1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright 2015 Garrett D'Amore <garrett@damore.org> 26 */ 27 28 /* 29 * MAC Services Module 30 * 31 * The GLDv3 framework locking - The MAC layer 32 * -------------------------------------------- 33 * 34 * The MAC layer is central to the GLD framework and can provide the locking 35 * framework needed for itself and for the use of MAC clients. MAC end points 36 * are fairly disjoint and don't share a lot of state. So a coarse grained 37 * multi-threading scheme is to single thread all create/modify/delete or set 38 * type of control operations on a per mac end point while allowing data threads 39 * concurrently. 40 * 41 * Control operations (set) that modify a mac end point are always serialized on 42 * a per mac end point basis, We have at most 1 such thread per mac end point 43 * at a time. 44 * 45 * All other operations that are not serialized are essentially multi-threaded. 46 * For example a control operation (get) like getting statistics which may not 47 * care about reading values atomically or data threads sending or receiving 48 * data. Mostly these type of operations don't modify the control state. Any 49 * state these operations care about are protected using traditional locks. 50 * 51 * The perimeter only serializes serial operations. It does not imply there 52 * aren't any other concurrent operations. However a serialized operation may 53 * sometimes need to make sure it is the only thread. In this case it needs 54 * to use reference counting mechanisms to cv_wait until any current data 55 * threads are done. 56 * 57 * The mac layer itself does not hold any locks across a call to another layer. 58 * The perimeter is however held across a down call to the driver to make the 59 * whole control operation atomic with respect to other control operations. 60 * Also the data path and get type control operations may proceed concurrently. 61 * These operations synchronize with the single serial operation on a given mac 62 * end point using regular locks. The perimeter ensures that conflicting 63 * operations like say a mac_multicast_add and a mac_multicast_remove on the 64 * same mac end point don't interfere with each other and also ensures that the 65 * changes in the mac layer and the call to the underlying driver to say add a 66 * multicast address are done atomically without interference from a thread 67 * trying to delete the same address. 68 * 69 * For example, consider 70 * mac_multicst_add() 71 * { 72 * mac_perimeter_enter(); serialize all control operations 73 * 74 * grab list lock protect against access by data threads 75 * add to list 76 * drop list lock 77 * 78 * call driver's mi_multicst 79 * 80 * mac_perimeter_exit(); 81 * } 82 * 83 * To lessen the number of serialization locks and simplify the lock hierarchy, 84 * we serialize all the control operations on a per mac end point by using a 85 * single serialization lock called the perimeter. We allow recursive entry into 86 * the perimeter to facilitate use of this mechanism by both the mac client and 87 * the MAC layer itself. 88 * 89 * MAC client means an entity that does an operation on a mac handle 90 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 91 * an entity that does an operation on a mac handle obtained from a 92 * mac_register. An entity could be both client and driver but on different 93 * handles eg. aggr. and should only make the corresponding mac interface calls 94 * i.e. mac driver interface or mac client interface as appropriate for that 95 * mac handle. 96 * 97 * General rules. 98 * ------------- 99 * 100 * R1. The lock order of upcall threads is natually opposite to downcall 101 * threads. Hence upcalls must not hold any locks across layers for fear of 102 * recursive lock enter and lock order violation. This applies to all layers. 103 * 104 * R2. The perimeter is just another lock. Since it is held in the down 105 * direction, acquiring the perimeter in an upcall is prohibited as it would 106 * cause a deadlock. This applies to all layers. 107 * 108 * Note that upcalls that need to grab the mac perimeter (for example 109 * mac_notify upcalls) can still achieve that by posting the request to a 110 * thread, which can then grab all the required perimeters and locks in the 111 * right global order. Note that in the above example the mac layer iself 112 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 113 * to the client must do that. Please see the aggr code for an example. 114 * 115 * MAC client rules 116 * ---------------- 117 * 118 * R3. A MAC client may use the MAC provided perimeter facility to serialize 119 * control operations on a per mac end point. It does this by by acquring 120 * and holding the perimeter across a sequence of calls to the mac layer. 121 * This ensures atomicity across the entire block of mac calls. In this 122 * model the MAC client must not hold any client locks across the calls to 123 * the mac layer. This model is the preferred solution. 124 * 125 * R4. However if a MAC client has a lot of global state across all mac end 126 * points the per mac end point serialization may not be sufficient. In this 127 * case the client may choose to use global locks or use its own serialization. 128 * To avoid deadlocks, these client layer locks held across the mac calls 129 * in the control path must never be acquired by the data path for the reason 130 * mentioned below. 131 * 132 * (Assume that a control operation that holds a client lock blocks in the 133 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 134 * data thread that holds this reference count, tries to acquire the same 135 * client lock subsequently it will deadlock). 136 * 137 * A MAC client may follow either the R3 model or the R4 model, but can't 138 * mix both. In the former, the hierarchy is Perim -> client locks, but in 139 * the latter it is client locks -> Perim. 140 * 141 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 142 * context since they may block while trying to acquire the perimeter. 143 * In addition some calls may block waiting for upcall refcnts to come down to 144 * zero. 145 * 146 * R6. MAC clients must make sure that they are single threaded and all threads 147 * from the top (in particular data threads) have finished before calling 148 * mac_client_close. The MAC framework does not track the number of client 149 * threads using the mac client handle. Also mac clients must make sure 150 * they have undone all the control operations before calling mac_client_close. 151 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 152 * mac_unicast_add/mac_multicast_add. 153 * 154 * MAC framework rules 155 * ------------------- 156 * 157 * R7. The mac layer itself must not hold any mac layer locks (except the mac 158 * perimeter) across a call to any other layer from the mac layer. The call to 159 * any other layer could be via mi_* entry points, classifier entry points into 160 * the driver or via upcall pointers into layers above. The mac perimeter may 161 * be acquired or held only in the down direction, for e.g. when calling into 162 * a mi_* driver enty point to provide atomicity of the operation. 163 * 164 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 165 * mac driver interfaces, the MAC layer must provide a cut out for control 166 * interfaces like upcall notifications and start them in a separate thread. 167 * 168 * R9. Note that locking order also implies a plumbing order. For example 169 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 170 * to plumb in any other order must be failed at mac_open time, otherwise it 171 * could lead to deadlocks due to inverse locking order. 172 * 173 * R10. MAC driver interfaces must not block since the driver could call them 174 * in interrupt context. 175 * 176 * R11. Walkers must preferably not hold any locks while calling walker 177 * callbacks. Instead these can operate on reference counts. In simple 178 * callbacks it may be ok to hold a lock and call the callbacks, but this is 179 * harder to maintain in the general case of arbitrary callbacks. 180 * 181 * R12. The MAC layer must protect upcall notification callbacks using reference 182 * counts rather than holding locks across the callbacks. 183 * 184 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 185 * sure that any pointers (such as mac ring pointers) it passes to the driver 186 * remain valid until mac unregister time. Currently the mac layer achieves 187 * this by using generation numbers for rings and freeing the mac rings only 188 * at unregister time. The MAC layer must provide a layer of indirection and 189 * must not expose underlying driver rings or driver data structures/pointers 190 * directly to MAC clients. 191 * 192 * MAC driver rules 193 * ---------------- 194 * 195 * R14. It would be preferable if MAC drivers don't hold any locks across any 196 * mac call. However at a minimum they must not hold any locks across data 197 * upcalls. They must also make sure that all references to mac data structures 198 * are cleaned up and that it is single threaded at mac_unregister time. 199 * 200 * R15. MAC driver interfaces don't block and so the action may be done 201 * asynchronously in a separate thread as for example handling notifications. 202 * The driver must not assume that the action is complete when the call 203 * returns. 204 * 205 * R16. Drivers must maintain a generation number per Rx ring, and pass it 206 * back to mac_rx_ring(); They are expected to increment the generation 207 * number whenever the ring's stop routine is invoked. 208 * See comments in mac_rx_ring(); 209 * 210 * R17 Similarly mi_stop is another synchronization point and the driver must 211 * ensure that all upcalls are done and there won't be any future upcall 212 * before returning from mi_stop. 213 * 214 * R18. The driver may assume that all set/modify control operations via 215 * the mi_* entry points are single threaded on a per mac end point. 216 * 217 * Lock and Perimeter hierarchy scenarios 218 * --------------------------------------- 219 * 220 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 221 * 222 * ft_lock -> fe_lock [mac_flow_lookup] 223 * 224 * mi_rw_lock -> fe_lock [mac_bcast_send] 225 * 226 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 227 * 228 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 229 * 230 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 231 * 232 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 233 * client to driver. In the case of clients that explictly use the mac provided 234 * perimeter mechanism for its serialization, the hierarchy is 235 * Perimeter -> mac layer locks, since the client never holds any locks across 236 * the mac calls. In the case of clients that use its own locks the hierarchy 237 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 238 * calls mac_perim_enter/exit in this case. 239 * 240 * Subflow creation rules 241 * --------------------------- 242 * o In case of a user specified cpulist present on underlying link and flows, 243 * the flows cpulist must be a subset of the underlying link. 244 * o In case of a user specified fanout mode present on link and flow, the 245 * subflow fanout count has to be less than or equal to that of the 246 * underlying link. The cpu-bindings for the subflows will be a subset of 247 * the underlying link. 248 * o In case if no cpulist specified on both underlying link and flow, the 249 * underlying link relies on a MAC tunable to provide out of box fanout. 250 * The subflow will have no cpulist (the subflow will be unbound) 251 * o In case if no cpulist is specified on the underlying link, a subflow can 252 * carry either a user-specified cpulist or fanout count. The cpu-bindings 253 * for the subflow will not adhere to restriction that they need to be subset 254 * of the underlying link. 255 * o In case where the underlying link is carrying either a user specified 256 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 257 * created unbound. 258 * o While creating unbound subflows, bandwidth mode changes attempt to 259 * figure a right fanout count. In such cases the fanout count will override 260 * the unbound cpu-binding behavior. 261 * o In addition to this, while cycling between flow and link properties, we 262 * impose a restriction that if a link property has a subflow with 263 * user-specified attributes, we will not allow changing the link property. 264 * The administrator needs to reset all the user specified properties for the 265 * subflows before attempting a link property change. 266 * Some of the above rules can be overridden by specifying additional command 267 * line options while creating or modifying link or subflow properties. 268 * 269 * Datapath 270 * -------- 271 * 272 * For information on the datapath, the world of soft rings, hardware rings, how 273 * it is structured, and the path of an mblk_t between a driver and a mac 274 * client, see mac_sched.c. 275 */ 276 277 #include <sys/types.h> 278 #include <sys/conf.h> 279 #include <sys/id_space.h> 280 #include <sys/esunddi.h> 281 #include <sys/stat.h> 282 #include <sys/mkdev.h> 283 #include <sys/stream.h> 284 #include <sys/strsun.h> 285 #include <sys/strsubr.h> 286 #include <sys/dlpi.h> 287 #include <sys/list.h> 288 #include <sys/modhash.h> 289 #include <sys/mac_provider.h> 290 #include <sys/mac_client_impl.h> 291 #include <sys/mac_soft_ring.h> 292 #include <sys/mac_stat.h> 293 #include <sys/mac_impl.h> 294 #include <sys/mac.h> 295 #include <sys/dls.h> 296 #include <sys/dld.h> 297 #include <sys/modctl.h> 298 #include <sys/fs/dv_node.h> 299 #include <sys/thread.h> 300 #include <sys/proc.h> 301 #include <sys/callb.h> 302 #include <sys/cpuvar.h> 303 #include <sys/atomic.h> 304 #include <sys/bitmap.h> 305 #include <sys/sdt.h> 306 #include <sys/mac_flow.h> 307 #include <sys/ddi_intr_impl.h> 308 #include <sys/disp.h> 309 #include <sys/sdt.h> 310 #include <sys/vnic.h> 311 #include <sys/vnic_impl.h> 312 #include <sys/vlan.h> 313 #include <inet/ip.h> 314 #include <inet/ip6.h> 315 #include <sys/exacct.h> 316 #include <sys/exacct_impl.h> 317 #include <inet/nd.h> 318 #include <sys/ethernet.h> 319 #include <sys/pool.h> 320 #include <sys/pool_pset.h> 321 #include <sys/cpupart.h> 322 #include <inet/wifi_ioctl.h> 323 #include <net/wpa.h> 324 325 #define IMPL_HASHSZ 67 /* prime */ 326 327 kmem_cache_t *i_mac_impl_cachep; 328 mod_hash_t *i_mac_impl_hash; 329 krwlock_t i_mac_impl_lock; 330 uint_t i_mac_impl_count; 331 static kmem_cache_t *mac_ring_cache; 332 static id_space_t *minor_ids; 333 static uint32_t minor_count; 334 static pool_event_cb_t mac_pool_event_reg; 335 336 /* 337 * Logging stuff. Perhaps mac_logging_interval could be broken into 338 * mac_flow_log_interval and mac_link_log_interval if we want to be 339 * able to schedule them differently. 340 */ 341 uint_t mac_logging_interval; 342 boolean_t mac_flow_log_enable; 343 boolean_t mac_link_log_enable; 344 timeout_id_t mac_logging_timer; 345 346 #define MACTYPE_KMODDIR "mac" 347 #define MACTYPE_HASHSZ 67 348 static mod_hash_t *i_mactype_hash; 349 /* 350 * i_mactype_lock synchronizes threads that obtain references to mactype_t 351 * structures through i_mactype_getplugin(). 352 */ 353 static kmutex_t i_mactype_lock; 354 355 /* 356 * mac_tx_percpu_cnt 357 * 358 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 359 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 360 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 361 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 362 */ 363 int mac_tx_percpu_cnt; 364 int mac_tx_percpu_cnt_max = 128; 365 366 /* 367 * Call back functions for the bridge module. These are guaranteed to be valid 368 * when holding a reference on a link or when holding mip->mi_bridge_lock and 369 * mi_bridge_link is non-NULL. 370 */ 371 mac_bridge_tx_t mac_bridge_tx_cb; 372 mac_bridge_rx_t mac_bridge_rx_cb; 373 mac_bridge_ref_t mac_bridge_ref_cb; 374 mac_bridge_ls_t mac_bridge_ls_cb; 375 376 static int i_mac_constructor(void *, void *, int); 377 static void i_mac_destructor(void *, void *); 378 static int i_mac_ring_ctor(void *, void *, int); 379 static void i_mac_ring_dtor(void *, void *); 380 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 381 void mac_tx_client_flush(mac_client_impl_t *); 382 void mac_tx_client_block(mac_client_impl_t *); 383 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 384 static int mac_start_group_and_rings(mac_group_t *); 385 static void mac_stop_group_and_rings(mac_group_t *); 386 static void mac_pool_event_cb(pool_event_t, int, void *); 387 388 typedef struct netinfo_s { 389 list_node_t ni_link; 390 void *ni_record; 391 int ni_size; 392 int ni_type; 393 } netinfo_t; 394 395 /* 396 * Module initialization functions. 397 */ 398 399 void 400 mac_init(void) 401 { 402 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 403 boot_max_ncpus); 404 405 /* Upper bound is mac_tx_percpu_cnt_max */ 406 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 407 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 408 409 if (mac_tx_percpu_cnt < 1) { 410 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 411 mac_tx_percpu_cnt = 1; 412 } 413 414 ASSERT(mac_tx_percpu_cnt >= 1); 415 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 416 /* 417 * Make it of the form 2**N - 1 in the range 418 * [0 .. mac_tx_percpu_cnt_max - 1] 419 */ 420 mac_tx_percpu_cnt--; 421 422 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 423 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 424 NULL, NULL, NULL, 0); 425 ASSERT(i_mac_impl_cachep != NULL); 426 427 mac_ring_cache = kmem_cache_create("mac_ring_cache", 428 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 429 NULL, NULL, 0); 430 ASSERT(mac_ring_cache != NULL); 431 432 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 433 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 434 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 435 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 436 437 mac_flow_init(); 438 mac_soft_ring_init(); 439 mac_bcast_init(); 440 mac_client_init(); 441 442 i_mac_impl_count = 0; 443 444 i_mactype_hash = mod_hash_create_extended("mactype_hash", 445 MACTYPE_HASHSZ, 446 mod_hash_null_keydtor, mod_hash_null_valdtor, 447 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 448 449 /* 450 * Allocate an id space to manage minor numbers. The range of the 451 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 452 * leaves half of the 32-bit minors available for driver private use. 453 */ 454 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 455 MAC_PRIVATE_MINOR-1); 456 ASSERT(minor_ids != NULL); 457 minor_count = 0; 458 459 /* Let's default to 20 seconds */ 460 mac_logging_interval = 20; 461 mac_flow_log_enable = B_FALSE; 462 mac_link_log_enable = B_FALSE; 463 mac_logging_timer = NULL; 464 465 /* Register to be notified of noteworthy pools events */ 466 mac_pool_event_reg.pec_func = mac_pool_event_cb; 467 mac_pool_event_reg.pec_arg = NULL; 468 pool_event_cb_register(&mac_pool_event_reg); 469 } 470 471 int 472 mac_fini(void) 473 { 474 475 if (i_mac_impl_count > 0 || minor_count > 0) 476 return (EBUSY); 477 478 pool_event_cb_unregister(&mac_pool_event_reg); 479 480 id_space_destroy(minor_ids); 481 mac_flow_fini(); 482 483 mod_hash_destroy_hash(i_mac_impl_hash); 484 rw_destroy(&i_mac_impl_lock); 485 486 mac_client_fini(); 487 kmem_cache_destroy(mac_ring_cache); 488 489 mod_hash_destroy_hash(i_mactype_hash); 490 mac_soft_ring_finish(); 491 492 493 return (0); 494 } 495 496 /* 497 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops 498 * (e.g. softmac) may pass in a NULL ops argument. 