac_ring_handle_t ring = arg;
2721 
2722         if (flent->fe_tx_srs)
2723                 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2724         return (0);
2725 }
2726 
2727 void
2728 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2729 {
2730         mac_client_impl_t       *cclient;
2731         mac_soft_ring_set_t     *mac_srs;
2732 
2733         /*
2734          * After grabbing the mi_rw_lock, the list of clients can't change.
2735          * If there are any clients mi_disabled must be B_FALSE and can't
2736          * get set since there are clients. If there aren't any clients we
2737          * don't do anything. In any case the mip has to be valid. The driver
2738          * must make sure that it goes single threaded (with respect to mac
2739          * calls) and wait for all pending mac calls to finish before calling
2740          * mac_unregister.
2741          */
2742         rw_enter(&i_mac_impl_lock, RW_READER);
2743         if (mip->mi_state_flags & MIS_DISABLED) {
2744                 rw_exit(&i_mac_impl_lock);
2745                 return;
2746         }
2747 
2748         /*
2749          * Get MAC tx srs from walking mac_client_handle list.
2750          */
2751         rw_enter(&mip->mi_rw_lock, RW_READER);
2752         for (cclient = mip->mi_clients_list; cclient != NULL;
2753             cclient = cclient->mci_client_next) {
2754                 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2755                         mac_tx_srs_wakeup(mac_srs, ring);
2756                 } else {
2757                         /*
2758                          * Aggr opens underlying ports in exclusive mode
2759                          * and registers flow control callbacks using
2760                          * mac_tx_client_notify(). When opened in
2761                          * exclusive mode, Tx SRS won't be created
2762                          * during mac_unicast_add().
2763                          */
2764                         if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2765                                 mac_tx_invoke_callbacks(cclient,
2766                                     (mac_tx_cookie_t)ring);
2767                         }
2768                 }
2769                 (void) mac_flow_walk(cclient->mci_subflow_tab,
2770                     mac_tx_flow_srs_wakeup, ring);
2771         }
2772         rw_exit(&mip->mi_rw_lock);
2773         rw_exit(&i_mac_impl_lock);
2774 }
2775 
2776 /* ARGSUSED */
2777 void
2778 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2779     boolean_t add)
2780 {
2781         mac_impl_t *mip = (mac_impl_t *)mh;
2782 
2783         i_mac_perim_enter((mac_impl_t *)mh);
2784         /*
2785          * If no specific refresh function was given then default to the
2786          * driver's m_multicst entry point.
2787          */
2788         if (refresh == NULL) {
2789                 refresh = mip->mi_multicst;
2790                 arg = mip->mi_driver;
2791         }
2792 
2793         mac_bcast_refresh(mip, refresh, arg, add);
2794         i_mac_perim_exit((mac_impl_t *)mh);
2795 }
2796 
2797 void
2798 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2799 {
2800         mac_impl_t      *mip = (mac_impl_t *)mh;
2801 
2802         /*
2803          * If no specific refresh function was given then default to the
2804          * driver's m_promisc entry point.
2805          */
2806         if (refresh == NULL) {
2807                 refresh = mip->mi_setpromisc;
2808                 arg = mip->mi_driver;
2809         }
2810         ASSERT(refresh != NULL);
2811 
2812         /*
2813          * Call the refresh function with the current promiscuity.
2814          */
2815         refresh(arg, (mip->mi_devpromisc != 0));
2816 }
2817 
2818 /*
2819  * The mac client requests that the mac not to change its margin size to
2820  * be less than the specified value.  If "current" is B_TRUE, then the client
2821  * requests the mac not to change its margin size to be smaller than the
2822  * current size. Further, return the current margin size value in this case.
2823  *
2824  * We keep every requested size in an ordered list from largest to smallest.
2825  */
2826 int
2827 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2828 {
2829         mac_impl_t              *mip = (mac_impl_t *)mh;
2830         mac_margin_req_t        **pp, *p;
2831         int                     err = 0;
2832 
2833         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2834         if (current)
2835                 *marginp = mip->mi_margin;
2836 
2837         /*
2838          * If the current margin value cannot satisfy the margin requested,
2839          * return ENOTSUP directly.
2840          */
2841         if (*marginp > mip->mi_margin) {
2842                 err = ENOTSUP;
2843                 goto done;
2844         }
2845 
2846         /*
2847          * Check whether the given margin is already in the list. If so,
2848          * bump the reference count.
2849          */
2850         for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2851                 if (p->mmr_margin == *marginp) {
2852                         /*
2853                          * The margin requested is already in the list,
2854                          * so just bump the reference count.
2855                          */
2856                         p->mmr_ref++;
2857                         goto done;
2858                 }
2859                 if (p->mmr_margin < *marginp)
2860                         break;
2861         }
2862 
2863 
2864         p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2865         p->mmr_margin = *marginp;
2866         p->mmr_ref++;
2867         p->mmr_nextp = *pp;
2868         *pp = p;
2869 
2870 done:
2871         rw_exit(&(mip->mi_rw_lock));
2872         return (err);
2873 }
2874 
2875 /*
2876  * The mac client requests to cancel its previous mac_margin_add() request.
2877  * We remove the requested margin size from the list.
2878  */
2879 int
2880 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2881 {
2882         mac_impl_t              *mip = (mac_impl_t *)mh;
2883         mac_margin_req_t        **pp, *p;
2884         int                     err = 0;
2885 
2886         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2887         /*
2888          * Find the entry in the list for the given margin.
2889          */
2890         for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2891                 if (p->mmr_margin == margin) {
2892                         if (--p->mmr_ref == 0)
2893                                 break;
2894 
2895                         /*
2896                          * There is still a reference to this address so
2897                          * there's nothing more to do.
2898                          */
2899                         goto done;
2900                 }
2901         }
2902 
2903         /*
2904          * We did not find an entry for the given margin.
2905          */
2906         if (p == NULL) {
2907                 err = ENOENT;
2908                 goto done;
2909         }
2910 
2911         ASSERT(p->mmr_ref == 0);
2912 
2913         /*
2914          * Remove it from the list.
2915          */
2916         *pp = p->mmr_nextp;
2917         kmem_free(p, sizeof (mac_margin_req_t));
2918 done:
2919         rw_exit(&(mip->mi_rw_lock));
2920         return (err);
2921 }
2922 
2923 boolean_t
2924 mac_margin_update(mac_handle_t mh, uint32_t margin)
2925 {
2926         mac_impl_t      *mip = (mac_impl_t *)mh;
2927         uint32_t        margin_needed = 0;
2928 
2929         rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2930 
2931         if (mip->mi_mmrp != NULL)
2932                 margin_needed = mip->mi_mmrp->mmr_margin;
2933 
2934         if (margin_needed <= margin)
2935                 mip->mi_margin = margin;
2936 
2937         rw_exit(&(mip->mi_rw_lock));
2938 
2939         if (margin_needed <= margin)
2940                 i_mac_notify(mip, MAC_NOTE_MARGIN);
2941 
2942         return (margin_needed <= margin);
2943 }
2944 
2945 /*
2946  * MAC clients use this interface to request that a MAC device not change its
2947  * MTU below the specified amount. At this time, that amount must be within the
2948  * range of the device's current minimum and the device's current maximum. eg. a
2949  * client cannot request a 3000 byte MTU when the device's MTU is currently
2950  * 2000.
2951  *
2952  * If "current" is set to B_TRUE, then the request is to simply to reserve the
2953  * current underlying mac's maximum for this mac client and return it in mtup.
2954  */
2955 int
2956 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2957 {
2958         mac_impl_t              *mip = (mac_impl_t *)mh;
2959         mac_mtu_req_t           *prev, *cur;
2960         mac_propval_range_t     mpr;
2961         int                     err;
2962 
2963         i_mac_perim_enter(mip);
2964         rw_enter(&mip->mi_rw_lock, RW_WRITER);
2965 
2966         if (current == B_TRUE)
2967                 *mtup = mip->mi_sdu_max;
2968         mpr.mpr_count = 1;
2969         err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2970         if (err != 0) {
2971                 rw_exit(&mip->mi_rw_lock);
2972                 i_mac_perim_exit(mip);
2973                 return (err);
2974         }
2975 
2976         if (*mtup > mip->mi_sdu_max ||
2977             *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2978                 rw_exit(&mip->mi_rw_lock);
2979                 i_mac_perim_exit(mip);
2980                 return (ENOTSUP);
2981         }
2982 
2983         prev = NULL;
2984         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2985                 if (*mtup == cur->mtr_mtu) {
2986                         cur->mtr_ref++;
2987                         rw_exit(&mip->mi_rw_lock);
2988                         i_mac_perim_exit(mip);
2989                         return (0);
2990                 }
2991 
2992                 if (*mtup > cur->mtr_mtu)
2993                         break;
2994 
2995                 prev = cur;
2996         }
2997 
2998         cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2999         cur->mtr_mtu = *mtup;
3000         cur->mtr_ref = 1;
3001         if (prev != NULL) {
3002                 cur->mtr_nextp = prev->mtr_nextp;
3003                 prev->mtr_nextp = cur;
3004         } else {
3005                 cur->mtr_nextp = mip->mi_mtrp;
3006                 mip->mi_mtrp = cur;
3007         }
3008 
3009         rw_exit(&mip->mi_rw_lock);
3010         i_mac_perim_exit(mip);
3011         return (0);
3012 }
3013 
3014 int
3015 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
3016 {
3017         mac_impl_t *mip = (mac_impl_t *)mh;
3018         mac_mtu_req_t *cur, *prev;
3019 
3020         i_mac_perim_enter(mip);
3021         rw_enter(&mip->mi_rw_lock, RW_WRITER);
3022 
3023         prev = NULL;
3024         for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3025                 if (cur->mtr_mtu == mtu) {
3026                         ASSERT(cur->mtr_ref > 0);
3027                         cur->mtr_ref--;
3028                         if (cur->mtr_ref == 0) {
3029                                 if (prev == NULL) {
3030                                         mip->mi_mtrp = cur->mtr_nextp;
3031                                 } else {
3032                                         prev->mtr_nextp = cur->mtr_nextp;
3033                                 }
3034                                 kmem_free(cur, sizeof (mac_mtu_req_t));
3035                         }
3036                         rw_exit(&mip->mi_rw_lock);
3037                         i_mac_perim_exit(mip);
3038                         return (0);
3039                 }
3040 
3041                 prev = cur;
3042         }
3043 
3044         rw_exit(&mip->mi_rw_lock);
3045         i_mac_perim_exit(mip);
3046         return (ENOENT);
3047 }
3048 
3049 /*
3050  * MAC Type Plugin functions.
3051  */
3052 
3053 mactype_t *
3054 mactype_getplugin(const char *pname)
3055 {
3056         mactype_t       *mtype = NULL;
3057         boolean_t       tried_modload = B_FALSE;
3058 
3059         mutex_enter(&i_mactype_lock);
3060 
3061 find_registered_mactype:
3062         if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
3063             (mod_hash_val_t *)&mtype) != 0) {
3064                 if (!tried_modload) {
3065                         /*
3066                          * If the plugin has not yet been loaded, then
3067                          * attempt to load it now.  If modload() succeeds,
3068                          * the plugin should have registered using
3069                          * mactype_register(), in which case we can go back
3070                          * and attempt to find it again.
3071                          */
3072                         if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
3073                                 tried_modload = B_TRUE;
3074                                 goto find_registered_mactype;
3075                         }
3076                 }
3077         } else {
3078                 /*
3079                  * Note that there's no danger that the plugin we've loaded
3080                  * could be unloaded between the modload() step and the
3081                  * reference count bump here, as we're holding
3082                  * i_mactype_lock, which mactype_unregister() also holds.
3083                  */
3084                 atomic_inc_32(&mtype->mt_ref);
3085         }
3086 
3087         mutex_exit(&i_mactype_lock);
3088         return (mtype);
3089 }
3090 
3091 mactype_register_t *
3092 mactype_alloc(uint_t mactype_version)
3093 {
3094         mactype_register_t *mtrp;
3095 
3096         /*
3097          * Make sure there isn't a version mismatch between the plugin and
3098          * the framework.  In the future, if multiple versions are
3099          * supported, this check could become more sophisticated.
3100          */
3101         if (mactype_version != MACTYPE_VERSION)
3102                 return (NULL);
3103 
3104         mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
3105         mtrp->mtr_version = mactype_version;
3106         return (mtrp);
3107 }
3108 
3109 void
3110 mactype_free(mactype_register_t *mtrp)
3111 {
3112         kmem_free(mtrp, sizeof (mactype_register_t));
3113 }
3114 
3115 int
3116 mactype_register(mactype_register_t *mtrp)
3117 {
3118         mactype_t       *mtp;
3119         mactype_ops_t   *ops = mtrp->mtr_ops;
3120 
3121         /* Do some sanity checking before we register this MAC type. */
3122         if (mtrp->mtr_ident == NULL || ops == NULL)
3123                 return (EINVAL);
3124 
3125         /*
3126          * Verify that all mandatory callbacks are set in the ops
3127          * vector.
3128          */
3129         if (ops->mtops_unicst_verify == NULL ||
3130             ops->mtops_multicst_verify == NULL ||
3131             ops->mtops_sap_verify == NULL ||
3132             ops->mtops_header == NULL ||
3133             ops->mtops_header_info == NULL) {
3134                 return (EINVAL);
3135         }
3136 
3137         mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
3138         mtp->mt_ident = mtrp->mtr_ident;
3139         mtp->mt_ops = *ops;
3140         mtp->mt_type = mtrp->mtr_mactype;
3141         mtp->mt_nativetype = mtrp->mtr_nativetype;
3142         mtp->mt_addr_length = mtrp->mtr_addrlen;
3143         if (mtrp->mtr_brdcst_addr != NULL) {
3144                 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
3145                 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
3146                     mtrp->mtr_addrlen);
3147         }
3148 
3149         mtp->mt_stats = mtrp->mtr_stats;
3150         mtp->mt_statcount = mtrp->mtr_statcount;
3151 
3152         mtp->mt_mapping = mtrp->mtr_mapping;
3153         mtp->mt_mappingcount = mtrp->mtr_mappingcount;
3154 
3155         if (mod_hash_insert(i_mactype_hash,
3156             (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
3157                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3158                 kmem_free(mtp, sizeof (*mtp));
3159                 return (EEXIST);
3160         }
3161         return (0);
3162 }
3163 
3164 int
3165 mactype_unregister(const char *ident)
3166 {
3167         mactype_t       *mtp;
3168         mod_hash_val_t  val;
3169         int             err;
3170 
3171         /*
3172          * Let's not allow MAC drivers to use this plugin while we're
3173          * trying to unregister it.  Holding i_mactype_lock also prevents a
3174          * plugin from unregistering while a MAC driver is attempting to
3175          * hold a reference to it in i_mactype_getplugin().
3176          */
3177         mutex_enter(&i_mactype_lock);
3178 
3179         if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
3180             (mod_hash_val_t *)&mtp)) != 0) {
3181                 /* A plugin is trying to unregister, but it never registered. */
3182                 err = ENXIO;
3183                 goto done;
3184         }
3185 
3186         if (mtp->mt_ref != 0) {
3187                 err = EBUSY;
3188                 goto done;
3189         }
3190 
3191         err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
3192         ASSERT(err == 0);
3193         if (err != 0) {
3194                 /* This should never happen, thus the ASSERT() above. */
3195                 err = EINVAL;
3196                 goto done;
3197         }
3198         ASSERT(mtp == (mactype_t *)val);
3199 
3200         if (mtp->mt_brdcst_addr != NULL)
3201                 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3202         kmem_free(mtp, sizeof (mactype_t));
3203 done:
3204         mutex_exit(&i_mactype_lock);
3205         return (err);
3206 }
3207 
3208 /*
3209  * Checks the size of the value size specified for a property as
3210  * part of a property operation. Returns B_TRUE if the size is
3211  * correct, B_FALSE otherwise.
3212  */
3213 boolean_t
3214 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
3215 {
3216         uint_t minsize = 0;
3217 
3218         if (is_range)
3219                 return (valsize >= sizeof (mac_propval_range_t));
3220 
3221         switch (id) {
3222         case MAC_PROP_ZONE:
3223                 minsize = sizeof (dld_ioc_zid_t);
3224                 break;
3225         case MAC_PROP_AUTOPUSH:
3226                 if (valsize != 0)
3227                         minsize = sizeof (struct dlautopush);
3228                 break;
3229         case MAC_PROP_TAGMODE:
3230                 minsize = sizeof (link_tagmode_t);
3231                 break;
3232         case MAC_PROP_RESOURCE:
3233         case MAC_PROP_RESOURCE_EFF:
3234                 minsize = sizeof (mac_resource_props_t);
3235                 break;
3236         case MAC_PROP_DUPLEX:
3237                 minsize = sizeof (link_duplex_t);
3238                 break;
3239         case MAC_PROP_SPEED:
3240                 minsize = sizeof (uint64_t);
3241                 break;
3242         case MAC_PROP_STATUS:
3243                 minsize = sizeof (link_state_t);
3244                 break;
3245         case MAC_PROP_AUTONEG:
3246         case MAC_PROP_EN_AUTONEG:
3247                 minsize = sizeof (uint8_t);
3248                 break;
3249         case MAC_PROP_MTU:
3250         case MAC_PROP_LLIMIT:
3251         case MAC_PROP_LDECAY:
3252                 minsize = sizeof (uint32_t);
3253                 break;
3254         case MAC_PROP_FLOWCTRL:
3255                 minsize = sizeof (link_flowctrl_t);
3256                 break;
3257         case MAC_PROP_ADV_5000FDX_CAP:
3258         case MAC_PROP_EN_5000FDX_CAP:
3259         case MAC_PROP_ADV_2500FDX_CAP:
3260         case MAC_PROP_EN_2500FDX_CAP:
3261         case MAC_PROP_ADV_100GFDX_CAP:
3262         case MAC_PROP_EN_100GFDX_CAP:
3263         case MAC_PROP_ADV_50GFDX_CAP:
3264         case MAC_PROP_EN_50GFDX_CAP:
3265         case MAC_PROP_ADV_40GFDX_CAP:
3266         case MAC_PROP_EN_40GFDX_CAP:
3267         case MAC_PROP_ADV_25GFDX_CAP:
3268         case MAC_PROP_EN_25GFDX_CAP:
3269         case MAC_PROP_ADV_10GFDX_CAP:
3270         case MAC_PROP_EN_10GFDX_CAP:
3271         case MAC_PROP_ADV_1000HDX_CAP:
3272         case MAC_PROP_EN_1000HDX_CAP:
3273         case MAC_PROP_ADV_100FDX_CAP:
3274         case MAC_PROP_EN_100FDX_CAP:
3275         case MAC_PROP_ADV_100HDX_CAP:
3276         case MAC_PROP_EN_100HDX_CAP:
3277         case MAC_PROP_ADV_10FDX_CAP:
3278         case MAC_PROP_EN_10FDX_CAP:
3279         case MAC_PROP_ADV_10HDX_CAP:
3280         case MAC_PROP_EN_10HDX_CAP:
3281         case MAC_PROP_ADV_100T4_CAP:
3282         case MAC_PROP_EN_100T4_CAP:
3283                 minsize = sizeof (uint8_t);
3284                 break;
3285         case MAC_PROP_PVID:
3286                 minsize = sizeof (uint16_t);
3287                 break;
3288         case MAC_PROP_IPTUN_HOPLIMIT:
3289                 minsize = sizeof (uint32_t);
3290                 break;
3291         case MAC_PROP_IPTUN_ENCAPLIMIT:
3292                 minsize = sizeof (uint32_t);
3293                 break;
3294         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3295         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3296         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3297         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3298                 minsize = sizeof (uint_t);
3299                 break;
3300         case MAC_PROP_WL_ESSID:
3301                 minsize = sizeof (wl_linkstatus_t);
3302                 break;
3303         case MAC_PROP_WL_BSSID:
3304                 minsize = sizeof (wl_bssid_t);
3305                 break;
3306         case MAC_PROP_WL_BSSTYPE:
3307                 minsize = sizeof (wl_bss_type_t);
3308                 break;
3309         case MAC_PROP_WL_LINKSTATUS:
3310                 minsize = sizeof (wl_linkstatus_t);
3311                 break;
3312         case MAC_PROP_WL_DESIRED_RATES:
3313                 minsize = sizeof (wl_rates_t);
3314                 break;
3315         case MAC_PROP_WL_SUPPORTED_RATES:
3316                 minsize = sizeof (wl_rates_t);
3317                 break;
3318         case MAC_PROP_WL_AUTH_MODE:
3319                 minsize = sizeof (wl_authmode_t);
3320                 break;
3321         case MAC_PROP_WL_ENCRYPTION:
3322                 minsize = sizeof (wl_encryption_t);
3323                 break;
3324         case MAC_PROP_WL_RSSI:
3325                 minsize = sizeof (wl_rssi_t);
3326                 break;
3327         case MAC_PROP_WL_PHY_CONFIG:
3328                 minsize = sizeof (wl_phy_conf_t);
3329                 break;
3330         case MAC_PROP_WL_CAPABILITY:
3331                 minsize = sizeof (wl_capability_t);
3332                 break;
3333         case MAC_PROP_WL_WPA:
3334                 minsize = sizeof (wl_wpa_t);
3335                 break;
3336         case MAC_PROP_WL_SCANRESULTS:
3337                 minsize = sizeof (wl_wpa_ess_t);
3338                 break;
3339         case MAC_PROP_WL_POWER_MODE:
3340                 minsize = sizeof (wl_ps_mode_t);
3341                 break;
3342         case MAC_PROP_WL_RADIO:
3343                 minsize = sizeof (wl_radio_t);
3344                 break;
3345         case MAC_PROP_WL_ESS_LIST:
3346                 minsize = sizeof (wl_ess_list_t);
3347                 break;
3348         case MAC_PROP_WL_KEY_TAB:
3349                 minsize = sizeof (wl_wep_key_tab_t);
3350                 break;
3351         case MAC_PROP_WL_CREATE_IBSS:
3352                 minsize = sizeof (wl_create_ibss_t);
3353                 break;
3354         case MAC_PROP_WL_SETOPTIE:
3355                 minsize = sizeof (wl_wpa_ie_t);
3356                 break;
3357         case MAC_PROP_WL_DELKEY:
3358                 minsize = sizeof (wl_del_key_t);
3359                 break;
3360         case MAC_PROP_WL_KEY:
3361                 minsize = sizeof (wl_key_t);
3362                 break;
3363         case MAC_PROP_WL_MLME:
3364                 minsize = sizeof (wl_mlme_t);
3365                 break;
3366         case MAC_PROP_VN_PROMISC_FILTERED:
3367                 minsize = sizeof (boolean_t);
3368                 break;
3369         }
3370 
3371         return (valsize >= minsize);
3372 }
3373 
3374 /*
3375  * mac_set_prop() sets MAC or hardware driver properties:
3376  *
3377  * - MAC-managed properties such as resource properties include maxbw,
3378  *   priority, and cpu binding list, as well as the default port VID
3379  *   used by bridging. These properties are consumed by the MAC layer
3380  *   itself and not passed down to the driver. For resource control
3381  *   properties, this function invokes mac_set_resources() which will
3382  *   cache the property value in mac_impl_t and may call
3383  *   mac_client_set_resource() to update property value of the primary
3384  *   mac client, if it exists.
3385  *
3386  * - Properties which act on the hardware and must be passed to the
3387  *   driver, such as MTU, through the driver's mc_setprop() entry point.
3388  */
3389 int
3390 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3391     uint_t valsize)
3392 {
3393         int err = ENOTSUP;
3394         mac_impl_t *mip = (mac_impl_t *)mh;
3395 
3396         ASSERT(MAC_PERIM_HELD(mh));
3397 
3398         switch (id) {
3399         case MAC_PROP_RESOURCE: {
3400                 mac_resource_props_t *mrp;
3401 
3402                 /* call mac_set_resources() for MAC properties */
3403                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3404                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3405                 bcopy(val, mrp, sizeof (*mrp));
3406                 err = mac_set_resources(mh, mrp);
3407                 kmem_free(mrp, sizeof (*mrp));
3408                 break;
3409         }
3410 
3411         case MAC_PROP_PVID:
3412                 ASSERT(valsize >= sizeof (uint16_t));
3413                 if (mip->mi_state_flags & MIS_IS_VNIC)
3414                         return (EINVAL);
3415                 err = mac_set_pvid(mh, *(uint16_t *)val);
3416                 break;
3417 
3418         case MAC_PROP_MTU: {
3419                 uint32_t mtu;
3420 
3421                 ASSERT(valsize >= sizeof (uint32_t));
3422                 bcopy(val, &mtu, sizeof (mtu));
3423                 err = mac_set_mtu(mh, mtu, NULL);
3424                 break;
3425         }
3426 
3427         case MAC_PROP_LLIMIT:
3428         case MAC_PROP_LDECAY: {
3429                 uint32_t learnval;
3430 
3431                 if (valsize < sizeof (learnval) ||
3432                     (mip->mi_state_flags & MIS_IS_VNIC))
3433                         return (EINVAL);
3434                 bcopy(val, &learnval, sizeof (learnval));
3435                 if (learnval == 0 && id == MAC_PROP_LDECAY)
3436                         return (EINVAL);
3437                 if (id == MAC_PROP_LLIMIT)
3438                         mip->mi_llimit = learnval;
3439                 else
3440                         mip->mi_ldecay = learnval;
3441                 err = 0;
3442                 break;
3443         }
3444 
3445         default:
3446                 /* For other driver properties, call driver's callback */
3447                 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3448                         err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3449                             name, id, valsize, val);
3450                 }
3451         }
3452         return (err);
3453 }
3454 
3455 /*
3456  * mac_get_prop() gets MAC or device driver properties.
3457  *
3458  * If the property is a driver property, mac_get_prop() calls driver's callback
3459  * entry point to get it.
3460  * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3461  * which returns the cached value in mac_impl_t.
3462  */
3463 int
3464 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3465     uint_t valsize)
3466 {
3467         int err = ENOTSUP;
3468         mac_impl_t *mip = (mac_impl_t *)mh;
3469         uint_t  rings;
3470         uint_t  vlinks;
3471 
3472         bzero(val, valsize);
3473 
3474         switch (id) {
3475         case MAC_PROP_RESOURCE: {
3476                 mac_resource_props_t *mrp;
3477 
3478                 /* If mac property, read from cache */
3479                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3480                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3481                 mac_get_resources(mh, mrp);
3482                 bcopy(mrp, val, sizeof (*mrp));
3483                 kmem_free(mrp, sizeof (*mrp));
3484                 return (0);
3485         }
3486         case MAC_PROP_RESOURCE_EFF: {
3487                 mac_resource_props_t *mrp;
3488 
3489                 /* If mac effective property, read from client */
3490                 ASSERT(valsize >= sizeof (mac_resource_props_t));
3491                 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3492                 mac_get_effective_resources(mh, mrp);
3493                 bcopy(mrp, val, sizeof (*mrp));
3494                 kmem_free(mrp, sizeof (*mrp));
3495                 return (0);
3496         }
3497 
3498         case MAC_PROP_PVID:
3499                 ASSERT(valsize >= sizeof (uint16_t));
3500                 if (mip->mi_state_flags & MIS_IS_VNIC)
3501                         return (EINVAL);
3502                 *(uint16_t *)val = mac_get_pvid(mh);
3503                 return (0);
3504 
3505         case MAC_PROP_LLIMIT:
3506         case MAC_PROP_LDECAY:
3507                 ASSERT(valsize >= sizeof (uint32_t));
3508                 if (mip->mi_state_flags & MIS_IS_VNIC)
3509                         return (EINVAL);
3510                 if (id == MAC_PROP_LLIMIT)
3511                         bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3512                 else
3513                         bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3514                 return (0);
3515 
3516         case MAC_PROP_MTU: {
3517                 uint32_t sdu;
3518 
3519                 ASSERT(valsize >= sizeof (uint32_t));
3520                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3521                 bcopy(&sdu, val, sizeof (sdu));
3522 
3523                 return (0);
3524         }
3525         case MAC_PROP_STATUS: {
3526                 link_state_t link_state;
3527 
3528                 if (valsize < sizeof (link_state))
3529                         return (EINVAL);
3530                 link_state = mac_link_get(mh);
3531                 bcopy(&link_state, val, sizeof (link_state));
3532 
3533                 return (0);
3534         }
3535 
3536         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3537         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3538                 ASSERT(valsize >= sizeof (uint_t));
3539                 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3540                     mac_rxavail_get(mh) : mac_txavail_get(mh);
3541                 bcopy(&rings, val, sizeof (uint_t));
3542                 return (0);
3543 
3544         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3545         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3546                 ASSERT(valsize >= sizeof (uint_t));
3547                 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3548                     mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3549                 bcopy(&vlinks, val, sizeof (uint_t));
3550                 return (0);
3551 
3552         case MAC_PROP_RXRINGSRANGE:
3553         case MAC_PROP_TXRINGSRANGE:
3554                 /*
3555                  * The value for these properties are returned through
3556                  * the MAC_PROP_RESOURCE property.
3557                  */
3558                 return (0);
3559 
3560         default:
3561                 break;
3562 
3563         }
3564 
3565         /* If driver property, request from driver */
3566         if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3567                 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3568                     valsize, val);
3569         }
3570 
3571         return (err);
3572 }
3573 
3574 /*
3575  * Helper function to initialize the range structure for use in
3576  * mac_get_prop. If the type can be other than uint32, we can
3577  * pass that as an arg.
3578  */
3579 static void
3580 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3581 {
3582         range->mpr_count = 1;
3583         range->mpr_type = MAC_PROPVAL_UINT32;
3584         range->mpr_range_uint32[0].mpur_min = min;
3585         range->mpr_range_uint32[0].mpur_max = max;
3586 }
3587 
3588 /*
3589  * Returns information about the specified property, such as default
3590  * values or permissions.
3591  */
3592 int
3593 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3594     void *default_val, uint_t default_size, mac_propval_range_t *range,
3595     uint_t *perm)
3596 {
3597         mac_prop_info_state_t state;
3598         mac_impl_t *mip = (mac_impl_t *)mh;
3599         uint_t  max;
3600 
3601         /*
3602          * A property is read/write by default unless the driver says
3603          * otherwise.
3604          */
3605         if (perm != NULL)
3606                 *perm = MAC_PROP_PERM_RW;
3607 
3608         if (default_val != NULL)
3609                 bzero(default_val, default_size);
3610 
3611         /*
3612          * First, handle framework properties for which we don't need to
3613          * involve the driver.
3614          */
3615         switch (id) {
3616         case MAC_PROP_RESOURCE:
3617         case MAC_PROP_PVID:
3618         case MAC_PROP_LLIMIT:
3619         case MAC_PROP_LDECAY:
3620                 return (0);
3621 
3622         case MAC_PROP_MAX_RX_RINGS_AVAIL:
3623         case MAC_PROP_MAX_TX_RINGS_AVAIL:
3624         case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3625         case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3626                 if (perm != NULL)
3627                         *perm = MAC_PROP_PERM_READ;
3628                 return (0);
3629 
3630         case MAC_PROP_RXRINGSRANGE:
3631         case MAC_PROP_TXRINGSRANGE:
3632                 /*
3633                  * Currently, we support range for RX and TX rings properties.
3634                  * When we extend this support to maxbw, cpus and priority,
3635                  * we should move this to mac_get_resources.
3636                  * There is no default value for RX or TX rings.
3637                  */
3638                 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3639                     mac_is_vnic_primary(mh)) {
3640                         /*
3641                          * We don't support setting rings for a VLAN
3642                          * data link because it shares its ring with the
3643                          * primary MAC client.
3644                          */
3645                         if (perm != NULL)
3646                                 *perm = MAC_PROP_PERM_READ;
3647                         if (range != NULL)
3648                                 range->mpr_count = 0;
3649                 } else if (range != NULL) {
3650                         if (mip->mi_state_flags & MIS_IS_VNIC)
3651                                 mh = mac_get_lower_mac_handle(mh);
3652                         mip = (mac_impl_t *)mh;
3653                         if ((id == MAC_PROP_RXRINGSRANGE &&
3654                             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3655                             (id == MAC_PROP_TXRINGSRANGE &&
3656                             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3657                                 if (id == MAC_PROP_RXRINGSRANGE) {
3658                                         if ((mac_rxhwlnksavail_get(mh) +
3659                                             mac_rxhwlnksrsvd_get(mh)) <= 1) {
3660                                                 /*
3661                                                  * doesn't support groups or
3662                                                  * rings
3663                                                  */
3664                                                 range->mpr_count = 0;
3665                                         } else {
3666                                                 /*
3667                                                  * supports specifying groups,
3668                                                  * but not rings
3669                                                  */
3670                                                 _mac_set_range(range, 0, 0);
3671                                         }
3672                                 } else {
3673                                         if ((mac_txhwlnksavail_get(mh) +
3674                                             mac_txhwlnksrsvd_get(mh)) <= 1) {
3675                                                 /*
3676                                                  * doesn't support groups or
3677                                                  * rings
3678                                                  */
3679                                                 range->mpr_count = 0;
3680                                         } else {
3681                                                 /*
3682                                                  * supports specifying groups,
3683                                                  * but not rings
3684                                                  */
3685                                                 _mac_set_range(range, 0, 0);
3686                                         }
3687                                 }
3688                         } else {
3689                                 max = id == MAC_PROP_RXRINGSRANGE ?
3690                                     mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3691                                     mac_txavail_get(mh) + mac_txrsvd_get(mh);
3692                                 if (max <= 1) {
3693                                         /*
3694                                          * doesn't support groups or
3695                                          * rings
3696                                          */
3697                                         range->mpr_count = 0;
3698                                 } else  {
3699                                         /*
3700                                          * -1 because we have to leave out the
3701                                          * default ring.
3702                                          */
3703                                         _mac_set_range(range, 1, max - 1);
3704                                 }
3705                         }
3706                 }
3707                 return (0);
3708 
3709         case MAC_PROP_STATUS:
3710                 if (perm != NULL)
3711                         *perm = MAC_PROP_PERM_READ;
3712                 return (0);
3713         }
3714 
3715         /*
3716          * Get the property info from the driver if it implements the
3717          * property info entry point.
3718          */
3719         bzero(&state, sizeof (state));
3720 
3721         if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3722                 state.pr_default = default_val;
3723                 state.pr_default_size = default_size;
3724 
3725                 /*
3726                  * The caller specifies the maximum number of ranges
3727                  * it can accomodate using mpr_count. We don't touch
3728                  * this value until the driver returns from its
3729                  * mc_propinfo() callback, and ensure we don't exceed
3730                  * this number of range as the driver defines
3731                  * supported range from its mc_propinfo().
3732                  *
3733                  * pr_range_cur_count keeps track of how many ranges
3734                  * were defined by the driver from its mc_propinfo()
3735                  * entry point.
3736                  *
3737                  * On exit, the user-specified range mpr_count returns
3738                  * the number of ranges specified by the driver on
3739                  * success, or the number of ranges it wanted to
3740                  * define if that number of ranges could not be
3741                  * accomodated by the specified range structure.  In
3742                  * the latter case, the caller will be able to
3743                  * allocate a larger range structure, and query the
3744                  * property again.
3745                  */
3746                 state.pr_range_cur_count = 0;
3747                 state.pr_range = range;
3748 
3749                 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3750                     (mac_prop_info_handle_t)&state);
3751 
3752                 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3753                         range->mpr_count = state.pr_range_cur_count;
3754 
3755                 /*
3756                  * The operation could fail if the buffer supplied by
3757                  * the user was too small for the range or default
3758                  * value of the property.
3759                  */
3760                 if (state.pr_errno != 0)
3761                         return (state.pr_errno);
3762 
3763                 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3764                         *perm = state.pr_perm;
3765         }
3766 
3767         /*
3768          * The MAC layer may want to provide default values or allowed
3769          * ranges for properties if the driver does not provide a
3770          * property info entry point, or that entry point exists, but
3771          * it did not provide a default value or allowed ranges for
3772          * that property.
3773          */
3774         switch (id) {
3775         case MAC_PROP_MTU: {
3776                 uint32_t sdu;
3777 
3778                 mac_sdu_get2(mh, NULL, &sdu, NULL);
3779 
3780                 if (range != NULL && !(state.pr_flags &
3781                     MAC_PROP_INFO_RANGE)) {
3782                         /* MTU range */
3783                         _mac_set_range(range, sdu, sdu);
3784                 }
3785 
3786                 if (default_val != NULL && !(state.pr_flags &
3787                     MAC_PROP_INFO_DEFAULT)) {
3788                         if (mip->mi_info.mi_media == DL_ETHER)
3789                                 sdu = ETHERMTU;
3790                         /* default MTU value */
3791                         bcopy(&sdu, default_val, sizeof (sdu));
3792                 }
3793         }
3794         }
3795 
3796         return (0);
3797 }
3798 
3799 int
3800 mac_fastpath_disable(mac_handle_t mh)
3801 {
3802         mac_impl_t      *mip = (mac_impl_t *)mh;
3803 
3804         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3805                 return (0);
3806 
3807         return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3808 }
3809 
3810 void
3811 mac_fastpath_enable(mac_handle_t mh)
3812 {
3813         mac_impl_t      *mip = (mac_impl_t *)mh;
3814 
3815         if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3816                 return;
3817 
3818         mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3819 }
3820 
3821 void
3822 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3823 {
3824         uint_t nprops, i;
3825 
3826         if (priv_props == NULL)
3827                 return;
3828 
3829         nprops = 0;
3830         while (priv_props[nprops] != NULL)
3831                 nprops++;
3832         if (nprops == 0)
3833                 return;
3834 
3835 
3836         mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3837 
3838         for (i = 0; i < nprops; i++) {
3839                 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3840                 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3841                     MAXLINKPROPNAME);
3842         }
3843 
3844         mip->mi_priv_prop_count = nprops;
3845 }
3846 
3847 void
3848 mac_unregister_priv_prop(mac_impl_t *mip)
3849 {
3850         uint_t i;
3851 
3852         if (mip->mi_priv_prop_count == 0) {
3853                 ASSERT(mip->mi_priv_prop == NULL);
3854                 return;
3855         }
3856 
3857         for (i = 0; i < mip->mi_priv_prop_count; i++)
3858                 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3859         kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3860             sizeof (char *));
3861 
3862         mip->mi_priv_prop = NULL;
3863         mip->mi_priv_prop_count = 0;
3864 }
3865 
3866 /*
3867  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3868  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3869  * cases if MAC free's the ring structure after mac_stop_ring(), any
3870  * illegal access to the ring structure coming from the driver will panic
3871  * the system. In order to protect the system from such inadverent access,
3872  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3873  * When packets are received on free'd up rings, MAC (through the generation
3874  * count mechanism) will drop such packets.
3875  */
3876 static mac_ring_t *
3877 mac_ring_alloc(mac_impl_t *mip)
3878 {
3879         mac_ring_t *ring;
3880 
3881         mutex_enter(&mip->mi_ring_lock);
3882         if (mip->mi_ring_freelist != NULL) {
3883                 ring = mip->mi_ring_freelist;
3884                 mip->mi_ring_freelist = ring->mr_next;
3885                 bzero(ring, sizeof (mac_ring_t));
3886                 mutex_exit(&mip->mi_ring_lock);
3887         } else {
3888                 mutex_exit(&mip->mi_ring_lock);
3889                 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3890         }
3891         ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3892         return (ring);
3893 }
3894 
3895 static void
3896 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3897 {
3898         ASSERT(ring->mr_state == MR_FREE);
3899 
3900         mutex_enter(&mip->mi_ring_lock);
3901         ring->mr_state = MR_FREE;
3902         ring->mr_flag = 0;
3903         ring->mr_next = mip->mi_ring_freelist;
3904         ring->mr_mip = NULL;
3905         mip->mi_ring_freelist = ring;
3906         mac_ring_stat_delete(ring);
3907         mutex_exit(&mip->mi_ring_lock);
3908 }
3909 
3910 static void
3911 mac_ring_freeall(mac_impl_t *mip)
3912 {
3913         mac_ring_t *ring_next;
3914         mutex_enter(&mip->mi_ring_lock);
3915         mac_ring_t *ring = mip->mi_ring_freelist;
3916         while (ring != NULL) {
3917                 ring_next = ring->mr_next;
3918                 kmem_cache_free(mac_ring_cache, ring);
3919                 ring = ring_next;
3920         }
3921         mip->mi_ring_freelist = NULL;
3922         mutex_exit(&mip->mi_ring_lock);
3923 }
3924 
3925 int
3926 mac_start_ring(mac_ring_t *ring)
3927 {
3928         int rv = 0;
3929 
3930         ASSERT(ring->mr_state == MR_FREE);
3931 
3932         if (ring->mr_start != NULL) {
3933                 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3934                 if (rv != 0)
3935                         return (rv);
3936         }
3937 
3938         ring->mr_state = MR_INUSE;
3939         return (rv);
3940 }
3941 
3942 void
3943 mac_stop_ring(mac_ring_t *ring)
3944 {
3945         ASSERT(ring->mr_state == MR_INUSE);
3946 
3947         if (ring->mr_stop != NULL)
3948                 ring->mr_stop(ring->mr_driver);
3949 
3950         ring->mr_state = MR_FREE;
3951 
3952         /*
3953          * Increment the ring generation number for this ring.
3954          */
3955         ring->mr_gen_num++;
3956 }
3957 
3958 int
3959 mac_start_group(mac_group_t *group)
3960 {
3961         int rv = 0;
3962 
3963         if (group->mrg_start != NULL)
3964                 rv = group->mrg_start(group->mrg_driver);
3965 
3966         return (rv);
3967 }
3968 
3969 void
3970 mac_stop_group(mac_group_t *group)
3971 {
3972         if (group->mrg_stop != NULL)
3973                 group->mrg_stop(group->mrg_driver);
3974 }
3975 
3976 /*
3977  * Called from mac_start() on the default Rx group. Broadcast and multicast
3978  * packets are received only on the default group. Hence the default group
3979  * needs to be up even if the primary client is not up, for the other groups
3980  * to be functional. We do this by calling this function at mac_start time
3981  * itself. However the broadcast packets that are received can't make their
3982  * way beyond mac_rx until a mac client creates a broadcast flow.
3983  */
3984 static int
3985 mac_start_group_and_rings(mac_group_t *group)
3986 {
3987         mac_ring_t      *ring;
3988         int             rv = 0;
3989 
3990         ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3991         if ((rv = mac_start_group(group)) != 0)
3992                 return (rv);
3993 
3994         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3995                 ASSERT(ring->mr_state == MR_FREE);
3996 
3997                 if ((rv = mac_start_ring(ring)) != 0)
3998                         goto error;
3999 
4000                 /*
4001                  * When aggr_set_port_sdu() is called, it will remove
4002                  * the port client's unicast address. This will cause
4003                  * MAC to stop the default group's rings on the port
4004                  * MAC. After it modifies the SDU, it will then re-add
4005                  * the unicast address. At which time, this function is
4006                  * called to start the default group's rings. Normally
4007                  * this function would set the classify type to
4008                  * MAC_SW_CLASSIFIER; but that will break aggr which
4009                  * relies on the passthru classify mode being set for
4010                  * correct delivery (see mac_rx_common()). To avoid
4011                  * that, we check for a passthru callback and set the
4012                  * classify type to MAC_PASSTHRU_CLASSIFIER; as it was
4013                  * before the rings were stopped.
4014                  */
4015                 ring->mr_classify_type = (ring->mr_pt_fn != NULL) ?
4016                     MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER;
4017         }
4018         return (0);
4019 
4020 error:
4021         mac_stop_group_and_rings(group);
4022         return (rv);
4023 }
4024 
4025 /* Called from mac_stop on the default Rx group */
4026 static void
4027 mac_stop_group_and_rings(mac_group_t *group)
4028 {
4029         mac_ring_t      *ring;
4030 
4031         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4032                 if (ring->mr_state != MR_FREE) {
4033                         mac_stop_ring(ring);
4034                         ring->mr_flag = 0;
4035                         ring->mr_classify_type = MAC_NO_CLASSIFIER;
4036                 }
4037         }
4038         mac_stop_group(group);
4039 }
4040 
4041 
4042 static mac_ring_t *
4043 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
4044     mac_capab_rings_t *cap_rings)
4045 {
4046         mac_ring_t *ring, *rnext;
4047         mac_ring_info_t ring_info;
4048         ddi_intr_handle_t ddi_handle;
4049 
4050         ring = mac_ring_alloc(mip);
4051 
4052         /* Prepare basic information of ring */
4053 
4054         /*
4055          * Ring index is numbered to be unique across a particular device.
4056          * Ring index computation makes following assumptions:
4057          *      - For drivers with static grouping (e.g. ixgbe, bge),
4058          *      ring index exchanged with the driver (e.g. during mr_rget)
4059          *      is unique only across the group the ring belongs to.
4060          *      - Drivers with dynamic grouping (e.g. nxge), start
4061          *      with single group (mrg_index = 0).
4062          */
4063         ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
4064         ring->mr_type = group->mrg_type;
4065         ring->mr_gh = (mac_group_handle_t)group;
4066 
4067         /* Insert the new ring to the list. */
4068         ring->mr_next = group->mrg_rings;
4069         group->mrg_rings = ring;
4070 
4071         /* Zero to reuse the info data structure */
4072         bzero(&ring_info, sizeof (ring_info));
4073 
4074         /* Query ring information from driver */
4075         cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
4076             index, &ring_info, (mac_ring_handle_t)ring);
4077 
4078         ring->mr_info = ring_info;
4079 
4080         /*
4081          * The interrupt handle could be shared among multiple rings.
4082          * Thus if there is a bunch of rings that are sharing an
4083          * interrupt, then only one ring among the bunch will be made
4084          * available for interrupt re-targeting; the rest will have
4085          * ddi_shared flag set to TRUE and would not be available for
4086          * be interrupt re-targeting.
4087          */
4088         if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
4089                 rnext = ring->mr_next;
4090                 while (rnext != NULL) {
4091                         if (rnext->mr_info.mri_intr.mi_ddi_handle ==
4092                             ddi_handle) {
4093                                 /*
4094                                  * If default ring (mr_index == 0) is part
4095                                  * of a group of rings sharing an
4096                                  * interrupt, then set ddi_shared flag for
4097                                  * the default ring and give another ring
4098                                  * the chance to be re-targeted.
4099                                  */
4100                                 if (rnext->mr_index == 0 &&
4101                                     !rnext->mr_info.mri_intr.mi_ddi_shared) {
4102                                         rnext->mr_info.mri_intr.mi_ddi_shared =
4103                                             B_TRUE;
4104                                 } else {
4105                                         ring->mr_info.mri_intr.mi_ddi_shared =
4106                                             B_TRUE;
4107                                 }
4108                                 break;
4109                         }
4110                         rnext = rnext->mr_next;
4111                 }
4112                 /*
4113                  * If rnext is NULL, then no matching ddi_handle was found.
4114                  * Rx rings get registered first. So if this is a Tx ring,
4115                  * then go through all the Rx rings and see if there is a
4116                  * matching ddi handle.
4117                  */
4118                 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
4119                         mac_compare_ddi_handle(mip->mi_rx_groups,
4120                             mip->mi_rx_group_count, ring);
4121                 }
4122         }
4123 
4124         /* Update ring's status */
4125         ring->mr_state = MR_FREE;
4126         ring->mr_flag = 0;
4127 
4128         /* Update the ring count of the group */
4129         group->mrg_cur_count++;
4130 
4131         /* Create per ring kstats */
4132         if (ring->mr_stat != NULL) {
4133                 ring->mr_mip = mip;
4134                 mac_ring_stat_create(ring);
4135         }
4136 
4137         return (ring);
4138 }
4139 
4140 /*
4141  * Rings are chained together for easy regrouping.
4142  */
4143 static void
4144 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
4145     mac_capab_rings_t *cap_rings)
4146 {
4147         int index;
4148 
4149         /*
4150          * Initialize all ring members of this group. Size of zero will not
4151          * enter the loop, so it's safe for initializing an empty group.
4152          */
4153         for (index = size - 1; index >= 0; index--)
4154                 (void) mac_init_ring(mip, group, index, cap_rings);
4155 }
4156 
4157 int
4158 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4159 {
4160         mac_capab_rings_t       *cap_rings;
4161         mac_group_t             *group;
4162         mac_group_t             *groups;
4163         mac_group_info_t        group_info;
4164         uint_t                  group_free = 0;
4165         uint_t                  ring_left;
4166         mac_ring_t              *ring;
4167         int                     g;
4168         int                     err = 0;
4169         uint_t                  grpcnt;
4170         boolean_t               pseudo_txgrp = B_FALSE;
4171 
4172         switch (rtype) {
4173         case MAC_RING_TYPE_RX:
4174                 ASSERT(mip->mi_rx_groups == NULL);
4175 
4176                 cap_rings = &mip->mi_rx_rings_cap;
4177                 cap_rings->mr_type = MAC_RING_TYPE_RX;
4178                 break;
4179         case MAC_RING_TYPE_TX:
4180                 ASSERT(mip->mi_tx_groups == NULL);
4181 
4182                 cap_rings = &mip->mi_tx_rings_cap;
4183                 cap_rings->mr_type = MAC_RING_TYPE_TX;
4184                 break;
4185         default:
4186                 ASSERT(B_FALSE);
4187         }
4188 
4189         if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
4190                 return (0);
4191         grpcnt = cap_rings->mr_gnum;
4192 
4193         /*
4194          * If we have multiple TX rings, but only one TX group, we can
4195          * create pseudo TX groups (one per TX ring) in the MAC layer,
4196          * except for an aggr. For an aggr currently we maintain only
4197          * one group with all the rings (for all its ports), going
4198          * forwards we might change this.