499 */ 500 void 501 mac_init_ops(struct dev_ops *ops, const char *name) 502 { 503 major_t major = ddi_name_to_major((char *)name); 504 505 /* 506 * By returning on error below, we are not letting the driver continue 507 * in an undefined context. The mac_register() function will faill if 508 * DN_GLDV3_DRIVER isn't set. 509 */ 510 if (major == DDI_MAJOR_T_NONE) 511 return; 512 LOCK_DEV_OPS(&devnamesp[major].dn_lock); 513 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER); 514 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock); 515 if (ops != NULL) 516 dld_init_ops(ops, name); 517 } 518 519 void 520 mac_fini_ops(struct dev_ops *ops) 521 { 522 dld_fini_ops(ops); 523 } 524 525 /*ARGSUSED*/ 526 static int 527 i_mac_constructor(void *buf, void *arg, int kmflag) 528 { 529 mac_impl_t *mip = buf; 530 531 bzero(buf, sizeof (mac_impl_t)); 532 533 mip->mi_linkstate = LINK_STATE_UNKNOWN; 534 535 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 536 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 537 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 538 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 539 540 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 541 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 542 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 543 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 544 545 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 546 547 return (0); 548 } 549 550 /*ARGSUSED*/ 551 static void 552 i_mac_destructor(void *buf, void *arg) 553 { 554 mac_impl_t *mip = buf; 555 mac_cb_info_t *mcbi; 556 557 ASSERT(mip->mi_ref == 0); 558 ASSERT(mip->mi_active == 0); 559 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 560 ASSERT(mip->mi_devpromisc == 0); 561 ASSERT(mip->mi_ksp == NULL); 562 ASSERT(mip->mi_kstat_count == 0); 563 ASSERT(mip->mi_nclients == 0); 564 ASSERT(mip->mi_nactiveclients == 0); 565 ASSERT(mip->mi_single_active_client == NULL); 566 ASSERT(mip->mi_state_flags == 0); 567 ASSERT(mip->mi_factory_addr == NULL); 568 ASSERT(mip->mi_factory_addr_num == 0); 569 ASSERT(mip->mi_default_tx_ring == NULL); 570 571 mcbi = &mip->mi_notify_cb_info; 572 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 573 ASSERT(mip->mi_notify_bits == 0); 574 ASSERT(mip->mi_notify_thread == NULL); 575 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 576 mcbi->mcbi_lockp = NULL; 577 578 mcbi = &mip->mi_promisc_cb_info; 579 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 580 ASSERT(mip->mi_promisc_list == NULL); 581 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 582 mcbi->mcbi_lockp = NULL; 583 584 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 585 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 586 587 rw_destroy(&mip->mi_rw_lock); 588 589 mutex_destroy(&mip->mi_promisc_lock); 590 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 591 mutex_destroy(&mip->mi_notify_lock); 592 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 593 mutex_destroy(&mip->mi_ring_lock); 594 595 ASSERT(mip->mi_bridge_link == NULL); 596 } 597 598 /* ARGSUSED */ 599 static int 600 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 601 { 602 mac_ring_t *ring = (mac_ring_t *)buf; 603 604 bzero(ring, sizeof (mac_ring_t)); 605 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 606 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 607 ring->mr_state = MR_FREE; 608 return (0); 609 } 610 611 /* ARGSUSED */ 612 static void 613 i_mac_ring_dtor(void *buf, void *arg) 614 { 615 mac_ring_t *ring = (mac_ring_t *)buf; 616 617 cv_destroy(&ring->mr_cv); 618 mutex_destroy(&ring->mr_lock); 619 } 620 621 /* 622 * Common functions to do mac callback addition and deletion. Currently this is 623 * used by promisc callbacks and notify callbacks. List addition and deletion 624 * need to take care of list walkers. List walkers in general, can't hold list 625 * locks and make upcall callbacks due to potential lock order and recursive 626 * reentry issues. Instead list walkers increment the list walker count to mark 627 * the presence of a walker thread. Addition can be carefully done to ensure 628 * that the list walker always sees either the old list or the new list. 629 * However the deletion can't be done while the walker is active, instead the 630 * deleting thread simply marks the entry as logically deleted. The last walker 631 * physically deletes and frees up the logically deleted entries when the walk 632 * is complete. 633 */ 634 void 635 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 636 mac_cb_t *mcb_elem) 637 { 638 mac_cb_t *p; 639 mac_cb_t **pp; 640 641 /* Verify it is not already in the list */ 642 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 643 if (p == mcb_elem) 644 break; 645 } 646 VERIFY(p == NULL); 647 648 /* 649 * Add it to the head of the callback list. The membar ensures that 650 * the following list pointer manipulations reach global visibility 651 * in exactly the program order below. 652 */ 653 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 654 655 mcb_elem->mcb_nextp = *mcb_head; 656 membar_producer(); 657 *mcb_head = mcb_elem; 658 } 659 660 /* 661 * Mark the entry as logically deleted. If there aren't any walkers unlink 662 * from the list. In either case return the corresponding status. 663 */ 664 boolean_t 665 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 666 mac_cb_t *mcb_elem) 667 { 668 mac_cb_t *p; 669 mac_cb_t **pp; 670 671 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 672 /* 673 * Search the callback list for the entry to be removed 674 */ 675 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 676 if (p == mcb_elem) 677 break; 678 } 679 VERIFY(p != NULL); 680 681 /* 682 * If there are walkers just mark it as deleted and the last walker 683 * will remove from the list and free it. 684 */ 685 if (mcbi->mcbi_walker_cnt != 0) { 686 p->mcb_flags |= MCB_CONDEMNED; 687 mcbi->mcbi_del_cnt++; 688 return (B_FALSE); 689 } 690 691 ASSERT(mcbi->mcbi_del_cnt == 0); 692 *pp = p->mcb_nextp; 693 p->mcb_nextp = NULL; 694 return (B_TRUE); 695 } 696 697 /* 698 * Wait for all pending callback removals to be completed 699 */ 700 void 701 mac_callback_remove_wait(mac_cb_info_t *mcbi) 702 { 703 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 704 while (mcbi->mcbi_del_cnt != 0) { 705 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 706 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 707 } 708 } 709 710 /* 711 * The last mac callback walker does the cleanup. Walk the list and unlik 712 * all the logically deleted entries and construct a temporary list of 713 * removed entries. Return the list of removed entries to the caller. 714 */ 715 mac_cb_t * 716 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 717 { 718 mac_cb_t *p; 719 mac_cb_t **pp; 720 mac_cb_t *rmlist = NULL; /* List of removed elements */ 721 int cnt = 0; 722 723 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 724 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 725 726 pp = mcb_head; 727 while (*pp != NULL) { 728 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 729 p = *pp; 730 *pp = p->mcb_nextp; 731 p->mcb_nextp = rmlist; 732 rmlist = p; 733 cnt++; 734 continue; 735 } 736 pp = &(*pp)->mcb_nextp; 737 } 738 739 ASSERT(mcbi->mcbi_del_cnt == cnt); 740 mcbi->mcbi_del_cnt = 0; 741 return (rmlist); 742 } 743 744 boolean_t 745 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 746 { 747 mac_cb_t *mcb; 748 749 /* Verify it is not already in the list */ 750 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 751 if (mcb == mcb_elem) 752 return (B_TRUE); 753 } 754 755 return (B_FALSE); 756 } 757 758 boolean_t 759 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 760 { 761 boolean_t found; 762 763 mutex_enter(mcbi->mcbi_lockp); 764 found = mac_callback_lookup(mcb_headp, mcb_elem); 765 mutex_exit(mcbi->mcbi_lockp); 766 767 return (found); 768 } 769 770 /* Free the list of removed callbacks */ 771 void 772 mac_callback_free(mac_cb_t *rmlist) 773 { 774 mac_cb_t *mcb; 775 mac_cb_t *mcb_next; 776 777 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 778 mcb_next = mcb->mcb_nextp; 779 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 780 } 781 } 782 783 /* 784 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 785 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 786 * is only a single shared total walker count, and an entry can't be physically 787 * unlinked if a walker is active on either list. The last walker does this 788 * cleanup of logically deleted entries. 789 */ 790 void 791 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 792 { 793 mac_cb_t *rmlist; 794 mac_cb_t *mcb; 795 mac_cb_t *mcb_next; 796 mac_promisc_impl_t *mpip; 797 798 /* 799 * Construct a temporary list of deleted callbacks by walking the 800 * the mi_promisc_list. Then for each entry in the temporary list, 801 * remove it from the mci_promisc_list and free the entry. 802 */ 803 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 804 &mip->mi_promisc_list); 805 806 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 807 mcb_next = mcb->mcb_nextp; 808 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 809 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 810 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 811 mcb->mcb_flags = 0; 812 mcb->mcb_nextp = NULL; 813 kmem_cache_free(mac_promisc_impl_cache, mpip); 814 } 815 } 816 817 void 818 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 819 { 820 mac_cb_info_t *mcbi; 821 822 /* 823 * Signal the notify thread even after mi_ref has become zero and 824 * mi_disabled is set. The synchronization with the notify thread 825 * happens in mac_unregister and that implies the driver must make 826 * sure it is single-threaded (with respect to mac calls) and that 827 * all pending mac calls have returned before it calls mac_unregister 828 */ 829 rw_enter(&i_mac_impl_lock, RW_READER); 830 if (mip->mi_state_flags & MIS_DISABLED) 831 goto exit; 832 833 /* 834 * Guard against incorrect notifications. (Running a newer 835 * mac client against an older implementation?) 836 */ 837 if (type >= MAC_NNOTE) 838 goto exit; 839 840 mcbi = &mip->mi_notify_cb_info; 841 mutex_enter(mcbi->mcbi_lockp); 842 mip->mi_notify_bits |= (1 << type); 843 cv_broadcast(&mcbi->mcbi_cv); 844 mutex_exit(mcbi->mcbi_lockp); 845 846 exit: 847 rw_exit(&i_mac_impl_lock); 848 } 849 850 /* 851 * Mac serialization primitives. Please see the block comment at the 852 * top of the file. 853 */ 854 void 855 i_mac_perim_enter(mac_impl_t *mip) 856 { 857 mac_client_impl_t *mcip; 858 859 if (mip->mi_state_flags & MIS_IS_VNIC) { 860 /* 861 * This is a VNIC. Return the lower mac since that is what 862 * we want to serialize on. 863 */ 864 mcip = mac_vnic_lower(mip); 865 mip = mcip->mci_mip; 866 } 867 868 mutex_enter(&mip->mi_perim_lock); 869 if (mip->mi_perim_owner == curthread) { 870 mip->mi_perim_ocnt++; 871 mutex_exit(&mip->mi_perim_lock); 872 return; 873 } 874 875 while (mip->mi_perim_owner != NULL) 876 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 877 878 mip->mi_perim_owner = curthread; 879 ASSERT(mip->mi_perim_ocnt == 0); 880 mip->mi_perim_ocnt++; 881 #ifdef DEBUG 882 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 883 MAC_PERIM_STACK_DEPTH); 884 #endif 885 mutex_exit(&mip->mi_perim_lock); 886 } 887 888 int 889 i_mac_perim_enter_nowait(mac_impl_t *mip) 890 { 891 /* 892 * The vnic is a special case, since the serialization is done based 893 * on the lower mac. If the lower mac is busy, it does not imply the 894 * vnic can't be unregistered. But in the case of other drivers, 895 * a busy perimeter or open mac handles implies that the mac is busy 896 * and can't be unregistered. 897 */ 898 if (mip->mi_state_flags & MIS_IS_VNIC) { 899 i_mac_perim_enter(mip); 900 return (0); 901 } 902 903 mutex_enter(&mip->mi_perim_lock); 904 if (mip->mi_perim_owner != NULL) { 905 mutex_exit(&mip->mi_perim_lock); 906 return (EBUSY); 907 } 908 ASSERT(mip->mi_perim_ocnt == 0); 909 mip->mi_perim_owner = curthread; 910 mip->mi_perim_ocnt++; 911 mutex_exit(&mip->mi_perim_lock); 912 913 return (0); 914 } 915 916 void 917 i_mac_perim_exit(mac_impl_t *mip) 918 { 919 mac_client_impl_t *mcip; 920 921 if (mip->mi_state_flags & MIS_IS_VNIC) { 922 /* 923 * This is a VNIC. Return the lower mac since that is what 924 * we want to serialize on. 925 */ 926 mcip = mac_vnic_lower(mip); 927 mip = mcip->mci_mip; 928 } 929 930 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 931 932 mutex_enter(&mip->mi_perim_lock); 933 if (--mip->mi_perim_ocnt == 0) { 934 mip->mi_perim_owner = NULL; 935 cv_signal(&mip->mi_perim_cv); 936 } 937 mutex_exit(&mip->mi_perim_lock); 938 } 939 940 /* 941 * Returns whether the current thread holds the mac perimeter. Used in making 942 * assertions. 943 */ 944 boolean_t 945 mac_perim_held(mac_handle_t mh) 946 { 947 mac_impl_t *mip = (mac_impl_t *)mh; 948 mac_client_impl_t *mcip; 949 950 if (mip->mi_state_flags & MIS_IS_VNIC) { 951 /* 952 * This is a VNIC. Return the lower mac since that is what 953 * we want to serialize on. 954 */ 955 mcip = mac_vnic_lower(mip); 956 mip = mcip->mci_mip; 957 } 958 return (mip->mi_perim_owner == curthread); 959 } 960 961 /* 962 * mac client interfaces to enter the mac perimeter of a mac end point, given 963 * its mac handle, or macname or linkid. 964 */ 965 void 966 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 967 { 968 mac_impl_t *mip = (mac_impl_t *)mh; 969 970 i_mac_perim_enter(mip); 971 /* 972 * The mac_perim_handle_t returned encodes the 'mip' and whether a 973 * mac_open has been done internally while entering the perimeter. 974 * This information is used in mac_perim_exit 975 */ 976 MAC_ENCODE_MPH(*mphp, mip, 0); 977 } 978 979 int 980 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 981 { 982 int err; 983 mac_handle_t mh; 984 985 if ((err = mac_open(name, &mh)) != 0) 986 return (err); 987 988 mac_perim_enter_by_mh(mh, mphp); 989 MAC_ENCODE_MPH(*mphp, mh, 1); 990 return (0); 991 } 992 993 int 994 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 995 { 996 int err; 997 mac_handle_t mh; 998 999 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 1000 return (err); 1001 1002 mac_perim_enter_by_mh(mh, mphp); 1003 MAC_ENCODE_MPH(*mphp, mh, 1); 1004 return (0); 1005 } 1006 1007 void 1008 mac_perim_exit(mac_perim_handle_t mph) 1009 { 1010 mac_impl_t *mip; 1011 boolean_t need_close; 1012 1013 MAC_DECODE_MPH(mph, mip, need_close); 1014 i_mac_perim_exit(mip); 1015 if (need_close) 1016 mac_close((mac_handle_t)mip); 1017 } 1018 1019 int 1020 mac_hold(const char *macname, mac_impl_t **pmip) 1021 { 1022 mac_impl_t *mip; 1023 int err; 1024 1025 /* 1026 * Check the device name length to make sure it won't overflow our 1027 * buffer. 1028 */ 1029 if (strlen(macname) >= MAXNAMELEN) 1030 return (EINVAL); 1031 1032 /* 1033 * Look up its entry in the global hash table. 1034 */ 1035 rw_enter(&i_mac_impl_lock, RW_WRITER); 1036 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 1037 (mod_hash_val_t *)&mip); 1038 1039 if (err != 0) { 1040 rw_exit(&i_mac_impl_lock); 1041 return (ENOENT); 1042 } 1043 1044 if (mip->mi_state_flags & MIS_DISABLED) { 1045 rw_exit(&i_mac_impl_lock); 1046 return (ENOENT); 1047 } 1048 1049 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1050 rw_exit(&i_mac_impl_lock); 1051 return (EBUSY); 1052 } 1053 1054 mip->mi_ref++; 1055 rw_exit(&i_mac_impl_lock); 1056 1057 *pmip = mip; 1058 return (0); 1059 } 1060 1061 void 1062 mac_rele(mac_impl_t *mip) 1063 { 1064 rw_enter(&i_mac_impl_lock, RW_WRITER); 1065 ASSERT(mip->mi_ref != 0); 1066 if (--mip->mi_ref == 0) { 1067 ASSERT(mip->mi_nactiveclients == 0 && 1068 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1069 } 1070 rw_exit(&i_mac_impl_lock); 1071 } 1072 1073 /* 1074 * Private GLDv3 function to start a MAC instance. 1075 */ 1076 int 1077 mac_start(mac_handle_t mh) 1078 { 1079 mac_impl_t *mip = (mac_impl_t *)mh; 1080 int err = 0; 1081 mac_group_t *defgrp; 1082 1083 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1084 ASSERT(mip->mi_start != NULL); 1085 1086 /* 1087 * Check whether the device is already started. 1088 */ 1089 if (mip->mi_active++ == 0) { 1090 mac_ring_t *ring = NULL; 1091 1092 /* 1093 * Start the device. 1094 */ 1095 err = mip->mi_start(mip->mi_driver); 1096 if (err != 0) { 1097 mip->mi_active--; 1098 return (err); 1099 } 1100 1101 /* 1102 * Start the default tx ring. 1103 */ 1104 if (mip->mi_default_tx_ring != NULL) { 1105 1106 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1107 if (ring->mr_state != MR_INUSE) { 1108 err = mac_start_ring(ring); 1109 if (err != 0) { 1110 mip->mi_active--; 1111 return (err); 1112 } 1113 } 1114 } 1115 1116 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1117 /* 1118 * Start the default group which is responsible 1119 * for receiving broadcast and multicast 1120 * traffic for both primary and non-primary 1121 * MAC clients. 1122 */ 1123 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1124 err = mac_start_group_and_rings(defgrp); 1125 if (err != 0) { 1126 mip->mi_active--; 1127 if ((ring != NULL) && 1128 (ring->mr_state == MR_INUSE)) 1129 mac_stop_ring(ring); 1130 return (err); 1131 } 1132 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED); 1133 } 1134 } 1135 1136 return (err); 1137 } 1138 1139 /* 1140 * Private GLDv3 function to stop a MAC instance. 1141 */ 1142 void 1143 mac_stop(mac_handle_t mh) 1144 { 1145 mac_impl_t *mip = (mac_impl_t *)mh; 1146 mac_group_t *grp; 1147 1148 ASSERT(mip->mi_stop != NULL); 1149 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1150 1151 /* 1152 * Check whether the device is still needed. 1153 */ 1154 ASSERT(mip->mi_active != 0); 1155 if (--mip->mi_active == 0) { 1156 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) { 1157 /* 1158 * There should be no more active clients since the 1159 * MAC is being stopped. Stop the default RX group 1160 * and transition it back to registered state. 1161 * 1162 * When clients are torn down, the groups 1163 * are release via mac_release_rx_group which 1164 * knows the the default group is always in 1165 * started mode since broadcast uses it. So 1166 * we can assert that their are no clients 1167 * (since mac_bcast_add doesn't register itself 1168 * as a client) and group is in SHARED state. 1169 */ 1170 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1171 ASSERT(MAC_GROUP_NO_CLIENT(grp) && 1172 mip->mi_nactiveclients == 0); 1173 mac_stop_group_and_rings(grp); 1174 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1175 } 1176 1177 if (mip->mi_default_tx_ring != NULL) { 1178 mac_ring_t *ring; 1179 1180 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1181 if (ring->mr_state == MR_INUSE) { 1182 mac_stop_ring(ring); 1183 ring->mr_flag = 0; 1184 } 1185 } 1186 1187 /* 1188 * Stop the device. 1189 */ 1190 mip->mi_stop(mip->mi_driver); 1191 } 1192 } 1193 1194 int 1195 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1196 { 1197 int err = 0; 1198 1199 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1200 ASSERT(mip->mi_setpromisc != NULL); 1201 1202 if (on) { 1203 /* 1204 * Enable promiscuous mode on the device if not yet enabled. 1205 */ 1206 if (mip->mi_devpromisc++ == 0) { 1207 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1208 if (err != 0) { 1209 mip->mi_devpromisc--; 1210 return (err); 1211 } 1212 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1213 } 1214 } else { 1215 if (mip->mi_devpromisc == 0) 1216 return (EPROTO); 1217 1218 /* 1219 * Disable promiscuous mode on the device if this is the last 1220 * enabling. 1221 */ 1222 if (--mip->mi_devpromisc == 0) { 1223 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1224 if (err != 0) { 1225 mip->mi_devpromisc++; 1226 return (err); 1227 } 1228 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1229 } 1230 } 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * The promiscuity state can change any time. If the caller needs to take 1237 * actions that are atomic with the promiscuity state, then the caller needs 1238 * to bracket the entire sequence with mac_perim_enter/exit 1239 */ 1240 boolean_t 1241 mac_promisc_get(mac_handle_t mh) 1242 { 1243 mac_impl_t *mip = (mac_impl_t *)mh; 1244 1245 /* 1246 * Return the current promiscuity. 1247 */ 1248 return (mip->mi_devpromisc != 0); 1249 } 1250 1251 /* 1252 * Invoked at MAC instance attach time to initialize the list 1253 * of factory MAC addresses supported by a MAC instance. This function 1254 * builds a local cache in the mac_impl_t for the MAC addresses 1255 * supported by the underlying hardware. The MAC clients themselves 1256 * use the mac_addr_factory*() functions to query and reserve 1257 * factory MAC addresses. 1258 */ 1259 void 1260 mac_addr_factory_init(mac_impl_t *mip) 1261 { 1262 mac_capab_multifactaddr_t capab; 1263 uint8_t *addr; 1264 int i; 1265 1266 /* 1267 * First round to see how many factory MAC addresses are available. 1268 */ 1269 bzero(&capab, sizeof (capab)); 1270 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1271 &capab) || (capab.mcm_naddr == 0)) { 1272 /* 1273 * The MAC instance doesn't support multiple factory 1274 * MAC addresses, we're done here. 1275 */ 1276 return; 1277 } 1278 1279 /* 1280 * Allocate the space and get all the factory addresses. 1281 */ 1282 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1283 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1284 1285 mip->mi_factory_addr_num = capab.mcm_naddr; 1286 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1287 sizeof (mac_factory_addr_t), KM_SLEEP); 1288 1289 for (i = 0; i < capab.mcm_naddr; i++) { 1290 bcopy(addr + i * MAXMACADDRLEN, 1291 mip->mi_factory_addr[i].mfa_addr, 1292 mip->mi_type->mt_addr_length); 1293 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1294 } 1295 1296 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1297 } 1298 1299 void 1300 mac_addr_factory_fini(mac_impl_t *mip) 1301 { 1302 if (mip->mi_factory_addr == NULL) { 1303 ASSERT(mip->mi_factory_addr_num == 0); 1304 return; 1305 } 1306 1307 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1308 sizeof (mac_factory_addr_t)); 1309 1310 mip->mi_factory_addr = NULL; 1311 mip->mi_factory_addr_num = 0; 1312 } 1313 1314 /* 1315 * Reserve a factory MAC address. If *slot is set to -1, the function 1316 * attempts to reserve any of the available factory MAC addresses and 1317 * returns the reserved slot id. If no slots are available, the function 1318 * returns ENOSPC. If *slot is not set to -1, the function reserves 1319 * the specified slot if it is available, or returns EBUSY is the slot 1320 * is already used. Returns ENOTSUP if the underlying MAC does not 1321 * support multiple factory addresses. If the slot number is not -1 but 1322 * is invalid, returns EINVAL. 1323 */ 1324 int 1325 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1326 { 1327 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1328 mac_impl_t *mip = mcip->mci_mip; 1329 int i, ret = 0; 1330 1331 i_mac_perim_enter(mip); 1332 /* 1333 * Protect against concurrent readers that may need a self-consistent 1334 * view of the factory addresses 1335 */ 1336 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1337 1338 if (mip->mi_factory_addr_num == 0) { 1339 ret = ENOTSUP; 1340 goto bail; 1341 } 1342 1343 if (*slot != -1) { 1344 /* check the specified slot */ 1345 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1346 ret = EINVAL; 1347 goto bail; 1348 } 1349 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1350 ret = EBUSY; 1351 goto bail; 1352 } 1353 } else { 1354 /* pick the next available slot */ 1355 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1356 if (!mip->mi_factory_addr[i].mfa_in_use) 1357 break; 1358 } 1359 1360 if (i == mip->mi_factory_addr_num) { 1361 ret = ENOSPC; 1362 goto bail; 1363 } 1364 *slot = i+1; 1365 } 1366 1367 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1368 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1369 1370 bail: 1371 rw_exit(&mip->mi_rw_lock); 1372 i_mac_perim_exit(mip); 1373 return (ret); 1374 } 1375 1376 /* 1377 * Release the specified factory MAC address slot. 1378 */ 1379 void 1380 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1381 { 1382 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1383 mac_impl_t *mip = mcip->mci_mip; 1384 1385 i_mac_perim_enter(mip); 1386 /* 1387 * Protect against concurrent readers that may need a self-consistent 1388 * view of the factory addresses 1389 */ 1390 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1391 1392 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1393 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1394 1395 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1396 1397 rw_exit(&mip->mi_rw_lock); 1398 i_mac_perim_exit(mip); 1399 } 1400 1401 /* 1402 * Stores in mac_addr the value of the specified MAC address. Returns 1403 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1404 * The caller must provide a string of at least MAXNAMELEN bytes. 