4199          */
4200         if (rtype == MAC_RING_TYPE_TX &&
4201             cap_rings->mr_gnum == 0 && cap_rings->mr_rnum >  0 &&
4202             (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
4203                 /*
4204                  * The -1 here is because we create a default TX group
4205                  * with all the rings in it.
4206                  */
4207                 grpcnt = cap_rings->mr_rnum - 1;
4208                 pseudo_txgrp = B_TRUE;
4209         }
4210 
4211         /*
4212          * Allocate a contiguous buffer for all groups.
4213          */
4214         groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
4215 
4216         ring_left = cap_rings->mr_rnum;
4217 
4218         /*
4219          * Get all ring groups if any, and get their ring members
4220          * if any.
4221          */
4222         for (g = 0; g < grpcnt; g++) {
4223                 group = groups + g;
4224 
4225                 /* Prepare basic information of the group */
4226                 group->mrg_index = g;
4227                 group->mrg_type = rtype;
4228                 group->mrg_state = MAC_GROUP_STATE_UNINIT;
4229                 group->mrg_mh = (mac_handle_t)mip;
4230                 group->mrg_next = group + 1;
4231 
4232                 /* Zero to reuse the info data structure */
4233                 bzero(&group_info, sizeof (group_info));
4234 
4235                 if (pseudo_txgrp) {
4236                         /*
4237                          * This is a pseudo group that we created, apart
4238                          * from setting the state there is nothing to be
4239                          * done.
4240                          */
4241                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4242                         group_free++;
4243                         continue;
4244                 }
4245                 /* Query group information from driver */
4246                 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4247                     (mac_group_handle_t)group);
4248 
4249                 switch (cap_rings->mr_group_type) {
4250                 case MAC_GROUP_TYPE_DYNAMIC:
4251                         if (cap_rings->mr_gaddring == NULL ||
4252                             cap_rings->mr_gremring == NULL) {
4253                                 DTRACE_PROBE3(
4254                                     mac__init__rings_no_addremring,
4255                                     char *, mip->mi_name,
4256                                     mac_group_add_ring_t,
4257                                     cap_rings->mr_gaddring,
4258                                     mac_group_add_ring_t,
4259                                     cap_rings->mr_gremring);
4260                                 err = EINVAL;
4261                                 goto bail;
4262                         }
4263 
4264                         switch (rtype) {
4265                         case MAC_RING_TYPE_RX:
4266                                 /*
4267                                  * The first RX group must have non-zero
4268                                  * rings, and the following groups must
4269                                  * have zero rings.
4270                                  */
4271                                 if (g == 0 && group_info.mgi_count == 0) {
4272                                         DTRACE_PROBE1(
4273                                             mac__init__rings__rx__def__zero,
4274                                             char *, mip->mi_name);
4275                                         err = EINVAL;
4276                                         goto bail;
4277                                 }
4278                                 if (g > 0 && group_info.mgi_count != 0) {
4279                                         DTRACE_PROBE3(
4280                                             mac__init__rings__rx__nonzero,
4281                                             char *, mip->mi_name,
4282                                             int, g, int, group_info.mgi_count);
4283                                         err = EINVAL;
4284                                         goto bail;
4285                                 }
4286                                 break;
4287                         case MAC_RING_TYPE_TX:
4288                                 /*
4289                                  * All TX ring groups must have zero rings.
4290                                  */
4291                                 if (group_info.mgi_count != 0) {
4292                                         DTRACE_PROBE3(
4293                                             mac__init__rings__tx__nonzero,
4294                                             char *, mip->mi_name,
4295                                             int, g, int, group_info.mgi_count);
4296                                         err = EINVAL;
4297                                         goto bail;
4298                                 }
4299                                 break;
4300                         }
4301                         break;
4302                 case MAC_GROUP_TYPE_STATIC:
4303                         /*
4304                          * Note that an empty group is allowed, e.g., an aggr
4305                          * would start with an empty group.
4306                          */
4307                         break;
4308                 default:
4309                         /* unknown group type */
4310                         DTRACE_PROBE2(mac__init__rings__unknown__type,
4311                             char *, mip->mi_name,
4312                             int, cap_rings->mr_group_type);
4313                         err = EINVAL;
4314                         goto bail;
4315                 }
4316 
4317 
4318                 /*
4319                  * The driver must register some form of hardware MAC
4320                  * filter in order for Rx groups to support multiple
4321                  * MAC addresses.
4322                  */
4323                 if (rtype == MAC_RING_TYPE_RX &&
4324                     (group_info.mgi_addmac == NULL ||
4325                     group_info.mgi_remmac == NULL)) {
4326                         DTRACE_PROBE1(mac__init__rings__no__mac__filter,
4327                             char *, mip->mi_name);
4328                         err = EINVAL;
4329                         goto bail;
4330                 }
4331 
4332                 /* Cache driver-supplied information */
4333                 group->mrg_info = group_info;
4334 
4335                 /* Update the group's status and group count. */
4336                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4337                 group_free++;
4338 
4339                 group->mrg_rings = NULL;
4340                 group->mrg_cur_count = 0;
4341                 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4342                 ring_left -= group_info.mgi_count;
4343 
4344                 /* The current group size should be equal to default value */
4345                 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4346         }
4347 
4348         /* Build up a dummy group for free resources as a pool */
4349         group = groups + grpcnt;
4350 
4351         /* Prepare basic information of the group */
4352         group->mrg_index = -1;
4353         group->mrg_type = rtype;
4354         group->mrg_state = MAC_GROUP_STATE_UNINIT;
4355         group->mrg_mh = (mac_handle_t)mip;
4356         group->mrg_next = NULL;
4357 
4358         /*
4359          * If there are ungrouped rings, allocate a continuous buffer for
4360          * remaining resources.
4361          */
4362         if (ring_left != 0) {
4363                 group->mrg_rings = NULL;
4364                 group->mrg_cur_count = 0;
4365                 mac_init_group(mip, group, ring_left, cap_rings);
4366 
4367                 /* The current group size should be equal to ring_left */
4368                 ASSERT(group->mrg_cur_count == ring_left);
4369 
4370                 ring_left = 0;
4371 
4372                 /* Update this group's status */
4373                 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4374         } else {
4375                 group->mrg_rings = NULL;
4376         }
4377 
4378         ASSERT(ring_left == 0);
4379 
4380 bail:
4381 
4382         /* Cache other important information to finalize the initialization */
4383         switch (rtype) {
4384         case MAC_RING_TYPE_RX:
4385                 mip->mi_rx_group_type = cap_rings->mr_group_type;
4386                 mip->mi_rx_group_count = cap_rings->mr_gnum;
4387                 mip->mi_rx_groups = groups;
4388                 mip->mi_rx_donor_grp = groups;
4389                 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4390                         /*
4391                          * The default ring is reserved since it is
4392                          * used for sending the broadcast etc. packets.
4393                          */
4394                         mip->mi_rxrings_avail =
4395                             mip->mi_rx_groups->mrg_cur_count - 1;
4396                         mip->mi_rxrings_rsvd = 1;
4397                 }
4398                 /*
4399                  * The default group cannot be reserved. It is used by
4400                  * all the clients that do not have an exclusive group.
4401                  */
4402                 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4403                 mip->mi_rxhwclnt_used = 1;
4404                 break;
4405         case MAC_RING_TYPE_TX:
4406                 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4407                     cap_rings->mr_group_type;
4408                 mip->mi_tx_group_count = grpcnt;
4409                 mip->mi_tx_group_free = group_free;
4410                 mip->mi_tx_groups = groups;
4411 
4412                 group = groups + grpcnt;
4413                 ring = group->mrg_rings;
4414                 /*
4415                  * The ring can be NULL in the case of aggr. Aggr will
4416                  * have an empty Tx group which will get populated
4417                  * later when pseudo Tx rings are added after
4418                  * mac_register() is done.
4419                  */
4420                 if (ring == NULL) {
4421                         ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4422                         /*
4423                          * pass the group to aggr so it can add Tx
4424                          * rings to the group later.
4425                          */
4426                         cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4427                             (mac_group_handle_t)group);
4428                         /*
4429                          * Even though there are no rings at this time
4430                          * (rings will come later), set the group
4431                          * state to registered.
4432                          */
4433                         group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4434                 } else {
4435                         /*
4436                          * Ring 0 is used as the default one and it could be
4437                          * assigned to a client as well.
4438                          */
4439                         while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4440                                 ring = ring->mr_next;
4441                         ASSERT(ring->mr_index == 0);
4442                         mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4443                 }
4444                 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4445                         mip->mi_txrings_avail = group->mrg_cur_count - 1;
4446                         /*
4447                          * The default ring cannot be reserved.
4448                          */
4449                         mip->mi_txrings_rsvd = 1;
4450                 }
4451                 /*
4452                  * The default group cannot be reserved. It will be shared
4453                  * by clients that do not have an exclusive group.
4454                  */
4455                 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4456                 mip->mi_txhwclnt_used = 1;
4457                 break;
4458         default:
4459                 ASSERT(B_FALSE);
4460         }
4461 
4462         if (err != 0)
4463                 mac_free_rings(mip, rtype);
4464 
4465         return (err);
4466 }
4467 
4468 /*
4469  * The ddi interrupt handle could be shared amoung rings. If so, compare
4470  * the new ring's ddi handle with the existing ones and set ddi_shared
4471  * flag.
4472  */
4473 void
4474 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4475 {
4476         mac_group_t *group;
4477         mac_ring_t *ring;
4478         ddi_intr_handle_t ddi_handle;
4479         int g;
4480 
4481         ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4482         for (g = 0; g < grpcnt; g++) {
4483                 group = groups + g;
4484                 for (ring = group->mrg_rings; ring != NULL;
4485                     ring = ring->mr_next) {
4486                         if (ring == cring)
4487                                 continue;
4488                         if (ring->mr_info.mri_intr.mi_ddi_handle ==
4489                             ddi_handle) {
4490                                 if (cring->mr_type == MAC_RING_TYPE_RX &&
4491                                     ring->mr_index == 0 &&
4492                                     !ring->mr_info.mri_intr.mi_ddi_shared) {
4493                                         ring->mr_info.mri_intr.mi_ddi_shared =
4494                                             B_TRUE;
4495                                 } else {
4496                                         cring->mr_info.mri_intr.mi_ddi_shared =
4497                                             B_TRUE;
4498                                 }
4499                                 return;
4500                         }
4501                 }
4502         }
4503 }
4504 
4505 /*
4506  * Called to free all groups of particular type (RX or TX). It's assumed that
4507  * no clients are using these groups.
4508  */
4509 void
4510 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4511 {
4512         mac_group_t *group, *groups;
4513         uint_t group_count;
4514 
4515         switch (rtype) {
4516         case MAC_RING_TYPE_RX:
4517                 if (mip->mi_rx_groups == NULL)
4518                         return;
4519 
4520                 groups = mip->mi_rx_groups;
4521                 group_count = mip->mi_rx_group_count;
4522 
4523                 mip->mi_rx_groups = NULL;
4524                 mip->mi_rx_donor_grp = NULL;
4525                 mip->mi_rx_group_count = 0;
4526                 break;
4527         case MAC_RING_TYPE_TX:
4528                 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4529 
4530                 if (mip->mi_tx_groups == NULL)
4531                         return;
4532 
4533                 groups = mip->mi_tx_groups;
4534                 group_count = mip->mi_tx_group_count;
4535 
4536                 mip->mi_tx_groups = NULL;
4537                 mip->mi_tx_group_count = 0;
4538                 mip->mi_tx_group_free = 0;
4539                 mip->mi_default_tx_ring = NULL;
4540                 break;
4541         default:
4542                 ASSERT(B_FALSE);
4543         }
4544 
4545         for (group = groups; group != NULL; group = group->mrg_next) {
4546                 mac_ring_t *ring;
4547 
4548                 if (group->mrg_cur_count == 0)
4549                         continue;
4550 
4551                 ASSERT(group->mrg_rings != NULL);
4552 
4553                 while ((ring = group->mrg_rings) != NULL) {
4554                         group->mrg_rings = ring->mr_next;
4555                         mac_ring_free(mip, ring);
4556                 }
4557         }
4558 
4559         /* Free all the cached rings */
4560         mac_ring_freeall(mip);
4561         /* Free the block of group data strutures */
4562         kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4563 }
4564 
4565 /*
4566  * Associate the VLAN filter to the receive group.
4567  */
4568 int
4569 mac_group_addvlan(mac_group_t *group, uint16_t vlan)
4570 {
4571         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4572         VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL);
4573 
4574         if (vlan > VLAN_ID_MAX)
4575                 return (EINVAL);
4576 
4577         vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4578         return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan));
4579 }
4580 
4581 /*
4582  * Dissociate the VLAN from the receive group.
4583  */
4584 int
4585 mac_group_remvlan(mac_group_t *group, uint16_t vlan)
4586 {
4587         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4588         VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL);
4589 
4590         if (vlan > VLAN_ID_MAX)
4591                 return (EINVAL);
4592 
4593         vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4594         return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan));
4595 }
4596 
4597 /*
4598  * Associate a MAC address with a receive group.
4599  *
4600  * The return value of this function should always be checked properly, because
4601  * any type of failure could cause unexpected results. A group can be added
4602  * or removed with a MAC address only after it has been reserved. Ideally,
4603  * a successful reservation always leads to calling mac_group_addmac() to
4604  * steer desired traffic. Failure of adding an unicast MAC address doesn't
4605  * always imply that the group is functioning abnormally.
4606  *
4607  * Currently this function is called everywhere, and it reflects assumptions
4608  * about MAC addresses in the implementation. CR 6735196.
4609  */
4610 int
4611 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4612 {
4613         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4614         VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL);
4615 
4616         return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4617 }
4618 
4619 /*
4620  * Remove the association between MAC address and receive group.
4621  */
4622 int
4623 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4624 {
4625         VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4626         VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL);
4627 
4628         return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4629 }
4630 
4631 /*
4632  * This is the entry point for packets transmitted through the bridging code.
4633  * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4634  * pointer may be NULL to select the default ring.
4635  */
4636 mblk_t *
4637 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4638 {
4639         mac_handle_t mh;
4640 
4641         /*
4642          * Once we take a reference on the bridge link, the bridge
4643          * module itself can't unload, so the callback pointers are
4644          * stable.
4645          */
4646         mutex_enter(&mip->mi_bridge_lock);
4647         if ((mh = mip->mi_bridge_link) != NULL)
4648                 mac_bridge_ref_cb(mh, B_TRUE);
4649         mutex_exit(&mip->mi_bridge_lock);
4650         if (mh == NULL) {
4651                 MAC_RING_TX(mip, rh, mp, mp);
4652         } else {
4653                 mp = mac_bridge_tx_cb(mh, rh, mp);
4654                 mac_bridge_ref_cb(mh, B_FALSE);
4655         }
4656 
4657         return (mp);
4658 }
4659 
4660 /*
4661  * Find a ring from its index.
4662  */
4663 mac_ring_handle_t
4664 mac_find_ring(mac_group_handle_t gh, int index)
4665 {
4666         mac_group_t *group = (mac_group_t *)gh;
4667         mac_ring_t *ring = group->mrg_rings;
4668 
4669         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4670                 if (ring->mr_index == index)
4671                         break;
4672 
4673         return ((mac_ring_handle_t)ring);
4674 }
4675 /*
4676  * Add a ring to an existing group.
4677  *
4678  * The ring must be either passed directly (for example if the ring
4679  * movement is initiated by the framework), or specified through a driver
4680  * index (for example when the ring is added by the driver.
4681  *
4682  * The caller needs to call mac_perim_enter() before calling this function.
4683  */
4684 int
4685 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4686 {
4687         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4688         mac_capab_rings_t *cap_rings;
4689         boolean_t driver_call = (ring == NULL);
4690         mac_group_type_t group_type;
4691         int ret = 0;
4692         flow_entry_t *flent;
4693 
4694         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4695 
4696         switch (group->mrg_type) {
4697         case MAC_RING_TYPE_RX:
4698                 cap_rings = &mip->mi_rx_rings_cap;
4699                 group_type = mip->mi_rx_group_type;
4700                 break;
4701         case MAC_RING_TYPE_TX:
4702                 cap_rings = &mip->mi_tx_rings_cap;
4703                 group_type = mip->mi_tx_group_type;
4704                 break;
4705         default:
4706                 ASSERT(B_FALSE);
4707         }
4708 
4709         /*
4710          * There should be no ring with the same ring index in the target
4711          * group.
4712          */
4713         ASSERT(mac_find_ring((mac_group_handle_t)group,
4714             driver_call ? index : ring->mr_index) == NULL);
4715 
4716         if (driver_call) {
4717                 /*
4718                  * The function is called as a result of a request from
4719                  * a driver to add a ring to an existing group, for example
4720                  * from the aggregation driver. Allocate a new mac_ring_t
4721                  * for that ring.
4722                  */
4723                 ring = mac_init_ring(mip, group, index, cap_rings);
4724                 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4725         } else {
4726                 /*
4727                  * The function is called as a result of a MAC layer request
4728                  * to add a ring to an existing group. In this case the
4729                  * ring is being moved between groups, which requires
4730                  * the underlying driver to support dynamic grouping,
4731                  * and the mac_ring_t already exists.
4732                  */
4733                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4734                 ASSERT(group->mrg_driver == NULL ||
4735                     cap_rings->mr_gaddring != NULL);
4736                 ASSERT(ring->mr_gh == NULL);
4737         }
4738 
4739         /*
4740          * At this point the ring should not be in use, and it should be
4741          * of the right for the target group.
4742          */
4743         ASSERT(ring->mr_state < MR_INUSE);
4744         ASSERT(ring->mr_srs == NULL);
4745         ASSERT(ring->mr_type == group->mrg_type);
4746 
4747         if (!driver_call) {
4748                 /*
4749                  * Add the driver level hardware ring if the process was not
4750                  * initiated by the driver, and the target group is not the
4751                  * group.
4752                  */
4753                 if (group->mrg_driver != NULL) {
4754                         cap_rings->mr_gaddring(group->mrg_driver,
4755                             ring->mr_driver, ring->mr_type);
4756                 }
4757 
4758                 /*
4759                  * Insert the ring ahead existing rings.
4760                  */
4761                 ring->mr_next = group->mrg_rings;
4762                 group->mrg_rings = ring;
4763                 ring->mr_gh = (mac_group_handle_t)group;
4764                 group->mrg_cur_count++;
4765         }
4766 
4767         /*
4768          * If the group has not been actively used, we're done.
4769          */
4770         if (group->mrg_index != -1 &&
4771             group->mrg_state < MAC_GROUP_STATE_RESERVED)
4772                 return (0);
4773 
4774         /*
4775          * Start the ring if needed. Failure causes to undo the grouping action.
4776          */
4777         if (ring->mr_state != MR_INUSE) {
4778                 if ((ret = mac_start_ring(ring)) != 0) {
4779                         if (!driver_call) {
4780                                 cap_rings->mr_gremring(group->mrg_driver,
4781                                     ring->mr_driver, ring->mr_type);
4782                         }
4783                         group->mrg_cur_count--;
4784                         group->mrg_rings = ring->mr_next;
4785 
4786                         ring->mr_gh = NULL;
4787 
4788                         if (driver_call)
4789                                 mac_ring_free(mip, ring);
4790 
4791                         return (ret);
4792                 }
4793         }
4794 
4795         /*
4796          * Set up SRS/SR according to the ring type.
4797          */
4798         switch (ring->mr_type) {
4799         case MAC_RING_TYPE_RX:
4800                 /*
4801                  * Setup an SRS on top of the new ring if the group is
4802                  * reserved for someone's exclusive use.
4803                  */
4804                 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4805                         mac_client_impl_t *mcip =  MAC_GROUP_ONLY_CLIENT(group);
4806 
4807                         VERIFY3P(mcip, !=, NULL);
4808                         flent = mcip->mci_flent;
4809                         VERIFY3S(flent->fe_rx_srs_cnt, >, 0);
4810                         mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4811                         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4812                             mac_rx_deliver, mcip, NULL, NULL);
4813                 } else {
4814                         ring->mr_classify_type = MAC_SW_CLASSIFIER;
4815                 }
4816                 break;
4817         case MAC_RING_TYPE_TX:
4818         {
4819                 mac_grp_client_t        *mgcp = group->mrg_clients;
4820                 mac_client_impl_t       *mcip;
4821                 mac_soft_ring_set_t     *mac_srs;
4822                 mac_srs_tx_t            *tx;
4823 
4824                 if (MAC_GROUP_NO_CLIENT(group)) {
4825                         if (ring->mr_state == MR_INUSE)
4826                                 mac_stop_ring(ring);
4827                         ring->mr_flag = 0;
4828                         break;
4829                 }
4830                 /*
4831                  * If the rings are being moved to a group that has
4832                  * clients using it, then add the new rings to the
4833                  * clients SRS.
4834                  */
4835                 while (mgcp != NULL) {
4836                         boolean_t       is_aggr;
4837 
4838                         mcip = mgcp->mgc_client;
4839                         flent = mcip->mci_flent;
4840                         is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
4841                         mac_srs = MCIP_TX_SRS(mcip);
4842                         tx = &mac_srs->srs_tx;
4843                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4844                         /*
4845                          * If we are  growing from 1 to multiple rings.
4846                          */
4847                         if (tx->st_mode == SRS_TX_BW ||
4848                             tx->st_mode == SRS_TX_SERIALIZE ||
4849                             tx->st_mode == SRS_TX_DEFAULT) {
4850                                 mac_ring_t      *tx_ring = tx->st_arg2;
4851 
4852                                 tx->st_arg2 = NULL;
4853                                 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4854                                 mac_tx_srs_add_ring(mac_srs, tx_ring);
4855                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4856                                         tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4857                                             SRS_TX_BW_FANOUT;
4858                                 } else {
4859                                         tx->st_mode = is_aggr ? SRS_TX_AGGR :
4860                                             SRS_TX_FANOUT;
4861                                 }
4862                                 tx->st_func = mac_tx_get_func(tx->st_mode);
4863                         }
4864                         mac_tx_srs_add_ring(mac_srs, ring);
4865                         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4866                             mac_rx_deliver, mcip, NULL, NULL);
4867                         mac_tx_client_restart((mac_client_handle_t)mcip);
4868                         mgcp = mgcp->mgc_next;
4869                 }
4870                 break;
4871         }
4872         default:
4873                 ASSERT(B_FALSE);
4874         }
4875         /*
4876          * For aggr, the default ring will be NULL to begin with. If it
4877          * is NULL, then pick the first ring that gets added as the
4878          * default ring. Any ring in an aggregation can be removed at
4879          * any time (by the user action of removing a link) and if the
4880          * current default ring gets removed, then a new one gets
4881          * picked (see i_mac_group_rem_ring()).
4882          */
4883         if (mip->mi_state_flags & MIS_IS_AGGR &&
4884             mip->mi_default_tx_ring == NULL &&
4885             ring->mr_type == MAC_RING_TYPE_TX) {
4886                 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4887         }
4888 
4889         MAC_RING_UNMARK(ring, MR_INCIPIENT);
4890         return (0);
4891 }
4892 
4893 /*
4894  * Remove a ring from it's current group. MAC internal function for dynamic
4895  * grouping.
4896  *
4897  * The caller needs to call mac_perim_enter() before calling this function.
4898  */
4899 void
4900 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4901     boolean_t driver_call)
4902 {
4903         mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4904         mac_capab_rings_t *cap_rings = NULL;
4905         mac_group_type_t group_type;
4906 
4907         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4908 
4909         ASSERT(mac_find_ring((mac_group_handle_t)group,
4910             ring->mr_index) == (mac_ring_handle_t)ring);
4911         ASSERT((mac_group_t *)ring->mr_gh == group);
4912         ASSERT(ring->mr_type == group->mrg_type);
4913 
4914         if (ring->mr_state == MR_INUSE)
4915                 mac_stop_ring(ring);
4916         switch (ring->mr_type) {
4917         case MAC_RING_TYPE_RX:
4918                 group_type = mip->mi_rx_group_type;
4919                 cap_rings = &mip->mi_rx_rings_cap;
4920 
4921                 /*
4922                  * Only hardware classified packets hold a reference to the
4923                  * ring all the way up the Rx path. mac_rx_srs_remove()
4924                  * will take care of quiescing the Rx path and removing the
4925                  * SRS. The software classified path neither holds a reference
4926                  * nor any association with the ring in mac_rx.
4927                  */
4928                 if (ring->mr_srs != NULL) {
4929                         mac_rx_srs_remove(ring->mr_srs);
4930                         ring->mr_srs = NULL;
4931                 }
4932 
4933                 break;
4934         case MAC_RING_TYPE_TX:
4935         {
4936                 mac_grp_client_t        *mgcp;
4937                 mac_client_impl_t       *mcip;
4938                 mac_soft_ring_set_t     *mac_srs;
4939                 mac_srs_tx_t            *tx;
4940                 mac_ring_t              *rem_ring;
4941                 mac_group_t             *defgrp;
4942                 uint_t                  ring_info = 0;
4943 
4944                 /*
4945                  * For TX this function is invoked in three
4946                  * cases:
4947                  *
4948                  * 1) In the case of a failure during the
4949                  * initial creation of a group when a share is
4950                  * associated with a MAC client. So the SRS is not
4951                  * yet setup, and will be setup later after the
4952                  * group has been reserved and populated.
4953                  *
4954                  * 2) From mac_release_tx_group() when freeing
4955                  * a TX SRS.
4956                  *
4957                  * 3) In the case of aggr, when a port gets removed,
4958                  * the pseudo Tx rings that it exposed gets removed.
4959                  *
4960                  * In the first two cases the SRS and its soft
4961                  * rings are already quiesced.
4962                  */
4963                 if (driver_call) {
4964                         mac_client_impl_t *mcip;
4965                         mac_soft_ring_set_t *mac_srs;
4966                         mac_soft_ring_t *sringp;
4967                         mac_srs_tx_t *srs_tx;
4968 
4969                         if (mip->mi_state_flags & MIS_IS_AGGR &&
4970                             mip->mi_default_tx_ring ==
4971                             (mac_ring_handle_t)ring) {
4972                                 /* pick a new default Tx ring */
4973                                 mip->mi_default_tx_ring =
4974                                     (group->mrg_rings != ring) ?
4975                                     (mac_ring_handle_t)group->mrg_rings :
4976                                     (mac_ring_handle_t)(ring->mr_next);
4977                         }
4978                         /* Presently only aggr case comes here */
4979                         if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4980                                 break;
4981 
4982                         mcip = MAC_GROUP_ONLY_CLIENT(group);
4983                         ASSERT(mcip != NULL);
4984                         ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
4985                         mac_srs = MCIP_TX_SRS(mcip);
4986                         ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4987                             mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4988                         srs_tx = &mac_srs->srs_tx;
4989                         /*
4990                          * Wakeup any callers blocked on this
4991                          * Tx ring due to flow control.
4992                          */
4993                         sringp = srs_tx->st_soft_rings[ring->mr_index];
4994                         ASSERT(sringp != NULL);
4995                         mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4996                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
4997                         mac_tx_srs_del_ring(mac_srs, ring);
4998                         mac_tx_client_restart((mac_client_handle_t)mcip);
4999                         break;
5000                 }
5001                 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
5002                 group_type = mip->mi_tx_group_type;
5003                 cap_rings = &mip->mi_tx_rings_cap;
5004                 /*
5005                  * See if we need to take it out of the MAC clients using
5006                  * this group
5007                  */
5008                 if (MAC_GROUP_NO_CLIENT(group))
5009                         break;
5010                 mgcp = group->mrg_clients;
5011                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
5012                 while (mgcp != NULL) {
5013                         mcip = mgcp->mgc_client;
5014                         mac_srs = MCIP_TX_SRS(mcip);
5015                         tx = &mac_srs->srs_tx;
5016                         mac_tx_client_quiesce((mac_client_handle_t)mcip);
5017                         /*
5018                          * If we are here when removing rings from the
5019                          * defgroup, mac_reserve_tx_ring would have
5020                          * already deleted the ring from the MAC
5021                          * clients in the group.
5022                          */
5023                         if (group != defgrp) {
5024                                 mac_tx_invoke_callbacks(mcip,
5025                                     (mac_tx_cookie_t)
5026                                     mac_tx_srs_get_soft_ring(mac_srs, ring));
5027                                 mac_tx_srs_del_ring(mac_srs, ring);
5028                         }
5029                         /*
5030                          * Additionally, if  we are left with only
5031                          * one ring in the group after this, we need
5032                          * to modify the mode etc. to. (We haven't
5033                          * yet taken the ring out, so we check with 2).
5034                          */
5035                         if (group->mrg_cur_count == 2) {
5036                                 if (ring->mr_next == NULL)
5037                                         rem_ring = group->mrg_rings;
5038                                 else
5039                                         rem_ring = ring->mr_next;
5040                                 mac_tx_invoke_callbacks(mcip,
5041                                     (mac_tx_cookie_t)
5042                                     mac_tx_srs_get_soft_ring(mac_srs,
5043                                     rem_ring));
5044                                 mac_tx_srs_del_ring(mac_srs, rem_ring);
5045                                 if (rem_ring->mr_state != MR_INUSE) {
5046                                         (void) mac_start_ring(rem_ring);
5047                                 }
5048                                 tx->st_arg2 = (void *)rem_ring;
5049                                 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
5050                                 ring_info = mac_hwring_getinfo(
5051                                     (mac_ring_handle_t)rem_ring);
5052                                 /*
5053                                  * We are  shrinking from multiple
5054                                  * to 1 ring.
5055                                  */
5056                                 if (mac_srs->srs_type & SRST_BW_CONTROL) {
5057                                         tx->st_mode = SRS_TX_BW;
5058                                 } else if (mac_tx_serialize ||
5059                                     (ring_info & MAC_RING_TX_SERIALIZE)) {
5060                                         tx->st_mode = SRS_TX_SERIALIZE;
5061                                 } else {
5062                                         tx->st_mode = SRS_TX_DEFAULT;
5063                                 }
5064                                 tx->st_func = mac_tx_get_func(tx->st_mode);
5065                         }
5066                         mac_tx_client_restart((mac_client_handle_t)mcip);
5067                         mgcp = mgcp->mgc_next;
5068                 }
5069                 break;
5070         }
5071         default:
5072                 ASSERT(B_FALSE);
5073         }
5074 
5075         /*
5076          * Remove the ring from the group.
5077          */
5078         if (ring == group->mrg_rings)
5079                 group->mrg_rings = ring->mr_next;
5080         else {
5081                 mac_ring_t *pre;
5082 
5083                 pre = group->mrg_rings;
5084                 while (pre->mr_next != ring)
5085                         pre = pre->mr_next;
5086                 pre->mr_next = ring->mr_next;
5087         }
5088         group->mrg_cur_count--;
5089 
5090         if (!driver_call) {
5091                 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
5092                 ASSERT(group->mrg_driver == NULL ||
5093                     cap_rings->mr_gremring != NULL);
5094 
5095                 /*
5096                  * Remove the driver level hardware ring.
5097                  */
5098                 if (group->mrg_driver != NULL) {
5099                         cap_rings->mr_gremring(group->mrg_driver,
5100                             ring->mr_driver, ring->mr_type);
5101                 }
5102         }
5103 
5104         ring->mr_gh = NULL;
5105         if (driver_call)
5106                 mac_ring_free(mip, ring);
5107         else
5108                 ring->mr_flag = 0;
5109 }
5110 
5111 /*
5112  * Move a ring to the target group. If needed, remove the ring from the group
5113  * that it currently belongs to.
5114  *
5115  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
5116  */
5117 static int
5118 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
5119 {
5120         mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
5121         int rv;
5122 
5123         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5124         ASSERT(d_group != NULL);
5125         ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh);
5126 
5127         if (s_group == d_group)
5128                 return (0);
5129 
5130         /*
5131          * Remove it from current group first.
5132          */
5133         if (s_group != NULL)
5134                 i_mac_group_rem_ring(s_group, ring, B_FALSE);
5135 
5136         /*
5137          * Add it to the new group.
5138          */
5139         rv = i_mac_group_add_ring(d_group, ring, 0);
5140         if (rv != 0) {
5141                 /*
5142                  * Failed to add ring back to source group. If
5143                  * that fails, the ring is stuck in limbo, log message.
5144                  */
5145                 if (i_mac_group_add_ring(s_group, ring, 0)) {
5146                         cmn_err(CE_WARN, "%s: failed to move ring %p\n",
5147                             mip->mi_name, (void *)ring);
5148                 }
5149         }
5150 
5151         return (rv);
5152 }
5153 
5154 /*
5155  * Find a MAC address according to its value.
5156  */
5157 mac_address_t *
5158 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
5159 {
5160         mac_address_t *map;
5161 
5162         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5163 
5164         for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
5165                 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
5166                         break;
5167         }
5168 
5169         return (map);
5170 }
5171 
5172 /*
5173  * Check whether the MAC address is shared by multiple clients.
5174  */
5175 boolean_t
5176 mac_check_macaddr_shared(mac_address_t *map)
5177 {
5178         ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
5179 
5180         return (map->ma_nusers > 1);
5181 }
5182 
5183 /*
5184  * Remove the specified MAC address from the MAC address list and free it.
5185  */
5186 static void
5187 mac_free_macaddr(mac_address_t *map)
5188 {
5189         mac_impl_t *mip = map->ma_mip;
5190 
5191         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5192         VERIFY3P(mip->mi_addresses, !=, NULL);
5193 
5194         VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5195         VERIFY3P(map, !=, NULL);
5196         VERIFY3S(map->ma_nusers, ==, 0);
5197         VERIFY3P(map->ma_vlans, ==, NULL);
5198 
5199         if (map == mip->mi_addresses) {
5200                 mip->mi_addresses = map->ma_next;
5201         } else {
5202                 mac_address_t *pre;
5203 
5204                 pre = mip->mi_addresses;
5205                 while (pre->ma_next != map)
5206                         pre = pre->ma_next;
5207                 pre->ma_next = map->ma_next;
5208         }
5209 
5210         kmem_free(map, sizeof (mac_address_t));
5211 }
5212 
5213 static mac_vlan_t *
5214 mac_find_vlan(mac_address_t *map, uint16_t vid)
5215 {
5216         mac_vlan_t *mvp;
5217 
5218         for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) {
5219                 if (mvp->mv_vid == vid)
5220                         return (mvp);
5221         }
5222 
5223         return (NULL);
5224 }
5225 
5226 static mac_vlan_t *
5227 mac_add_vlan(mac_address_t *map, uint16_t vid)
5228 {
5229         mac_vlan_t *mvp;
5230 
5231         /*
5232          * We should never add the same {addr, VID} tuple more
5233          * than once, but let's be sure.
5234          */
5235         for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next)
5236                 VERIFY3U(mvp->mv_vid, !=, vid);
5237 
5238         /* Add the VLAN to the head of the VLAN list. */
5239         mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP);
5240         mvp->mv_vid = vid;
5241         mvp->mv_next = map->ma_vlans;
5242         map->ma_vlans = mvp;
5243 
5244         return (mvp);
5245 }
5246 
5247 static void
5248 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp)
5249 {
5250         mac_vlan_t *pre;
5251 
5252         if (map->ma_vlans == mvp) {
5253                 map->ma_vlans = mvp->mv_next;
5254         } else {
5255                 pre = map->ma_vlans;
5256                 while (pre->mv_next != mvp) {
5257                         pre = pre->mv_next;
5258 
5259                         /*
5260                          * We've reached the end of the list without
5261                          * finding mvp.
5262                          */
5263                         VERIFY3P(pre, !=, NULL);
5264                 }
5265                 pre->mv_next = mvp->mv_next;
5266         }
5267 
5268         kmem_free(mvp, sizeof (mac_vlan_t));
5269 }
5270 
5271 /*
5272  * Create a new mac_address_t if this is the first use of the address
5273  * or add a VID to an existing address. In either case, the
5274  * mac_address_t acts as a list of {addr, VID} tuples where each tuple
5275  * shares the same addr. If group is non-NULL then attempt to program
5276  * the MAC's HW filters for this group. Otherwise, if group is NULL,
5277  * then the MAC has no rings and there is nothing to program.
5278  */
5279 int
5280 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr,
5281     uint16_t vid, boolean_t use_hw)
5282 {
5283         mac_address_t   *map;
5284         mac_vlan_t      *mvp;
5285         int             err = 0;
5286         boolean_t       allocated_map = B_FALSE;
5287         boolean_t       hw_mac = B_FALSE;
5288         boolean_t       hw_vlan = B_FALSE;
5289 
5290         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5291 
5292         map = mac_find_macaddr(mip, addr);
5293 
5294         /*
5295          * If this is the first use of this MAC address then allocate
5296          * and initialize a new structure.
5297          */
5298         if (map == NULL) {
5299                 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5300                 map->ma_len = mip->mi_type->mt_addr_length;
5301                 bcopy(addr, map->ma_addr, map->ma_len);
5302                 map->ma_nusers = 0;
5303                 map->ma_group = group;
5304                 map->ma_mip = mip;
5305                 map->ma_untagged = B_FALSE;
5306 
5307                 /* Add the new MAC address to the head of the address list. */
5308                 map->ma_next = mip->mi_addresses;
5309                 mip->mi_addresses = map;
5310 
5311                 allocated_map = B_TRUE;
5312         }
5313 
5314         VERIFY(map->ma_group == NULL || map->ma_group == group);
5315         if (map->ma_group == NULL)
5316                 map->ma_group = group;
5317 
5318         if (vid == VLAN_ID_NONE) {
5319                 map->ma_untagged = B_TRUE;
5320                 mvp = NULL;
5321         } else {
5322                 mvp = mac_add_vlan(map, vid);
5323         }
5324 
5325         /*
5326          * Set the VLAN HW filter if:
5327          *
5328          * o the MAC's VLAN HW filtering is enabled, and
5329          * o the address does not currently rely on promisc mode.
5330          *
5331          * This is called even when the client specifies an untagged
5332          * address (VLAN_ID_NONE) because some MAC providers require
5333          * setting additional bits to accept untagged traffic when
5334          * VLAN HW filtering is enabled.
5335          */
5336         if (MAC_GROUP_HW_VLAN(group) &&
5337             map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) {
5338                 if ((err = mac_group_addvlan(group, vid)) != 0)
5339                         goto bail;
5340 
5341                 hw_vlan = B_TRUE;
5342         }
5343 
5344         VERIFY3S(map->ma_nusers, >=, 0);
5345         map->ma_nusers++;
5346 
5347         /*
5348          * If this MAC address already has a HW filter then simply
5349          * increment the counter.
5350          */
5351         if (map->ma_nusers > 1)
5352                 return (0);
5353 
5354         /*
5355          * All logic from here on out is executed during initial
5356          * creation only.
5357          */
5358         VERIFY3S(map->ma_nusers, ==, 1);
5359 
5360         /*
5361          * Activate this MAC address by adding it to the reserved group.
5362          */
5363         if (group != NULL) {
5364                 err = mac_group_addmac(group, (const uint8_t *)addr);
5365 
5366                 /*
5367                  * If the driver is out of filters then we can
5368                  * continue and use promisc mode. For any other error,
5369                  * assume the driver is in a state where we can't
5370                  * program the filters or use promisc mode; so we must
5371                  * bail.
5372                  */
5373                 if (err != 0 && err != ENOSPC) {
5374                         map->ma_nusers--;
5375                         goto bail;
5376                 }
5377 
5378                 hw_mac = (err == 0);
5379         }
5380 
5381         if (hw_mac) {
5382                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5383                 return (0);
5384         }
5385 
5386         /*
5387          * The MAC address addition failed. If the client requires a
5388          * hardware classified MAC address, fail the operation. This
5389          * feature is only used by sun4v vsw.
5390          */
5391         if (use_hw && !hw_mac) {
5392                 err = ENOSPC;
5393                 map->ma_nusers--;
5394                 goto bail;
5395         }
5396 
5397         /*
5398          * If we reach this point then either the MAC doesn't have
5399          * RINGS capability or we are out of MAC address HW filters.
5400          * In any case we must put the MAC into promiscuous mode.
5401          */
5402         VERIFY(group == NULL || !hw_mac);
5403 
5404         /*
5405          * The one exception is the primary address. A non-RINGS
5406          * driver filters the primary address by default; promisc mode
5407          * is not needed.
5408          */
5409         if ((group == NULL) &&
5410             (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5411                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5412                 return (0);
5413         }
5414 
5415         /*
5416          * Enable promiscuous mode in order to receive traffic to the
5417          * new MAC address. All existing HW filters still send their
5418          * traffic to their respective group/SRSes. But with promisc
5419          * enabled all unknown traffic is delivered to the default
5420          * group where it is SW classified via mac_rx_classify().
5421          */
5422         if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5423                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5424                 return (0);
5425         }
5426 
5427 bail:
5428         if (hw_vlan) {
5429                 int err2 = mac_group_remvlan(group, vid);
5430 
5431                 if (err2 != 0) {
5432                         cmn_err(CE_WARN, "Failed to remove VLAN %u from group"
5433                             " %d on MAC %s: %d.", vid, group->mrg_index,
5434                             mip->mi_name, err2);
5435                 }
5436         }
5437 
5438         if (mvp != NULL)
5439                 mac_rem_vlan(map, mvp);
5440 
5441         if (allocated_map)
5442                 mac_free_macaddr(map);
5443 
5444         return (err);
5445 }
5446 
5447 int
5448 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid)
5449 {
5450         mac_vlan_t      *mvp;
5451         mac_impl_t      *mip = map->ma_mip;
5452         mac_group_t     *group = map->ma_group;
5453         int             err = 0;
5454 
5455         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5456         VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5457 
5458         if (vid == VLAN_ID_NONE) {
5459                 map->ma_untagged = B_FALSE;
5460                 mvp = NULL;
5461         } else {
5462                 mvp = mac_find_vlan(map, vid);
5463                 VERIFY3P(mvp, !=, NULL);
5464         }
5465 
5466         if (MAC_GROUP_HW_VLAN(group) &&
5467             map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED &&
5468             ((err = mac_group_remvlan(group, vid)) != 0))
5469                 return (err);
5470 
5471         if (mvp != NULL)
5472                 mac_rem_vlan(map, mvp);
5473 
5474         /*
5475          * If it's not the last client using this MAC address, only update
5476          * the MAC clients count.
5477          */
5478         map->ma_nusers--;
5479         if (map->ma_nusers > 0)
5480                 return (0);
5481 
5482         /*
5483          * The MAC address is no longer used by any MAC client, so
5484          * remove it from its associated group. Turn off promiscuous
5485          * mode if this is the last address relying on it.
5486          */
5487         switch (map->ma_type) {
5488         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5489                 /*
5490                  * Don't free the preset primary address for drivers that
5491                  * don't advertise RINGS capability.
5492                  */
5493                 if (group == NULL)
5494                         return (0);
5495 
5496                 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) {
5497                         if (vid == VLAN_ID_NONE)
5498                                 map->ma_untagged = B_TRUE;
5499                         else
5500                                 (void) mac_add_vlan(map, vid);
5501 
5502                         /*
5503                          * If we fail to remove the MAC address HW
5504                          * filter but then also fail to re-add the
5505                          * VLAN HW filter then we are in a busted
5506                          * state and should just crash.
5507                          */
5508                         if (MAC_GROUP_HW_VLAN(group)) {
5509                                 int err2;
5510 
5511                                 err2 = mac_group_addvlan(group, vid);
5512                                 if (err2 != 0) {
5513                                         cmn_err(CE_WARN, "Failed to readd VLAN"
5514                                             " %u to group %d on MAC %s: %d.",
5515                                             vid, group->mrg_index, mip->mi_name,
5516                                             err2);
5517                                 }
5518                         }
5519 
5520                         return (err);
5521                 }
5522 
5523                 map->ma_group = NULL;
5524                 break;
5525         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5526                 err = i_mac_promisc_set(mip, B_FALSE);
5527                 break;
5528         default:
5529                 panic("Unexpected ma_type 0x%x, file: %s, line %d",
5530                     map->ma_type, __FILE__, __LINE__);
5531         }
5532 
5533         if (err != 0)
5534                 return (err);
5535 
5536         /*
5537          * We created MAC address for the primary one at registration, so we
5538          * won't free it here. mac_fini_macaddr() will take care of it.
5539          */
5540         if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5541                 mac_free_macaddr(map);
5542 
5543         return (0);
5544 }
5545 
5546 /*
5547  * Update an existing MAC address. The caller need to make sure that the new
5548  * value has not been used.
5549  */
5550 int
5551 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5552 {
5553         mac_impl_t *mip = map->ma_mip;
5554         int err = 0;
5555 
5556         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5557         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5558 
5559         switch (map->ma_type) {
5560         case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5561                 /*
5562                  * Update the primary address for drivers that are not
5563                  * RINGS capable.
5564                  */
5565                 if (mip->mi_rx_groups == NULL) {
5566                         err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5567                             mac_addr);
5568                         if (err != 0)
5569                                 return (err);
5570                         break;
5571                 }
5572 
5573                 /*
5574                  * If this MAC address is not currently in use,
5575                  * simply break out and update the value.
5576                  */
5577                 if (map->ma_nusers == 0)
5578                         break;
5579 
5580                 /*
5581                  * Need to replace the MAC address associated with a group.
5582                  */
5583                 err = mac_group_remmac(map->ma_group, map->ma_addr);
5584                 if (err != 0)
5585                         return (err);
5586 
5587                 err = mac_group_addmac(map->ma_group, mac_addr);
5588 
5589                 /*
5590                  * Failure hints hardware error. The MAC layer needs to
5591                  * have error notification facility to handle this.
5592                  * Now, simply try to restore the value.
5593                  */
5594                 if (err != 0)
5595                         (void) mac_group_addmac(map->ma_group, map->ma_addr);
5596 
5597                 break;
5598         case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5599                 /*
5600                  * Need to do nothing more if in promiscuous mode.
5601                  */
5602                 break;
5603         default:
5604                 ASSERT(B_FALSE);
5605         }
5606 
5607         /*
5608          * Successfully replaced the MAC address.
5609          */
5610         if (err == 0)
5611                 bcopy(mac_addr, map->ma_addr, map->ma_len);
5612 
5613         return (err);
5614 }
5615 
5616 /*
5617  * Freshen the MAC address with new value. Its caller must have updated the
5618  * hardware MAC address before calling this function.
5619  * This funcitons is supposed to be used to handle the MAC address change
5620  * notification from underlying drivers.
5621  */
5622 void
5623 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5624 {
5625         mac_impl_t *mip = map->ma_mip;
5626 
5627         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5628         ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5629 
5630         /*
5631          * Freshen the MAC address with new value.
5632          */
5633         bcopy(mac_addr, map->ma_addr, map->ma_len);
5634         bcopy(mac_addr, mip->mi_addr, map->ma_len);
5635 
5636         /*
5637          * Update all MAC clients that share this MAC address.
5638          */
5639         mac_unicast_update_clients(mip, map);
5640 }
5641 
5642 /*
5643  * Set up the primary MAC address.
5644  */
5645 void
5646 mac_init_macaddr(mac_impl_t *mip)
5647 {
5648         mac_address_t *map;
5649 
5650         /*
5651          * The reference count is initialized to zero, until it's really
5652          * activated.
5653          */
5654         map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5655         map->ma_len = mip->mi_type->mt_addr_length;
5656         bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5657 
5658         /*
5659          * If driver advertises RINGS capability, it shouldn't have initialized
5660          * its primary MAC address. For other drivers, including VNIC, the
5661          * primary address must work after registration.
5662          */
5663         if (mip->mi_rx_groups == NULL)
5664                 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5665 
5666         map->ma_mip = mip;
5667 
5668         mip->mi_addresses = map;
5669 }
5670 
5671 /*
5672  * Clean up the primary MAC address. Note, only one primary MAC address
5673  * is allowed. All other MAC addresses must have been freed appropriately.
5674  */
5675 void
5676 mac_fini_macaddr(mac_impl_t *mip)
5677 {
5678         mac_address_t *map = mip->mi_addresses;
5679 
5680         if (map == NULL)
5681                 return;
5682 
5683         /*
5684          * If mi_addresses is initialized, there should be exactly one
5685          * entry left on the list with no users.
5686          */
5687         VERIFY3S(map->ma_nusers, ==, 0);
5688         VERIFY3P(map->ma_next, ==, NULL);
5689         VERIFY3P(map->ma_vlans, ==, NULL);
5690 
5691         kmem_free(map, sizeof (mac_address_t));
5692         mip->mi_addresses = NULL;
5693 }
5694 
5695 /*
5696  * Logging related functions.
5697  *
5698  * Note that Kernel statistics have been extended to maintain fine
5699  * granularity of statistics viz. hardware lane, software lane, fanout
5700  * stats etc. However, extended accounting continues to support only
5701  * aggregate statistics like before.