1405 */ 1406 void 1407 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1408 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1409 { 1410 mac_impl_t *mip = (mac_impl_t *)mh; 1411 boolean_t in_use; 1412 1413 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1414 1415 /* 1416 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1417 * and mi_rw_lock 1418 */ 1419 rw_enter(&mip->mi_rw_lock, RW_READER); 1420 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1421 *addr_len = mip->mi_type->mt_addr_length; 1422 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1423 if (in_use && client_name != NULL) { 1424 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1425 client_name, MAXNAMELEN); 1426 } 1427 if (in_use_arg != NULL) 1428 *in_use_arg = in_use; 1429 rw_exit(&mip->mi_rw_lock); 1430 } 1431 1432 /* 1433 * Returns the number of factory MAC addresses (in addition to the 1434 * primary MAC address), 0 if the underlying MAC doesn't support 1435 * that feature. 1436 */ 1437 uint_t 1438 mac_addr_factory_num(mac_handle_t mh) 1439 { 1440 mac_impl_t *mip = (mac_impl_t *)mh; 1441 1442 return (mip->mi_factory_addr_num); 1443 } 1444 1445 1446 void 1447 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1448 { 1449 mac_ring_t *ring; 1450 1451 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1452 ring->mr_flag &= ~flag; 1453 } 1454 1455 /* 1456 * The following mac_hwrings_xxx() functions are private mac client functions 1457 * used by the aggr driver to access and control the underlying HW Rx group 1458 * and rings. In this case, the aggr driver has exclusive control of the 1459 * underlying HW Rx group/rings, it calls the following functions to 1460 * start/stop the HW Rx rings, disable/enable polling, add/remove MAC 1461 * addresses, or set up the Rx callback. 1462 */ 1463 /* ARGSUSED */ 1464 static void 1465 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1466 mblk_t *mp_chain, boolean_t loopback) 1467 { 1468 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1469 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1470 mac_direct_rx_t proc; 1471 void *arg1; 1472 mac_resource_handle_t arg2; 1473 1474 proc = srs_rx->sr_func; 1475 arg1 = srs_rx->sr_arg1; 1476 arg2 = mac_srs->srs_mrh; 1477 1478 proc(arg1, arg2, mp_chain, NULL); 1479 } 1480 1481 /* 1482 * This function is called to get the list of HW rings that are reserved by 1483 * an exclusive mac client. 1484 * 1485 * Return value: the number of HW rings. 1486 */ 1487 int 1488 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1489 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1490 { 1491 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1492 flow_entry_t *flent = mcip->mci_flent; 1493 mac_group_t *grp; 1494 mac_ring_t *ring; 1495 int cnt = 0; 1496 1497 if (rtype == MAC_RING_TYPE_RX) { 1498 grp = flent->fe_rx_ring_group; 1499 } else if (rtype == MAC_RING_TYPE_TX) { 1500 grp = flent->fe_tx_ring_group; 1501 } else { 1502 ASSERT(B_FALSE); 1503 return (-1); 1504 } 1505 1506 /* 1507 * The MAC client did not reserve an Rx group, return directly. 1508 * This is probably because the underlying MAC does not support 1509 * any groups. 1510 */ 1511 if (hwgh != NULL) 1512 *hwgh = NULL; 1513 if (grp == NULL) 1514 return (0); 1515 /* 1516 * This group must be reserved by this MAC client. 1517 */ 1518 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1519 (mcip == MAC_GROUP_ONLY_CLIENT(grp))); 1520 1521 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1522 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1523 hwrh[cnt] = (mac_ring_handle_t)ring; 1524 } 1525 if (hwgh != NULL) 1526 *hwgh = (mac_group_handle_t)grp; 1527 1528 return (cnt); 1529 } 1530 1531 /* 1532 * Get the HW ring handles of the given group index. If the MAC 1533 * doesn't have a group at this index, or any groups at all, then 0 is 1534 * returned and hwgh is set to NULL. This is a private client API. The 1535 * MAC perimeter must be held when calling this function. 1536 * 1537 * mh: A handle to the MAC that owns the group. 1538 * 1539 * idx: The index of the HW group to be read. 1540 * 1541 * hwgh: If non-NULL, contains a handle to the HW group on return. 1542 * 1543 * hwrh: An array of ring handles pointing to the HW rings in the 1544 * group. The array must be large enough to hold a handle to each ring 1545 * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP. 1546 * 1547 * rtype: Used to determine if we are fetching Rx or Tx rings. 1548 * 1549 * Returns the number of rings in the group. 1550 */ 1551 uint_t 1552 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh, 1553 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1554 { 1555 mac_impl_t *mip = (mac_impl_t *)mh; 1556 mac_group_t *grp; 1557 mac_ring_t *ring; 1558 uint_t cnt = 0; 1559 1560 /* 1561 * The MAC perimeter must be held when accessing the 1562 * mi_{rx,tx}_groups fields. 1563 */ 1564 ASSERT(MAC_PERIM_HELD(mh)); 1565 ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX); 1566 1567 if (rtype == MAC_RING_TYPE_RX) { 1568 grp = mip->mi_rx_groups; 1569 } else if (rtype == MAC_RING_TYPE_TX) { 1570 grp = mip->mi_tx_groups; 1571 } 1572 1573 while (grp != NULL && grp->mrg_index != idx) 1574 grp = grp->mrg_next; 1575 1576 /* 1577 * If the MAC doesn't have a group at this index or doesn't 1578 * impelement RINGS capab, then set hwgh to NULL and return 0. 1579 */ 1580 if (hwgh != NULL) 1581 *hwgh = NULL; 1582 1583 if (grp == NULL) 1584 return (0); 1585 1586 ASSERT3U(idx, ==, grp->mrg_index); 1587 1588 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { 1589 ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP); 1590 hwrh[cnt] = (mac_ring_handle_t)ring; 1591 } 1592 1593 /* A group should always have at least one ring. */ 1594 ASSERT3U(cnt, >, 0); 1595 1596 if (hwgh != NULL) 1597 *hwgh = (mac_group_handle_t)grp; 1598 1599 return (cnt); 1600 } 1601 1602 /* 1603 * This function is called to get info about Tx/Rx rings. 1604 * 1605 * Return value: returns uint_t which will have various bits set 1606 * that indicates different properties of the ring. 1607 */ 1608 uint_t 1609 mac_hwring_getinfo(mac_ring_handle_t rh) 1610 { 1611 mac_ring_t *ring = (mac_ring_t *)rh; 1612 mac_ring_info_t *info = &ring->mr_info; 1613 1614 return (info->mri_flags); 1615 } 1616 1617 /* 1618 * Set the passthru callback on the hardware ring. 1619 */ 1620 void 1621 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1, 1622 mac_resource_handle_t arg2) 1623 { 1624 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1625 1626 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1627 1628 hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER; 1629 1630 hwring->mr_pt_fn = fn; 1631 hwring->mr_pt_arg1 = arg1; 1632 hwring->mr_pt_arg2 = arg2; 1633 } 1634 1635 /* 1636 * Clear the passthru callback on the hardware ring. 1637 */ 1638 void 1639 mac_hwring_clear_passthru(mac_ring_handle_t hwrh) 1640 { 1641 mac_ring_t *hwring = (mac_ring_t *)hwrh; 1642 1643 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX); 1644 1645 hwring->mr_classify_type = MAC_NO_CLASSIFIER; 1646 1647 hwring->mr_pt_fn = NULL; 1648 hwring->mr_pt_arg1 = NULL; 1649 hwring->mr_pt_arg2 = NULL; 1650 } 1651 1652 void 1653 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1) 1654 { 1655 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1656 flow_entry_t *flent = mcip->mci_flent; 1657 1658 mutex_enter(&flent->fe_lock); 1659 flent->fe_cb_fn = (flow_fn_t)func; 1660 flent->fe_cb_arg1 = arg1; 1661 flent->fe_cb_arg2 = NULL; 1662 flent->fe_flags &= ~FE_MC_NO_DATAPATH; 1663 mutex_exit(&flent->fe_lock); 1664 } 1665 1666 void 1667 mac_client_clear_flow_cb(mac_client_handle_t mch) 1668 { 1669 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1670 flow_entry_t *flent = mcip->mci_flent; 1671 1672 mutex_enter(&flent->fe_lock); 1673 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 1674 flent->fe_cb_arg1 = NULL; 1675 flent->fe_cb_arg2 = NULL; 1676 flent->fe_flags |= FE_MC_NO_DATAPATH; 1677 mutex_exit(&flent->fe_lock); 1678 } 1679 1680 /* 1681 * Export ddi interrupt handles from the HW ring to the pseudo ring and 1682 * setup the RX callback of the mac client which exclusively controls 1683 * HW ring. 1684 */ 1685 void 1686 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh, 1687 mac_ring_handle_t pseudo_rh) 1688 { 1689 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1690 mac_ring_t *pseudo_ring; 1691 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1692 1693 if (pseudo_rh != NULL) { 1694 pseudo_ring = (mac_ring_t *)pseudo_rh; 1695 /* Export the ddi handles to pseudo ring */ 1696 pseudo_ring->mr_info.mri_intr.mi_ddi_handle = 1697 hw_ring->mr_info.mri_intr.mi_ddi_handle; 1698 pseudo_ring->mr_info.mri_intr.mi_ddi_shared = 1699 hw_ring->mr_info.mri_intr.mi_ddi_shared; 1700 /* 1701 * Save a pointer to pseudo ring in the hw ring. If 1702 * interrupt handle changes, the hw ring will be 1703 * notified of the change (see mac_ring_intr_set()) 1704 * and the appropriate change has to be made to 1705 * the pseudo ring that has exported the ddi handle. 1706 */ 1707 hw_ring->mr_prh = pseudo_rh; 1708 } 1709 1710 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1711 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1712 mac_srs->srs_mrh = prh; 1713 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1714 } 1715 } 1716 1717 void 1718 mac_hwring_teardown(mac_ring_handle_t hwrh) 1719 { 1720 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1721 mac_soft_ring_set_t *mac_srs; 1722 1723 if (hw_ring == NULL) 1724 return; 1725 hw_ring->mr_prh = NULL; 1726 if (hw_ring->mr_type == MAC_RING_TYPE_RX) { 1727 mac_srs = hw_ring->mr_srs; 1728 ASSERT(!(mac_srs->srs_type & SRST_TX)); 1729 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1730 mac_srs->srs_mrh = NULL; 1731 } 1732 } 1733 1734 int 1735 mac_hwring_disable_intr(mac_ring_handle_t rh) 1736 { 1737 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1738 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1739 1740 return (intr->mi_disable(intr->mi_handle)); 1741 } 1742 1743 int 1744 mac_hwring_enable_intr(mac_ring_handle_t rh) 1745 { 1746 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1747 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1748 1749 return (intr->mi_enable(intr->mi_handle)); 1750 } 1751 1752 /* 1753 * Start the HW ring pointed to by rh. 1754 * 1755 * This is used by special MAC clients that are MAC themselves and 1756 * need to exert control over the underlying HW rings of the NIC. 1757 */ 1758 int 1759 mac_hwring_start(mac_ring_handle_t rh) 1760 { 1761 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1762 int rv = 0; 1763 1764 if (rr_ring->mr_state != MR_INUSE) 1765 rv = mac_start_ring(rr_ring); 1766 1767 return (rv); 1768 } 1769 1770 /* 1771 * Stop the HW ring pointed to by rh. Also see mac_hwring_start(). 1772 */ 1773 void 1774 mac_hwring_stop(mac_ring_handle_t rh) 1775 { 1776 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1777 1778 if (rr_ring->mr_state != MR_FREE) 1779 mac_stop_ring(rr_ring); 1780 } 1781 1782 /* 1783 * Remove the quiesced flag from the HW ring pointed to by rh. 1784 * 1785 * This is used by special MAC clients that are MAC themselves and 1786 * need to exert control over the underlying HW rings of the NIC. 1787 */ 1788 int 1789 mac_hwring_activate(mac_ring_handle_t rh) 1790 { 1791 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1792 1793 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1794 return (0); 1795 } 1796 1797 /* 1798 * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate(). 1799 */ 1800 void 1801 mac_hwring_quiesce(mac_ring_handle_t rh) 1802 { 1803 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1804 1805 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1806 } 1807 1808 mblk_t * 1809 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1810 { 1811 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1812 mac_ring_info_t *info = &rr_ring->mr_info; 1813 1814 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1815 } 1816 1817 /* 1818 * Send packets through a selected tx ring. 1819 */ 1820 mblk_t * 1821 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1822 { 1823 mac_ring_t *ring = (mac_ring_t *)rh; 1824 mac_ring_info_t *info = &ring->mr_info; 1825 1826 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1827 ring->mr_state >= MR_INUSE); 1828 return (info->mri_tx(info->mri_driver, mp)); 1829 } 1830 1831 /* 1832 * Query stats for a particular rx/tx ring 1833 */ 1834 int 1835 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val) 1836 { 1837 mac_ring_t *ring = (mac_ring_t *)rh; 1838 mac_ring_info_t *info = &ring->mr_info; 1839 1840 return (info->mri_stat(info->mri_driver, stat, val)); 1841 } 1842 1843 /* 1844 * Private function that is only used by aggr to send packets through 1845 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports 1846 * that does not expose Tx rings, aggr_ring_tx() entry point needs 1847 * access to mac_impl_t to send packets through m_tx() entry point. 1848 * It accomplishes this by calling mac_hwring_send_priv() function. 1849 */ 1850 mblk_t * 1851 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp) 1852 { 1853 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1854 mac_impl_t *mip = mcip->mci_mip; 1855 1856 MAC_TX(mip, rh, mp, mcip); 1857 return (mp); 1858 } 1859 1860 /* 1861 * Private function that is only used by aggr to update the default transmission 1862 * ring. Because aggr exposes a pseudo Tx ring even for ports that may 1863 * temporarily be down, it may need to update the default ring that is used by 1864 * MAC such that it refers to a link that can actively be used to send traffic. 1865 * Note that this is different from the case where the port has been removed 1866 * from the group. In those cases, all of the rings will be torn down because 1867 * the ring will no longer exist. It's important to give aggr a case where the 1868 * rings can still exist such that it may be able to continue to send LACP PDUs 1869 * to potentially restore the link. 1870 * 1871 * Finally, we explicitly don't do anything if the ring hasn't been enabled yet. 1872 * This is to help out aggr which doesn't really know the internal state that 1873 * MAC does about the rings and can't know that it's not quite ready for use 1874 * yet. 1875 */ 1876 void 1877 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh) 1878 { 1879 mac_impl_t *mip = (mac_impl_t *)mh; 1880 mac_ring_t *ring = (mac_ring_t *)rh; 1881 1882 ASSERT(MAC_PERIM_HELD(mh)); 1883 VERIFY(mip->mi_state_flags & MIS_IS_AGGR); 1884 1885 if (ring->mr_state != MR_INUSE) 1886 return; 1887 1888 mip->mi_default_tx_ring = rh; 1889 } 1890 1891 int 1892 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1893 { 1894 mac_group_t *group = (mac_group_t *)gh; 1895 1896 return (mac_group_addmac(group, addr)); 1897 } 1898 1899 int 1900 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1901 { 1902 mac_group_t *group = (mac_group_t *)gh; 1903 1904 return (mac_group_remmac(group, addr)); 1905 } 1906 1907 /* 1908 * Program the group's HW VLAN filter if it has such support. 1909 * Otherwise, the group will implicitly accept tagged traffic and 1910 * there is nothing to do. 1911 */ 1912 int 1913 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid) 1914 { 1915 mac_group_t *group = (mac_group_t *)gh; 1916 1917 if (!MAC_GROUP_HW_VLAN(group)) 1918 return (0); 1919 1920 return (mac_group_addvlan(group, vid)); 1921 } 1922 1923 int 1924 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid) 1925 { 1926 mac_group_t *group = (mac_group_t *)gh; 1927 1928 if (!MAC_GROUP_HW_VLAN(group)) 1929 return (0); 1930 1931 return (mac_group_remvlan(group, vid)); 1932 } 1933 1934 /* 1935 * Determine if a MAC has HW VLAN support. This is a private API 1936 * consumed by aggr. In the future it might be nice to have a bitfield 1937 * in mac_capab_rings_t to track which forms of HW filtering are 1938 * supported by the MAC. 1939 */ 1940 boolean_t 1941 mac_has_hw_vlan(mac_handle_t mh) 1942 { 1943 mac_impl_t *mip = (mac_impl_t *)mh; 1944 1945 return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups)); 1946 } 1947 1948 /* 1949 * Get the number of Rx HW groups on this MAC. 1950 */ 1951 uint_t 1952 mac_get_num_rx_groups(mac_handle_t mh) 1953 { 1954 mac_impl_t *mip = (mac_impl_t *)mh; 1955 1956 ASSERT(MAC_PERIM_HELD(mh)); 1957 return (mip->mi_rx_group_count); 1958 } 1959 1960 int 1961 mac_set_promisc(mac_handle_t mh, boolean_t value) 1962 { 1963 mac_impl_t *mip = (mac_impl_t *)mh; 1964 1965 ASSERT(MAC_PERIM_HELD(mh)); 1966 return (i_mac_promisc_set(mip, value)); 1967 } 1968 1969 /* 1970 * Set the RX group to be shared/reserved. Note that the group must be 1971 * started/stopped outside of this function. 1972 */ 1973 void 1974 mac_set_group_state(mac_group_t *grp, mac_group_state_t state) 1975 { 1976 /* 1977 * If there is no change in the group state, just return. 1978 */ 1979 if (grp->mrg_state == state) 1980 return; 1981 1982 switch (state) { 1983 case MAC_GROUP_STATE_RESERVED: 1984 /* 1985 * Successfully reserved the group. 1986 * 1987 * Given that there is an exclusive client controlling this 1988 * group, we enable the group level polling when available, 1989 * so that SRSs get to turn on/off individual rings they's 1990 * assigned to. 1991 */ 1992 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1993 1994 if (grp->mrg_type == MAC_RING_TYPE_RX && 1995 GROUP_INTR_DISABLE_FUNC(grp) != NULL) { 1996 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1997 } 1998 break; 1999 2000 case MAC_GROUP_STATE_SHARED: 2001 /* 2002 * Set all rings of this group to software classified. 2003 * If the group has an overriding interrupt, then re-enable it. 2004 */ 2005 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 2006 2007 if (grp->mrg_type == MAC_RING_TYPE_RX && 2008 GROUP_INTR_ENABLE_FUNC(grp) != NULL) { 2009 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 2010 } 2011 /* The ring is not available for reservations any more */ 2012 break; 2013 2014 case MAC_GROUP_STATE_REGISTERED: 2015 /* Also callable from mac_register, perim is not held */ 2016 break; 2017 2018 default: 2019 ASSERT(B_FALSE); 2020 break; 2021 } 2022 2023 grp->mrg_state = state; 2024 } 2025 2026 /* 2027 * Quiesce future hardware classified packets for the specified Rx ring 2028 */ 2029 static void 2030 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 2031 { 2032 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 2033 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 2034 2035 mutex_enter(&rx_ring->mr_lock); 2036 rx_ring->mr_flag |= ring_flag; 2037 while (rx_ring->mr_refcnt != 0) 2038 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 2039 mutex_exit(&rx_ring->mr_lock); 2040 } 2041 2042 /* 2043 * Please see mac_tx for details about the per cpu locking scheme 2044 */ 2045 static void 2046 mac_tx_lock_all(mac_client_impl_t *mcip) 2047 { 2048 int i; 2049 2050 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2051 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2052 } 2053 2054 static void 2055 mac_tx_unlock_all(mac_client_impl_t *mcip) 2056 { 2057 int i; 2058 2059 for (i = mac_tx_percpu_cnt; i >= 0; i--) 2060 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2061 } 2062 2063 static void 2064 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 2065 { 2066 int i; 2067 2068 for (i = mac_tx_percpu_cnt; i > 0; i--) 2069 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 2070 } 2071 2072 static int 2073 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 2074 { 2075 int i; 2076 int refcnt = 0; 2077 2078 for (i = 0; i <= mac_tx_percpu_cnt; i++) 2079 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 2080 2081 return (refcnt); 2082 } 2083 2084 /* 2085 * Stop future Tx packets coming down from the client in preparation for 2086 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 2087 * of rings between clients 2088 */ 2089 void 2090 mac_tx_client_block(mac_client_impl_t *mcip) 2091 { 2092 mac_tx_lock_all(mcip); 2093 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 2094 while (mac_tx_sum_refcnt(mcip) != 0) { 2095 mac_tx_unlock_allbutzero(mcip); 2096 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2097 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 2098 mac_tx_lock_all(mcip); 2099 } 2100 mac_tx_unlock_all(mcip); 2101 } 2102 2103 void 2104 mac_tx_client_unblock(mac_client_impl_t *mcip) 2105 { 2106 mac_tx_lock_all(mcip); 2107 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 2108 mac_tx_unlock_all(mcip); 2109 /* 2110 * We may fail to disable flow control for the last MAC_NOTE_TX 2111 * notification because the MAC client is quiesced. Send the 2112 * notification again. 2113 */ 2114 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 2115 } 2116 2117 /* 2118 * Wait for an SRS to quiesce. The SRS worker will signal us when the 2119 * quiesce is done. 2120 */ 2121 static void 2122 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 2123 { 2124 mutex_enter(&srs->srs_lock); 2125 while (!