5702  */
5703 
5704 /* Write the flow description to a netinfo_t record */
5705 static netinfo_t *
5706 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5707 {
5708         netinfo_t               *ninfo;
5709         net_desc_t              *ndesc;
5710         flow_desc_t             *fdesc;
5711         mac_resource_props_t    *mrp;
5712 
5713         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5714         if (ninfo == NULL)
5715                 return (NULL);
5716         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5717         if (ndesc == NULL) {
5718                 kmem_free(ninfo, sizeof (netinfo_t));
5719                 return (NULL);
5720         }
5721 
5722         /*
5723          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5724          * Updates to the fe_flow_desc are done under the fe_lock
5725          */
5726         mutex_enter(&flent->fe_lock);
5727         fdesc = &flent->fe_flow_desc;
5728         mrp = &flent->fe_resource_props;
5729 
5730         ndesc->nd_name = flent->fe_flow_name;
5731         ndesc->nd_devname = mcip->mci_name;
5732         bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5733         bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5734         ndesc->nd_sap = htonl(fdesc->fd_sap);
5735         ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5736         ndesc->nd_bw_limit = mrp->mrp_maxbw;
5737         if (ndesc->nd_isv4) {
5738                 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5739                 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5740         } else {
5741                 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5742                 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5743         }
5744         ndesc->nd_sport = htons(fdesc->fd_local_port);
5745         ndesc->nd_dport = htons(fdesc->fd_remote_port);
5746         ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5747         mutex_exit(&flent->fe_lock);
5748 
5749         ninfo->ni_record = ndesc;
5750         ninfo->ni_size = sizeof (net_desc_t);
5751         ninfo->ni_type = EX_NET_FLDESC_REC;
5752 
5753         return (ninfo);
5754 }
5755 
5756 /* Write the flow statistics to a netinfo_t record */
5757 static netinfo_t *
5758 mac_write_flow_stats(flow_entry_t *flent)
5759 {
5760         netinfo_t               *ninfo;
5761         net_stat_t              *nstat;
5762         mac_soft_ring_set_t     *mac_srs;
5763         mac_rx_stats_t          *mac_rx_stat;
5764         mac_tx_stats_t          *mac_tx_stat;
5765         int                     i;
5766 
5767         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5768         if (ninfo == NULL)
5769                 return (NULL);
5770         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5771         if (nstat == NULL) {
5772                 kmem_free(ninfo, sizeof (netinfo_t));
5773                 return (NULL);
5774         }
5775 
5776         nstat->ns_name = flent->fe_flow_name;
5777         for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5778                 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5779                 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5780 
5781                 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5782                     mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5783                 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5784                     mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5785                 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5786         }
5787 
5788         mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5789         if (mac_srs != NULL) {
5790                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5791 
5792                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5793                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5794                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5795         }
5796 
5797         ninfo->ni_record = nstat;
5798         ninfo->ni_size = sizeof (net_stat_t);
5799         ninfo->ni_type = EX_NET_FLSTAT_REC;
5800 
5801         return (ninfo);
5802 }
5803 
5804 /* Write the link description to a netinfo_t record */
5805 static netinfo_t *
5806 mac_write_link_desc(mac_client_impl_t *mcip)
5807 {
5808         netinfo_t               *ninfo;
5809         net_desc_t              *ndesc;
5810         flow_entry_t            *flent = mcip->mci_flent;
5811 
5812         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5813         if (ninfo == NULL)
5814                 return (NULL);
5815         ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5816         if (ndesc == NULL) {
5817                 kmem_free(ninfo, sizeof (netinfo_t));
5818                 return (NULL);
5819         }
5820 
5821         ndesc->nd_name = mcip->mci_name;
5822         ndesc->nd_devname = mcip->mci_name;
5823         ndesc->nd_isv4 = B_TRUE;
5824         /*
5825          * Grab the fe_lock to see a self-consistent fe_flow_desc.
5826          * Updates to the fe_flow_desc are done under the fe_lock
5827          * after removing the flent from the flow table.
5828          */
5829         mutex_enter(&flent->fe_lock);
5830         bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5831         mutex_exit(&flent->fe_lock);
5832 
5833         ninfo->ni_record = ndesc;
5834         ninfo->ni_size = sizeof (net_desc_t);
5835         ninfo->ni_type = EX_NET_LNDESC_REC;
5836 
5837         return (ninfo);
5838 }
5839 
5840 /* Write the link statistics to a netinfo_t record */
5841 static netinfo_t *
5842 mac_write_link_stats(mac_client_impl_t *mcip)
5843 {
5844         netinfo_t               *ninfo;
5845         net_stat_t              *nstat;
5846         flow_entry_t            *flent;
5847         mac_soft_ring_set_t     *mac_srs;
5848         mac_rx_stats_t          *mac_rx_stat;
5849         mac_tx_stats_t          *mac_tx_stat;
5850         int                     i;
5851 
5852         ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5853         if (ninfo == NULL)
5854                 return (NULL);
5855         nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5856         if (nstat == NULL) {
5857                 kmem_free(ninfo, sizeof (netinfo_t));
5858                 return (NULL);
5859         }
5860 
5861         nstat->ns_name = mcip->mci_name;
5862         flent = mcip->mci_flent;
5863         if (flent != NULL)  {
5864                 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5865                         mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5866                         mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5867 
5868                         nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5869                             mac_rx_stat->mrs_pollbytes +
5870                             mac_rx_stat->mrs_lclbytes;
5871                         nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5872                             mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5873                         nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5874                 }
5875         }
5876 
5877         mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5878         if (mac_srs != NULL) {
5879                 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5880 
5881                 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5882                 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5883                 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5884         }
5885 
5886         ninfo->ni_record = nstat;
5887         ninfo->ni_size = sizeof (net_stat_t);
5888         ninfo->ni_type = EX_NET_LNSTAT_REC;
5889 
5890         return (ninfo);
5891 }
5892 
5893 typedef struct i_mac_log_state_s {
5894         boolean_t       mi_last;
5895         int             mi_fenable;
5896         int             mi_lenable;
5897         list_t          *mi_list;
5898 } i_mac_log_state_t;
5899 
5900 /*
5901  * For a given flow, if the description has not been logged before, do it now.
5902  * If it is a VNIC, then we have collected information about it from the MAC
5903  * table, so skip it.
5904  *
5905  * Called through mac_flow_walk_nolock()
5906  *
5907  * Return 0 if successful.
5908  */
5909 static int
5910 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5911 {
5912         mac_client_impl_t       *mcip = flent->fe_mcip;
5913         i_mac_log_state_t       *lstate = arg;
5914         netinfo_t               *ninfo;
5915 
5916         if (mcip == NULL)
5917                 return (0);
5918 
5919         /*
5920          * If the name starts with "vnic", and fe_user_generated is true (to
5921          * exclude the mcast and active flow entries created implicitly for
5922          * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
5923          * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5924          */
5925         if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5926             (flent->fe_type & FLOW_USER) != 0) {
5927                 return (0);
5928         }
5929 
5930         if (!flent->fe_desc_logged) {
5931                 /*
5932                  * We don't return error because we want to continue the
5933                  * walk in case this is the last walk which means we
5934                  * need to reset fe_desc_logged in all the flows.
5935                  */
5936                 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5937                         return (0);
5938                 list_insert_tail(lstate->mi_list, ninfo);
5939                 flent->fe_desc_logged = B_TRUE;
5940         }
5941 
5942         /*
5943          * Regardless of the error, we want to proceed in case we have to
5944          * reset fe_desc_logged.
5945          */
5946         ninfo = mac_write_flow_stats(flent);
5947         if (ninfo == NULL)
5948                 return (-1);
5949 
5950         list_insert_tail(lstate->mi_list, ninfo);
5951 
5952         if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5953                 flent->fe_desc_logged = B_FALSE;
5954 
5955         return (0);
5956 }
5957 
5958 /*
5959  * Log the description for each mac client of this mac_impl_t, if it
5960  * hasn't already been done. Additionally, log statistics for the link as
5961  * well. Walk the flow table and log information for each flow as well.
5962  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5963  * also fe_desc_logged, if flow logging is on) since we want to log the
5964  * description if and when logging is restarted.
5965  *
5966  * Return 0 upon success or -1 upon failure
5967  */
5968 static int
5969 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5970 {
5971         mac_client_impl_t       *mcip;
5972         netinfo_t               *ninfo;
5973 
5974         i_mac_perim_enter(mip);
5975         /*
5976          * Only walk the client list for NIC and etherstub
5977          */
5978         if ((mip->mi_state_flags & MIS_DISABLED) ||
5979             ((mip->mi_state_flags & MIS_IS_VNIC) &&
5980             (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5981                 i_mac_perim_exit(mip);
5982                 return (0);
5983         }
5984 
5985         for (mcip = mip->mi_clients_list; mcip != NULL;
5986             mcip = mcip->mci_client_next) {
5987                 if (!MCIP_DATAPATH_SETUP(mcip))
5988                         continue;
5989                 if (lstate->mi_lenable) {
5990                         if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5991                                 ninfo = mac_write_link_desc(mcip);
5992                                 if (ninfo == NULL) {
5993                                 /*
5994                                  * We can't terminate it if this is the last
5995                                  * walk, else there might be some links with
5996                                  * mi_desc_logged set to true, which means
5997                                  * their description won't be logged the next
5998                                  * time logging is started (similarly for the
5999                                  * flows within such links). We can continue
6000                                  * without walking the flow table (i.e. to
6001                                  * set fe_desc_logged to false) because we
6002                                  * won't have written any flow stuff for this
6003                                  * link as we haven't logged the link itself.
6004                                  */
6005                                         i_mac_perim_exit(mip);
6006                                         if (lstate->mi_last)
6007                                                 return (0);
6008                                         else
6009                                                 return (-1);
6010                                 }
6011                                 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
6012                                 list_insert_tail(lstate->mi_list, ninfo);
6013                         }
6014                 }
6015 
6016                 ninfo = mac_write_link_stats(mcip);
6017                 if (ninfo == NULL && !lstate->mi_last) {
6018                         i_mac_perim_exit(mip);
6019                         return (-1);
6020                 }
6021                 list_insert_tail(lstate->mi_list, ninfo);
6022 
6023                 if (lstate->mi_last)
6024                         mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
6025 
6026                 if (lstate->mi_fenable) {
6027                         if (mcip->mci_subflow_tab != NULL) {
6028                                 (void) mac_flow_walk_nolock(
6029                                     mcip->mci_subflow_tab, mac_log_flowinfo,
6030                                     lstate);
6031                         }
6032                 }
6033         }
6034         i_mac_perim_exit(mip);
6035         return (0);
6036 }
6037 
6038 /*
6039  * modhash walker function to add a mac_impl_t to a list
6040  */
6041 /*ARGSUSED*/
6042 static uint_t
6043 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
6044 {
6045         list_t                  *list = (list_t *)arg;
6046         mac_impl_t              *mip = (mac_impl_t *)val;
6047 
6048         if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
6049                 list_insert_tail(list, mip);
6050                 mip->mi_ref++;
6051         }
6052 
6053         return (MH_WALK_CONTINUE);
6054 }
6055 
6056 void
6057 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
6058 {
6059         list_t                  mac_impl_list;
6060         mac_impl_t              *mip;
6061         netinfo_t               *ninfo;
6062 
6063         /* Create list of mac_impls */
6064         ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
6065         list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
6066             mi_node));
6067         mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
6068         rw_exit(&i_mac_impl_lock);
6069 
6070         /* Create log entries for each mac_impl */
6071         for (mip = list_head(&mac_impl_list); mip != NULL;
6072             mip = list_next(&mac_impl_list, mip)) {
6073                 if (i_mac_impl_log(mip, lstate) != 0)
6074                         continue;
6075         }
6076 
6077         /* Remove elements and destroy list of mac_impls */
6078         rw_enter(&i_mac_impl_lock, RW_WRITER);
6079         while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
6080                 mip->mi_ref--;
6081         }
6082         rw_exit(&i_mac_impl_lock);
6083         list_destroy(&mac_impl_list);
6084 
6085         /*
6086          * Write log entries to files outside of locks, free associated
6087          * structures, and remove entries from the list.
6088          */
6089         while ((ninfo = list_head(net_log_list)) != NULL) {
6090                 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
6091                 list_remove(net_log_list, ninfo);
6092                 kmem_free(ninfo->ni_record, ninfo->ni_size);
6093                 kmem_free(ninfo, sizeof (*ninfo));
6094         }
6095         list_destroy(net_log_list);
6096 }
6097 
6098 /*
6099  * The timer thread that runs every mac_logging_interval seconds and logs
6100  * link and/or flow information.
6101  */
6102 /* ARGSUSED */
6103 void
6104 mac_log_linkinfo(void *arg)
6105 {
6106         i_mac_log_state_t       lstate;
6107         list_t                  net_log_list;
6108 
6109         list_create(&net_log_list, sizeof (netinfo_t),
6110             offsetof(netinfo_t, ni_link));
6111 
6112         rw_enter(&i_mac_impl_lock, RW_READER);
6113         if (!mac_flow_log_enable && !mac_link_log_enable) {
6114                 rw_exit(&i_mac_impl_lock);
6115                 return;
6116         }
6117         lstate.mi_fenable = mac_flow_log_enable;
6118         lstate.mi_lenable = mac_link_log_enable;
6119         lstate.mi_last = B_FALSE;
6120         lstate.mi_list = &net_log_list;
6121 
6122         /* Write log entries for each mac_impl in the list */
6123         i_mac_log_info(&net_log_list, &lstate);
6124 
6125         if (mac_flow_log_enable || mac_link_log_enable) {
6126                 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
6127                     SEC_TO_TICK(mac_logging_interval));
6128         }
6129 }
6130 
6131 typedef struct i_mac_fastpath_state_s {
6132         boolean_t       mf_disable;
6133         int             mf_err;
6134 } i_mac_fastpath_state_t;
6135 
6136 /* modhash walker function to enable or disable fastpath */
6137 /*ARGSUSED*/
6138 static uint_t
6139 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
6140     void *arg)
6141 {
6142         i_mac_fastpath_state_t  *state = arg;
6143         mac_handle_t            mh = (mac_handle_t)val;
6144 
6145         if (state->mf_disable)
6146                 state->mf_err = mac_fastpath_disable(mh);
6147         else
6148                 mac_fastpath_enable(mh);
6149 
6150         return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
6151 }
6152 
6153 /*
6154  * Start the logging timer.
6155  */
6156 int
6157 mac_start_logusage(mac_logtype_t type, uint_t interval)
6158 {
6159         i_mac_fastpath_state_t  dstate = {B_TRUE, 0};
6160         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
6161         int                     err;
6162 
6163         rw_enter(&i_mac_impl_lock, RW_WRITER);
6164         switch (type) {
6165         case MAC_LOGTYPE_FLOW:
6166                 if (mac_flow_log_enable) {
6167                         rw_exit(&i_mac_impl_lock);
6168                         return (0);
6169                 }
6170                 /* FALLTHRU */
6171         case MAC_LOGTYPE_LINK:
6172                 if (mac_link_log_enable) {
6173                         rw_exit(&i_mac_impl_lock);
6174                         return (0);
6175                 }
6176                 break;
6177         default:
6178                 ASSERT(0);
6179         }
6180 
6181         /* Disable fastpath */
6182         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
6183         if ((err = dstate.mf_err) != 0) {
6184                 /* Reenable fastpath  */
6185                 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6186                 rw_exit(&i_mac_impl_lock);
6187                 return (err);
6188         }
6189 
6190         switch (type) {
6191         case MAC_LOGTYPE_FLOW:
6192                 mac_flow_log_enable = B_TRUE;
6193                 /* FALLTHRU */
6194         case MAC_LOGTYPE_LINK:
6195                 mac_link_log_enable = B_TRUE;
6196                 break;
6197         }
6198 
6199         mac_logging_interval = interval;
6200         rw_exit(&i_mac_impl_lock);
6201         mac_log_linkinfo(NULL);
6202         return (0);
6203 }
6204 
6205 /*
6206  * Stop the logging timer if both link and flow logging are turned off.
6207  */
6208 void
6209 mac_stop_logusage(mac_logtype_t type)
6210 {
6211         i_mac_log_state_t       lstate;
6212         i_mac_fastpath_state_t  estate = {B_FALSE, 0};
6213         list_t                  net_log_list;
6214 
6215         list_create(&net_log_list, sizeof (netinfo_t),
6216             offsetof(netinfo_t, ni_link));
6217 
6218         rw_enter(&i_mac_impl_lock, RW_WRITER);
6219 
6220         lstate.mi_fenable = mac_flow_log_enable;
6221         lstate.mi_lenable = mac_link_log_enable;
6222         lstate.mi_list = &net_log_list;
6223 
6224         /* Last walk */
6225         lstate.mi_last = B_TRUE;
6226 
6227         switch (type) {
6228         case MAC_LOGTYPE_FLOW:
6229                 if (lstate.mi_fenable) {
6230                         ASSERT(mac_link_log_enable);
6231                         mac_flow_log_enable = B_FALSE;
6232                         mac_link_log_enable = B_FALSE;
6233                         break;
6234                 }
6235                 /* FALLTHRU */
6236         case MAC_LOGTYPE_LINK:
6237                 if (!lstate.mi_lenable || mac_flow_log_enable) {
6238                         rw_exit(&i_mac_impl_lock);
6239                         return;
6240                 }
6241                 mac_link_log_enable = B_FALSE;
6242                 break;
6243         default:
6244                 ASSERT(0);
6245         }
6246 
6247         /* Reenable fastpath */
6248         mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6249 
6250         (void) untimeout(mac_logging_timer);
6251         mac_logging_timer = NULL;
6252 
6253         /* Write log entries for each mac_impl in the list */
6254         i_mac_log_info(&net_log_list, &lstate);
6255 }
6256 
6257 /*
6258  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
6259  */
6260 void
6261 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
6262 {
6263         pri_t                   pri;
6264         int                     count;
6265         mac_soft_ring_set_t     *mac_srs;
6266 
6267         if (flent->fe_rx_srs_cnt <= 0)
6268                 return;
6269 
6270         if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
6271             SRST_FLOW) {
6272                 pri = FLOW_PRIORITY(mcip->mci_min_pri,
6273                     mcip->mci_max_pri,
6274                     flent->fe_resource_props.mrp_priority);
6275         } else {
6276                 pri = mcip->mci_max_pri;
6277         }
6278 
6279         for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
6280                 mac_srs = flent->fe_rx_srs[count];
6281                 mac_update_srs_priority(mac_srs, pri);
6282         }
6283         /*
6284          * If we have a Tx SRS, we need to modify all the threads associated
6285          * with it.
6286          */
6287         if (flent->fe_tx_srs != NULL)
6288                 mac_update_srs_priority(flent->fe_tx_srs, pri);
6289 }
6290 
6291 /*
6292  * RX and TX rings are reserved according to different semantics depending
6293  * on the requests from the MAC clients and type of rings:
6294  *
6295  * On the Tx side, by default we reserve individual rings, independently from
6296  * the groups.
6297  *
6298  * On the Rx side, the reservation is at the granularity of the group
6299  * of rings, and used for v12n level 1 only. It has a special case for the
6300  * primary client.
6301  *
6302  * If a share is allocated to a MAC client, we allocate a TX group and an
6303  * RX group to the client, and assign TX rings and RX rings to these
6304  * groups according to information gathered from the driver through
6305  * the share capability.
6306  *
6307  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
6308  * to allocate individual rings out of a group and program the hw classifier
6309  * based on IP address or higher level criteria.
6310  */
6311 
6312 /*
6313  * mac_reserve_tx_ring()
6314  * Reserve a unused ring by marking it with MR_INUSE state.
6315  * As reserved, the ring is ready to function.
6316  *
6317  * Notes for Hybrid I/O:
6318  *
6319  * If a specific ring is needed, it is specified through the desired_ring
6320  * argument. Otherwise that argument is set to NULL.
6321  * If the desired ring was previous allocated to another client, this
6322  * function swaps it with a new ring from the group of unassigned rings.
6323  */
6324 mac_ring_t *
6325 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
6326 {
6327         mac_group_t             *group;
6328         mac_grp_client_t        *mgcp;
6329         mac_client_impl_t       *mcip;
6330         mac_soft_ring_set_t     *srs;
6331 
6332         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6333 
6334         /*
6335          * Find an available ring and start it before changing its status.
6336          * The unassigned rings are at the end of the mi_tx_groups
6337          * array.
6338          */
6339         group = MAC_DEFAULT_TX_GROUP(mip);
6340 
6341         /* Can't take the default ring out of the default group */
6342         ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
6343 
6344         if (desired_ring->mr_state == MR_FREE) {
6345                 ASSERT(MAC_GROUP_NO_CLIENT(group));
6346                 if (mac_start_ring(desired_ring) != 0)
6347                         return (NULL);
6348                 return (desired_ring);
6349         }
6350         /*
6351          * There are clients using this ring, so let's move the clients
6352          * away from using this ring.
6353          */
6354         for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6355                 mcip = mgcp->mgc_client;
6356                 mac_tx_client_quiesce((mac_client_handle_t)mcip);
6357                 srs = MCIP_TX_SRS(mcip);
6358                 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
6359                 mac_tx_invoke_callbacks(mcip,
6360                     (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
6361                     desired_ring));
6362                 mac_tx_srs_del_ring(srs, desired_ring);
6363                 mac_tx_client_restart((mac_client_handle_t)mcip);
6364         }
6365         return (desired_ring);
6366 }
6367 
6368 /*
6369  * For a non-default group with multiple clients, return the primary client.
6370  */
6371 static mac_client_impl_t *
6372 mac_get_grp_primary(mac_group_t *grp)
6373 {
6374         mac_grp_client_t        *mgcp = grp->mrg_clients;
6375         mac_client_impl_t       *mcip;
6376 
6377         while (mgcp != NULL) {
6378                 mcip = mgcp->mgc_client;
6379                 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
6380                         return (mcip);
6381                 mgcp = mgcp->mgc_next;
6382         }
6383         return (NULL);
6384 }
6385 
6386 /*
6387  * Hybrid I/O specifies the ring that should be given to a share.
6388  * If the ring is already used by clients, then we need to release
6389  * the ring back to the default group so that we can give it to
6390  * the share. This means the clients using this ring now get a
6391  * replacement ring. If there aren't any replacement rings, this
6392  * function returns a failure.
6393  */
6394 static int
6395 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
6396     mac_ring_t *ring, mac_ring_t **rings, int nrings)
6397 {
6398         mac_group_t             *group = (mac_group_t *)ring->mr_gh;
6399         mac_resource_props_t    *mrp;
6400         mac_client_impl_t       *mcip;
6401         mac_group_t             *defgrp;
6402         mac_ring_t              *tring;
6403         mac_group_t             *tgrp;
6404         int                     i;
6405         int                     j;
6406 
6407         mcip = MAC_GROUP_ONLY_CLIENT(group);
6408         if (mcip == NULL)
6409                 mcip = mac_get_grp_primary(group);
6410         ASSERT(mcip != NULL);
6411         ASSERT(mcip->mci_share == 0);
6412 
6413         mrp = MCIP_RESOURCE_PROPS(mcip);
6414         if (ring_type == MAC_RING_TYPE_RX) {
6415                 defgrp = mip->mi_rx_donor_grp;
6416                 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
6417                         /* Need to put this mac client in the default group */
6418                         if (mac_rx_switch_group(mcip, group, defgrp) != 0)
6419                                 return (ENOSPC);
6420                 } else {
6421                         /*
6422                          * Switch this ring with some other ring from
6423                          * the default group.
6424                          */
6425                         for (tring = defgrp->mrg_rings; tring != NULL;
6426                             tring = tring->mr_next) {
6427                                 if (tring->mr_index == 0)
6428                                         continue;
6429                                 for (j = 0; j < nrings; j++) {
6430                                         if (rings[j] == tring)
6431                                                 break;
6432                                 }
6433                                 if (j >= nrings)
6434                                         break;
6435                         }
6436                         if (tring == NULL)
6437                                 return (ENOSPC);
6438                         if (mac_group_mov_ring(mip, group, tring) != 0)
6439                                 return (ENOSPC);
6440                         if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6441                                 (void) mac_group_mov_ring(mip, defgrp, tring);
6442                                 return (ENOSPC);
6443                         }
6444                 }
6445                 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6446                 return (0);
6447         }
6448 
6449         defgrp = MAC_DEFAULT_TX_GROUP(mip);
6450         if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6451                 /*
6452                  * See if we can get a spare ring to replace the default
6453                  * ring.
6454                  */
6455                 if (defgrp->mrg_cur_count == 1) {
6456                         /*
6457                          * Need to get a ring from another client, see if
6458                          * there are any clients that can be moved to
6459                          * the default group, thereby freeing some rings.