(srs->srs_state & srs_flag)) 2126 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 2127 mutex_exit(&srs->srs_lock); 2128 } 2129 2130 /* 2131 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 2132 * works bottom up by cutting off packet flow from the bottommost point in the 2133 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 2134 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 2135 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 2136 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 2137 * for the SRS and MR flags. In the former case the threads pause waiting for 2138 * a restart, while in the latter case the threads exit. The Tx SRS teardown 2139 * is also mostly similar to the above. 2140 * 2141 * 1. Stop future hardware classified packets at the lowest level in the mac. 2142 * Remove any hardware classification rule (CONDEMNED case) and mark the 2143 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 2144 * from increasing. Upcalls from the driver that come through hardware 2145 * classification will be dropped in mac_rx from now on. Then we wait for 2146 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 2147 * sure there aren't any upcall threads from the driver through hardware 2148 * classification. In the case of SRS teardown we also remove the 2149 * classification rule in the driver. 2150 * 2151 * 2. Stop future software classified packets by marking the flow entry with 2152 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 2153 * increasing. We also remove the flow entry from the table in the latter 2154 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 2155 * that indicates there aren't any active threads using that flow entry. 2156 * 2157 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 2158 * SRS worker thread, and the soft ring threads are quiesced in sequence 2159 * with the SRS worker thread serving as a master controller. This 2160 * mechansim is explained in mac_srs_worker_quiesce(). 2161 * 2162 * The restart mechanism to reactivate the SRS and softrings is explained 2163 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 2164 * restart sequence. 2165 */ 2166 void 2167 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2168 { 2169 flow_entry_t *flent = srs->srs_flent; 2170 uint_t mr_flag, srs_done_flag; 2171 2172 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2173 ASSERT(!(srs->srs_type & SRST_TX)); 2174 2175 if (srs_quiesce_flag == SRS_CONDEMNED) { 2176 mr_flag = MR_CONDEMNED; 2177 srs_done_flag = SRS_CONDEMNED_DONE; 2178 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2179 mac_srs_client_poll_disable(srs->srs_mcip, srs); 2180 } else { 2181 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 2182 mr_flag = MR_QUIESCE; 2183 srs_done_flag = SRS_QUIESCE_DONE; 2184 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 2185 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 2186 } 2187 2188 if (srs->srs_ring != NULL) { 2189 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 2190 } else { 2191 /* 2192 * SRS is driven by software classification. In case 2193 * of CONDEMNED, the top level teardown functions will 2194 * deal with flow removal. 2195 */ 2196 if (srs_quiesce_flag != SRS_CONDEMNED) { 2197 FLOW_MARK(flent, FE_QUIESCE); 2198 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2199 } 2200 } 2201 2202 /* 2203 * Signal the SRS to quiesce itself, and then cv_wait for the 2204 * SRS quiesce to complete. The SRS worker thread will wake us 2205 * up when the quiesce is complete 2206 */ 2207 mac_srs_signal(srs, srs_quiesce_flag); 2208 mac_srs_quiesce_wait(srs, srs_done_flag); 2209 } 2210 2211 /* 2212 * Remove an SRS. 2213 */ 2214 void 2215 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 2216 { 2217 flow_entry_t *flent = srs->srs_flent; 2218 int i; 2219 2220 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 2221 /* 2222 * Locate and remove our entry in the fe_rx_srs[] array, and 2223 * adjust the fe_rx_srs array entries and array count by 2224 * moving the last entry into the vacated spot. 2225 */ 2226 mutex_enter(&flent->fe_lock); 2227 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2228 if (flent->fe_rx_srs[i] == srs) 2229 break; 2230 } 2231 2232 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 2233 if (i != flent->fe_rx_srs_cnt - 1) { 2234 flent->fe_rx_srs[i] = 2235 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 2236 i = flent->fe_rx_srs_cnt - 1; 2237 } 2238 2239 flent->fe_rx_srs[i] = NULL; 2240 flent->fe_rx_srs_cnt--; 2241 mutex_exit(&flent->fe_lock); 2242 2243 mac_srs_free(srs); 2244 } 2245 2246 static void 2247 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 2248 { 2249 mutex_enter(&srs->srs_lock); 2250 srs->srs_state &= ~flag; 2251 mutex_exit(&srs->srs_lock); 2252 } 2253 2254 void 2255 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 2256 { 2257 flow_entry_t *flent = srs->srs_flent; 2258 mac_ring_t *mr; 2259 2260 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 2261 ASSERT((srs->srs_type & SRST_TX) == 0); 2262 2263 /* 2264 * This handles a change in the number of SRSs between the quiesce and 2265 * and restart operation of a flow. 2266 */ 2267 if (!SRS_QUIESCED(srs)) 2268 return; 2269 2270 /* 2271 * Signal the SRS to restart itself. Wait for the restart to complete 2272 * Note that we only restart the SRS if it is not marked as 2273 * permanently quiesced. 2274 */ 2275 if (!SRS_QUIESCED_PERMANENT(srs)) { 2276 mac_srs_signal(srs, SRS_RESTART); 2277 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2278 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2279 2280 mac_srs_client_poll_restart(srs->srs_mcip, srs); 2281 } 2282 2283 /* Finally clear the flags to let the packets in */ 2284 mr = srs->srs_ring; 2285 if (mr != NULL) { 2286 MAC_RING_UNMARK(mr, MR_QUIESCE); 2287 /* In case the ring was stopped, safely restart it */ 2288 if (mr->mr_state != MR_INUSE) 2289 (void) mac_start_ring(mr); 2290 } else { 2291 FLOW_UNMARK(flent, FE_QUIESCE); 2292 } 2293 } 2294 2295 /* 2296 * Temporary quiesce of a flow and associated Rx SRS. 2297 * Please see block comment above mac_rx_classify_flow_rem. 2298 */ 2299 /* ARGSUSED */ 2300 int 2301 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 2302 { 2303 int i; 2304 2305 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2306 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 2307 SRS_QUIESCE); 2308 } 2309 return (0); 2310 } 2311 2312 /* 2313 * Restart a flow and associated Rx SRS that has been quiesced temporarily 2314 * Please see block comment above mac_rx_classify_flow_rem 2315 */ 2316 /* ARGSUSED */ 2317 int 2318 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 2319 { 2320 int i; 2321 2322 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 2323 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 2324 2325 return (0); 2326 } 2327 2328 void 2329 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 2330 { 2331 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2332 flow_entry_t *flent = mcip->mci_flent; 2333 mac_impl_t *mip = mcip->mci_mip; 2334 mac_soft_ring_set_t *mac_srs; 2335 int i; 2336 2337 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2338 2339 if (flent == NULL) 2340 return; 2341 2342 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2343 mac_srs = flent->fe_rx_srs[i]; 2344 mutex_enter(&mac_srs->srs_lock); 2345 if (on) 2346 mac_srs->srs_state |= SRS_QUIESCE_PERM; 2347 else 2348 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 2349 mutex_exit(&mac_srs->srs_lock); 2350 } 2351 } 2352 2353 void 2354 mac_rx_client_quiesce(mac_client_handle_t mch) 2355 { 2356 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2357 mac_impl_t *mip = mcip->mci_mip; 2358 2359 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2360 2361 if (MCIP_DATAPATH_SETUP(mcip)) { 2362 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 2363 NULL); 2364 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2365 mac_rx_classify_flow_quiesce, NULL); 2366 } 2367 } 2368 2369 void 2370 mac_rx_client_restart(mac_client_handle_t mch) 2371 { 2372 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2373 mac_impl_t *mip = mcip->mci_mip; 2374 2375 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2376 2377 if (MCIP_DATAPATH_SETUP(mcip)) { 2378 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 2379 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2380 mac_rx_classify_flow_restart, NULL); 2381 } 2382 } 2383 2384 /* 2385 * This function only quiesces the Tx SRS and softring worker threads. Callers 2386 * need to make sure that there aren't any mac client threads doing current or 2387 * future transmits in the mac before calling this function. 2388 */ 2389 void 2390 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2391 { 2392 mac_client_impl_t *mcip = srs->srs_mcip; 2393 2394 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2395 2396 ASSERT(srs->srs_type & SRST_TX); 2397 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2398 srs_quiesce_flag == SRS_QUIESCE); 2399 2400 /* 2401 * Signal the SRS to quiesce itself, and then cv_wait for the 2402 * SRS quiesce to complete. The SRS worker thread will wake us 2403 * up when the quiesce is complete 2404 */ 2405 mac_srs_signal(srs, srs_quiesce_flag); 2406 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2407 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2408 } 2409 2410 void 2411 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2412 { 2413 /* 2414 * Resizing the fanout could result in creation of new SRSs. 2415 * They may not necessarily be in the quiesced state in which 2416 * case it need be restarted 2417 */ 2418 if (!SRS_QUIESCED(srs)) 2419 return; 2420 2421 mac_srs_signal(srs, SRS_RESTART); 2422 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2423 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2424 } 2425 2426 /* 2427 * Temporary quiesce of a flow and associated Rx SRS. 2428 * Please see block comment above mac_rx_srs_quiesce 2429 */ 2430 /* ARGSUSED */ 2431 int 2432 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2433 { 2434 /* 2435 * The fe_tx_srs is null for a subflow on an interface that is 2436 * not plumbed 2437 */ 2438 if (flent->fe_tx_srs != NULL) 2439 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2440 return (0); 2441 } 2442 2443 /* ARGSUSED */ 2444 int 2445 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2446 { 2447 /* 2448 * The fe_tx_srs is null for a subflow on an interface that is 2449 * not plumbed 2450 */ 2451 if (flent->fe_tx_srs != NULL) 2452 mac_tx_srs_restart(flent->fe_tx_srs); 2453 return (0); 2454 } 2455 2456 static void 2457 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag) 2458 { 2459 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2460 2461 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2462 2463 mac_tx_client_block(mcip); 2464 if (MCIP_TX_SRS(mcip) != NULL) { 2465 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2466 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2467 mac_tx_flow_quiesce, NULL); 2468 } 2469 } 2470 2471 void 2472 mac_tx_client_quiesce(mac_client_handle_t mch) 2473 { 2474 i_mac_tx_client_quiesce(mch, SRS_QUIESCE); 2475 } 2476 2477 void 2478 mac_tx_client_condemn(mac_client_handle_t mch) 2479 { 2480 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED); 2481 } 2482 2483 void 2484 mac_tx_client_restart(mac_client_handle_t mch) 2485 { 2486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2487 2488 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2489 2490 mac_tx_client_unblock(mcip); 2491 if (MCIP_TX_SRS(mcip) != NULL) { 2492 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2493 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2494 mac_tx_flow_restart, NULL); 2495 } 2496 } 2497 2498 void 2499 mac_tx_client_flush(mac_client_impl_t *mcip) 2500 { 2501 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2502 2503 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2504 mac_tx_client_restart((mac_client_handle_t)mcip); 2505 } 2506 2507 void 2508 mac_client_quiesce(mac_client_impl_t *mcip) 2509 { 2510 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2511 mac_tx_client_quiesce((mac_client_handle_t)mcip); 2512 } 2513 2514 void 2515 mac_client_restart(mac_client_impl_t *mcip) 2516 { 2517 mac_rx_client_restart((mac_client_handle_t)mcip); 2518 mac_tx_client_restart((mac_client_handle_t)mcip); 2519 } 2520 2521 /* 2522 * Allocate a minor number. 2523 */ 2524 minor_t 2525 mac_minor_hold(boolean_t sleep) 2526 { 2527 id_t id; 2528 2529 /* 2530 * Grab a value from the arena. 2531 */ 2532 atomic_inc_32(&minor_count); 2533 2534 if (sleep) 2535 return ((uint_t)id_alloc(minor_ids)); 2536 2537 if ((id = id_alloc_nosleep(minor_ids)) == -1) { 2538 atomic_dec_32(&minor_count); 2539 return (0); 2540 } 2541 2542 return ((uint_t)id); 2543 } 2544 2545 /* 2546 * Release a previously allocated minor number. 2547 */ 2548 void 2549 mac_minor_rele(minor_t minor) 2550 { 2551 /* 2552 * Return the value to the arena. 2553 */ 2554 id_free(minor_ids, minor); 2555 atomic_dec_32(&minor_count); 2556 } 2557 2558 uint32_t 2559 mac_no_notification(mac_handle_t mh) 2560 { 2561 mac_impl_t *mip = (mac_impl_t *)mh; 2562 2563 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2564 mip->mi_capab_legacy.ml_unsup_note : 0); 2565 } 2566 2567 /* 2568 * Prevent any new opens of this mac in preparation for unregister 2569 */ 2570 int 2571 i_mac_disable(mac_impl_t *mip) 2572 { 2573 mac_client_impl_t *mcip; 2574 2575 rw_enter(&i_mac_impl_lock, RW_WRITER); 2576 if (mip->mi_state_flags & MIS_DISABLED) { 2577 /* Already disabled, return success */ 2578 rw_exit(&i_mac_impl_lock); 2579 return (0); 2580 } 2581 /* 2582 * See if there are any other references to this mac_t (e.g., VLAN's). 2583 * If so return failure. If all the other checks below pass, then 2584 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2585 * any new VLAN's from being created or new mac client opens of this 2586 * mac end point. 2587 */ 2588 if (mip->mi_ref > 0) { 2589 rw_exit(&i_mac_impl_lock); 2590 return (EBUSY); 2591 } 2592 2593 /* 2594 * mac clients must delete all multicast groups they join before 2595 * closing. bcast groups are reference counted, the last client 2596 * to delete the group will wait till the group is physically 2597 * deleted. Since all clients have closed this mac end point 2598 * mi_bcast_ngrps must be zero at this point 2599 */ 2600 ASSERT(mip->mi_bcast_ngrps == 0); 2601 2602 /* 2603 * Don't let go of this if it has some flows. 2604 * All other code guarantees no flows are added to a disabled 2605 * mac, therefore it is sufficient to check for the flow table 2606 * only here. 2607 */ 2608 mcip = mac_primary_client_handle(mip); 2609 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2610 rw_exit(&i_mac_impl_lock); 2611 return (ENOTEMPTY); 2612 } 2613 2614 mip->mi_state_flags |= MIS_DISABLED; 2615 rw_exit(&i_mac_impl_lock); 2616 return (0); 2617 } 2618 2619 int 2620 mac_disable_nowait(mac_handle_t mh) 2621 { 2622 mac_impl_t *mip = (mac_impl_t *)mh; 2623 int err; 2624 2625 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2626 return (err); 2627 err = i_mac_disable(mip); 2628 i_mac_perim_exit(mip); 2629 return (err); 2630 } 2631 2632 int 2633 mac_disable(mac_handle_t mh) 2634 { 2635 mac_impl_t *mip = (mac_impl_t *)mh; 2636 int err; 2637 2638 i_mac_perim_enter(mip); 2639 err = i_mac_disable(mip); 2640 i_mac_perim_exit(mip); 2641 2642 /* 2643 * Clean up notification thread and wait for it to exit. 2644 */ 2645 if (err == 0) 2646 i_mac_notify_exit(mip); 2647 2648 return (err); 2649 } 2650 2651 /* 2652 * Called when the MAC instance has a non empty flow table, to de-multiplex 2653 * incoming packets to the right flow. 2654 */ 2655 /* ARGSUSED */ 2656 static mblk_t * 2657 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2658 { 2659 flow_entry_t *flent = NULL; 2660 uint_t flags = FLOW_INBOUND; 2661 int err; 2662 2663 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2664 if (err != 0) { 2665 /* no registered receive function */ 2666 return (mp); 2667 } else { 2668 mac_client_impl_t *mcip; 2669 2670 /* 2671 * This flent might just be an additional one on the MAC client, 2672 * i.e. for classification purposes (different fdesc), however 2673 * the resources, SRS et. al., are in the mci_flent, so if 2674 * this isn't the mci_flent, we need to get it. 2675 */ 2676 if ((mcip = flent->fe_mcip) != NULL && 2677 mcip->mci_flent != flent) { 2678 FLOW_REFRELE(flent); 2679 flent = mcip->mci_flent; 2680 FLOW_TRY_REFHOLD(flent, err); 2681 if (err != 0) 2682 return (mp); 2683 } 2684 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2685 B_FALSE); 2686 FLOW_REFRELE(flent); 2687 } 2688 return (NULL); 2689 } 2690 2691 mblk_t * 2692 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2693 { 2694 mac_impl_t *mip = (mac_impl_t *)mh; 2695 mblk_t *bp, *bp1, **bpp, *list = NULL; 2696 2697 /* 2698 * We walk the chain and attempt to classify each packet. 2699 * The packets that couldn't be classified will be returned 2700 * back to the caller. 2701 */ 2702 bp = mp_chain; 2703 bpp = &list; 2704 while (bp != NULL) { 2705 bp1 = bp; 2706 bp = bp->b_next; 2707 bp1->b_next = NULL; 2708 2709 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2710 *bpp = bp1; 2711 bpp = &bp1->b_next; 2712 } 2713 } 2714 return (list); 2715 } 2716 2717 static int 2718 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2719 { 2720 mac_ring_handle_t ring = arg; 2721 2722 if (flent->fe_tx_srs) 2723 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2724 return (0); 2725 } 2726 2727 void 2728 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2729 { 2730 mac_client_impl_t *cclient; 2731 mac_soft_ring_set_t *mac_srs; 2732 2733 /* 2734 * After grabbing the mi_rw_lock, the list of clients can't change. 2735 * If there are any clients mi_disabled must be B_FALSE and can't 2736 * get set since there are clients. If there aren't any clients we 2737 * don't do anything. In any case the mip has to be valid. The driver 2738 * must make sure that it goes single threaded (with respect to mac 2739 * calls) and wait for all pending mac calls to finish before calling 2740 * mac_unregister. 2741 */ 2742 rw_enter(&i_mac_impl_lock, RW_READER); 2743 if (mip->mi_state_flags & MIS_DISABLED) { 2744 rw_exit(&i_mac_impl_lock); 2745 return; 2746 } 2747 2748 /* 2749 * Get MAC tx srs from walking mac_client_handle list. 2750 */ 2751 rw_enter(&mip->mi_rw_lock, RW_READER); 2752 for (cclient = mip->mi_clients_list; cclient != NULL; 2753 cclient = cclient->mci_client_next) { 2754 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) { 2755 mac_tx_srs_wakeup(mac_srs, ring); 2756 } else { 2757 /* 2758 * Aggr opens underlying ports in exclusive mode 2759 * and registers flow control callbacks using 2760 * mac_tx_client_notify(). When opened in 2761 * exclusive mode, Tx SRS won't be created 2762 * during mac_unicast_add(). 2763 */ 2764 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) { 2765 mac_tx_invoke_callbacks(cclient, 2766 (mac_tx_cookie_t)ring); 2767 } 2768 } 2769 (void) mac_flow_walk(cclient->mci_subflow_tab, 2770 mac_tx_flow_srs_wakeup, ring); 2771 } 2772 rw_exit(&mip->mi_rw_lock); 2773 rw_exit(&i_mac_impl_lock); 2774 } 2775 2776 /* ARGSUSED */ 2777 void 2778 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2779 boolean_t add) 2780 { 2781 mac_impl_t *mip = (mac_impl_t *)mh; 2782 2783 i_mac_perim_enter((mac_impl_t *)mh); 2784 /* 2785 * If no specific refresh function was given then default to the 2786 * driver's m_multicst entry point. 2787 */ 2788 if (refresh == NULL) { 2789 refresh = mip->mi_multicst; 2790 arg = mip->mi_driver; 2791 } 2792 2793 mac_bcast_refresh(mip, refresh, arg, add); 2794 i_mac_perim_exit((mac_impl_t *)mh); 2795 } 2796 2797 void 2798 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2799 { 2800 mac_impl_t *mip = (mac_impl_t *)mh; 2801 2802 /* 2803 * If no specific refresh function was given then default to the 2804 * driver's m_promisc entry point. 2805 */ 2806 if (refresh == NULL) { 2807 refresh = mip->mi_setpromisc; 2808 arg = mip->mi_driver; 2809 } 2810 ASSERT(refresh != NULL); 2811 2812 /* 2813 * Call the refresh function with the current promiscuity. 2814 */ 2815 refresh(arg, (mip->mi_devpromisc != 0)); 2816 } 2817 2818 /* 2819 * The mac client requests that the mac not to change its margin size to 2820 * be less than the specified value. If "current" is B_TRUE, then the client 2821 * requests the mac not to change its margin size to be smaller than the 2822 * current size. Further, return the current margin size value in this case. 2823 * 2824 * We keep every requested size in an ordered list from largest to smallest. 2825 */ 2826 int 2827 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2828 { 2829 mac_impl_t *mip = (mac_impl_t *)mh; 2830 mac_margin_req_t **pp, *p; 2831 int err = 0; 2832 2833 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2834 if (current) 2835 *marginp = mip->mi_margin; 2836 2837 /* 2838 * If the current margin value cannot satisfy the margin requested, 2839 * return ENOTSUP directly. 2840 */ 2841 if (*marginp > mip->mi_margin) { 2842 err = ENOTSUP; 2843 goto done; 2844 } 2845 2846 /* 2847 * Check whether the given margin is already in the list. If so, 2848 * bump the reference count. 2849 */ 2850 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2851 if (p->mmr_margin == *marginp) { 2852 /* 2853 * The margin requested is already in the list, 2854 * so just bump the reference count. 2855 */ 2856 p->mmr_ref++; 2857 goto done; 2858 } 2859 if (p->mmr_margin < *marginp) 2860 break; 2861 } 2862 2863 2864 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2865 p->mmr_margin = *marginp; 2866 p->mmr_ref++; 2867 p->mmr_nextp = *pp; 2868 *pp = p; 2869 2870 done: 2871 rw_exit(&(mip->mi_rw_lock)); 2872 return (err); 2873 } 2874 2875 /* 2876 * The mac client requests to cancel its previous mac_margin_add() request. 