6460                          */
6461                         for (i = 0; i < mip->mi_tx_group_count; i++) {
6462                                 tgrp = &mip->mi_tx_groups[i];
6463                                 if (tgrp->mrg_state ==
6464                                     MAC_GROUP_STATE_REGISTERED) {
6465                                         continue;
6466                                 }
6467                                 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6468                                 if (mcip == NULL)
6469                                         mcip = mac_get_grp_primary(tgrp);
6470                                 ASSERT(mcip != NULL);
6471                                 mrp = MCIP_RESOURCE_PROPS(mcip);
6472                                 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6473                                         ASSERT(tgrp->mrg_cur_count == 1);
6474                                         /*
6475                                          * If this ring is part of the
6476                                          * rings asked by the share we cannot
6477                                          * use it as the default ring.
6478                                          */
6479                                         for (j = 0; j < nrings; j++) {
6480                                                 if (rings[j] == tgrp->mrg_rings)
6481                                                         break;
6482                                         }
6483                                         if (j < nrings)
6484                                                 continue;
6485                                         mac_tx_client_quiesce(
6486                                             (mac_client_handle_t)mcip);
6487                                         mac_tx_switch_group(mcip, tgrp,
6488                                             defgrp);
6489                                         mac_tx_client_restart(
6490                                             (mac_client_handle_t)mcip);
6491                                         break;
6492                                 }
6493                         }
6494                         /*
6495                          * All the rings are reserved, can't give up the
6496                          * default ring.
6497                          */
6498                         if (defgrp->mrg_cur_count <= 1)
6499                                 return (ENOSPC);
6500                 }
6501                 /*
6502                  * Swap the default ring with another.
6503                  */
6504                 for (tring = defgrp->mrg_rings; tring != NULL;
6505                     tring = tring->mr_next) {
6506                         /*
6507                          * If this ring is part of the rings asked by the
6508                          * share we cannot use it as the default ring.
6509                          */
6510                         for (j = 0; j < nrings; j++) {
6511                                 if (rings[j] == tring)
6512                                         break;
6513                         }
6514                         if (j >= nrings)
6515                                 break;
6516                 }
6517                 ASSERT(tring != NULL);
6518                 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6519                 return (0);
6520         }
6521         /*
6522          * The Tx ring is with a group reserved by a MAC client. See if
6523          * we can swap it.
6524          */
6525         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6526         mcip = MAC_GROUP_ONLY_CLIENT(group);
6527         if (mcip == NULL)
6528                 mcip = mac_get_grp_primary(group);
6529         ASSERT(mcip !=  NULL);
6530         mrp = MCIP_RESOURCE_PROPS(mcip);
6531         mac_tx_client_quiesce((mac_client_handle_t)mcip);
6532         if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6533                 ASSERT(group->mrg_cur_count == 1);
6534                 /* Put this mac client in the default group */
6535                 mac_tx_switch_group(mcip, group, defgrp);
6536         } else {
6537                 /*
6538                  * Switch this ring with some other ring from
6539                  * the default group.
6540                  */
6541                 for (tring = defgrp->mrg_rings; tring != NULL;
6542                     tring = tring->mr_next) {
6543                         if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6544                                 continue;
6545                         /*
6546                          * If this ring is part of the rings asked by the
6547                          * share we cannot use it for swapping.
6548                          */
6549                         for (j = 0; j < nrings; j++) {
6550                                 if (rings[j] == tring)
6551                                         break;
6552                         }
6553                         if (j >= nrings)
6554                                 break;
6555                 }
6556                 if (tring == NULL) {
6557                         mac_tx_client_restart((mac_client_handle_t)mcip);
6558                         return (ENOSPC);
6559                 }
6560                 if (mac_group_mov_ring(mip, group, tring) != 0) {
6561                         mac_tx_client_restart((mac_client_handle_t)mcip);
6562                         return (ENOSPC);
6563                 }
6564                 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6565                         (void) mac_group_mov_ring(mip, defgrp, tring);
6566                         mac_tx_client_restart((mac_client_handle_t)mcip);
6567                         return (ENOSPC);
6568                 }
6569         }
6570         mac_tx_client_restart((mac_client_handle_t)mcip);
6571         ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6572         return (0);
6573 }
6574 
6575 /*
6576  * Populate a zero-ring group with rings. If the share is non-NULL,
6577  * the rings are chosen according to that share.
6578  * Invoked after allocating a new RX or TX group through
6579  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6580  * Returns zero on success, an errno otherwise.
6581  */
6582 int
6583 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6584     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6585     uint32_t ringcnt)
6586 {
6587         mac_ring_t **rings, *ring;
6588         uint_t nrings;
6589         int rv = 0, i = 0, j;
6590 
6591         ASSERT((ring_type == MAC_RING_TYPE_RX &&
6592             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6593             (ring_type == MAC_RING_TYPE_TX &&
6594             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6595 
6596         /*
6597          * First find the rings to allocate to the group.
6598          */
6599         if (share != 0) {
6600                 /* get rings through ms_squery() */
6601                 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6602                 ASSERT(nrings != 0);
6603                 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6604                     KM_SLEEP);
6605                 mip->mi_share_capab.ms_squery(share, ring_type,
6606                     (mac_ring_handle_t *)rings, &nrings);
6607                 for (i = 0; i < nrings; i++) {
6608                         /*
6609                          * If we have given this ring to a non-default
6610                          * group, we need to check if we can get this
6611                          * ring.
6612                          */
6613                         ring = rings[i];
6614                         if (ring->mr_gh != (mac_group_handle_t)src_group ||
6615                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6616                                 if (mac_reclaim_ring_from_grp(mip, ring_type,
6617                                     ring, rings, nrings) != 0) {
6618                                         rv = ENOSPC;
6619                                         goto bail;
6620                                 }
6621                         }
6622                 }
6623         } else {
6624                 /*
6625                  * Pick one ring from default group.
6626                  *
6627                  * for now pick the second ring which requires the first ring
6628                  * at index 0 to stay in the default group, since it is the
6629                  * ring which carries the multicast traffic.
6630                  * We need a better way for a driver to indicate this,
6631                  * for example a per-ring flag.
6632                  */
6633                 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6634                     KM_SLEEP);
6635                 for (ring = src_group->mrg_rings; ring != NULL;
6636                     ring = ring->mr_next) {
6637                         if (ring_type == MAC_RING_TYPE_RX &&
6638                             ring->mr_index == 0) {
6639                                 continue;
6640                         }
6641                         if (ring_type == MAC_RING_TYPE_TX &&
6642                             ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6643                                 continue;
6644                         }
6645                         rings[i++] = ring;
6646                         if (i == ringcnt)
6647                                 break;
6648                 }
6649                 ASSERT(ring != NULL);
6650                 nrings = i;
6651                 /* Not enough rings as required */
6652                 if (nrings != ringcnt) {
6653                         rv = ENOSPC;
6654                         goto bail;
6655                 }
6656         }
6657 
6658         switch (ring_type) {
6659         case MAC_RING_TYPE_RX:
6660                 if (src_group->mrg_cur_count - nrings < 1) {
6661                         /* we ran out of rings */
6662                         rv = ENOSPC;
6663                         goto bail;
6664                 }
6665 
6666                 /* move receive rings to new group */
6667                 for (i = 0; i < nrings; i++) {
6668                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6669                         if (rv != 0) {
6670                                 /* move rings back on failure */
6671                                 for (j = 0; j < i; j++) {
6672                                         (void) mac_group_mov_ring(mip,
6673                                             src_group, rings[j]);
6674                                 }
6675                                 goto bail;
6676                         }
6677                 }
6678                 break;
6679 
6680         case MAC_RING_TYPE_TX: {
6681                 mac_ring_t *tmp_ring;
6682 
6683                 /* move the TX rings to the new group */
6684                 for (i = 0; i < nrings; i++) {
6685                         /* get the desired ring */
6686                         tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6687                         if (tmp_ring == NULL) {
6688                                 rv = ENOSPC;
6689                                 goto bail;
6690                         }
6691                         ASSERT(tmp_ring == rings[i]);
6692                         rv = mac_group_mov_ring(mip, new_group, rings[i]);
6693                         if (rv != 0) {
6694                                 /* cleanup on failure */
6695                                 for (j = 0; j < i; j++) {
6696                                         (void) mac_group_mov_ring(mip,
6697                                             MAC_DEFAULT_TX_GROUP(mip),
6698                                             rings[j]);
6699                                 }
6700                                 goto bail;
6701                         }
6702                 }
6703                 break;
6704         }
6705         }
6706 
6707         /* add group to share */
6708         if (share != 0)
6709                 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6710 
6711 bail:
6712         /* free temporary array of rings */
6713         kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6714 
6715         return (rv);
6716 }
6717 
6718 void
6719 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6720 {
6721         mac_grp_client_t *mgcp;
6722 
6723         for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6724                 if (mgcp->mgc_client == mcip)
6725                         break;
6726         }
6727 
6728         ASSERT(mgcp == NULL);
6729 
6730         mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6731         mgcp->mgc_client = mcip;
6732         mgcp->mgc_next = grp->mrg_clients;
6733         grp->mrg_clients = mgcp;
6734 }
6735 
6736 void
6737 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6738 {
6739         mac_grp_client_t *mgcp, **pprev;
6740 
6741         for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6742             pprev = &mgcp->mgc_next, mgcp = *pprev) {
6743                 if (mgcp->mgc_client == mcip)
6744                         break;
6745         }
6746 
6747         ASSERT(mgcp != NULL);
6748 
6749         *pprev = mgcp->mgc_next;
6750         kmem_free(mgcp, sizeof (mac_grp_client_t));
6751 }
6752 
6753 /*
6754  * Return true if any client on this group explicitly asked for HW
6755  * rings (of type mask) or have a bound share.
6756  */
6757 static boolean_t
6758 i_mac_clients_hw(mac_group_t *grp, uint32_t mask)
6759 {
6760         mac_grp_client_t        *mgcip;
6761         mac_client_impl_t       *mcip;
6762         mac_resource_props_t    *mrp;
6763 
6764         for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) {
6765                 mcip = mgcip->mgc_client;
6766                 mrp = MCIP_RESOURCE_PROPS(mcip);
6767                 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0)
6768                         return (B_TRUE);
6769         }
6770 
6771         return (B_FALSE);
6772 }
6773 
6774 /*
6775  * Finds an available group and exclusively reserves it for a client.
6776  * The group is chosen to suit the flow's resource controls (bandwidth and
6777  * fanout requirements) and the address type.
6778  * If the requestor is the pimary MAC then return the group with the
6779  * largest number of rings, otherwise the default ring when available.
6780  */
6781 mac_group_t *
6782 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6783 {
6784         mac_share_handle_t      share = mcip->mci_share;
6785         mac_impl_t              *mip = mcip->mci_mip;
6786         mac_group_t             *grp = NULL;
6787         int                     i;
6788         int                     err = 0;
6789         mac_address_t           *map;
6790         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
6791         int                     nrings;
6792         int                     donor_grp_rcnt;
6793         boolean_t               need_exclgrp = B_FALSE;
6794         int                     need_rings = 0;
6795         mac_group_t             *candidate_grp = NULL;
6796         mac_client_impl_t       *gclient;
6797         mac_group_t             *donorgrp = NULL;
6798         boolean_t               rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6799         boolean_t               unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6800         boolean_t               isprimary;
6801 
6802         ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6803 
6804         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6805 
6806         /*
6807          * Check if a group already has this MAC address (case of VLANs)
6808          * unless we are moving this MAC client from one group to another.
6809          */
6810         if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6811                 if (map->ma_group != NULL)
6812                         return (map->ma_group);
6813         }
6814 
6815         if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6816                 return (NULL);
6817 
6818         /*
6819          * If this client is requesting exclusive MAC access then
6820          * return NULL to ensure the client uses the default group.
6821          */
6822         if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6823                 return (NULL);
6824 
6825         /* For dynamic groups default unspecified to 1 */
6826         if (rxhw && unspec &&
6827             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6828                 mrp->mrp_nrxrings = 1;
6829         }
6830 
6831         /*
6832          * For static grouping we allow only specifying rings=0 and
6833          * unspecified
6834          */
6835         if (rxhw && mrp->mrp_nrxrings > 0 &&
6836             mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6837                 return (NULL);
6838         }
6839 
6840         if (rxhw) {
6841                 /*
6842                  * We have explicitly asked for a group (with nrxrings,
6843                  * if unspec).
6844                  */
6845                 if (unspec || mrp->mrp_nrxrings > 0) {
6846                         need_exclgrp = B_TRUE;
6847                         need_rings = mrp->mrp_nrxrings;
6848                 } else if (mrp->mrp_nrxrings == 0) {
6849                         /*
6850                          * We have asked for a software group.
6851                          */
6852                         return (NULL);
6853                 }
6854         } else if (isprimary && mip->mi_nactiveclients == 1 &&
6855             mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6856                 /*
6857                  * If the primary is the only active client on this
6858                  * mip and we have not asked for any rings, we give
6859                  * it the default group so that the primary gets to
6860                  * use all the rings.
6861                  */
6862                 return (NULL);
6863         }
6864 
6865         /* The group that can donate rings */
6866         donorgrp = mip->mi_rx_donor_grp;
6867 
6868         /*
6869          * The number of rings that the default group can donate.
6870          * We need to leave at least one ring.
6871          */
6872         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6873 
6874         /*
6875          * Try to exclusively reserve a RX group.
6876          *
6877          * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6878          * client), try to reserve the a non-default RX group and give
6879          * it all the rings from the donor group, except the default ring
6880          *
6881          * For flows requiring HW_RING (unicast flow of other clients), try
6882          * to reserve non-default RX group with the specified number of
6883          * rings, if available.
6884          *
6885          * For flows that have not asked for software or hardware ring,
6886          * try to reserve a non-default group with 1 ring, if available.
6887          */
6888         for (i = 1; i < mip->mi_rx_group_count; i++) {
6889                 grp = &mip->mi_rx_groups[i];
6890 
6891                 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6892                     int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6893 
6894                 /*
6895                  * Check if this group could be a candidate group for
6896                  * eviction if we need a group for this MAC client,
6897                  * but there aren't any. A candidate group is one
6898                  * that didn't ask for an exclusive group, but got
6899                  * one and it has enough rings (combined with what
6900                  * the donor group can donate) for the new MAC
6901                  * client.
6902                  */
6903                 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6904                         /*
6905                          * If the donor group is not the default
6906                          * group, don't bother looking for a candidate
6907                          * group. If we don't have enough rings we
6908                          * will check if the primary group can be
6909                          * vacated.
6910                          */
6911                         if (candidate_grp == NULL &&
6912                             donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6913                                 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) &&
6914                                     (unspec ||
6915                                     (grp->mrg_cur_count + donor_grp_rcnt >=
6916                                     need_rings))) {
6917                                         candidate_grp = grp;
6918                                 }
6919                         }
6920                         continue;
6921                 }
6922                 /*
6923                  * This group could already be SHARED by other multicast
6924                  * flows on this client. In that case, the group would
6925                  * be shared and has already been started.
6926                  */
6927                 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6928 
6929                 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6930                     (mac_start_group(grp) != 0)) {
6931                         continue;
6932                 }
6933 
6934                 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6935                         break;
6936                 ASSERT(grp->mrg_cur_count == 0);
6937 
6938                 /*
6939                  * Populate the group. Rings should be taken
6940                  * from the donor group.
6941                  */
6942                 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6943 
6944                 /*
6945                  * If the donor group can't donate, let's just walk and
6946                  * see if someone can vacate a group, so that we have
6947                  * enough rings for this, unless we already have
6948                  * identified a candiate group..
6949                  */
6950                 if (nrings <= donor_grp_rcnt) {
6951                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6952                             donorgrp, grp, share, nrings);
6953                         if (err == 0) {
6954                                 /*
6955                                  * For a share i_mac_group_allocate_rings gets
6956                                  * the rings from the driver, let's populate
6957                                  * the property for the client now.
6958                                  */
6959                                 if (share != 0) {
6960                                         mac_client_set_rings(
6961                                             (mac_client_handle_t)mcip,
6962                                             grp->mrg_cur_count, -1);
6963                                 }
6964                                 if (mac_is_primary_client(mcip) && !rxhw)
6965                                         mip->mi_rx_donor_grp = grp;
6966                                 break;
6967                         }
6968                 }
6969 
6970                 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6971                     mip->mi_name, int, grp->mrg_index, int, err);
6972 
6973                 /*
6974                  * It's a dynamic group but the grouping operation
6975                  * failed.
6976                  */
6977                 mac_stop_group(grp);
6978         }
6979 
6980         /* We didn't find an exclusive group for this MAC client */
6981         if (i >= mip->mi_rx_group_count) {
6982 
6983                 if (!need_exclgrp)
6984                         return (NULL);
6985 
6986                 /*
6987                  * If we found a candidate group then move the
6988                  * existing MAC client from the candidate_group to the
6989                  * default group and give the candidate_group to the
6990                  * new MAC client. If we didn't find a candidate
6991                  * group, then check if the primary is in its own
6992                  * group and if it can make way for this MAC client.
6993                  */
6994                 if (candidate_grp == NULL &&
6995                     donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6996                     donorgrp->mrg_cur_count >= need_rings) {
6997                         candidate_grp = donorgrp;
6998                 }
6999                 if (candidate_grp != NULL) {
7000                         boolean_t       prim_grp = B_FALSE;
7001 
7002                         /*
7003                          * Switch the existing MAC client from the
7004                          * candidate group to the default group. If
7005                          * the candidate group is the donor group,
7006                          * then after the switch we need to update the
7007                          * donor group too.
7008                          */
7009                         grp = candidate_grp;
7010                         gclient = grp->mrg_clients->mgc_client;
7011                         VERIFY3P(gclient, !=, NULL);
7012                         if (grp == mip->mi_rx_donor_grp)
7013                                 prim_grp = B_TRUE;
7014                         if (mac_rx_switch_group(gclient, grp,
7015                             MAC_DEFAULT_RX_GROUP(mip)) != 0) {
7016                                 return (NULL);
7017                         }
7018                         if (prim_grp) {
7019                                 mip->mi_rx_donor_grp =
7020                                     MAC_DEFAULT_RX_GROUP(mip);
7021                                 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
7022                         }
7023 
7024                         /*
7025                          * Now give this group with the required rings
7026                          * to this MAC client.
7027                          */
7028                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7029                         if (mac_start_group(grp) != 0)
7030                                 return (NULL);
7031 
7032                         if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7033                                 return (grp);
7034 
7035                         donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7036                         ASSERT(grp->mrg_cur_count == 0);
7037                         ASSERT(donor_grp_rcnt >= need_rings);
7038                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7039                             donorgrp, grp, share, need_rings);
7040                         if (err == 0) {
7041                                 /*
7042                                  * For a share i_mac_group_allocate_rings gets
7043                                  * the rings from the driver, let's populate
7044                                  * the property for the client now.
7045                                  */
7046                                 if (share != 0) {
7047                                         mac_client_set_rings(
7048                                             (mac_client_handle_t)mcip,
7049                                             grp->mrg_cur_count, -1);
7050                                 }
7051                                 DTRACE_PROBE2(rx__group__reserved,
7052                                     char *, mip->mi_name, int, grp->mrg_index);
7053                                 return (grp);
7054                         }
7055                         DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7056                             mip->mi_name, int, grp->mrg_index, int, err);
7057                         mac_stop_group(grp);
7058                 }
7059                 return (NULL);
7060         }
7061         ASSERT(grp != NULL);
7062 
7063         DTRACE_PROBE2(rx__group__reserved,
7064             char *, mip->mi_name, int, grp->mrg_index);
7065         return (grp);
7066 }
7067 
7068 /*
7069  * mac_rx_release_group()
7070  *
7071  * Release the group when it has no remaining clients. The group is
7072  * stopped and its shares are removed and all rings are assigned back
7073  * to default group. This should never be called against the default
7074  * group.
7075  */
7076 void
7077 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
7078 {
7079         mac_impl_t              *mip = mcip->mci_mip;
7080         mac_ring_t              *ring;
7081 
7082         ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
7083         ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE);
7084 
7085         if (mip->mi_rx_donor_grp == group)
7086                 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
7087 
7088         /*
7089          * This is the case where there are no clients left. Any
7090          * SRS etc on this group have also be quiesced.
7091          */
7092         for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
7093                 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
7094                         ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
7095                         /*
7096                          * Remove the SRS associated with the HW ring.
7097                          * As a result, polling will be disabled.
7098                          */
7099                         ring->mr_srs = NULL;
7100                 }
7101                 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
7102                     ring->mr_state == MR_INUSE);
7103                 if (ring->mr_state == MR_INUSE) {
7104                         mac_stop_ring(ring);
7105                         ring->mr_flag = 0;
7106                 }
7107         }
7108 
7109         /* remove group from share */
7110         if (mcip->mci_share != 0) {
7111                 mip->mi_share_capab.ms_sremove(mcip->mci_share,
7112                     group->mrg_driver);
7113         }
7114 
7115         if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7116                 mac_ring_t *ring;
7117 
7118                 /*
7119                  * Rings were dynamically allocated to group.
7120                  * Move rings back to default group.
7121                  */
7122                 while ((ring = group->mrg_rings) != NULL) {
7123                         (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
7124                             ring);
7125                 }
7126         }
7127         mac_stop_group(group);
7128         /*
7129          * Possible improvement: See if we can assign the group just released
7130          * to a another client of the mip
7131          */
7132 }
7133 
7134 /*
7135  * Move the MAC address from fgrp to tgrp.
7136  */
7137 static int
7138 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
7139     mac_group_t *tgrp)
7140 {
7141         mac_impl_t              *mip = mcip->mci_mip;
7142         uint8_t                 maddr[MAXMACADDRLEN];
7143         int                     err = 0;
7144         uint16_t                vid;
7145         mac_unicast_impl_t      *muip;
7146         boolean_t               use_hw;
7147 
7148         mac_rx_client_quiesce((mac_client_handle_t)mcip);
7149         VERIFY3P(mcip->mci_unicast, !=, NULL);
7150         bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
7151 
7152         /*
7153          * Does the client require MAC address hardware classifiction?
7154          */
7155         use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
7156         vid = i_mac_flow_vid(mcip->mci_flent);
7157 
7158         /*
7159          * You can never move an address that is shared by multiple
7160          * clients. mac_datapath_setup() ensures that clients sharing
7161          * an address are placed on the default group. This guarantees
7162          * that a non-default group will only ever have one client and
7163          * thus make full use of HW filters.
7164          */
7165         if (mac_check_macaddr_shared(mcip->mci_unicast))
7166                 return (EINVAL);
7167 
7168         err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid);
7169 
7170         if (err != 0) {
7171                 mac_rx_client_restart((mac_client_handle_t)mcip);
7172                 return (err);
7173         }
7174 
7175         /*
7176          * If this isn't the primary MAC address then the
7177          * mac_address_t has been freed by the last call to
7178          * mac_remove_macaddr_vlan(). In any case, NULL the reference
7179          * to avoid a dangling pointer.
7180          */
7181         mcip->mci_unicast = NULL;
7182 
7183         /*
7184          * We also have to NULL all the mui_map references -- sun4v
7185          * strikes again!
7186          */
7187         rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7188         for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7189                 muip->mui_map = NULL;
7190         rw_exit(&mcip->mci_rw_lock);
7191 
7192         /*
7193          * Program the H/W Classifier first, if this fails we need not
7194          * proceed with the other stuff.
7195          */
7196         if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) {
7197                 int err2;
7198 
7199                 /* Revert back the H/W Classifier */
7200                 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw);
7201 
7202                 if (err2 != 0) {
7203                         cmn_err(CE_WARN, "Failed to revert HW classification"
7204                             " on MAC %s, for client %s: %d.", mip->mi_name,
7205                             mcip->mci_name, err2);
7206                 }
7207 
7208                 mac_rx_client_restart((mac_client_handle_t)mcip);
7209                 return (err);
7210         }
7211 
7212         /*
7213          * Get a reference to the new mac_address_t and update the
7214          * client's reference. Then restart the client and add the
7215          * other clients of this MAC addr (if they exsit).
7216          */
7217         mcip->mci_unicast = mac_find_macaddr(mip, maddr);
7218         rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7219         for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7220                 muip->mui_map = mcip->mci_unicast;
7221         rw_exit(&mcip->mci_rw_lock);
7222         mac_rx_client_restart((mac_client_handle_t)mcip);
7223         return (0);
7224 }
7225 
7226 /*
7227  * Switch the MAC client from one group to another. This means we need
7228  * to remove the MAC address from the group, remove the MAC client,
7229  * teardown the SRSs and revert the group state. Then, we add the client
7230  * to the destination group, set the SRSs, and add the MAC address to the
7231  * group.