2877 * We remove the requested margin size from the list. 2878 */ 2879 int 2880 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2881 { 2882 mac_impl_t *mip = (mac_impl_t *)mh; 2883 mac_margin_req_t **pp, *p; 2884 int err = 0; 2885 2886 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2887 /* 2888 * Find the entry in the list for the given margin. 2889 */ 2890 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2891 if (p->mmr_margin == margin) { 2892 if (--p->mmr_ref == 0) 2893 break; 2894 2895 /* 2896 * There is still a reference to this address so 2897 * there's nothing more to do. 2898 */ 2899 goto done; 2900 } 2901 } 2902 2903 /* 2904 * We did not find an entry for the given margin. 2905 */ 2906 if (p == NULL) { 2907 err = ENOENT; 2908 goto done; 2909 } 2910 2911 ASSERT(p->mmr_ref == 0); 2912 2913 /* 2914 * Remove it from the list. 2915 */ 2916 *pp = p->mmr_nextp; 2917 kmem_free(p, sizeof (mac_margin_req_t)); 2918 done: 2919 rw_exit(&(mip->mi_rw_lock)); 2920 return (err); 2921 } 2922 2923 boolean_t 2924 mac_margin_update(mac_handle_t mh, uint32_t margin) 2925 { 2926 mac_impl_t *mip = (mac_impl_t *)mh; 2927 uint32_t margin_needed = 0; 2928 2929 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2930 2931 if (mip->mi_mmrp != NULL) 2932 margin_needed = mip->mi_mmrp->mmr_margin; 2933 2934 if (margin_needed <= margin) 2935 mip->mi_margin = margin; 2936 2937 rw_exit(&(mip->mi_rw_lock)); 2938 2939 if (margin_needed <= margin) 2940 i_mac_notify(mip, MAC_NOTE_MARGIN); 2941 2942 return (margin_needed <= margin); 2943 } 2944 2945 /* 2946 * MAC clients use this interface to request that a MAC device not change its 2947 * MTU below the specified amount. At this time, that amount must be within the 2948 * range of the device's current minimum and the device's current maximum. eg. a 2949 * client cannot request a 3000 byte MTU when the device's MTU is currently 2950 * 2000. 2951 * 2952 * If "current" is set to B_TRUE, then the request is to simply to reserve the 2953 * current underlying mac's maximum for this mac client and return it in mtup. 2954 */ 2955 int 2956 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current) 2957 { 2958 mac_impl_t *mip = (mac_impl_t *)mh; 2959 mac_mtu_req_t *prev, *cur; 2960 mac_propval_range_t mpr; 2961 int err; 2962 2963 i_mac_perim_enter(mip); 2964 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2965 2966 if (current == B_TRUE) 2967 *mtup = mip->mi_sdu_max; 2968 mpr.mpr_count = 1; 2969 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL); 2970 if (err != 0) { 2971 rw_exit(&mip->mi_rw_lock); 2972 i_mac_perim_exit(mip); 2973 return (err); 2974 } 2975 2976 if (*mtup > mip->mi_sdu_max || 2977 *mtup < mpr.mpr_range_uint32[0].mpur_min) { 2978 rw_exit(&mip->mi_rw_lock); 2979 i_mac_perim_exit(mip); 2980 return (ENOTSUP); 2981 } 2982 2983 prev = NULL; 2984 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 2985 if (*mtup == cur->mtr_mtu) { 2986 cur->mtr_ref++; 2987 rw_exit(&mip->mi_rw_lock); 2988 i_mac_perim_exit(mip); 2989 return (0); 2990 } 2991 2992 if (*mtup > cur->mtr_mtu) 2993 break; 2994 2995 prev = cur; 2996 } 2997 2998 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP); 2999 cur->mtr_mtu = *mtup; 3000 cur->mtr_ref = 1; 3001 if (prev != NULL) { 3002 cur->mtr_nextp = prev->mtr_nextp; 3003 prev->mtr_nextp = cur; 3004 } else { 3005 cur->mtr_nextp = mip->mi_mtrp; 3006 mip->mi_mtrp = cur; 3007 } 3008 3009 rw_exit(&mip->mi_rw_lock); 3010 i_mac_perim_exit(mip); 3011 return (0); 3012 } 3013 3014 int 3015 mac_mtu_remove(mac_handle_t mh, uint32_t mtu) 3016 { 3017 mac_impl_t *mip = (mac_impl_t *)mh; 3018 mac_mtu_req_t *cur, *prev; 3019 3020 i_mac_perim_enter(mip); 3021 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3022 3023 prev = NULL; 3024 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) { 3025 if (cur->mtr_mtu == mtu) { 3026 ASSERT(cur->mtr_ref > 0); 3027 cur->mtr_ref--; 3028 if (cur->mtr_ref == 0) { 3029 if (prev == NULL) { 3030 mip->mi_mtrp = cur->mtr_nextp; 3031 } else { 3032 prev->mtr_nextp = cur->mtr_nextp; 3033 } 3034 kmem_free(cur, sizeof (mac_mtu_req_t)); 3035 } 3036 rw_exit(&mip->mi_rw_lock); 3037 i_mac_perim_exit(mip); 3038 return (0); 3039 } 3040 3041 prev = cur; 3042 } 3043 3044 rw_exit(&mip->mi_rw_lock); 3045 i_mac_perim_exit(mip); 3046 return (ENOENT); 3047 } 3048 3049 /* 3050 * MAC Type Plugin functions. 3051 */ 3052 3053 mactype_t * 3054 mactype_getplugin(const char *pname) 3055 { 3056 mactype_t *mtype = NULL; 3057 boolean_t tried_modload = B_FALSE; 3058 3059 mutex_enter(&i_mactype_lock); 3060 3061 find_registered_mactype: 3062 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 3063 (mod_hash_val_t *)&mtype) != 0) { 3064 if (!tried_modload) { 3065 /* 3066 * If the plugin has not yet been loaded, then 3067 * attempt to load it now. If modload() succeeds, 3068 * the plugin should have registered using 3069 * mactype_register(), in which case we can go back 3070 * and attempt to find it again. 3071 */ 3072 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 3073 tried_modload = B_TRUE; 3074 goto find_registered_mactype; 3075 } 3076 } 3077 } else { 3078 /* 3079 * Note that there's no danger that the plugin we've loaded 3080 * could be unloaded between the modload() step and the 3081 * reference count bump here, as we're holding 3082 * i_mactype_lock, which mactype_unregister() also holds. 3083 */ 3084 atomic_inc_32(&mtype->mt_ref); 3085 } 3086 3087 mutex_exit(&i_mactype_lock); 3088 return (mtype); 3089 } 3090 3091 mactype_register_t * 3092 mactype_alloc(uint_t mactype_version) 3093 { 3094 mactype_register_t *mtrp; 3095 3096 /* 3097 * Make sure there isn't a version mismatch between the plugin and 3098 * the framework. In the future, if multiple versions are 3099 * supported, this check could become more sophisticated. 3100 */ 3101 if (mactype_version != MACTYPE_VERSION) 3102 return (NULL); 3103 3104 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 3105 mtrp->mtr_version = mactype_version; 3106 return (mtrp); 3107 } 3108 3109 void 3110 mactype_free(mactype_register_t *mtrp) 3111 { 3112 kmem_free(mtrp, sizeof (mactype_register_t)); 3113 } 3114 3115 int 3116 mactype_register(mactype_register_t *mtrp) 3117 { 3118 mactype_t *mtp; 3119 mactype_ops_t *ops = mtrp->mtr_ops; 3120 3121 /* Do some sanity checking before we register this MAC type. */ 3122 if (mtrp->mtr_ident == NULL || ops == NULL) 3123 return (EINVAL); 3124 3125 /* 3126 * Verify that all mandatory callbacks are set in the ops 3127 * vector. 3128 */ 3129 if (ops->mtops_unicst_verify == NULL || 3130 ops->mtops_multicst_verify == NULL || 3131 ops->mtops_sap_verify == NULL || 3132 ops->mtops_header == NULL || 3133 ops->mtops_header_info == NULL) { 3134 return (EINVAL); 3135 } 3136 3137 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 3138 mtp->mt_ident = mtrp->mtr_ident; 3139 mtp->mt_ops = *ops; 3140 mtp->mt_type = mtrp->mtr_mactype; 3141 mtp->mt_nativetype = mtrp->mtr_nativetype; 3142 mtp->mt_addr_length = mtrp->mtr_addrlen; 3143 if (mtrp->mtr_brdcst_addr != NULL) { 3144 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 3145 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 3146 mtrp->mtr_addrlen); 3147 } 3148 3149 mtp->mt_stats = mtrp->mtr_stats; 3150 mtp->mt_statcount = mtrp->mtr_statcount; 3151 3152 mtp->mt_mapping = mtrp->mtr_mapping; 3153 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 3154 3155 if (mod_hash_insert(i_mactype_hash, 3156 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 3157 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3158 kmem_free(mtp, sizeof (*mtp)); 3159 return (EEXIST); 3160 } 3161 return (0); 3162 } 3163 3164 int 3165 mactype_unregister(const char *ident) 3166 { 3167 mactype_t *mtp; 3168 mod_hash_val_t val; 3169 int err; 3170 3171 /* 3172 * Let's not allow MAC drivers to use this plugin while we're 3173 * trying to unregister it. Holding i_mactype_lock also prevents a 3174 * plugin from unregistering while a MAC driver is attempting to 3175 * hold a reference to it in i_mactype_getplugin(). 3176 */ 3177 mutex_enter(&i_mactype_lock); 3178 3179 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 3180 (mod_hash_val_t *)&mtp)) != 0) { 3181 /* A plugin is trying to unregister, but it never registered. */ 3182 err = ENXIO; 3183 goto done; 3184 } 3185 3186 if (mtp->mt_ref != 0) { 3187 err = EBUSY; 3188 goto done; 3189 } 3190 3191 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 3192 ASSERT(err == 0); 3193 if (err != 0) { 3194 /* This should never happen, thus the ASSERT() above. */ 3195 err = EINVAL; 3196 goto done; 3197 } 3198 ASSERT(mtp == (mactype_t *)val); 3199 3200 if (mtp->mt_brdcst_addr != NULL) 3201 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 3202 kmem_free(mtp, sizeof (mactype_t)); 3203 done: 3204 mutex_exit(&i_mactype_lock); 3205 return (err); 3206 } 3207 3208 /* 3209 * Checks the size of the value size specified for a property as 3210 * part of a property operation. Returns B_TRUE if the size is 3211 * correct, B_FALSE otherwise. 3212 */ 3213 boolean_t 3214 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range) 3215 { 3216 uint_t minsize = 0; 3217 3218 if (is_range) 3219 return (valsize >= sizeof (mac_propval_range_t)); 3220 3221 switch (id) { 3222 case MAC_PROP_ZONE: 3223 minsize = sizeof (dld_ioc_zid_t); 3224 break; 3225 case MAC_PROP_AUTOPUSH: 3226 if (valsize != 0) 3227 minsize = sizeof (struct dlautopush); 3228 break; 3229 case MAC_PROP_TAGMODE: 3230 minsize = sizeof (link_tagmode_t); 3231 break; 3232 case MAC_PROP_RESOURCE: 3233 case MAC_PROP_RESOURCE_EFF: 3234 minsize = sizeof (mac_resource_props_t); 3235 break; 3236 case MAC_PROP_DUPLEX: 3237 minsize = sizeof (link_duplex_t); 3238 break; 3239 case MAC_PROP_SPEED: 3240 minsize = sizeof (uint64_t); 3241 break; 3242 case MAC_PROP_STATUS: 3243 minsize = sizeof (link_state_t); 3244 break; 3245 case MAC_PROP_AUTONEG: 3246 case MAC_PROP_EN_AUTONEG: 3247 minsize = sizeof (uint8_t); 3248 break; 3249 case MAC_PROP_MTU: 3250 case MAC_PROP_LLIMIT: 3251 case MAC_PROP_LDECAY: 3252 minsize = sizeof (uint32_t); 3253 break; 3254 case MAC_PROP_FLOWCTRL: 3255 minsize = sizeof (link_flowctrl_t); 3256 break; 3257 case MAC_PROP_ADV_5000FDX_CAP: 3258 case MAC_PROP_EN_5000FDX_CAP: 3259 case MAC_PROP_ADV_2500FDX_CAP: 3260 case MAC_PROP_EN_2500FDX_CAP: 3261 case MAC_PROP_ADV_100GFDX_CAP: 3262 case MAC_PROP_EN_100GFDX_CAP: 3263 case MAC_PROP_ADV_50GFDX_CAP: 3264 case MAC_PROP_EN_50GFDX_CAP: 3265 case MAC_PROP_ADV_40GFDX_CAP: 3266 case MAC_PROP_EN_40GFDX_CAP: 3267 case MAC_PROP_ADV_25GFDX_CAP: 3268 case MAC_PROP_EN_25GFDX_CAP: 3269 case MAC_PROP_ADV_10GFDX_CAP: 3270 case MAC_PROP_EN_10GFDX_CAP: 3271 case MAC_PROP_ADV_1000HDX_CAP: 3272 case MAC_PROP_EN_1000HDX_CAP: 3273 case MAC_PROP_ADV_100FDX_CAP: 3274 case MAC_PROP_EN_100FDX_CAP: 3275 case MAC_PROP_ADV_100HDX_CAP: 3276 case MAC_PROP_EN_100HDX_CAP: 3277 case MAC_PROP_ADV_10FDX_CAP: 3278 case MAC_PROP_EN_10FDX_CAP: 3279 case MAC_PROP_ADV_10HDX_CAP: 3280 case MAC_PROP_EN_10HDX_CAP: 3281 case MAC_PROP_ADV_100T4_CAP: 3282 case MAC_PROP_EN_100T4_CAP: 3283 minsize = sizeof (uint8_t); 3284 break; 3285 case MAC_PROP_PVID: 3286 minsize = sizeof (uint16_t); 3287 break; 3288 case MAC_PROP_IPTUN_HOPLIMIT: 3289 minsize = sizeof (uint32_t); 3290 break; 3291 case MAC_PROP_IPTUN_ENCAPLIMIT: 3292 minsize = sizeof (uint32_t); 3293 break; 3294 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3295 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3296 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3297 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3298 minsize = sizeof (uint_t); 3299 break; 3300 case MAC_PROP_WL_ESSID: 3301 minsize = sizeof (wl_linkstatus_t); 3302 break; 3303 case MAC_PROP_WL_BSSID: 3304 minsize = sizeof (wl_bssid_t); 3305 break; 3306 case MAC_PROP_WL_BSSTYPE: 3307 minsize = sizeof (wl_bss_type_t); 3308 break; 3309 case MAC_PROP_WL_LINKSTATUS: 3310 minsize = sizeof (wl_linkstatus_t); 3311 break; 3312 case MAC_PROP_WL_DESIRED_RATES: 3313 minsize = sizeof (wl_rates_t); 3314 break; 3315 case MAC_PROP_WL_SUPPORTED_RATES: 3316 minsize = sizeof (wl_rates_t); 3317 break; 3318 case MAC_PROP_WL_AUTH_MODE: 3319 minsize = sizeof (wl_authmode_t); 3320 break; 3321 case MAC_PROP_WL_ENCRYPTION: 3322 minsize = sizeof (wl_encryption_t); 3323 break; 3324 case MAC_PROP_WL_RSSI: 3325 minsize = sizeof (wl_rssi_t); 3326 break; 3327 case MAC_PROP_WL_PHY_CONFIG: 3328 minsize = sizeof (wl_phy_conf_t); 3329 break; 3330 case MAC_PROP_WL_CAPABILITY: 3331 minsize = sizeof (wl_capability_t); 3332 break; 3333 case MAC_PROP_WL_WPA: 3334 minsize = sizeof (wl_wpa_t); 3335 break; 3336 case MAC_PROP_WL_SCANRESULTS: 3337 minsize = sizeof (wl_wpa_ess_t); 3338 break; 3339 case MAC_PROP_WL_POWER_MODE: 3340 minsize = sizeof (wl_ps_mode_t); 3341 break; 3342 case MAC_PROP_WL_RADIO: 3343 minsize = sizeof (wl_radio_t); 3344 break; 3345 case MAC_PROP_WL_ESS_LIST: 3346 minsize = sizeof (wl_ess_list_t); 3347 break; 3348 case MAC_PROP_WL_KEY_TAB: 3349 minsize = sizeof (wl_wep_key_tab_t); 3350 break; 3351 case MAC_PROP_WL_CREATE_IBSS: 3352 minsize = sizeof (wl_create_ibss_t); 3353 break; 3354 case MAC_PROP_WL_SETOPTIE: 3355 minsize = sizeof (wl_wpa_ie_t); 3356 break; 3357 case MAC_PROP_WL_DELKEY: 3358 minsize = sizeof (wl_del_key_t); 3359 break; 3360 case MAC_PROP_WL_KEY: 3361 minsize = sizeof (wl_key_t); 3362 break; 3363 case MAC_PROP_WL_MLME: 3364 minsize = sizeof (wl_mlme_t); 3365 break; 3366 case MAC_PROP_VN_PROMISC_FILTERED: 3367 minsize = sizeof (boolean_t); 3368 break; 3369 } 3370 3371 return (valsize >= minsize); 3372 } 3373 3374 /* 3375 * mac_set_prop() sets MAC or hardware driver properties: 3376 * 3377 * - MAC-managed properties such as resource properties include maxbw, 3378 * priority, and cpu binding list, as well as the default port VID 3379 * used by bridging. These properties are consumed by the MAC layer 3380 * itself and not passed down to the driver. For resource control 3381 * properties, this function invokes mac_set_resources() which will 3382 * cache the property value in mac_impl_t and may call 3383 * mac_client_set_resource() to update property value of the primary 3384 * mac client, if it exists. 3385 * 3386 * - Properties which act on the hardware and must be passed to the 3387 * driver, such as MTU, through the driver's mc_setprop() entry point. 3388 */ 3389 int 3390 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3391 uint_t valsize) 3392 { 3393 int err = ENOTSUP; 3394 mac_impl_t *mip = (mac_impl_t *)mh; 3395 3396 ASSERT(MAC_PERIM_HELD(mh)); 3397 3398 switch (id) { 3399 case MAC_PROP_RESOURCE: { 3400 mac_resource_props_t *mrp; 3401 3402 /* call mac_set_resources() for MAC properties */ 3403 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3404 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3405 bcopy(val, mrp, sizeof (*mrp)); 3406 err = mac_set_resources(mh, mrp); 3407 kmem_free(mrp, sizeof (*mrp)); 3408 break; 3409 } 3410 3411 case MAC_PROP_PVID: 3412 ASSERT(valsize >= sizeof (uint16_t)); 3413 if (mip->mi_state_flags & MIS_IS_VNIC) 3414 return (EINVAL); 3415 err = mac_set_pvid(mh, *(uint16_t *)val); 3416 break; 3417 3418 case MAC_PROP_MTU: { 3419 uint32_t mtu; 3420 3421 ASSERT(valsize >= sizeof (uint32_t)); 3422 bcopy(val, &mtu, sizeof (mtu)); 3423 err = mac_set_mtu(mh, mtu, NULL); 3424 break; 3425 } 3426 3427 case MAC_PROP_LLIMIT: 3428 case MAC_PROP_LDECAY: { 3429 uint32_t learnval; 3430 3431 if (valsize < sizeof (learnval) || 3432 (mip->mi_state_flags & MIS_IS_VNIC)) 3433 return (EINVAL); 3434 bcopy(val, &learnval, sizeof (learnval)); 3435 if (learnval == 0 && id == MAC_PROP_LDECAY) 3436 return (EINVAL); 3437 if (id == MAC_PROP_LLIMIT) 3438 mip->mi_llimit = learnval; 3439 else 3440 mip->mi_ldecay = learnval; 3441 err = 0; 3442 break; 3443 } 3444 3445 default: 3446 /* For other driver properties, call driver's callback */ 3447 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 3448 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3449 name, id, valsize, val); 3450 } 3451 } 3452 return (err); 3453 } 3454 3455 /* 3456 * mac_get_prop() gets MAC or device driver properties. 3457 * 3458 * If the property is a driver property, mac_get_prop() calls driver's callback 3459 * entry point to get it. 3460 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources() 3461 * which returns the cached value in mac_impl_t. 3462 */ 3463 int 3464 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val, 3465 uint_t valsize) 3466 { 3467 int err = ENOTSUP; 3468 mac_impl_t *mip = (mac_impl_t *)mh; 3469 uint_t rings; 3470 uint_t vlinks; 3471 3472 bzero(val, valsize); 3473 3474 switch (id) { 3475 case MAC_PROP_RESOURCE: { 3476 mac_resource_props_t *mrp; 3477 3478 /* If mac property, read from cache */ 3479 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3480 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3481 mac_get_resources(mh, mrp); 3482 bcopy(mrp, val, sizeof (*mrp)); 3483 kmem_free(mrp, sizeof (*mrp)); 3484 return (0); 3485 } 3486 case MAC_PROP_RESOURCE_EFF: { 3487 mac_resource_props_t *mrp; 3488 3489 /* If mac effective property, read from client */ 3490 ASSERT(valsize >= sizeof (mac_resource_props_t)); 3491 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3492 mac_get_effective_resources(mh, mrp); 3493 bcopy(mrp, val, sizeof (*mrp)); 3494 kmem_free(mrp, sizeof (*mrp)); 3495 return (0); 3496 } 3497 3498 case MAC_PROP_PVID: 3499 ASSERT(valsize >= sizeof (uint16_t)); 3500 if (mip->mi_state_flags & MIS_IS_VNIC) 3501 return (EINVAL); 3502 *(uint16_t *)val = mac_get_pvid(mh); 3503 return (0); 3504 3505 case MAC_PROP_LLIMIT: 3506 case MAC_PROP_LDECAY: 3507 ASSERT(valsize >= sizeof (uint32_t)); 3508 if (mip->mi_state_flags & MIS_IS_VNIC) 3509 return (EINVAL); 3510 if (id == MAC_PROP_LLIMIT) 3511 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 3512 else 3513 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 3514 return (0); 3515 3516 case MAC_PROP_MTU: { 3517 uint32_t sdu; 3518 3519 ASSERT(valsize >= sizeof (uint32_t)); 3520 mac_sdu_get2(mh, NULL, &sdu, NULL); 3521 bcopy(&sdu, val, sizeof (sdu)); 3522 3523 return (0); 3524 } 3525 case MAC_PROP_STATUS: { 3526 link_state_t link_state; 3527 3528 if (valsize < sizeof (link_state)) 3529 return (EINVAL); 3530 link_state = mac_link_get(mh); 3531 bcopy(&link_state, val, sizeof (link_state)); 3532 3533 return (0); 3534 } 3535 3536 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3537 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3538 ASSERT(valsize >= sizeof (uint_t)); 3539 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ? 3540 mac_rxavail_get(mh) : mac_txavail_get(mh); 3541 bcopy(&rings, val, sizeof (uint_t)); 3542 return (0); 3543 3544 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3545 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3546 ASSERT(valsize >= sizeof (uint_t)); 3547 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ? 3548 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh); 3549 bcopy(&vlinks, val, sizeof (uint_t)); 3550 return (0); 3551 3552 case MAC_PROP_RXRINGSRANGE: 3553 case MAC_PROP_TXRINGSRANGE: 3554 /* 3555 * The value for these properties are returned through 3556 * the MAC_PROP_RESOURCE property. 3557 */ 3558 return (0); 3559 3560 default: 3561 break; 3562 3563 } 3564 3565 /* If driver property, request from driver */ 3566 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) { 3567 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id, 3568 valsize, val); 3569 } 3570 3571 return (err); 3572 } 3573 3574 /* 3575 * Helper function to initialize the range structure for use in 3576 * mac_get_prop. If the type can be other than uint32, we can 3577 * pass that as an arg. 3578 */ 3579 static void 3580 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max) 3581 { 3582 range->mpr_count = 1; 3583 range->mpr_type = MAC_PROPVAL_UINT32; 3584 range->mpr_range_uint32[0].mpur_min = min; 3585 range->mpr_range_uint32[0].mpur_max = max; 3586 } 3587 3588 /* 3589 * Returns information about the specified property, such as default 3590 * values or permissions. 3591 */ 3592 int 3593 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name, 3594 void *default_val, uint_t default_size, mac_propval_range_t *range, 3595 uint_t *perm) 3596 { 3597 mac_prop_info_state_t state; 3598 mac_impl_t *mip = (mac_impl_t *)mh; 3599 uint_t max; 3600 3601 /* 3602 * A property is read/write by default unless the driver says 3603 * otherwise. 3604 */ 3605 if (perm != NULL) 3606 *perm = MAC_PROP_PERM_RW; 3607 3608 if (default_val != NULL) 3609 bzero(default_val, default_size); 3610 3611 /* 3612 * First, handle framework properties for which we don't need to 3613 * involve the driver. 3614 */ 3615 switch (id) { 3616 case MAC_PROP_RESOURCE: 3617 case MAC_PROP_PVID: 3618 case MAC_PROP_LLIMIT: 3619 case MAC_PROP_LDECAY: 3620 return (0); 3621 3622 case MAC_PROP_MAX_RX_RINGS_AVAIL: 3623 case MAC_PROP_MAX_TX_RINGS_AVAIL: 3624 case MAC_PROP_MAX_RXHWCLNT_AVAIL: 3625 case MAC_PROP_MAX_TXHWCLNT_AVAIL: 3626 if (perm != NULL) 3627 *perm = MAC_PROP_PERM_READ; 3628 return (0); 3629 3630 case MAC_PROP_RXRINGSRANGE: 3631 case MAC_PROP_TXRINGSRANGE: 3632 /* 3633 * Currently, we support range for RX and TX rings properties. 3634 * When we extend this support to maxbw, cpus and priority, 3635 * we should move this to mac_get_resources. 3636 * There is no default value for RX or TX rings. 3637 */ 3638 if ((mip->mi_state_flags & MIS_IS_VNIC) && 3639 mac_is_vnic_primary(mh)) { 3640 /* 3641 * We don't support setting rings for a VLAN 3642 * data link because it shares its ring with the 3643 * primary MAC client. 