7232  */
7233 int
7234 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7235     mac_group_t *tgrp)
7236 {
7237         int                     err;
7238         mac_group_state_t       next_state;
7239         mac_client_impl_t       *group_only_mcip;
7240         mac_client_impl_t       *gmcip;
7241         mac_impl_t              *mip = mcip->mci_mip;
7242         mac_grp_client_t        *mgcp;
7243 
7244         VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group);
7245 
7246         if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
7247                 return (err);
7248 
7249         /*
7250          * If the group is marked as reserved and in use by a single
7251          * client, then there is an SRS to teardown.
7252          */
7253         if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7254             MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7255                 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
7256         }
7257 
7258         /*
7259          * If we are moving the client from a non-default group, then
7260          * we know that any additional clients on this group share the
7261          * same MAC address. Since we moved the MAC address filter, we
7262          * need to move these clients too.
7263          *
7264          * If we are moving the client from the default group and its
7265          * MAC address has VLAN clients, then we must move those
7266          * clients as well.
7267          *
7268          * In both cases the idea is the same: we moved the MAC
7269          * address filter to the tgrp, so we must move all clients
7270          * using that MAC address to tgrp as well.
7271          */
7272         if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
7273                 mgcp = fgrp->mrg_clients;
7274                 while (mgcp != NULL) {
7275                         gmcip = mgcp->mgc_client;
7276                         mgcp = mgcp->mgc_next;
7277                         mac_group_remove_client(fgrp, gmcip);
7278                         mac_group_add_client(tgrp, gmcip);
7279                         gmcip->mci_flent->fe_rx_ring_group = tgrp;
7280                 }
7281                 mac_release_rx_group(mcip, fgrp);
7282                 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE);
7283                 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
7284         } else {
7285                 mac_group_remove_client(fgrp, mcip);
7286                 mac_group_add_client(tgrp, mcip);
7287                 mcip->mci_flent->fe_rx_ring_group = tgrp;
7288 
7289                 /*
7290                  * If there are other clients (VLANs) sharing this address
7291                  * then move them too.
7292                  */
7293                 if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7294                         /*
7295                          * We need to move all the clients that are using
7296                          * this MAC address.
7297                          */
7298                         mgcp = fgrp->mrg_clients;
7299                         while (mgcp != NULL) {
7300                                 gmcip = mgcp->mgc_client;
7301                                 mgcp = mgcp->mgc_next;
7302                                 if (mcip->mci_unicast == gmcip->mci_unicast) {
7303                                         mac_group_remove_client(fgrp, gmcip);
7304                                         mac_group_add_client(tgrp, gmcip);
7305                                         gmcip->mci_flent->fe_rx_ring_group =
7306                                             tgrp;
7307                                 }
7308                         }
7309                 }
7310 
7311                 /*
7312                  * The default group still handles multicast and
7313                  * broadcast traffic; it won't transition to
7314                  * MAC_GROUP_STATE_REGISTERED.
7315                  */
7316                 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
7317                         mac_rx_group_unmark(fgrp, MR_CONDEMNED);
7318                 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
7319         }
7320 
7321         next_state = mac_group_next_state(tgrp, &group_only_mcip,
7322             MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
7323         mac_set_group_state(tgrp, next_state);
7324 
7325         /*
7326          * If the destination group is reserved, then setup the SRSes.
7327          * Otherwise make sure to use SW classification.
7328          */
7329         if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7330                 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
7331                 mac_fanout_setup(mcip, mcip->mci_flent,
7332                     MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
7333                     NULL);
7334                 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
7335         } else {
7336                 mac_rx_switch_grp_to_sw(tgrp);
7337         }
7338 
7339         return (0);
7340 }
7341 
7342 /*
7343  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
7344  * when a share was allocated to the client.
7345  */
7346 mac_group_t *
7347 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
7348 {
7349         mac_impl_t              *mip = mcip->mci_mip;
7350         mac_group_t             *grp = NULL;
7351         int                     rv;
7352         int                     i;
7353         int                     err;
7354         mac_group_t             *defgrp;
7355         mac_share_handle_t      share = mcip->mci_share;
7356         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7357         int                     nrings;
7358         int                     defnrings;
7359         boolean_t               need_exclgrp = B_FALSE;
7360         int                     need_rings = 0;
7361         mac_group_t             *candidate_grp = NULL;
7362         mac_client_impl_t       *gclient;
7363         mac_resource_props_t    *gmrp;
7364         boolean_t               txhw = mrp->mrp_mask & MRP_TX_RINGS;
7365         boolean_t               unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
7366         boolean_t               isprimary;
7367 
7368         isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
7369 
7370         /*
7371          * When we come here for a VLAN on the primary (dladm create-vlan),
7372          * we need to pair it along with the primary (to keep it consistent
7373          * with the RX side). So, we check if the primary is already assigned
7374          * to a group and return the group if so. The other way is also
7375          * true, i.e. the VLAN is already created and now we are plumbing
7376          * the primary.
7377          */
7378         if (!move && isprimary) {
7379                 for (gclient = mip->mi_clients_list; gclient != NULL;
7380                     gclient = gclient->mci_client_next) {
7381                         if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
7382                             gclient->mci_flent->fe_tx_ring_group != NULL) {
7383                                 return (gclient->mci_flent->fe_tx_ring_group);
7384                         }
7385                 }
7386         }
7387 
7388         if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
7389                 return (NULL);
7390 
7391         /* For dynamic groups, default unspec to 1 */
7392         if (txhw && unspec &&
7393             mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7394                 mrp->mrp_ntxrings = 1;
7395         }
7396         /*
7397          * For static grouping we allow only specifying rings=0 and
7398          * unspecified
7399          */
7400         if (txhw && mrp->mrp_ntxrings > 0 &&
7401             mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
7402                 return (NULL);
7403         }
7404 
7405         if (txhw) {
7406                 /*
7407                  * We have explicitly asked for a group (with ntxrings,
7408                  * if unspec).
7409                  */
7410                 if (unspec || mrp->mrp_ntxrings > 0) {
7411                         need_exclgrp = B_TRUE;
7412                         need_rings = mrp->mrp_ntxrings;
7413                 } else if (mrp->mrp_ntxrings == 0) {
7414                         /*
7415                          * We have asked for a software group.
7416                          */
7417                         return (NULL);
7418                 }
7419         }
7420         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7421         /*
7422          * The number of rings that the default group can donate.
7423          * We need to leave at least one ring - the default ring - in
7424          * this group.
7425          */
7426         defnrings = defgrp->mrg_cur_count - 1;
7427 
7428         /*
7429          * Primary gets default group unless explicitly told not
7430          * to  (i.e. rings > 0).
7431          */
7432         if (isprimary && !need_exclgrp)
7433                 return (NULL);
7434 
7435         nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
7436         for (i = 0; i <  mip->mi_tx_group_count; i++) {
7437                 grp = &mip->mi_tx_groups[i];
7438                 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
7439                     (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
7440                         /*
7441                          * Select a candidate for replacement if we don't
7442                          * get an exclusive group. A candidate group is one
7443                          * that didn't ask for an exclusive group, but got
7444                          * one and it has enough rings (combined with what
7445                          * the default group can donate) for the new MAC
7446                          * client.
7447                          */
7448                         if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7449                             candidate_grp == NULL) {
7450                                 gclient = MAC_GROUP_ONLY_CLIENT(grp);
7451                                 VERIFY3P(gclient, !=, NULL);
7452                                 gmrp = MCIP_RESOURCE_PROPS(gclient);
7453                                 if (gclient->mci_share == 0 &&
7454                                     (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7455                                     (unspec ||
7456                                     (grp->mrg_cur_count + defnrings) >=
7457                                     need_rings)) {
7458                                         candidate_grp = grp;
7459                                 }
7460                         }
7461                         continue;
7462                 }
7463                 /*
7464                  * If the default can't donate let's just walk and
7465                  * see if someone can vacate a group, so that we have
7466                  * enough rings for this.
7467                  */
7468                 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7469                     nrings <= defnrings) {
7470                         if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7471                                 rv = mac_start_group(grp);
7472                                 ASSERT(rv == 0);
7473                         }
7474                         break;
7475                 }
7476         }
7477 
7478         /* The default group */
7479         if (i >= mip->mi_tx_group_count) {
7480                 /*
7481                  * If we need an exclusive group and have identified a
7482                  * candidate group we switch the MAC client from the
7483                  * candidate group to the default group and give the
7484                  * candidate group to this client.
7485                  */
7486                 if (need_exclgrp && candidate_grp != NULL) {
7487                         /*
7488                          * Switch the MAC client from the candidate
7489                          * group to the default group. We know the
7490                          * candidate_grp came from a reserved group
7491                          * and thus only has one client.
7492                          */
7493                         grp = candidate_grp;
7494                         gclient = MAC_GROUP_ONLY_CLIENT(grp);
7495                         VERIFY3P(gclient, !=, NULL);
7496                         mac_tx_client_quiesce((mac_client_handle_t)gclient);
7497                         mac_tx_switch_group(gclient, grp, defgrp);
7498                         mac_tx_client_restart((mac_client_handle_t)gclient);
7499 
7500                         /*
7501                          * Give the candidate group with the specified number
7502                          * of rings to this MAC client.
7503                          */
7504                         ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7505                         rv = mac_start_group(grp);
7506                         ASSERT(rv == 0);
7507 
7508                         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7509                                 return (grp);
7510 
7511                         ASSERT(grp->mrg_cur_count == 0);
7512                         ASSERT(defgrp->mrg_cur_count > need_rings);
7513 
7514                         err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7515                             defgrp, grp, share, need_rings);
7516                         if (err == 0) {
7517                                 /*
7518                                  * For a share i_mac_group_allocate_rings gets
7519                                  * the rings from the driver, let's populate
7520                                  * the property for the client now.
7521                                  */
7522                                 if (share != 0) {
7523                                         mac_client_set_rings(
7524                                             (mac_client_handle_t)mcip, -1,
7525                                             grp->mrg_cur_count);
7526                                 }
7527                                 mip->mi_tx_group_free--;
7528                                 return (grp);
7529                         }
7530                         DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7531                             mip->mi_name, int, grp->mrg_index, int, err);
7532                         mac_stop_group(grp);
7533                 }
7534                 return (NULL);
7535         }
7536         /*
7537          * We got an exclusive group, but it is not dynamic.
7538          */
7539         if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7540                 mip->mi_tx_group_free--;
7541                 return (grp);
7542         }
7543 
7544         rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7545             share, nrings);
7546         if (rv != 0) {
7547                 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7548                     char *, mip->mi_name, int, grp->mrg_index, int, rv);
7549                 mac_stop_group(grp);
7550                 return (NULL);
7551         }
7552         /*
7553          * For a share i_mac_group_allocate_rings gets the rings from the
7554          * driver, let's populate the property for the client now.
7555          */
7556         if (share != 0) {
7557                 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7558                     grp->mrg_cur_count);
7559         }
7560         mip->mi_tx_group_free--;
7561         return (grp);
7562 }
7563 
7564 void
7565 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7566 {
7567         mac_impl_t              *mip = mcip->mci_mip;
7568         mac_share_handle_t      share = mcip->mci_share;
7569         mac_ring_t              *ring;
7570         mac_soft_ring_set_t     *srs = MCIP_TX_SRS(mcip);
7571         mac_group_t             *defgrp;
7572 
7573         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7574         if (srs != NULL) {
7575                 if (srs->srs_soft_ring_count > 0) {
7576                         for (ring = grp->mrg_rings; ring != NULL;
7577                             ring = ring->mr_next) {
7578                                 ASSERT(mac_tx_srs_ring_present(srs, ring));
7579                                 mac_tx_invoke_callbacks(mcip,
7580                                     (mac_tx_cookie_t)
7581                                     mac_tx_srs_get_soft_ring(srs, ring));
7582                                 mac_tx_srs_del_ring(srs, ring);
7583                         }
7584                 } else {
7585                         ASSERT(srs->srs_tx.st_arg2 != NULL);
7586                         srs->srs_tx.st_arg2 = NULL;
7587                         mac_srs_stat_delete(srs);
7588                 }
7589         }
7590         if (share != 0)
7591                 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7592 
7593         /* move the ring back to the pool */
7594         if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7595                 while ((ring = grp->mrg_rings) != NULL)
7596                         (void) mac_group_mov_ring(mip, defgrp, ring);
7597         }
7598         mac_stop_group(grp);
7599         mip->mi_tx_group_free++;
7600 }
7601 
7602 /*
7603  * Disassociate a MAC client from a group, i.e go through the rings in the
7604  * group and delete all the soft rings tied to them.
7605  */
7606 static void
7607 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7608 {
7609         mac_client_impl_t       *mcip = flent->fe_mcip;
7610         mac_soft_ring_set_t     *tx_srs;
7611         mac_srs_tx_t            *tx;
7612         mac_ring_t              *ring;
7613 
7614         tx_srs = flent->fe_tx_srs;
7615         tx = &tx_srs->srs_tx;
7616 
7617         /* Single ring case we haven't created any soft rings */
7618         if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7619             tx->st_mode == SRS_TX_DEFAULT) {
7620                 tx->st_arg2 = NULL;
7621                 mac_srs_stat_delete(tx_srs);
7622         /* Fanout case, where we have to dismantle the soft rings */
7623         } else {
7624                 for (ring = fgrp->mrg_rings; ring != NULL;
7625                     ring = ring->mr_next) {
7626                         ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7627                         mac_tx_invoke_callbacks(mcip,
7628                             (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7629                             ring));
7630                         mac_tx_srs_del_ring(tx_srs, ring);
7631                 }
7632                 ASSERT(tx->st_arg2 == NULL);
7633         }
7634 }
7635 
7636 /*
7637  * Switch the MAC client from one group to another. This means we need
7638  * to remove the MAC client, teardown the SRSs and revert the group state.
7639  * Then, we add the client to the destination roup, set the SRSs etc.
7640  */
7641 void
7642 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7643     mac_group_t *tgrp)
7644 {
7645         mac_client_impl_t       *group_only_mcip;
7646         mac_impl_t              *mip = mcip->mci_mip;
7647         flow_entry_t            *flent = mcip->mci_flent;
7648         mac_group_t             *defgrp;
7649         mac_grp_client_t        *mgcp;
7650         mac_client_impl_t       *gmcip;
7651         flow_entry_t            *gflent;
7652 
7653         defgrp = MAC_DEFAULT_TX_GROUP(mip);
7654         ASSERT(fgrp == flent->fe_tx_ring_group);
7655 
7656         if (fgrp == defgrp) {
7657                 /*
7658                  * If this is the primary we need to find any VLANs on
7659                  * the primary and move them too.
7660                  */
7661                 mac_group_remove_client(fgrp, mcip);
7662                 mac_tx_dismantle_soft_rings(fgrp, flent);
7663                 if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7664                         mgcp = fgrp->mrg_clients;
7665                         while (mgcp != NULL) {
7666                                 gmcip = mgcp->mgc_client;
7667                                 mgcp = mgcp->mgc_next;
7668                                 if (mcip->mci_unicast != gmcip->mci_unicast)
7669                                         continue;
7670                                 mac_tx_client_quiesce(
7671                                     (mac_client_handle_t)gmcip);
7672 
7673                                 gflent = gmcip->mci_flent;
7674                                 mac_group_remove_client(fgrp, gmcip);
7675                                 mac_tx_dismantle_soft_rings(fgrp, gflent);
7676 
7677                                 mac_group_add_client(tgrp, gmcip);
7678                                 gflent->fe_tx_ring_group = tgrp;
7679                                 /* We could directly set this to SHARED */
7680                                 tgrp->mrg_state = mac_group_next_state(tgrp,
7681                                     &group_only_mcip, defgrp, B_FALSE);
7682 
7683                                 mac_tx_srs_group_setup(gmcip, gflent,
7684                                     SRST_LINK);
7685                                 mac_fanout_setup(gmcip, gflent,
7686                                     MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7687                                     gmcip, NULL, NULL);
7688 
7689                                 mac_tx_client_restart(
7690                                     (mac_client_handle_t)gmcip);
7691                         }
7692                 }
7693                 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7694                         mac_ring_t      *ring;
7695                         int             cnt;
7696                         int             ringcnt;
7697 
7698                         fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7699                         /*
7700                          * Additionally, we also need to stop all
7701                          * the rings in the default group, except
7702                          * the default ring. The reason being
7703                          * this group won't be released since it is
7704                          * the default group, so the rings won't
7705                          * be stopped otherwise.
7706                          */
7707                         ringcnt = fgrp->mrg_cur_count;
7708                         ring = fgrp->mrg_rings;
7709                         for (cnt = 0; cnt < ringcnt; cnt++) {
7710                                 if (ring->mr_state == MR_INUSE &&
7711                                     ring !=
7712                                     (mac_ring_t *)mip->mi_default_tx_ring) {
7713                                         mac_stop_ring(ring);
7714                                         ring->mr_flag = 0;
7715                                 }
7716                                 ring = ring->mr_next;
7717                         }
7718                 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7719                         fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7720                 } else {
7721                         ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7722                 }
7723         } else {
7724                 /*
7725                  * We could have VLANs sharing the non-default group with
7726                  * the primary.
7727                  */
7728                 mgcp = fgrp->mrg_clients;
7729                 while (mgcp != NULL) {
7730                         gmcip = mgcp->mgc_client;
7731                         mgcp = mgcp->mgc_next;
7732                         if (gmcip == mcip)
7733                                 continue;
7734                         mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7735                         gflent = gmcip->mci_flent;
7736 
7737                         mac_group_remove_client(fgrp, gmcip);
7738                         mac_tx_dismantle_soft_rings(fgrp, gflent);
7739 
7740                         mac_group_add_client(tgrp, gmcip);
7741                         gflent->fe_tx_ring_group = tgrp;
7742                         /* We could directly set this to SHARED */
7743                         tgrp->mrg_state = mac_group_next_state(tgrp,
7744                             &group_only_mcip, defgrp, B_FALSE);
7745                         mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7746                         mac_fanout_setup(gmcip, gflent,
7747                             MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7748                             gmcip, NULL, NULL);
7749 
7750                         mac_tx_client_restart((mac_client_handle_t)gmcip);
7751                 }
7752                 mac_group_remove_client(fgrp, mcip);
7753                 mac_release_tx_group(mcip, fgrp);
7754                 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7755         }
7756 
7757         /* Add it to the tgroup */
7758         mac_group_add_client(tgrp, mcip);
7759         flent->fe_tx_ring_group = tgrp;
7760         tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7761             defgrp, B_FALSE);
7762 
7763         mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7764         mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7765             mac_rx_deliver, mcip, NULL, NULL);
7766 }
7767 
7768 /*
7769  * This is a 1-time control path activity initiated by the client (IP).
7770  * The mac perimeter protects against other simultaneous control activities,
7771  * for example an ioctl that attempts to change the degree of fanout and
7772  * increase or decrease the number of softrings associated with this Tx SRS.
7773  */
7774 static mac_tx_notify_cb_t *
7775 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7776     mac_tx_notify_t notify, void *arg)
7777 {
7778         mac_cb_info_t *mcbi;
7779         mac_tx_notify_cb_t *mtnfp;
7780 
7781         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7782 
7783         mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7784         mtnfp->mtnf_fn = notify;
7785         mtnfp->mtnf_arg = arg;
7786         mtnfp->mtnf_link.mcb_objp = mtnfp;
7787         mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7788         mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7789 
7790         mcbi = &mcip->mci_tx_notify_cb_info;
7791         mutex_enter(mcbi->mcbi_lockp);
7792         mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7793         mutex_exit(mcbi->mcbi_lockp);
7794         return (mtnfp);
7795 }
7796 
7797 static void
7798 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7799 {
7800         mac_cb_info_t   *mcbi;
7801         mac_cb_t        **cblist;
7802 
7803         ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7804 
7805         if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7806             &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7807                 cmn_err(CE_WARN,
7808                     "mac_client_tx_notify_remove: callback not "
7809                     "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7810                 return;
7811         }
7812 
7813         mcbi = &mcip->mci_tx_notify_cb_info;
7814         cblist = &mcip->mci_tx_notify_cb_list;
7815         mutex_enter(mcbi->mcbi_lockp);
7816         if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7817                 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7818         else
7819                 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7820         mutex_exit(mcbi->mcbi_lockp);
7821 }
7822 
7823 /*
7824  * mac_client_tx_notify():
7825  * call to add and remove flow control callback routine.
7826  */
7827 mac_tx_notify_handle_t
7828 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7829     void *ptr)
7830 {
7831         mac_client_impl_t       *mcip = (mac_client_impl_t *)mch;
7832         mac_tx_notify_cb_t      *mtnfp = NULL;
7833 
7834         i_mac_perim_enter(mcip->mci_mip);
7835 
7836         if (callb_func != NULL) {
7837                 /* Add a notify callback */
7838                 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7839         } else {
7840                 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7841         }
7842         i_mac_perim_exit(mcip->mci_mip);
7843 
7844         return ((mac_tx_notify_handle_t)mtnfp);
7845 }
7846 
7847 void
7848 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7849     mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7850 {
7851         mac_bridge_tx_cb = txf;
7852         mac_bridge_rx_cb = rxf;
7853         mac_bridge_ref_cb = reff;
7854         mac_bridge_ls_cb = lsf;
7855 }
7856 
7857 int
7858 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7859 {
7860         mac_impl_t *mip = (mac_impl_t *)mh;
7861         int retv;
7862 
7863         mutex_enter(&mip->mi_bridge_lock);
7864         if (mip->mi_bridge_link == NULL) {
7865                 mip->mi_bridge_link = link;
7866                 retv = 0;
7867         } else {
7868                 retv = EBUSY;
7869         }
7870         mutex_exit(&mip->mi_bridge_lock);
7871         if (retv == 0) {
7872                 mac_poll_state_change(mh, B_FALSE);
7873                 mac_capab_update(mh);
7874         }
7875         return (retv);
7876 }
7877 
7878 /*
7879  * Disable bridging on the indicated link.
7880  */
7881 void
7882 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7883 {
7884         mac_impl_t *mip = (mac_impl_t *)mh;
7885 
7886         mutex_enter(&mip->mi_bridge_lock);
7887         ASSERT(mip->mi_bridge_link == link);
7888         mip->mi_bridge_link = NULL;
7889         mutex_exit(&mip->mi_bridge_lock);
7890         mac_poll_state_change(mh, B_TRUE);
7891         mac_capab_update(mh);
7892 }
7893 
7894 void
7895 mac_no_active(mac_handle_t mh)
7896 {
7897         mac_impl_t *mip = (mac_impl_t *)mh;
7898 
7899         i_mac_perim_enter(mip);
7900         mip->mi_state_flags |= MIS_NO_ACTIVE;
7901         i_mac_perim_exit(mip);
7902 }
7903 
7904 /*
7905  * Walk the primary VLAN clients whenever the primary's rings property
7906  * changes and update the mac_resource_props_t for the VLAN's client.
7907  * We need to do this since we don't support setting these properties
7908  * on the primary's VLAN clients, but the VLAN clients have to
7909  * follow the primary w.r.t the rings property.
7910  */
7911 void
7912 mac_set_prim_vlan_rings(mac_impl_t  *mip, mac_resource_props_t *mrp)
7913 {
7914         mac_client_impl_t       *vmcip;
7915         mac_resource_props_t    *vmrp;
7916 
7917         for (vmcip = mip->mi_clients_list; vmcip != NULL;
7918             vmcip = vmcip->mci_client_next) {
7919                 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7920                     mac_client_vid((mac_client_handle_t)vmcip) ==
7921                     VLAN_ID_NONE) {
7922                         continue;
7923                 }
7924                 vmrp = MCIP_RESOURCE_PROPS(vmcip);
7925 
7926                 vmrp->mrp_nrxrings =  mrp->mrp_nrxrings;
7927                 if (mrp->mrp_mask & MRP_RX_RINGS)
7928                         vmrp->mrp_mask |= MRP_RX_RINGS;
7929                 else if (vmrp->mrp_mask & MRP_RX_RINGS)
7930                         vmrp->mrp_mask &= ~MRP_RX_RINGS;
7931 
7932                 vmrp->mrp_ntxrings =  mrp->mrp_ntxrings;
7933                 if (mrp->mrp_mask & MRP_TX_RINGS)
7934                         vmrp->mrp_mask |= MRP_TX_RINGS;
7935                 else if (vmrp->mrp_mask & MRP_TX_RINGS)
7936                         vmrp->mrp_mask &= ~MRP_TX_RINGS;
7937 
7938                 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7939                         vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7940                 else
7941                         vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7942 
7943                 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7944                         vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7945                 else
7946                         vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7947         }
7948 }
7949 
7950 /*
7951  * We are adding or removing ring(s) from a group. The source for taking
7952  * rings is the default group. The destination for giving rings back is
7953  * the default group.