3644 */ 3645 if (perm != NULL) 3646 *perm = MAC_PROP_PERM_READ; 3647 if (range != NULL) 3648 range->mpr_count = 0; 3649 } else if (range != NULL) { 3650 if (mip->mi_state_flags & MIS_IS_VNIC) 3651 mh = mac_get_lower_mac_handle(mh); 3652 mip = (mac_impl_t *)mh; 3653 if ((id == MAC_PROP_RXRINGSRANGE && 3654 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) || 3655 (id == MAC_PROP_TXRINGSRANGE && 3656 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) { 3657 if (id == MAC_PROP_RXRINGSRANGE) { 3658 if ((mac_rxhwlnksavail_get(mh) + 3659 mac_rxhwlnksrsvd_get(mh)) <= 1) { 3660 /* 3661 * doesn't support groups or 3662 * rings 3663 */ 3664 range->mpr_count = 0; 3665 } else { 3666 /* 3667 * supports specifying groups, 3668 * but not rings 3669 */ 3670 _mac_set_range(range, 0, 0); 3671 } 3672 } else { 3673 if ((mac_txhwlnksavail_get(mh) + 3674 mac_txhwlnksrsvd_get(mh)) <= 1) { 3675 /* 3676 * doesn't support groups or 3677 * rings 3678 */ 3679 range->mpr_count = 0; 3680 } else { 3681 /* 3682 * supports specifying groups, 3683 * but not rings 3684 */ 3685 _mac_set_range(range, 0, 0); 3686 } 3687 } 3688 } else { 3689 max = id == MAC_PROP_RXRINGSRANGE ? 3690 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) : 3691 mac_txavail_get(mh) + mac_txrsvd_get(mh); 3692 if (max <= 1) { 3693 /* 3694 * doesn't support groups or 3695 * rings 3696 */ 3697 range->mpr_count = 0; 3698 } else { 3699 /* 3700 * -1 because we have to leave out the 3701 * default ring. 3702 */ 3703 _mac_set_range(range, 1, max - 1); 3704 } 3705 } 3706 } 3707 return (0); 3708 3709 case MAC_PROP_STATUS: 3710 if (perm != NULL) 3711 *perm = MAC_PROP_PERM_READ; 3712 return (0); 3713 } 3714 3715 /* 3716 * Get the property info from the driver if it implements the 3717 * property info entry point. 3718 */ 3719 bzero(&state, sizeof (state)); 3720 3721 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) { 3722 state.pr_default = default_val; 3723 state.pr_default_size = default_size; 3724 3725 /* 3726 * The caller specifies the maximum number of ranges 3727 * it can accomodate using mpr_count. We don't touch 3728 * this value until the driver returns from its 3729 * mc_propinfo() callback, and ensure we don't exceed 3730 * this number of range as the driver defines 3731 * supported range from its mc_propinfo(). 3732 * 3733 * pr_range_cur_count keeps track of how many ranges 3734 * were defined by the driver from its mc_propinfo() 3735 * entry point. 3736 * 3737 * On exit, the user-specified range mpr_count returns 3738 * the number of ranges specified by the driver on 3739 * success, or the number of ranges it wanted to 3740 * define if that number of ranges could not be 3741 * accomodated by the specified range structure. In 3742 * the latter case, the caller will be able to 3743 * allocate a larger range structure, and query the 3744 * property again. 3745 */ 3746 state.pr_range_cur_count = 0; 3747 state.pr_range = range; 3748 3749 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id, 3750 (mac_prop_info_handle_t)&state); 3751 3752 if (state.pr_flags & MAC_PROP_INFO_RANGE) 3753 range->mpr_count = state.pr_range_cur_count; 3754 3755 /* 3756 * The operation could fail if the buffer supplied by 3757 * the user was too small for the range or default 3758 * value of the property. 3759 */ 3760 if (state.pr_errno != 0) 3761 return (state.pr_errno); 3762 3763 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM) 3764 *perm = state.pr_perm; 3765 } 3766 3767 /* 3768 * The MAC layer may want to provide default values or allowed 3769 * ranges for properties if the driver does not provide a 3770 * property info entry point, or that entry point exists, but 3771 * it did not provide a default value or allowed ranges for 3772 * that property. 3773 */ 3774 switch (id) { 3775 case MAC_PROP_MTU: { 3776 uint32_t sdu; 3777 3778 mac_sdu_get2(mh, NULL, &sdu, NULL); 3779 3780 if (range != NULL && !(state.pr_flags & 3781 MAC_PROP_INFO_RANGE)) { 3782 /* MTU range */ 3783 _mac_set_range(range, sdu, sdu); 3784 } 3785 3786 if (default_val != NULL && !(state.pr_flags & 3787 MAC_PROP_INFO_DEFAULT)) { 3788 if (mip->mi_info.mi_media == DL_ETHER) 3789 sdu = ETHERMTU; 3790 /* default MTU value */ 3791 bcopy(&sdu, default_val, sizeof (sdu)); 3792 } 3793 } 3794 } 3795 3796 return (0); 3797 } 3798 3799 int 3800 mac_fastpath_disable(mac_handle_t mh) 3801 { 3802 mac_impl_t *mip = (mac_impl_t *)mh; 3803 3804 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3805 return (0); 3806 3807 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 3808 } 3809 3810 void 3811 mac_fastpath_enable(mac_handle_t mh) 3812 { 3813 mac_impl_t *mip = (mac_impl_t *)mh; 3814 3815 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 3816 return; 3817 3818 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 3819 } 3820 3821 void 3822 mac_register_priv_prop(mac_impl_t *mip, char **priv_props) 3823 { 3824 uint_t nprops, i; 3825 3826 if (priv_props == NULL) 3827 return; 3828 3829 nprops = 0; 3830 while (priv_props[nprops] != NULL) 3831 nprops++; 3832 if (nprops == 0) 3833 return; 3834 3835 3836 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP); 3837 3838 for (i = 0; i < nprops; i++) { 3839 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP); 3840 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i], 3841 MAXLINKPROPNAME); 3842 } 3843 3844 mip->mi_priv_prop_count = nprops; 3845 } 3846 3847 void 3848 mac_unregister_priv_prop(mac_impl_t *mip) 3849 { 3850 uint_t i; 3851 3852 if (mip->mi_priv_prop_count == 0) { 3853 ASSERT(mip->mi_priv_prop == NULL); 3854 return; 3855 } 3856 3857 for (i = 0; i < mip->mi_priv_prop_count; i++) 3858 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME); 3859 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count * 3860 sizeof (char *)); 3861 3862 mip->mi_priv_prop = NULL; 3863 mip->mi_priv_prop_count = 0; 3864 } 3865 3866 /* 3867 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 3868 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 3869 * cases if MAC free's the ring structure after mac_stop_ring(), any 3870 * illegal access to the ring structure coming from the driver will panic 3871 * the system. In order to protect the system from such inadverent access, 3872 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 3873 * When packets are received on free'd up rings, MAC (through the generation 3874 * count mechanism) will drop such packets. 3875 */ 3876 static mac_ring_t * 3877 mac_ring_alloc(mac_impl_t *mip) 3878 { 3879 mac_ring_t *ring; 3880 3881 mutex_enter(&mip->mi_ring_lock); 3882 if (mip->mi_ring_freelist != NULL) { 3883 ring = mip->mi_ring_freelist; 3884 mip->mi_ring_freelist = ring->mr_next; 3885 bzero(ring, sizeof (mac_ring_t)); 3886 mutex_exit(&mip->mi_ring_lock); 3887 } else { 3888 mutex_exit(&mip->mi_ring_lock); 3889 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 3890 } 3891 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 3892 return (ring); 3893 } 3894 3895 static void 3896 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 3897 { 3898 ASSERT(ring->mr_state == MR_FREE); 3899 3900 mutex_enter(&mip->mi_ring_lock); 3901 ring->mr_state = MR_FREE; 3902 ring->mr_flag = 0; 3903 ring->mr_next = mip->mi_ring_freelist; 3904 ring->mr_mip = NULL; 3905 mip->mi_ring_freelist = ring; 3906 mac_ring_stat_delete(ring); 3907 mutex_exit(&mip->mi_ring_lock); 3908 } 3909 3910 static void 3911 mac_ring_freeall(mac_impl_t *mip) 3912 { 3913 mac_ring_t *ring_next; 3914 mutex_enter(&mip->mi_ring_lock); 3915 mac_ring_t *ring = mip->mi_ring_freelist; 3916 while (ring != NULL) { 3917 ring_next = ring->mr_next; 3918 kmem_cache_free(mac_ring_cache, ring); 3919 ring = ring_next; 3920 } 3921 mip->mi_ring_freelist = NULL; 3922 mutex_exit(&mip->mi_ring_lock); 3923 } 3924 3925 int 3926 mac_start_ring(mac_ring_t *ring) 3927 { 3928 int rv = 0; 3929 3930 ASSERT(ring->mr_state == MR_FREE); 3931 3932 if (ring->mr_start != NULL) { 3933 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3934 if (rv != 0) 3935 return (rv); 3936 } 3937 3938 ring->mr_state = MR_INUSE; 3939 return (rv); 3940 } 3941 3942 void 3943 mac_stop_ring(mac_ring_t *ring) 3944 { 3945 ASSERT(ring->mr_state == MR_INUSE); 3946 3947 if (ring->mr_stop != NULL) 3948 ring->mr_stop(ring->mr_driver); 3949 3950 ring->mr_state = MR_FREE; 3951 3952 /* 3953 * Increment the ring generation number for this ring. 3954 */ 3955 ring->mr_gen_num++; 3956 } 3957 3958 int 3959 mac_start_group(mac_group_t *group) 3960 { 3961 int rv = 0; 3962 3963 if (group->mrg_start != NULL) 3964 rv = group->mrg_start(group->mrg_driver); 3965 3966 return (rv); 3967 } 3968 3969 void 3970 mac_stop_group(mac_group_t *group) 3971 { 3972 if (group->mrg_stop != NULL) 3973 group->mrg_stop(group->mrg_driver); 3974 } 3975 3976 /* 3977 * Called from mac_start() on the default Rx group. Broadcast and multicast 3978 * packets are received only on the default group. Hence the default group 3979 * needs to be up even if the primary client is not up, for the other groups 3980 * to be functional. We do this by calling this function at mac_start time 3981 * itself. However the broadcast packets that are received can't make their 3982 * way beyond mac_rx until a mac client creates a broadcast flow. 3983 */ 3984 static int 3985 mac_start_group_and_rings(mac_group_t *group) 3986 { 3987 mac_ring_t *ring; 3988 int rv = 0; 3989 3990 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3991 if ((rv = mac_start_group(group)) != 0) 3992 return (rv); 3993 3994 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3995 ASSERT(ring->mr_state == MR_FREE); 3996 3997 if ((rv = mac_start_ring(ring)) != 0) 3998 goto error; 3999 4000 /* 4001 * When aggr_set_port_sdu() is called, it will remove 4002 * the port client's unicast address. This will cause 4003 * MAC to stop the default group's rings on the port 4004 * MAC. After it modifies the SDU, it will then re-add 4005 * the unicast address. At which time, this function is 4006 * called to start the default group's rings. Normally 4007 * this function would set the classify type to 4008 * MAC_SW_CLASSIFIER; but that will break aggr which 4009 * relies on the passthru classify mode being set for 4010 * correct delivery (see mac_rx_common()). To avoid 4011 * that, we check for a passthru callback and set the 4012 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was 4013 * before the rings were stopped. 4014 */ 4015 ring->mr_classify_type = (ring->mr_pt_fn != NULL) ? 4016 MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER; 4017 } 4018 return (0); 4019 4020 error: 4021 mac_stop_group_and_rings(group); 4022 return (rv); 4023 } 4024 4025 /* Called from mac_stop on the default Rx group */ 4026 static void 4027 mac_stop_group_and_rings(mac_group_t *group) 4028 { 4029 mac_ring_t *ring; 4030 4031 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 4032 if (ring->mr_state != MR_FREE) { 4033 mac_stop_ring(ring); 4034 ring->mr_flag = 0; 4035 ring->mr_classify_type = MAC_NO_CLASSIFIER; 4036 } 4037 } 4038 mac_stop_group(group); 4039 } 4040 4041 4042 static mac_ring_t * 4043 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 4044 mac_capab_rings_t *cap_rings) 4045 { 4046 mac_ring_t *ring, *rnext; 4047 mac_ring_info_t ring_info; 4048 ddi_intr_handle_t ddi_handle; 4049 4050 ring = mac_ring_alloc(mip); 4051 4052 /* Prepare basic information of ring */ 4053 4054 /* 4055 * Ring index is numbered to be unique across a particular device. 4056 * Ring index computation makes following assumptions: 4057 * - For drivers with static grouping (e.g. ixgbe, bge), 4058 * ring index exchanged with the driver (e.g. during mr_rget) 4059 * is unique only across the group the ring belongs to. 4060 * - Drivers with dynamic grouping (e.g. nxge), start 4061 * with single group (mrg_index = 0). 4062 */ 4063 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index; 4064 ring->mr_type = group->mrg_type; 4065 ring->mr_gh = (mac_group_handle_t)group; 4066 4067 /* Insert the new ring to the list. */ 4068 ring->mr_next = group->mrg_rings; 4069 group->mrg_rings = ring; 4070 4071 /* Zero to reuse the info data structure */ 4072 bzero(&ring_info, sizeof (ring_info)); 4073 4074 /* Query ring information from driver */ 4075 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 4076 index, &ring_info, (mac_ring_handle_t)ring); 4077 4078 ring->mr_info = ring_info; 4079 4080 /* 4081 * The interrupt handle could be shared among multiple rings. 4082 * Thus if there is a bunch of rings that are sharing an 4083 * interrupt, then only one ring among the bunch will be made 4084 * available for interrupt re-targeting; the rest will have 4085 * ddi_shared flag set to TRUE and would not be available for 4086 * be interrupt re-targeting. 4087 */ 4088 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) { 4089 rnext = ring->mr_next; 4090 while (rnext != NULL) { 4091 if (rnext->mr_info.mri_intr.mi_ddi_handle == 4092 ddi_handle) { 4093 /* 4094 * If default ring (mr_index == 0) is part 4095 * of a group of rings sharing an 4096 * interrupt, then set ddi_shared flag for 4097 * the default ring and give another ring 4098 * the chance to be re-targeted. 4099 */ 4100 if (rnext->mr_index == 0 && 4101 !rnext->mr_info.mri_intr.mi_ddi_shared) { 4102 rnext->mr_info.mri_intr.mi_ddi_shared = 4103 B_TRUE; 4104 } else { 4105 ring->mr_info.mri_intr.mi_ddi_shared = 4106 B_TRUE; 4107 } 4108 break; 4109 } 4110 rnext = rnext->mr_next; 4111 } 4112 /* 4113 * If rnext is NULL, then no matching ddi_handle was found. 4114 * Rx rings get registered first. So if this is a Tx ring, 4115 * then go through all the Rx rings and see if there is a 4116 * matching ddi handle. 4117 */ 4118 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) { 4119 mac_compare_ddi_handle(mip->mi_rx_groups, 4120 mip->mi_rx_group_count, ring); 4121 } 4122 } 4123 4124 /* Update ring's status */ 4125 ring->mr_state = MR_FREE; 4126 ring->mr_flag = 0; 4127 4128 /* Update the ring count of the group */ 4129 group->mrg_cur_count++; 4130 4131 /* Create per ring kstats */ 4132 if (ring->mr_stat != NULL) { 4133 ring->mr_mip = mip; 4134 mac_ring_stat_create(ring); 4135 } 4136 4137 return (ring); 4138 } 4139 4140 /* 4141 * Rings are chained together for easy regrouping. 4142 */ 4143 static void 4144 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 4145 mac_capab_rings_t *cap_rings) 4146 { 4147 int index; 4148 4149 /* 4150 * Initialize all ring members of this group. Size of zero will not 4151 * enter the loop, so it's safe for initializing an empty group. 4152 */ 4153 for (index = size - 1; index >= 0; index--) 4154 (void) mac_init_ring(mip, group, index, cap_rings); 4155 } 4156 4157 int 4158 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4159 { 4160 mac_capab_rings_t *cap_rings; 4161 mac_group_t *group; 4162 mac_group_t *groups; 4163 mac_group_info_t group_info; 4164 uint_t group_free = 0; 4165 uint_t ring_left; 4166 mac_ring_t *ring; 4167 int g; 4168 int err = 0; 4169 uint_t grpcnt; 4170 boolean_t pseudo_txgrp = B_FALSE; 4171 4172 switch (rtype) { 4173 case MAC_RING_TYPE_RX: 4174 ASSERT(mip->mi_rx_groups == NULL); 4175 4176 cap_rings = &mip->mi_rx_rings_cap; 4177 cap_rings->mr_type = MAC_RING_TYPE_RX; 4178 break; 4179 case MAC_RING_TYPE_TX: 4180 ASSERT(mip->mi_tx_groups == NULL); 4181 4182 cap_rings = &mip->mi_tx_rings_cap; 4183 cap_rings->mr_type = MAC_RING_TYPE_TX; 4184 break; 4185 default: 4186 ASSERT(B_FALSE); 4187 } 4188 4189 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) 4190 return (0); 4191 grpcnt = cap_rings->mr_gnum; 4192 4193 /* 4194 * If we have multiple TX rings, but only one TX group, we can 4195 * create pseudo TX groups (one per TX ring) in the MAC layer, 4196 * except for an aggr. For an aggr currently we maintain only 4197 * one group with all the rings (for all its ports), going 4198 * forwards we might change this. 4199 */ 4200 if (rtype == MAC_RING_TYPE_TX && 4201 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 && 4202 (mip->mi_state_flags & MIS_IS_AGGR) == 0) { 4203 /* 4204 * The -1 here is because we create a default TX group 4205 * with all the rings in it. 4206 */ 4207 grpcnt = cap_rings->mr_rnum - 1; 4208 pseudo_txgrp = B_TRUE; 4209 } 4210 4211 /* 4212 * Allocate a contiguous buffer for all groups. 4213 */ 4214 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP); 4215 4216 ring_left = cap_rings->mr_rnum; 4217 4218 /* 4219 * Get all ring groups if any, and get their ring members 4220 * if any. 4221 */ 4222 for (g = 0; g < grpcnt; g++) { 4223 group = groups + g; 4224 4225 /* Prepare basic information of the group */ 4226 group->mrg_index = g; 4227 group->mrg_type = rtype; 4228 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4229 group->mrg_mh = (mac_handle_t)mip; 4230 group->mrg_next = group + 1; 4231 4232 /* Zero to reuse the info data structure */ 4233 bzero(&group_info, sizeof (group_info)); 4234 4235 if (pseudo_txgrp) { 4236 /* 4237 * This is a pseudo group that we created, apart 4238 * from setting the state there is nothing to be 4239 * done. 4240 */ 4241 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4242 group_free++; 4243 continue; 4244 } 4245 /* Query group information from driver */ 4246 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 4247 (mac_group_handle_t)group); 4248 4249 switch (cap_rings->mr_group_type) { 4250 case MAC_GROUP_TYPE_DYNAMIC: 4251 if (cap_rings->mr_gaddring == NULL || 4252 cap_rings->mr_gremring == NULL) { 4253 DTRACE_PROBE3( 4254 mac__init__rings_no_addremring, 4255 char *, mip->mi_name, 4256 mac_group_add_ring_t, 4257 cap_rings->mr_gaddring, 4258 mac_group_add_ring_t, 4259 cap_rings->mr_gremring); 4260 err = EINVAL; 4261 goto bail; 4262 } 4263 4264 switch (rtype) { 4265 case MAC_RING_TYPE_RX: 4266 /* 4267 * The first RX group must have non-zero 4268 * rings, and the following groups must 4269 * have zero rings. 4270 */ 4271 if (g == 0 && group_info.mgi_count == 0) { 4272 DTRACE_PROBE1( 4273 mac__init__rings__rx__def__zero, 4274 char *, mip->mi_name); 4275 err = EINVAL; 4276 goto bail; 4277 } 4278 if (g > 0 && group_info.mgi_count != 0) { 4279 DTRACE_PROBE3( 4280 mac__init__rings__rx__nonzero, 4281 char *, mip->mi_name, 4282 int, g, int, group_info.mgi_count); 4283 err = EINVAL; 4284 goto bail; 4285 } 4286 break; 4287 case MAC_RING_TYPE_TX: 4288 /* 4289 * All TX ring groups must have zero rings. 4290 */ 4291 if (group_info.mgi_count != 0) { 4292 DTRACE_PROBE3( 4293 mac__init__rings__tx__nonzero, 4294 char *, mip->mi_name, 4295 int, g, int, group_info.mgi_count); 4296 err = EINVAL; 4297 goto bail; 4298 } 4299 break; 4300 } 4301 break; 4302 case MAC_GROUP_TYPE_STATIC: 4303 /* 4304 * Note that an empty group is allowed, e.g., an aggr 4305 * would start with an empty group. 4306 */ 4307 break; 4308 default: 4309 /* unknown group type */ 4310 DTRACE_PROBE2(mac__init__rings__unknown__type, 4311 char *, mip->mi_name, 4312 int, cap_rings->mr_group_type); 4313 err = EINVAL; 4314 goto bail; 4315 } 4316 4317 4318 /* 4319 * The driver must register some form of hardware MAC 4320 * filter in order for Rx groups to support multiple 4321 * MAC addresses. 4322 */ 4323 if (rtype == MAC_RING_TYPE_RX && 4324 (group_info.mgi_addmac == NULL || 4325 group_info.mgi_remmac == NULL)) { 4326 DTRACE_PROBE1(mac__init__rings__no__mac__filter, 4327 char *, mip->mi_name); 4328 err = EINVAL; 4329 goto bail; 4330 } 4331 4332 /* Cache driver-supplied information */ 4333 group->mrg_info = group_info; 4334 4335 /* Update the group's status and group count. */ 4336 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4337 group_free++; 4338 4339 group->mrg_rings = NULL; 4340 group->mrg_cur_count = 0; 4341 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 4342 ring_left -= group_info.mgi_count; 4343 4344 /* The current group size should be equal to default value */ 4345 ASSERT(group->mrg_cur_count == group_info.mgi_count); 4346 } 4347 4348 /* Build up a dummy group for free resources as a pool */ 4349 group = groups + grpcnt; 4350 4351 /* Prepare basic information of the group */ 4352 group->mrg_index = -1; 4353 group->mrg_type = rtype; 4354 group->mrg_state = MAC_GROUP_STATE_UNINIT; 4355 group->mrg_mh = (mac_handle_t)mip; 4356 group->mrg_next = NULL; 4357 4358 /* 4359 * If there are ungrouped rings, allocate a continuous buffer for 4360 * remaining resources. 4361 */ 4362 if (ring_left != 0) { 4363 group->mrg_rings = NULL; 4364 group->mrg_cur_count = 0; 4365 mac_init_group(mip, group, ring_left, cap_rings); 4366 4367 /* The current group size should be equal to ring_left */ 4368 ASSERT(group->mrg_cur_count == ring_left); 4369 4370 ring_left = 0; 4371 4372 /* Update this group's status */ 4373 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED); 4374 } else { 4375 group->mrg_rings = NULL; 4376 } 4377 4378 ASSERT(ring_left == 0); 4379 4380 bail: 4381 4382 /* Cache other important information to finalize the initialization */ 4383 switch (rtype) { 4384 case MAC_RING_TYPE_RX: 4385 mip->mi_rx_group_type = cap_rings->mr_group_type; 4386 mip->mi_rx_group_count = cap_rings->mr_gnum; 4387 mip->mi_rx_groups = groups; 4388 mip->mi_rx_donor_grp = groups; 4389 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4390 /* 4391 * The default ring is reserved since it is 4392 * used for sending the broadcast etc. packets. 4393 */ 4394 mip->mi_rxrings_avail = 4395 mip->mi_rx_groups->mrg_cur_count - 1; 4396 mip->mi_rxrings_rsvd = 1; 4397 } 4398 /* 4399 * The default group cannot be reserved. It is used by 4400 * all the clients that do not have an exclusive group. 4401 */ 4402 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1; 4403 mip->mi_rxhwclnt_used = 1; 4404 break; 4405 case MAC_RING_TYPE_TX: 4406 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC : 4407 cap_rings->mr_group_type; 4408 mip->mi_tx_group_count = grpcnt; 4409 mip->mi_tx_group_free = group_free; 4410 mip->mi_tx_groups = groups; 4411 4412 group = groups + grpcnt; 4413 ring = group->mrg_rings; 4414 /* 4415 * The ring can be NULL in the case of aggr. Aggr will 4416 * have an empty Tx group which will get populated 4417 * later when pseudo Tx rings are added after 4418 * mac_register() is done. 4419 */ 4420 if (ring == NULL) { 4421 ASSERT(mip->mi_state_flags & MIS_IS_AGGR); 4422 /* 4423 * pass the group to aggr so it can add Tx 4424 * rings to the group later. 4425 */ 4426 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL, 4427 (mac_group_handle_t)group); 4428 /* 4429 * Even though there are no rings at this time 4430 * (rings will come later), set the group 4431 * state to registered. 4432 */ 4433 group->mrg_state = MAC_GROUP_STATE_REGISTERED; 4434 } else { 4435 /* 4436 * Ring 0 is used as the default one and it could be 4437 * assigned to a client as well. 4438 */ 4439 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 4440 ring = ring->mr_next; 4441 ASSERT(ring->mr_index == 0); 4442 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4443 } 4444 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 4445 mip->mi_txrings_avail = group->mrg_cur_count - 1; 4446 /* 4447 * The default ring cannot be reserved. 4448 */ 4449 mip->mi_txrings_rsvd = 1; 4450 } 4451 /* 4452 * The default group cannot be reserved. It will be shared 4453 * by clients that do not have an exclusive group. 4454 */ 4455 mip->mi_txhwclnt_avail = mip->mi_tx_group_count; 4456 mip->mi_txhwclnt_used = 1; 4457 break; 4458 default: 4459 ASSERT(B_FALSE); 4460 } 4461 4462 if (err != 0) 4463 mac_free_rings(mip, rtype); 4464 4465 return (err); 4466 } 4467 4468 /* 4469 * The ddi interrupt handle could be shared amoung rings. If so, compare 4470 * the new ring's ddi handle with the existing ones and set ddi_shared 4471 * flag. 4472 */ 4473 void 4474 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring) 4475 { 4476 mac_group_t *group; 4477 mac_ring_t *ring; 4478 ddi_intr_handle_t ddi_handle; 4479 int g; 4480 4481 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle; 4482 for (g = 0; g < grpcnt; g++) { 4483 group = groups + g; 4484 for (ring = group->mrg_rings; ring != NULL; 4485 ring = ring->mr_next) { 4486 if (ring == cring) 4487 continue; 4488 if (ring->mr_info.mri_intr.mi_ddi_handle == 4489 ddi_handle) { 4490 if (cring->mr_type == MAC_RING_TYPE_RX && 4491 ring->mr_index == 0 && 4492 !ring->mr_info.mri_intr.mi_ddi_shared) { 4493 ring->mr_info.mri_intr.mi_ddi_shared = 4494 B_TRUE; 4495 } else { 4496 cring->mr_info.mri_intr.mi_ddi_shared = 4497 B_TRUE; 4498 } 4499 return; 4500 } 4501 } 4502 } 4503 } 4504 4505 /* 4506 * Called to free all groups of particular type (RX or TX). It's assumed that 4507 * no clients are using these groups. 4508 */ 4509 void 4510 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 4511 { 4512 mac_group_t *group, *groups; 4513 uint_t group_count; 4514 4515 switch (rtype) { 4516 case MAC_RING_TYPE_RX: 4517 if (mip->mi_rx_groups == NULL) 4518 return; 4519 4520 groups = mip->mi_rx_groups; 4521 group_count = mip->mi_rx_group_count; 4522 4523 mip->mi_rx_groups = NULL; 4524 mip->mi_rx_donor_grp = NULL; 4525 mip->mi_rx_group_count = 0; 4526 break; 4527 case MAC_RING_TYPE_TX: 4528 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 4529 4530 if (mip->mi_tx_groups == NULL) 4531 return; 4532 4533 groups = mip->mi_tx_groups; 4534 group_count = mip->mi_tx_group_count; 4535 4536 mip->mi_tx_groups = NULL; 4537 mip->mi_tx_group_count = 0; 4538 mip->mi_tx_group_free = 0; 4539 mip->mi_default_tx_ring = NULL; 4540 break; 4541 default: 4542 ASSERT(B_FALSE); 4543 } 4544 4545 for (group = groups; group != NULL; group = group->mrg_next) { 4546 mac_ring_t *ring; 4547 4548 if (group->mrg_cur_count == 0) 4549 continue; 4550 4551 ASSERT(group->mrg_rings != NULL); 4552 4553 while ((ring = group->mrg_rings) != NULL) { 4554 group->mrg_rings = ring->mr_next; 4555 mac_ring_free(mip, ring); 4556 } 4557 } 4558 4559 /* Free all the cached rings */ 4560 mac_ring_freeall(mip); 4561 /* Free the block of group data strutures */ 4562 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 4563 } 4564 4565 /* 4566 * Associate the VLAN filter to the receive group. 4567 */ 4568 int 4569 mac_group_addvlan(mac_group_t *group, uint16_t vlan) 4570 { 4571 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4572 VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL); 4573 4574 if (vlan > VLAN_ID_MAX) 4575 return (EINVAL); 4576 4577 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4578 return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan)); 4579 } 4580 4581 /* 4582 * Dissociate the VLAN from the receive group. 4583 */ 4584 int 4585 mac_group_remvlan(mac_group_t *group, uint16_t vlan) 4586 { 4587 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4588 VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL); 4589 4590 if (vlan > VLAN_ID_MAX) 4591 return (EINVAL); 4592 4593 vlan = MAC_VLAN_UNTAGGED_VID(vlan); 4594 return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan)); 4595 } 4596 4597 /* 4598 * Associate a MAC address with a receive group. 4599 * 4600 * The return value of this function should always be checked properly, because 4601 * any type of failure could cause unexpected results. A group can be added 4602 * or removed with a MAC address only after it has been reserved. Ideally, 4603 * a successful reservation always leads to calling mac_group_addmac() to 4604 * steer desired traffic. Failure of adding an unicast MAC address doesn't 4605 * always imply that the group is functioning abnormally. 4606 * 4607 * Currently this function is called everywhere, and it reflects assumptions 4608 * about MAC addresses in the implementation. CR 6735196. 4609 */ 4610 int 4611 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 4612 { 4613 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4614 VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL); 4615 4616 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 4617 } 4618 4619 /* 4620 * Remove the association between MAC address and receive group. 4621 */ 4622 int 4623 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 4624 { 4625 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX); 4626 VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL); 4627 4628 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 4629 } 4630 4631 /* 4632 * This is the entry point for packets transmitted through the bridging code. 4633 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 4634 * pointer may be NULL to select the default ring. 4635 */ 4636 mblk_t * 4637 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 4638 { 4639 mac_handle_t mh; 4640 4641 /* 4642 * Once we take a reference on the bridge link, the bridge 4643 * module itself can't unload, so the callback pointers are 4644 * stable. 4645 */ 4646 mutex_enter(&mip->mi_bridge_lock); 4647 if ((mh = mip->mi_bridge_link) != NULL) 4648 mac_bridge_ref_cb(mh, B_TRUE); 4649 mutex_exit(&mip->mi_bridge_lock); 4650 if (mh == NULL) { 4651 MAC_RING_TX(mip, rh, mp, mp); 4652 } else { 4653 mp = mac_bridge_tx_cb(mh, rh, mp); 4654 mac_bridge_ref_cb(mh, B_FALSE); 4655 } 4656 4657 return (mp); 4658 } 4659 4660 /* 4661 * Find a ring from its index. 4662 */ 4663 mac_ring_handle_t 4664 mac_find_ring(mac_group_handle_t gh, int index) 4665 { 4666 mac_group_t *group = (mac_group_t *)gh; 4667 mac_ring_t *ring = group->mrg_rings; 4668 4669 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 4670 if (ring->mr_index == index) 4671 break; 4672 4673 return ((mac_ring_handle_t)ring); 4674 } 4675 /* 4676 * Add a ring to an existing group. 4677 * 4678 * The ring must be either passed directly (for example if the ring 4679 * movement is initiated by the framework), or specified through a driver 4680 * index (for example when the ring is added by the driver. 4681 * 4682 * The caller needs to call mac_perim_enter() before calling this function. 4683 */ 4684 int 4685 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 4686 { 4687 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4688 mac_capab_rings_t *cap_rings; 4689 boolean_t driver_call = (ring == NULL); 4690 mac_group_type_t group_type; 4691 int ret = 0; 4692 flow_entry_t *flent; 4693 4694 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4695 4696 switch (group->mrg_type) { 4697 case MAC_RING_TYPE_RX: 4698 cap_rings = &mip->mi_rx_rings_cap; 4699 group_type = mip->mi_rx_group_type; 4700 break; 4701 case MAC_RING_TYPE_TX: 4702 cap_rings = &mip->mi_tx_rings_cap; 4703 group_type = mip->mi_tx_group_type; 4704 break; 4705 default: 4706 ASSERT(B_FALSE); 4707 } 4708 4709 /* 4710 * There should be no ring with the same ring index in the target 4711 * group. 4712 */ 4713 ASSERT(mac_find_ring((mac_group_handle_t)group, 4714 driver_call ? index : ring->mr_index) == NULL); 4715 4716 if (driver_call) { 4717 /* 4718 * The function is called as a result of a request from 4719 * a driver to add a ring to an existing group, for example 4720 * from the aggregation driver. Allocate a new mac_ring_t 4721 * for that ring. 4722 */ 4723 ring = mac_init_ring(mip, group, index, cap_rings); 4724 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 4725 } else { 4726 /* 4727 * The function is called as a result of a MAC layer request 4728 * to add a ring to an existing group. In this case the 4729 * ring is being moved between groups, which requires 4730 * the underlying driver to support dynamic grouping, 4731 * and the mac_ring_t already exists. 4732 */ 4733 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 4734 ASSERT(group->mrg_driver == NULL || 4735 cap_rings->mr_gaddring != NULL); 4736 ASSERT(ring->mr_gh == NULL); 4737 } 4738 4739 /* 4740 * At this point the ring should not be in use, and it should be 4741 * of the right for the target group. 4742 */ 4743 ASSERT(ring->mr_state < MR_INUSE); 4744 ASSERT(ring->mr_srs == NULL); 4745 ASSERT(ring->mr_type == group->mrg_type); 4746 4747 if (!driver_call) { 4748 /* 4749 * Add the driver level hardware ring if the process was not 4750 * initiated by the driver, and the target group is not the 4751 * group. 4752 */ 4753 if (group->mrg_driver != NULL) { 4754 cap_rings->mr_gaddring(group->mrg_driver, 4755 ring->mr_driver, ring->mr_type); 4756 } 4757 4758 /* 4759 * Insert the ring ahead existing rings. 4760 */ 4761 ring->mr_next = group->mrg_rings; 4762 group->mrg_rings = ring; 4763 ring->mr_gh = (mac_group_handle_t)group; 4764 group->mrg_cur_count++; 4765 } 4766 4767 /* 4768 * If the group has not been actively used, we're done. 4769 */ 4770 if (group->mrg_index != -1 && 4771 group->mrg_state < MAC_GROUP_STATE_RESERVED) 4772 return (0); 4773 4774 /* 4775 * Start the ring if needed. Failure causes to undo the grouping action. 4776 */ 4777 if (ring->mr_state != MR_INUSE) { 4778 if ((ret = mac_start_ring(ring)) != 0) { 4779 if (!driver_call) { 4780 cap_rings->mr_gremring(group->mrg_driver, 4781 ring->mr_driver, ring->mr_type); 4782 } 4783 group->mrg_cur_count--; 4784 group->mrg_rings = ring->mr_next; 4785 4786 ring->mr_gh = NULL; 4787 4788 if (driver_call) 4789 mac_ring_free(mip, ring); 4790 4791 return (ret); 4792 } 4793 } 4794 4795 /* 4796 * Set up SRS/SR according to the ring type. 4797 */ 4798 switch (ring->mr_type) { 4799 case MAC_RING_TYPE_RX: 4800 /* 4801 * Setup an SRS on top of the new ring if the group is 4802 * reserved for someone's exclusive use. 4803 */ 4804 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 4805 mac_client_impl_t *mcip = MAC_GROUP_ONLY_CLIENT(group); 4806 4807 VERIFY3P(mcip, !=, NULL); 4808 flent = mcip->mci_flent; 4809 VERIFY3S(flent->fe_rx_srs_cnt, >, 0); 4810 mac_rx_srs_group_setup(mcip, flent, SRST_LINK); 4811 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4812 mac_rx_deliver, mcip, NULL, NULL); 4813 } else { 4814 ring->mr_classify_type = MAC_SW_CLASSIFIER; 4815 } 4816 break; 4817 case MAC_RING_TYPE_TX: 4818 { 4819 mac_grp_client_t *mgcp = group->mrg_clients; 4820 mac_client_impl_t *mcip; 4821 mac_soft_ring_set_t *mac_srs; 4822 mac_srs_tx_t *tx; 4823 4824 if (MAC_GROUP_NO_CLIENT(group)) { 4825 if (ring->mr_state == MR_INUSE) 4826 mac_stop_ring(ring); 4827 ring->mr_flag = 0; 4828 break; 4829 } 4830 /* 4831 * If the rings are being moved to a group that has 4832 * clients using it, then add the new rings to the 4833 * clients SRS. 4834 */ 4835 while (mgcp != NULL) { 4836 boolean_t is_aggr; 4837 4838 mcip = mgcp->mgc_client; 4839 flent = mcip->mci_flent; 4840 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4841 mac_srs = MCIP_TX_SRS(mcip); 4842 tx = &mac_srs->srs_tx; 4843 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4844 /* 4845 * If we are growing from 1 to multiple rings. 4846 */ 4847 if (tx->st_mode == SRS_TX_BW || 4848 tx->st_mode == SRS_TX_SERIALIZE || 4849 tx->st_mode == SRS_TX_DEFAULT) { 4850 mac_ring_t *tx_ring = tx->st_arg2; 4851 4852 tx->st_arg2 = NULL; 4853 mac_tx_srs_stat_recreate(mac_srs, B_TRUE); 4854 mac_tx_srs_add_ring(mac_srs, tx_ring); 4855 if (mac_srs->srs_type & SRST_BW_CONTROL) { 4856 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR : 4857 SRS_TX_BW_FANOUT; 4858 } else { 4859 tx->st_mode = is_aggr ? SRS_TX_AGGR : 4860 SRS_TX_FANOUT; 4861 } 4862 tx->st_func = mac_tx_get_func(tx->st_mode); 4863 } 4864 mac_tx_srs_add_ring(mac_srs, ring); 4865 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 4866 mac_rx_deliver, mcip, NULL, NULL); 4867 mac_tx_client_restart((mac_client_handle_t)mcip); 4868 mgcp = mgcp->mgc_next; 4869 } 4870 break; 4871 } 4872 default: 4873 ASSERT(B_FALSE); 4874 } 4875 /* 4876 * For aggr, the default ring will be NULL to begin with. If it 4877 * is NULL, then pick the first ring that gets added as the 4878 * default ring. Any ring in an aggregation can be removed at 4879 * any time (by the user action of removing a link) and if the 4880 * current default ring gets removed, then a new one gets 4881 * picked (see i_mac_group_rem_ring()). 4882 */ 4883 if (mip->mi_state_flags & MIS_IS_AGGR && 4884 mip->mi_default_tx_ring == NULL && 4885 ring->mr_type == MAC_RING_TYPE_TX) { 4886 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 4887 } 4888 4889 MAC_RING_UNMARK(ring, MR_INCIPIENT); 4890 return (0); 4891 } 4892 4893 /* 4894 * Remove a ring from it's current group. MAC internal function for dynamic 4895 * grouping. 4896 * 4897 * The caller needs to call mac_perim_enter() before calling this function. 4898 */ 4899 void 4900 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 4901 boolean_t driver_call) 4902 { 4903 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 4904 mac_capab_rings_t *cap_rings = NULL; 4905 mac_group_type_t group_type; 4906 4907 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4908 4909 ASSERT(mac_find_ring((mac_group_handle_t)group, 4910 ring->mr_index) == (mac_ring_handle_t)ring); 4911 ASSERT((mac_group_t *)ring->mr_gh == group); 4912 ASSERT(ring->mr_type == group->mrg_type); 4913 4914 if (ring->mr_state == MR_INUSE) 4915 mac_stop_ring(ring); 4916 switch (ring->mr_type) { 4917 case MAC_RING_TYPE_RX: 4918 group_type = mip->mi_rx_group_type; 4919 cap_rings = &mip->mi_rx_rings_cap; 4920 4921 /* 4922 * Only hardware classified packets hold a reference to the 4923 * ring all the way up the Rx path. mac_rx_srs_remove() 4924 * will take care of quiescing the Rx path and removing the 4925 * SRS. The software classified path neither holds a reference 4926 * nor any association with the ring in mac_rx. 4927 */ 4928 if (ring->mr_srs != NULL) { 4929 mac_rx_srs_remove(ring->mr_srs); 4930 ring->mr_srs = NULL; 4931 } 4932 4933 break; 4934 case MAC_RING_TYPE_TX: 4935 { 4936 mac_grp_client_t *mgcp; 4937 mac_client_impl_t *mcip; 4938 mac_soft_ring_set_t *mac_srs; 4939 mac_srs_tx_t *tx; 4940 mac_ring_t *rem_ring; 4941 mac_group_t *defgrp; 4942 uint_t ring_info = 0; 4943 4944 /* 4945 * For TX this function is invoked in three 4946 * cases: 4947 * 4948 * 1) In the case of a failure during the 4949 * initial creation of a group when a share is 4950 * associated with a MAC client. So the SRS is not 4951 * yet setup, and will be setup later after the 4952 * group has been reserved and populated. 4953 * 4954 * 2) From mac_release_tx_group() when freeing 4955 * a TX SRS. 4956 * 4957 * 3) In the case of aggr, when a port gets removed, 4958 * the pseudo Tx rings that it exposed gets removed. 4959 * 4960 * In the first two cases the SRS and its soft 4961 * rings are already quiesced. 4962 */ 4963 if (driver_call) { 4964 mac_client_impl_t *mcip; 4965 mac_soft_ring_set_t *mac_srs; 4966 mac_soft_ring_t *sringp; 4967 mac_srs_tx_t *srs_tx; 4968 4969 if (mip->mi_state_flags & MIS_IS_AGGR && 4970 mip->mi_default_tx_ring == 4971 (mac_ring_handle_t)ring) { 4972 /* pick a new default Tx ring */ 4973 mip->mi_default_tx_ring = 4974 (group->mrg_rings != ring) ? 4975 (mac_ring_handle_t)group->mrg_rings : 4976 (mac_ring_handle_t)(ring->mr_next); 4977 } 4978 /* Presently only aggr case comes here */ 4979 if (group->mrg_state != MAC_GROUP_STATE_RESERVED) 4980 break; 4981 4982 mcip = MAC_GROUP_ONLY_CLIENT(group); 4983 ASSERT(mcip != NULL); 4984 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT); 4985 mac_srs = MCIP_TX_SRS(mcip); 4986 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR || 4987 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR); 4988 srs_tx = &mac_srs->srs_tx; 4989 /* 4990 * Wakeup any callers blocked on this 4991 * Tx ring due to flow control. 4992 */ 4993 sringp = srs_tx->st_soft_rings[ring->mr_index]; 4994 ASSERT(sringp != NULL); 4995 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp); 4996 mac_tx_client_quiesce((mac_client_handle_t)mcip); 4997 mac_tx_srs_del_ring(mac_srs, ring); 4998 mac_tx_client_restart((mac_client_handle_t)mcip); 4999 break; 5000 } 5001 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring); 5002 group_type = mip->mi_tx_group_type; 5003 cap_rings = &mip->mi_tx_rings_cap; 5004 /* 5005 * See if we need to take it out of the MAC clients using 5006 * this group 5007 */ 5008 if (MAC_GROUP_NO_CLIENT(group)) 5009 break; 5010 mgcp = group->mrg_clients; 5011 defgrp = MAC_DEFAULT_TX_GROUP(mip); 5012 while (mgcp != NULL) { 5013 mcip = mgcp->mgc_client; 5014 mac_srs = MCIP_TX_SRS(mcip); 5015 tx = &mac_srs->srs_tx; 5016 mac_tx_client_quiesce((mac_client_handle_t)mcip); 5017 /* 5018 * If we are here when removing rings from the 5019 * defgroup, mac_reserve_tx_ring would have 5020 * already deleted the ring from the MAC 5021 * clients in the group. 5022 */ 5023 if (group != defgrp) { 5024 mac_tx_invoke_callbacks(mcip, 5025 (mac_tx_cookie_t) 5026 mac_tx_srs_get_soft_ring(mac_srs, ring)); 5027 mac_tx_srs_del_ring(mac_srs, ring); 5028 } 5029 /* 5030 * Additionally, if we are left with only 5031 * one ring in the group after this, we need 5032 * to modify the mode etc. to. (We haven't 5033 * yet taken the ring out, so we check with 2). 5034 */ 5035 if (group->mrg_cur_count == 2) { 5036 if (ring->mr_next == NULL) 5037 rem_ring = group->mrg_rings; 5038 else 5039 rem_ring = ring->mr_next; 5040 mac_tx_invoke_callbacks(mcip, 5041 (mac_tx_cookie_t) 5042 mac_tx_srs_get_soft_ring(mac_srs, 5043 rem_ring)); 5044 mac_tx_srs_del_ring(mac_srs, rem_ring); 5045 if (rem_ring->mr_state != MR_INUSE) { 5046 (void) mac_start_ring(rem_ring); 5047 } 5048 tx->st_arg2 = (void *)rem_ring; 5049 mac_tx_srs_stat_recreate(mac_srs, B_FALSE); 5050 ring_info = mac_hwring_getinfo( 5051 (mac_ring_handle_t)rem_ring); 5052 /* 5053 * We are shrinking from multiple 5054 * to 1 ring. 5055 */ 5056 if (mac_srs->srs_type & SRST_BW_CONTROL) { 5057 tx->st_mode = SRS_TX_BW; 5058 } else if (mac_tx_serialize || 5059 (ring_info & MAC_RING_TX_SERIALIZE)) { 5060 tx->st_mode = SRS_TX_SERIALIZE; 5061 } else { 5062 tx->st_mode = SRS_TX_DEFAULT; 5063 } 5064 tx->st_func = mac_tx_get_func(tx->st_mode); 5065 } 5066 mac_tx_client_restart((mac_client_handle_t)mcip); 5067 mgcp = mgcp->mgc_next; 5068 } 5069 break; 5070 } 5071 default: 5072 ASSERT(B_FALSE); 5073 } 5074 5075 /* 5076 * Remove the ring from the group. 5077 */ 5078 if (ring == group->mrg_rings) 5079 group->mrg_rings = ring->mr_next; 5080 else { 5081 mac_ring_t *pre; 5082 5083 pre = group->mrg_rings; 5084 while (pre->mr_next != ring) 5085 pre = pre->mr_next; 5086 pre->mr_next = ring->mr_next; 5087 } 5088 group->mrg_cur_count--; 5089 5090 if (!driver_call) { 5091 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 5092 ASSERT(group->mrg_driver == NULL || 5093 cap_rings->mr_gremring != NULL); 5094 5095 /* 5096 * Remove the driver level hardware ring. 5097 */ 5098 if (group->mrg_driver != NULL) { 5099 cap_rings->mr_gremring(group->mrg_driver, 5100 ring->mr_driver, ring->mr_type); 5101 } 5102 } 5103 5104 ring->mr_gh = NULL; 5105 if (driver_call) 5106 mac_ring_free(mip, ring); 5107 else 5108 ring->mr_flag = 0; 5109 } 5110 5111 /* 5112 * Move a ring to the target group. If needed, remove the ring from the group 5113 * that it currently belongs to. 5114 * 5115 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 5116 */ 5117 static int 5118 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 5119 { 5120 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 5121 int rv; 5122 5123 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5124 ASSERT(d_group != NULL); 5125 ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh); 5126 5127 if (s_group == d_group) 5128 return (0); 5129 5130 /* 5131 * Remove it from current group first. 5132 */ 5133 if (s_group != NULL) 5134 i_mac_group_rem_ring(s_group, ring, B_FALSE); 5135 5136 /* 5137 * Add it to the new group. 5138 */ 5139 rv = i_mac_group_add_ring(d_group, ring, 0); 5140 if (rv != 0) { 5141 /* 5142 * Failed to add ring back to source group. If 5143 * that fails, the ring is stuck in limbo, log message. 5144 */ 5145 if (i_mac_group_add_ring(s_group, ring, 0)) { 5146 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 5147 mip->mi_name, (void *)ring); 5148 } 5149 } 5150 5151 return (rv); 5152 } 5153 5154 /* 5155 * Find a MAC address according to its value. 5156 */ 5157 mac_address_t * 5158 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 5159 { 5160 mac_address_t *map; 5161 5162 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5163 5164 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 5165 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 5166 break; 5167 } 5168 5169 return (map); 5170 } 5171 5172 /* 5173 * Check whether the MAC address is shared by multiple clients. 