7954  */
7955 int
7956 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7957     mac_group_t *defgrp)
7958 {
7959         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
7960         uint_t                  modify;
7961         int                     count;
7962         mac_ring_t              *ring;
7963         mac_ring_t              *next;
7964         mac_impl_t              *mip = mcip->mci_mip;
7965         mac_ring_t              **rings;
7966         uint_t                  ringcnt;
7967         int                     i = 0;
7968         boolean_t               rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7969         int                     start;
7970         int                     end;
7971         mac_group_t             *tgrp;
7972         int                     j;
7973         int                     rv = 0;
7974 
7975         /*
7976          * If we are asked for just a group, we give 1 ring, else
7977          * the specified number of rings.
7978          */
7979         if (rx_group) {
7980                 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7981                     mrp->mrp_nrxrings;
7982         } else {
7983                 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7984                     mrp->mrp_ntxrings;
7985         }
7986 
7987         /* don't allow modifying rings for a share for now. */
7988         ASSERT(mcip->mci_share == 0);
7989 
7990         if (ringcnt == group->mrg_cur_count)
7991                 return (0);
7992 
7993         if (group->mrg_cur_count > ringcnt) {
7994                 modify = group->mrg_cur_count - ringcnt;
7995                 if (rx_group) {
7996                         if (mip->mi_rx_donor_grp == group) {
7997                                 ASSERT(mac_is_primary_client(mcip));
7998                                 mip->mi_rx_donor_grp = defgrp;
7999                         } else {
8000                                 defgrp = mip->mi_rx_donor_grp;
8001                         }
8002                 }
8003                 ring = group->mrg_rings;
8004                 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
8005                     KM_SLEEP);
8006                 j = 0;
8007                 for (count = 0; count < modify; count++) {
8008                         next = ring->mr_next;
8009                         rv = mac_group_mov_ring(mip, defgrp, ring);
8010                         if (rv != 0) {
8011                                 /* cleanup on failure */
8012                                 for (j = 0; j < count; j++) {
8013                                         (void) mac_group_mov_ring(mip, group,
8014                                             rings[j]);
8015                                 }
8016                                 break;
8017                         }
8018                         rings[j++] = ring;
8019                         ring = next;
8020                 }
8021                 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
8022                 return (rv);
8023         }
8024         if (ringcnt >= MAX_RINGS_PER_GROUP)
8025                 return (EINVAL);
8026 
8027         modify = ringcnt - group->mrg_cur_count;
8028 
8029         if (rx_group) {
8030                 if (group != mip->mi_rx_donor_grp)
8031                         defgrp = mip->mi_rx_donor_grp;
8032                 else
8033                         /*
8034                          * This is the donor group with all the remaining
8035                          * rings. Default group now gets to be the donor
8036                          */
8037                         mip->mi_rx_donor_grp = defgrp;
8038                 start = 1;
8039                 end = mip->mi_rx_group_count;
8040         } else {
8041                 start = 0;
8042                 end = mip->mi_tx_group_count - 1;
8043         }
8044         /*
8045          * If the default doesn't have any rings, lets see if we can
8046          * take rings given to an h/w client that doesn't need it.
8047          * For now, we just see if there is  any one client that can donate
8048          * all the required rings.
8049          */
8050         if (defgrp->mrg_cur_count < (modify + 1)) {
8051                 for (i = start; i < end; i++) {
8052                         if (rx_group) {
8053                                 tgrp = &mip->mi_rx_groups[i];
8054                                 if (tgrp == group || tgrp->mrg_state <
8055                                     MAC_GROUP_STATE_RESERVED) {
8056                                         continue;
8057                                 }
8058                                 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS))
8059                                         continue;
8060                                 mcip = tgrp->mrg_clients->mgc_client;
8061                                 VERIFY3P(mcip, !=, NULL);
8062                                 if ((tgrp->mrg_cur_count +
8063                                     defgrp->mrg_cur_count) < (modify + 1)) {
8064                                         continue;
8065                                 }
8066                                 if (mac_rx_switch_group(mcip, tgrp,
8067                                     defgrp) != 0) {
8068                                         return (ENOSPC);
8069                                 }
8070                         } else {
8071                                 tgrp = &mip->mi_tx_groups[i];
8072                                 if (tgrp == group || tgrp->mrg_state <
8073                                     MAC_GROUP_STATE_RESERVED) {
8074                                         continue;
8075                                 }
8076                                 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS))
8077                                         continue;
8078                                 mcip = tgrp->mrg_clients->mgc_client;
8079                                 VERIFY3P(mcip, !=, NULL);
8080                                 if ((tgrp->mrg_cur_count +
8081                                     defgrp->mrg_cur_count) < (modify + 1)) {
8082                                         continue;
8083                                 }
8084                                 /* OK, we can switch this to s/w */
8085                                 mac_tx_client_quiesce(
8086                                     (mac_client_handle_t)mcip);
8087                                 mac_tx_switch_group(mcip, tgrp, defgrp);
8088                                 mac_tx_client_restart(
8089                                     (mac_client_handle_t)mcip);
8090                         }
8091                 }
8092                 if (defgrp->mrg_cur_count < (modify + 1))
8093                         return (ENOSPC);
8094         }
8095         if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
8096             group, mcip->mci_share, modify)) != 0) {
8097                 return (rv);
8098         }
8099         return (0);
8100 }
8101 
8102 /*
8103  * Given the poolname in mac_resource_props, find the cpupart
8104  * that is associated with this pool.  The cpupart will be used
8105  * later for finding the cpus to be bound to the networking threads.
8106  *
8107  * use_default is set B_TRUE if pools are enabled and pool_default
8108  * is returned.  This avoids a 2nd lookup to set the poolname
8109  * for pool-effective.
8110  *
8111  * returns:
8112  *
8113  *    NULL -   pools are disabled or if the 'cpus' property is set.
8114  *    cpupart of pool_default  - pools are enabled and the pool
8115  *             is not available or poolname is blank
8116  *    cpupart of named pool    - pools are enabled and the pool
8117  *             is available.
8118  */
8119 cpupart_t *
8120 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
8121 {
8122         pool_t          *pool;
8123         cpupart_t       *cpupart;
8124 
8125         *use_default = B_FALSE;
8126 
8127         /* CPUs property is set */
8128         if (mrp->mrp_mask & MRP_CPUS)
8129                 return (NULL);
8130 
8131         ASSERT(pool_lock_held());
8132 
8133         /* Pools are disabled, no pset */
8134         if (pool_state == POOL_DISABLED)
8135                 return (NULL);
8136 
8137         /* Pools property is set */
8138         if (mrp->mrp_mask & MRP_POOL) {
8139                 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
8140                         /* Pool not found */
8141                         DTRACE_PROBE1(mac_pset_find_no_pool, char *,
8142                             mrp->mrp_pool);
8143                         *use_default = B_TRUE;
8144                         pool = pool_default;
8145                 }
8146         /* Pools property is not set */
8147         } else {
8148                 *use_default = B_TRUE;
8149                 pool = pool_default;
8150         }
8151 
8152         /* Find the CPU pset that corresponds to the pool */
8153         mutex_enter(&cpu_lock);
8154         if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
8155                 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
8156                     pool->pool_pset->pset_id);
8157         }
8158         mutex_exit(&cpu_lock);
8159 
8160         return (cpupart);
8161 }
8162 
8163 void
8164 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
8165     mac_resource_props_t *mrp, mac_resource_props_t *emrp)
8166 {
8167         ASSERT(pool_lock_held());
8168 
8169         if (cpupart != NULL) {
8170                 emrp->mrp_mask |= MRP_POOL;
8171                 if (use_default) {
8172                         (void) strcpy(emrp->mrp_pool,
8173                             "pool_default");
8174                 } else {
8175                         ASSERT(strlen(mrp->mrp_pool) != 0);
8176                         (void) strcpy(emrp->mrp_pool,
8177                             mrp->mrp_pool);
8178                 }
8179         } else {
8180                 emrp->mrp_mask &= ~MRP_POOL;
8181                 bzero(emrp->mrp_pool, MAXPATHLEN);
8182         }
8183 }
8184 
8185 struct mac_pool_arg {
8186         char            mpa_poolname[MAXPATHLEN];
8187         pool_event_t    mpa_what;
8188 };
8189 
8190 /*ARGSUSED*/
8191 static uint_t
8192 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
8193 {
8194         struct mac_pool_arg     *mpa = arg;
8195         mac_impl_t              *mip = (mac_impl_t *)val;
8196         mac_client_impl_t       *mcip;
8197         mac_resource_props_t    *mrp, *emrp;
8198         boolean_t               pool_update = B_FALSE;
8199         boolean_t               pool_clear = B_FALSE;
8200         boolean_t               use_default = B_FALSE;
8201         cpupart_t               *cpupart = NULL;
8202 
8203         mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
8204         i_mac_perim_enter(mip);
8205         for (mcip = mip->mi_clients_list; mcip != NULL;
8206             mcip = mcip->mci_client_next) {
8207                 pool_update = B_FALSE;
8208                 pool_clear = B_FALSE;
8209                 use_default = B_FALSE;
8210                 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
8211                 emrp = MCIP_EFFECTIVE_PROPS(mcip);
8212 
8213                 /*
8214                  * When pools are enabled
8215                  */
8216                 if ((mpa->mpa_what == POOL_E_ENABLE) &&
8217                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8218                         mrp->mrp_mask |= MRP_POOL;
8219                         pool_update = B_TRUE;
8220                 }
8221 
8222                 /*
8223                  * When pools are disabled
8224                  */
8225                 if ((mpa->mpa_what == POOL_E_DISABLE) &&
8226                     ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8227                         mrp->mrp_mask |= MRP_POOL;
8228                         pool_clear = B_TRUE;
8229                 }
8230 
8231                 /*
8232                  * Look for links with the pool property set and the poolname
8233                  * matching the one which is changing.
8234                  */
8235                 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
8236                         /*
8237                          * The pool associated with the link has changed.
8238                          */
8239                         if (mpa->mpa_what == POOL_E_CHANGE) {
8240                                 mrp->mrp_mask |= MRP_POOL;
8241                                 pool_update = B_TRUE;
8242                         }
8243                 }
8244 
8245                 /*
8246                  * This link is associated with pool_default and
8247                  * pool_default has changed.
8248                  */
8249                 if ((mpa->mpa_what == POOL_E_CHANGE) &&
8250                     (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
8251                     (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
8252                         mrp->mrp_mask |= MRP_POOL;
8253                         pool_update = B_TRUE;
8254                 }
8255 
8256                 /*
8257                  * Get new list of cpus for the pool, bind network
8258                  * threads to new list of cpus and update resources.
8259                  */
8260                 if (pool_update) {
8261                         if (MCIP_DATAPATH_SETUP(mcip)) {
8262                                 pool_lock();
8263                                 cpupart = mac_pset_find(mrp, &use_default);
8264                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8265                                     mac_rx_deliver, mcip, NULL, cpupart);
8266                                 mac_set_pool_effective(use_default, cpupart,
8267                                     mrp, emrp);
8268                                 pool_unlock();
8269                         }
8270                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8271                             B_FALSE);
8272                 }
8273 
8274                 /*
8275                  * Clear the effective pool and bind network threads
8276                  * to any available CPU.
8277                  */
8278                 if (pool_clear) {
8279                         if (MCIP_DATAPATH_SETUP(mcip)) {
8280                                 emrp->mrp_mask &= ~MRP_POOL;
8281                                 bzero(emrp->mrp_pool, MAXPATHLEN);
8282                                 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8283                                     mac_rx_deliver, mcip, NULL, NULL);
8284                         }
8285                         mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8286                             B_FALSE);
8287                 }
8288         }
8289         i_mac_perim_exit(mip);
8290         kmem_free(mrp, sizeof (*mrp));
8291         return (MH_WALK_CONTINUE);
8292 }
8293 
8294 static void
8295 mac_pool_update(void *arg)
8296 {
8297         mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
8298         kmem_free(arg, sizeof (struct mac_pool_arg));
8299 }
8300 
8301 /*
8302  * Callback function to be executed when a noteworthy pool event
8303  * takes place.
8304  */
8305 /* ARGSUSED */
8306 static void
8307 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
8308 {
8309         pool_t                  *pool;
8310         char                    *poolname = NULL;
8311         struct mac_pool_arg     *mpa;
8312 
8313         pool_lock();
8314         mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
8315 
8316         switch (what) {
8317         case POOL_E_ENABLE:
8318         case POOL_E_DISABLE:
8319                 break;
8320 
8321         case POOL_E_CHANGE:
8322                 pool = pool_lookup_pool_by_id(id);
8323                 if (pool == NULL) {
8324                         kmem_free(mpa, sizeof (struct mac_pool_arg));
8325                         pool_unlock();
8326                         return;
8327                 }
8328                 pool_get_name(pool, &poolname);
8329                 (void) strlcpy(mpa->mpa_poolname, poolname,
8330                     sizeof (mpa->mpa_poolname));
8331                 break;
8332 
8333         default:
8334                 kmem_free(mpa, sizeof (struct mac_pool_arg));
8335                 pool_unlock();
8336                 return;
8337         }
8338         pool_unlock();
8339 
8340         mpa->mpa_what = what;
8341 
8342         mac_pool_update(mpa);
8343 }
8344 
8345 /*
8346  * Set effective rings property. This could be called from datapath_setup/
8347  * datapath_teardown or set-linkprop.
8348  * If the group is reserved we just go ahead and set the effective rings.
8349  * Additionally, for TX this could mean the default group has lost/gained
8350  * some rings, so if the default group is reserved, we need to adjust the
8351  * effective rings for the default group clients. For RX, if we are working
8352  * with the non-default group, we just need to reset the effective props
8353  * for the default group clients.
8354  */
8355 void
8356 mac_set_rings_effective(mac_client_impl_t *mcip)
8357 {
8358         mac_impl_t              *mip = mcip->mci_mip;
8359         mac_group_t             *grp;
8360         mac_group_t             *defgrp;
8361         flow_entry_t            *flent = mcip->mci_flent;
8362         mac_resource_props_t    *emrp = MCIP_EFFECTIVE_PROPS(mcip);
8363         mac_grp_client_t        *mgcp;
8364         mac_client_impl_t       *gmcip;
8365 
8366         grp = flent->fe_rx_ring_group;
8367         if (grp != NULL) {
8368                 defgrp = MAC_DEFAULT_RX_GROUP(mip);
8369                 /*
8370                  * If we have reserved a group, set the effective rings
8371                  * to the ring count in the group.
8372                  */
8373                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8374                         emrp->mrp_mask |= MRP_RX_RINGS;
8375                         emrp->mrp_nrxrings = grp->mrg_cur_count;
8376                 }
8377 
8378                 /*
8379                  * We go through the clients in the shared group and
8380                  * reset the effective properties. It is possible this
8381                  * might have already been done for some client (i.e.
8382                  * if some client is being moved to a group that is
8383                  * already shared). The case where the default group is
8384                  * RESERVED is taken care of above (note in the RX side if
8385                  * there is a non-default group, the default group is always
8386                  * SHARED).
8387                  */
8388                 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8389                         if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
8390                                 mgcp = grp->mrg_clients;
8391                         else
8392                                 mgcp = defgrp->mrg_clients;
8393                         while (mgcp != NULL) {
8394                                 gmcip = mgcp->mgc_client;
8395                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8396                                 if (emrp->mrp_mask & MRP_RX_RINGS) {
8397                                         emrp->mrp_mask &= ~MRP_RX_RINGS;
8398                                         emrp->mrp_nrxrings = 0;
8399                                 }
8400                                 mgcp = mgcp->mgc_next;
8401                         }
8402                 }
8403         }
8404 
8405         /* Now the TX side */
8406         grp = flent->fe_tx_ring_group;
8407         if (grp != NULL) {
8408                 defgrp = MAC_DEFAULT_TX_GROUP(mip);
8409 
8410                 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8411                         emrp->mrp_mask |= MRP_TX_RINGS;
8412                         emrp->mrp_ntxrings = grp->mrg_cur_count;
8413                 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8414                         mgcp = grp->mrg_clients;
8415                         while (mgcp != NULL) {
8416                                 gmcip = mgcp->mgc_client;
8417                                 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8418                                 if (emrp->mrp_mask & MRP_TX_RINGS) {
8419                                         emrp->mrp_mask &= ~MRP_TX_RINGS;
8420                                         emrp->mrp_ntxrings = 0;
8421                                 }
8422                                 mgcp = mgcp->mgc_next;
8423                         }
8424                 }
8425 
8426                 /*
8427                  * If the group is not the default group and the default
8428                  * group is reserved, the ring count in the default group
8429                  * might have changed, update it.
8430                  */
8431                 if (grp != defgrp &&
8432                     defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8433                         gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
8434                         emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8435                         emrp->mrp_ntxrings = defgrp->mrg_cur_count;
8436                 }
8437         }
8438         emrp = MCIP_EFFECTIVE_PROPS(mcip);
8439 }
8440 
8441 /*
8442  * Check if the primary is in the default group. If so, see if we
8443  * can give it a an exclusive group now that another client is
8444  * being configured. We take the primary out of the default group
8445  * because the multicast/broadcast packets for the all the clients
8446  * will land in the default ring in the default group which means
8447  * any client in the default group, even if it is the only on in
8448  * the group, will lose exclusive access to the rings, hence
8449  * polling.
8450  */
8451 mac_client_impl_t *
8452 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8453 {
8454         mac_impl_t              *mip = mcip->mci_mip;
8455         mac_group_t             *defgrp = MAC_DEFAULT_RX_GROUP(mip);
8456         flow_entry_t            *flent = mcip->mci_flent;
8457         mac_resource_props_t    *mrp = MCIP_RESOURCE_PROPS(mcip);
8458         uint8_t                 *mac_addr;
8459         mac_group_t             *ngrp;
8460 
8461         /*
8462          * Check if the primary is in the default group, if not
8463          * or if it is explicitly configured to be in the default
8464          * group OR set the RX rings property, return.
8465          */
8466         if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8467                 return (NULL);
8468 
8469         /*
8470          * If the new client needs an exclusive group and we
8471          * don't have another for the primary, return.
8472          */
8473         if (rxhw && mip->mi_rxhwclnt_avail < 2)
8474                 return (NULL);
8475 
8476         mac_addr = flent->fe_flow_desc.fd_dst_mac;
8477         /*
8478          * We call this when we are setting up the datapath for
8479          * the first non-primary.
8480          */
8481         ASSERT(mip->mi_nactiveclients == 2);
8482 
8483         /*
8484          * OK, now we have the primary that needs to be relocated.
8485          */
8486         ngrp =  mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8487         if (ngrp == NULL)
8488                 return (NULL);
8489         if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8490                 mac_stop_group(ngrp);
8491                 return (NULL);
8492         }
8493         return (mcip);
8494 }
8495 
8496 void
8497 mac_transceiver_init(mac_impl_t *mip)
8498 {
8499         if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8500             &mip->mi_transceiver)) {
8501                 /*
8502                  * The driver set a flag that we don't know about. In this case,
8503                  * we need to warn about that case and ignore this capability.
8504                  */
8505                 if (mip->mi_transceiver.mct_flags != 0) {
8506                         dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8507                             "flags to invalid value: 0x%x, ignoring "
8508                             "capability", mip->mi_transceiver.mct_flags);
8509                         bzero(&mip->mi_transceiver,
8510                             sizeof (mac_capab_transceiver_t));
8511                 }
8512         } else {
8513                         bzero(&mip->mi_transceiver,
8514                             sizeof (mac_capab_transceiver_t));
8515         }
8516 }
8517 
8518 int
8519 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8520 {
8521         mac_impl_t *mip = (mac_impl_t *)mh;
8522 
8523         ASSERT(MAC_PERIM_HELD(mh));
8524 
8525         if (mip->mi_transceiver.mct_ntransceivers == 0)
8526                 return (ENOTSUP);
8527 
8528         *countp = mip->mi_transceiver.mct_ntransceivers;
8529         return (0);
8530 }
8531 
8532 int
8533 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8534     boolean_t *usable)
8535 {
8536         int ret;
8537         mac_transceiver_info_t info;
8538 
8539         mac_impl_t *mip = (mac_impl_t *)mh;
8540 
8541         ASSERT(MAC_PERIM_HELD(mh));
8542 
8543         if (mip->mi_transceiver.mct_info == NULL ||
8544             mip->mi_transceiver.mct_ntransceivers == 0)
8545                 return (ENOTSUP);
8546 
8547         if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8548                 return (EINVAL);
8549 
8550         bzero(&info, sizeof (mac_transceiver_info_t));
8551         if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8552             &info)) != 0) {
8553                 return (ret);
8554         }
8555 
8556         *present = info.mti_present;
8557         *usable = info.mti_usable;
8558         return (0);
8559 }
8560 
8561 int
8562 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8563     size_t nbytes, off_t offset, size_t *nread)
8564 {
8565         int ret;
8566         size_t nr;
8567         mac_impl_t *mip = (mac_impl_t *)mh;
8568 
8569         ASSERT(MAC_PERIM_HELD(mh));
8570 
8571         if (mip->mi_transceiver.mct_read == NULL)
8572                 return (ENOTSUP);
8573 
8574         if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8575                 return (EINVAL);
8576 
8577         /*
8578          * All supported pages today are 256 bytes wide. Make sure offset +
8579          * nbytes never exceeds that.
8580          */
8581         if (offset < 0 || offset >= 256 || nbytes > 256 ||
8582             offset + nbytes > 256)
8583                 return (EINVAL);
8584 
8585         if (nread == NULL)
8586                 nread = &nr;
8587         ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8588             nbytes, offset, nread);
8589         if (ret == 0 && *nread > nbytes) {
8590                 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8591                     "%lu byte sized buffer, possible memory corruption",
8592                     *nread, nbytes);
8593         }
8594 
8595         return (ret);
8596 }
8597 
8598 void
8599 mac_led_init(mac_impl_t *mip)
8600 {
8601         mip->mi_led_modes = MAC_LED_DEFAULT;
8602 
8603         if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8604                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8605                 return;
8606         }
8607 
8608         if (mip->mi_led.mcl_flags != 0) {
8609                 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8610                     "flags to invalid value: 0x%x, ignoring "
8611                     "capability", mip->mi_transceiver.mct_flags);
8612                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8613                 return;
8614         }
8615 
8616         if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8617                 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8618                     "supported modes to invalid value: 0x%x, ignoring "
8619                     "capability", mip->mi_transceiver.mct_flags);
8620                 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8621                 return;
8622         }
8623 }
8624 
8625 int
8626 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8627 {
8628         mac_impl_t *mip = (mac_impl_t *)mh;
8629 
8630         ASSERT(MAC_PERIM_HELD(mh));
8631 
8632         if (mip->mi_led.mcl_set == NULL)
8633                 return (ENOTSUP);
8634 
8635         *supported = mip->mi_led.mcl_modes;
8636         *active = mip->mi_led_modes;
8637 
8638         return (0);
8639 }
8640 
8641 /*
8642  * Update and multiplex the various LED requests. We only ever send one LED to
8643  * the underlying driver at a time. As such, we end up multiplexing all
8644  * requested states and picking one to send down to the driver.
8645  */
8646 int
8647 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8648 {
8649         int ret;
8650         mac_led_mode_t driver;
8651 
8652         mac_impl_t *mip = (mac_impl_t *)mh;
8653 
8654         ASSERT(MAC_PERIM_HELD(mh));
8655 
8656         /*
8657          * If we've been passed a desired value of zero, that indicates that
8658          * we're basically resetting to the value of zero, which is our default
8659          * value.
8660          */
8661         if (desired == 0)
8662                 desired = MAC_LED_DEFAULT;
8663 
8664         if (mip->mi_led.mcl_set == NULL)
8665                 return (ENOTSUP);
8666 
8667         /*
8668          * Catch both values that we don't know about and those that the driver
8669          * doesn't support.
8670          */
8671         if ((desired & ~MAC_LED_ALL) != 0)
8672                 return (EINVAL);
8673 
8674         if ((desired & ~mip->mi_led.mcl_modes) != 0)
8675                 return (ENOTSUP);
8676 
8677         /*
8678          * If we have the same value, then there is nothing to do.
8679          */
8680         if (desired == mip->mi_led_modes)
8681                 return (0);
8682 
8683         /*
8684          * Based on the desired value, determine what to send to the driver. We
8685          * only will send a single bit to the driver at any given time. IDENT
8686          * takes priority over OFF or ON. We also let OFF take priority over the
8687          * rest.
8688          */
8689         if (desired & MAC_LED_IDENT) {
8690                 driver = MAC_LED_IDENT;
8691         } else if (desired & MAC_LED_OFF) {
8692                 driver = MAC_LED_OFF;
8693         } else if (desired & MAC_LED_ON) {
8694                 driver = MAC_LED_ON;
8695         } else {
8696                 driver = MAC_LED_DEFAULT;
8697         }
8698 
8699         if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8700                 mip->mi_led_modes = desired;
8701         }
8702 
8703         return (ret);
8704 }