5174 */ 5175 boolean_t 5176 mac_check_macaddr_shared(mac_address_t *map) 5177 { 5178 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 5179 5180 return (map->ma_nusers > 1); 5181 } 5182 5183 /* 5184 * Remove the specified MAC address from the MAC address list and free it. 5185 */ 5186 static void 5187 mac_free_macaddr(mac_address_t *map) 5188 { 5189 mac_impl_t *mip = map->ma_mip; 5190 5191 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5192 VERIFY3P(mip->mi_addresses, !=, NULL); 5193 5194 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5195 VERIFY3P(map, !=, NULL); 5196 VERIFY3S(map->ma_nusers, ==, 0); 5197 VERIFY3P(map->ma_vlans, ==, NULL); 5198 5199 if (map == mip->mi_addresses) { 5200 mip->mi_addresses = map->ma_next; 5201 } else { 5202 mac_address_t *pre; 5203 5204 pre = mip->mi_addresses; 5205 while (pre->ma_next != map) 5206 pre = pre->ma_next; 5207 pre->ma_next = map->ma_next; 5208 } 5209 5210 kmem_free(map, sizeof (mac_address_t)); 5211 } 5212 5213 static mac_vlan_t * 5214 mac_find_vlan(mac_address_t *map, uint16_t vid) 5215 { 5216 mac_vlan_t *mvp; 5217 5218 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) { 5219 if (mvp->mv_vid == vid) 5220 return (mvp); 5221 } 5222 5223 return (NULL); 5224 } 5225 5226 static mac_vlan_t * 5227 mac_add_vlan(mac_address_t *map, uint16_t vid) 5228 { 5229 mac_vlan_t *mvp; 5230 5231 /* 5232 * We should never add the same {addr, VID} tuple more 5233 * than once, but let's be sure. 5234 */ 5235 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) 5236 VERIFY3U(mvp->mv_vid, !=, vid); 5237 5238 /* Add the VLAN to the head of the VLAN list. */ 5239 mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP); 5240 mvp->mv_vid = vid; 5241 mvp->mv_next = map->ma_vlans; 5242 map->ma_vlans = mvp; 5243 5244 return (mvp); 5245 } 5246 5247 static void 5248 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp) 5249 { 5250 mac_vlan_t *pre; 5251 5252 if (map->ma_vlans == mvp) { 5253 map->ma_vlans = mvp->mv_next; 5254 } else { 5255 pre = map->ma_vlans; 5256 while (pre->mv_next != mvp) { 5257 pre = pre->mv_next; 5258 5259 /* 5260 * We've reached the end of the list without 5261 * finding mvp. 5262 */ 5263 VERIFY3P(pre, !=, NULL); 5264 } 5265 pre->mv_next = mvp->mv_next; 5266 } 5267 5268 kmem_free(mvp, sizeof (mac_vlan_t)); 5269 } 5270 5271 /* 5272 * Create a new mac_address_t if this is the first use of the address 5273 * or add a VID to an existing address. In either case, the 5274 * mac_address_t acts as a list of {addr, VID} tuples where each tuple 5275 * shares the same addr. If group is non-NULL then attempt to program 5276 * the MAC's HW filters for this group. Otherwise, if group is NULL, 5277 * then the MAC has no rings and there is nothing to program. 5278 */ 5279 int 5280 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr, 5281 uint16_t vid, boolean_t use_hw) 5282 { 5283 mac_address_t *map; 5284 mac_vlan_t *mvp; 5285 int err = 0; 5286 boolean_t allocated_map = B_FALSE; 5287 boolean_t hw_mac = B_FALSE; 5288 boolean_t hw_vlan = B_FALSE; 5289 5290 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5291 5292 map = mac_find_macaddr(mip, addr); 5293 5294 /* 5295 * If this is the first use of this MAC address then allocate 5296 * and initialize a new structure. 5297 */ 5298 if (map == NULL) { 5299 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5300 map->ma_len = mip->mi_type->mt_addr_length; 5301 bcopy(addr, map->ma_addr, map->ma_len); 5302 map->ma_nusers = 0; 5303 map->ma_group = group; 5304 map->ma_mip = mip; 5305 map->ma_untagged = B_FALSE; 5306 5307 /* Add the new MAC address to the head of the address list. */ 5308 map->ma_next = mip->mi_addresses; 5309 mip->mi_addresses = map; 5310 5311 allocated_map = B_TRUE; 5312 } 5313 5314 VERIFY(map->ma_group == NULL || map->ma_group == group); 5315 if (map->ma_group == NULL) 5316 map->ma_group = group; 5317 5318 if (vid == VLAN_ID_NONE) { 5319 map->ma_untagged = B_TRUE; 5320 mvp = NULL; 5321 } else { 5322 mvp = mac_add_vlan(map, vid); 5323 } 5324 5325 /* 5326 * Set the VLAN HW filter if: 5327 * 5328 * o the MAC's VLAN HW filtering is enabled, and 5329 * o the address does not currently rely on promisc mode. 5330 * 5331 * This is called even when the client specifies an untagged 5332 * address (VLAN_ID_NONE) because some MAC providers require 5333 * setting additional bits to accept untagged traffic when 5334 * VLAN HW filtering is enabled. 5335 */ 5336 if (MAC_GROUP_HW_VLAN(group) && 5337 map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) { 5338 if ((err = mac_group_addvlan(group, vid)) != 0) 5339 goto bail; 5340 5341 hw_vlan = B_TRUE; 5342 } 5343 5344 VERIFY3S(map->ma_nusers, >=, 0); 5345 map->ma_nusers++; 5346 5347 /* 5348 * If this MAC address already has a HW filter then simply 5349 * increment the counter. 5350 */ 5351 if (map->ma_nusers > 1) 5352 return (0); 5353 5354 /* 5355 * All logic from here on out is executed during initial 5356 * creation only. 5357 */ 5358 VERIFY3S(map->ma_nusers, ==, 1); 5359 5360 /* 5361 * Activate this MAC address by adding it to the reserved group. 5362 */ 5363 if (group != NULL) { 5364 err = mac_group_addmac(group, (const uint8_t *)addr); 5365 5366 /* 5367 * If the driver is out of filters then we can 5368 * continue and use promisc mode. For any other error, 5369 * assume the driver is in a state where we can't 5370 * program the filters or use promisc mode; so we must 5371 * bail. 5372 */ 5373 if (err != 0 && err != ENOSPC) { 5374 map->ma_nusers--; 5375 goto bail; 5376 } 5377 5378 hw_mac = (err == 0); 5379 } 5380 5381 if (hw_mac) { 5382 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5383 return (0); 5384 } 5385 5386 /* 5387 * The MAC address addition failed. If the client requires a 5388 * hardware classified MAC address, fail the operation. This 5389 * feature is only used by sun4v vsw. 5390 */ 5391 if (use_hw && !hw_mac) { 5392 err = ENOSPC; 5393 map->ma_nusers--; 5394 goto bail; 5395 } 5396 5397 /* 5398 * If we reach this point then either the MAC doesn't have 5399 * RINGS capability or we are out of MAC address HW filters. 5400 * In any case we must put the MAC into promiscuous mode. 5401 */ 5402 VERIFY(group == NULL || !hw_mac); 5403 5404 /* 5405 * The one exception is the primary address. A non-RINGS 5406 * driver filters the primary address by default; promisc mode 5407 * is not needed. 5408 */ 5409 if ((group == NULL) && 5410 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 5411 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5412 return (0); 5413 } 5414 5415 /* 5416 * Enable promiscuous mode in order to receive traffic to the 5417 * new MAC address. All existing HW filters still send their 5418 * traffic to their respective group/SRSes. But with promisc 5419 * enabled all unknown traffic is delivered to the default 5420 * group where it is SW classified via mac_rx_classify(). 5421 */ 5422 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 5423 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 5424 return (0); 5425 } 5426 5427 bail: 5428 if (hw_vlan) { 5429 int err2 = mac_group_remvlan(group, vid); 5430 5431 if (err2 != 0) { 5432 cmn_err(CE_WARN, "Failed to remove VLAN %u from group" 5433 " %d on MAC %s: %d.", vid, group->mrg_index, 5434 mip->mi_name, err2); 5435 } 5436 } 5437 5438 if (mvp != NULL) 5439 mac_rem_vlan(map, mvp); 5440 5441 if (allocated_map) 5442 mac_free_macaddr(map); 5443 5444 return (err); 5445 } 5446 5447 int 5448 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid) 5449 { 5450 mac_vlan_t *mvp; 5451 mac_impl_t *mip = map->ma_mip; 5452 mac_group_t *group = map->ma_group; 5453 int err = 0; 5454 5455 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5456 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr)); 5457 5458 if (vid == VLAN_ID_NONE) { 5459 map->ma_untagged = B_FALSE; 5460 mvp = NULL; 5461 } else { 5462 mvp = mac_find_vlan(map, vid); 5463 VERIFY3P(mvp, !=, NULL); 5464 } 5465 5466 if (MAC_GROUP_HW_VLAN(group) && 5467 map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED && 5468 ((err = mac_group_remvlan(group, vid)) != 0)) 5469 return (err); 5470 5471 if (mvp != NULL) 5472 mac_rem_vlan(map, mvp); 5473 5474 /* 5475 * If it's not the last client using this MAC address, only update 5476 * the MAC clients count. 5477 */ 5478 map->ma_nusers--; 5479 if (map->ma_nusers > 0) 5480 return (0); 5481 5482 /* 5483 * The MAC address is no longer used by any MAC client, so 5484 * remove it from its associated group. Turn off promiscuous 5485 * mode if this is the last address relying on it. 5486 */ 5487 switch (map->ma_type) { 5488 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5489 /* 5490 * Don't free the preset primary address for drivers that 5491 * don't advertise RINGS capability. 5492 */ 5493 if (group == NULL) 5494 return (0); 5495 5496 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) { 5497 if (vid == VLAN_ID_NONE) 5498 map->ma_untagged = B_TRUE; 5499 else 5500 (void) mac_add_vlan(map, vid); 5501 5502 /* 5503 * If we fail to remove the MAC address HW 5504 * filter but then also fail to re-add the 5505 * VLAN HW filter then we are in a busted 5506 * state and should just crash. 5507 */ 5508 if (MAC_GROUP_HW_VLAN(group)) { 5509 int err2; 5510 5511 err2 = mac_group_addvlan(group, vid); 5512 if (err2 != 0) { 5513 cmn_err(CE_WARN, "Failed to readd VLAN" 5514 " %u to group %d on MAC %s: %d.", 5515 vid, group->mrg_index, mip->mi_name, 5516 err2); 5517 } 5518 } 5519 5520 return (err); 5521 } 5522 5523 map->ma_group = NULL; 5524 break; 5525 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5526 err = i_mac_promisc_set(mip, B_FALSE); 5527 break; 5528 default: 5529 panic("Unexpected ma_type 0x%x, file: %s, line %d", 5530 map->ma_type, __FILE__, __LINE__); 5531 } 5532 5533 if (err != 0) 5534 return (err); 5535 5536 /* 5537 * We created MAC address for the primary one at registration, so we 5538 * won't free it here. mac_fini_macaddr() will take care of it. 5539 */ 5540 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 5541 mac_free_macaddr(map); 5542 5543 return (0); 5544 } 5545 5546 /* 5547 * Update an existing MAC address. The caller need to make sure that the new 5548 * value has not been used. 5549 */ 5550 int 5551 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 5552 { 5553 mac_impl_t *mip = map->ma_mip; 5554 int err = 0; 5555 5556 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5557 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5558 5559 switch (map->ma_type) { 5560 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 5561 /* 5562 * Update the primary address for drivers that are not 5563 * RINGS capable. 5564 */ 5565 if (mip->mi_rx_groups == NULL) { 5566 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 5567 mac_addr); 5568 if (err != 0) 5569 return (err); 5570 break; 5571 } 5572 5573 /* 5574 * If this MAC address is not currently in use, 5575 * simply break out and update the value. 5576 */ 5577 if (map->ma_nusers == 0) 5578 break; 5579 5580 /* 5581 * Need to replace the MAC address associated with a group. 5582 */ 5583 err = mac_group_remmac(map->ma_group, map->ma_addr); 5584 if (err != 0) 5585 return (err); 5586 5587 err = mac_group_addmac(map->ma_group, mac_addr); 5588 5589 /* 5590 * Failure hints hardware error. The MAC layer needs to 5591 * have error notification facility to handle this. 5592 * Now, simply try to restore the value. 5593 */ 5594 if (err != 0) 5595 (void) mac_group_addmac(map->ma_group, map->ma_addr); 5596 5597 break; 5598 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 5599 /* 5600 * Need to do nothing more if in promiscuous mode. 5601 */ 5602 break; 5603 default: 5604 ASSERT(B_FALSE); 5605 } 5606 5607 /* 5608 * Successfully replaced the MAC address. 5609 */ 5610 if (err == 0) 5611 bcopy(mac_addr, map->ma_addr, map->ma_len); 5612 5613 return (err); 5614 } 5615 5616 /* 5617 * Freshen the MAC address with new value. Its caller must have updated the 5618 * hardware MAC address before calling this function. 5619 * This funcitons is supposed to be used to handle the MAC address change 5620 * notification from underlying drivers. 5621 */ 5622 void 5623 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 5624 { 5625 mac_impl_t *mip = map->ma_mip; 5626 5627 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5628 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 5629 5630 /* 5631 * Freshen the MAC address with new value. 5632 */ 5633 bcopy(mac_addr, map->ma_addr, map->ma_len); 5634 bcopy(mac_addr, mip->mi_addr, map->ma_len); 5635 5636 /* 5637 * Update all MAC clients that share this MAC address. 5638 */ 5639 mac_unicast_update_clients(mip, map); 5640 } 5641 5642 /* 5643 * Set up the primary MAC address. 5644 */ 5645 void 5646 mac_init_macaddr(mac_impl_t *mip) 5647 { 5648 mac_address_t *map; 5649 5650 /* 5651 * The reference count is initialized to zero, until it's really 5652 * activated. 5653 */ 5654 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 5655 map->ma_len = mip->mi_type->mt_addr_length; 5656 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 5657 5658 /* 5659 * If driver advertises RINGS capability, it shouldn't have initialized 5660 * its primary MAC address. For other drivers, including VNIC, the 5661 * primary address must work after registration. 5662 */ 5663 if (mip->mi_rx_groups == NULL) 5664 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 5665 5666 map->ma_mip = mip; 5667 5668 mip->mi_addresses = map; 5669 } 5670 5671 /* 5672 * Clean up the primary MAC address. Note, only one primary MAC address 5673 * is allowed. All other MAC addresses must have been freed appropriately. 5674 */ 5675 void 5676 mac_fini_macaddr(mac_impl_t *mip) 5677 { 5678 mac_address_t *map = mip->mi_addresses; 5679 5680 if (map == NULL) 5681 return; 5682 5683 /* 5684 * If mi_addresses is initialized, there should be exactly one 5685 * entry left on the list with no users. 5686 */ 5687 VERIFY3S(map->ma_nusers, ==, 0); 5688 VERIFY3P(map->ma_next, ==, NULL); 5689 VERIFY3P(map->ma_vlans, ==, NULL); 5690 5691 kmem_free(map, sizeof (mac_address_t)); 5692 mip->mi_addresses = NULL; 5693 } 5694 5695 /* 5696 * Logging related functions. 5697 * 5698 * Note that Kernel statistics have been extended to maintain fine 5699 * granularity of statistics viz. hardware lane, software lane, fanout 5700 * stats etc. However, extended accounting continues to support only 5701 * aggregate statistics like before. 5702 */ 5703 5704 /* Write the flow description to a netinfo_t record */ 5705 static netinfo_t * 5706 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 5707 { 5708 netinfo_t *ninfo; 5709 net_desc_t *ndesc; 5710 flow_desc_t *fdesc; 5711 mac_resource_props_t *mrp; 5712 5713 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5714 if (ninfo == NULL) 5715 return (NULL); 5716 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5717 if (ndesc == NULL) { 5718 kmem_free(ninfo, sizeof (netinfo_t)); 5719 return (NULL); 5720 } 5721 5722 /* 5723 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5724 * Updates to the fe_flow_desc are done under the fe_lock 5725 */ 5726 mutex_enter(&flent->fe_lock); 5727 fdesc = &flent->fe_flow_desc; 5728 mrp = &flent->fe_resource_props; 5729 5730 ndesc->nd_name = flent->fe_flow_name; 5731 ndesc->nd_devname = mcip->mci_name; 5732 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5733 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL); 5734 ndesc->nd_sap = htonl(fdesc->fd_sap); 5735 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 5736 ndesc->nd_bw_limit = mrp->mrp_maxbw; 5737 if (ndesc->nd_isv4) { 5738 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 5739 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 5740 } else { 5741 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN); 5742 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN); 5743 } 5744 ndesc->nd_sport = htons(fdesc->fd_local_port); 5745 ndesc->nd_dport = htons(fdesc->fd_remote_port); 5746 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol; 5747 mutex_exit(&flent->fe_lock); 5748 5749 ninfo->ni_record = ndesc; 5750 ninfo->ni_size = sizeof (net_desc_t); 5751 ninfo->ni_type = EX_NET_FLDESC_REC; 5752 5753 return (ninfo); 5754 } 5755 5756 /* Write the flow statistics to a netinfo_t record */ 5757 static netinfo_t * 5758 mac_write_flow_stats(flow_entry_t *flent) 5759 { 5760 netinfo_t *ninfo; 5761 net_stat_t *nstat; 5762 mac_soft_ring_set_t *mac_srs; 5763 mac_rx_stats_t *mac_rx_stat; 5764 mac_tx_stats_t *mac_tx_stat; 5765 int i; 5766 5767 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5768 if (ninfo == NULL) 5769 return (NULL); 5770 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5771 if (nstat == NULL) { 5772 kmem_free(ninfo, sizeof (netinfo_t)); 5773 return (NULL); 5774 } 5775 5776 nstat->ns_name = flent->fe_flow_name; 5777 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5778 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5779 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5780 5781 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5782 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes; 5783 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5784 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5785 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5786 } 5787 5788 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 5789 if (mac_srs != NULL) { 5790 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5791 5792 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5793 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5794 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5795 } 5796 5797 ninfo->ni_record = nstat; 5798 ninfo->ni_size = sizeof (net_stat_t); 5799 ninfo->ni_type = EX_NET_FLSTAT_REC; 5800 5801 return (ninfo); 5802 } 5803 5804 /* Write the link description to a netinfo_t record */ 5805 static netinfo_t * 5806 mac_write_link_desc(mac_client_impl_t *mcip) 5807 { 5808 netinfo_t *ninfo; 5809 net_desc_t *ndesc; 5810 flow_entry_t *flent = mcip->mci_flent; 5811 5812 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5813 if (ninfo == NULL) 5814 return (NULL); 5815 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP); 5816 if (ndesc == NULL) { 5817 kmem_free(ninfo, sizeof (netinfo_t)); 5818 return (NULL); 5819 } 5820 5821 ndesc->nd_name = mcip->mci_name; 5822 ndesc->nd_devname = mcip->mci_name; 5823 ndesc->nd_isv4 = B_TRUE; 5824 /* 5825 * Grab the fe_lock to see a self-consistent fe_flow_desc. 5826 * Updates to the fe_flow_desc are done under the fe_lock 5827 * after removing the flent from the flow table. 5828 */ 5829 mutex_enter(&flent->fe_lock); 5830 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL); 5831 mutex_exit(&flent->fe_lock); 5832 5833 ninfo->ni_record = ndesc; 5834 ninfo->ni_size = sizeof (net_desc_t); 5835 ninfo->ni_type = EX_NET_LNDESC_REC; 5836 5837 return (ninfo); 5838 } 5839 5840 /* Write the link statistics to a netinfo_t record */ 5841 static netinfo_t * 5842 mac_write_link_stats(mac_client_impl_t *mcip) 5843 { 5844 netinfo_t *ninfo; 5845 net_stat_t *nstat; 5846 flow_entry_t *flent; 5847 mac_soft_ring_set_t *mac_srs; 5848 mac_rx_stats_t *mac_rx_stat; 5849 mac_tx_stats_t *mac_tx_stat; 5850 int i; 5851 5852 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP); 5853 if (ninfo == NULL) 5854 return (NULL); 5855 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP); 5856 if (nstat == NULL) { 5857 kmem_free(ninfo, sizeof (netinfo_t)); 5858 return (NULL); 5859 } 5860 5861 nstat->ns_name = mcip->mci_name; 5862 flent = mcip->mci_flent; 5863 if (flent != NULL) { 5864 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 5865 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 5866 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 5867 5868 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes + 5869 mac_rx_stat->mrs_pollbytes + 5870 mac_rx_stat->mrs_lclbytes; 5871 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt + 5872 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 5873 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors; 5874 } 5875 } 5876 5877 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs); 5878 if (mac_srs != NULL) { 5879 mac_tx_stat = &mac_srs->srs_tx.st_stat; 5880 5881 nstat->ns_obytes = mac_tx_stat->mts_obytes; 5882 nstat->ns_opackets = mac_tx_stat->mts_opackets; 5883 nstat->ns_oerrors = mac_tx_stat->mts_oerrors; 5884 } 5885 5886 ninfo->ni_record = nstat; 5887 ninfo->ni_size = sizeof (net_stat_t); 5888 ninfo->ni_type = EX_NET_LNSTAT_REC; 5889 5890 return (ninfo); 5891 } 5892 5893 typedef struct i_mac_log_state_s { 5894 boolean_t mi_last; 5895 int mi_fenable; 5896 int mi_lenable; 5897 list_t *mi_list; 5898 } i_mac_log_state_t; 5899 5900 /* 5901 * For a given flow, if the description has not been logged before, do it now. 5902 * If it is a VNIC, then we have collected information about it from the MAC 5903 * table, so skip it. 5904 * 5905 * Called through mac_flow_walk_nolock() 5906 * 5907 * Return 0 if successful. 5908 */ 5909 static int 5910 mac_log_flowinfo(flow_entry_t *flent, void *arg) 5911 { 5912 mac_client_impl_t *mcip = flent->fe_mcip; 5913 i_mac_log_state_t *lstate = arg; 5914 netinfo_t *ninfo; 5915 5916 if (mcip == NULL) 5917 return (0); 5918 5919 /* 5920 * If the name starts with "vnic", and fe_user_generated is true (to 5921 * exclude the mcast and active flow entries created implicitly for 5922 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 5923 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 5924 */ 5925 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 5926 (flent->fe_type & FLOW_USER) != 0) { 5927 return (0); 5928 } 5929 5930 if (!flent->fe_desc_logged) { 5931 /* 5932 * We don't return error because we want to continue the 5933 * walk in case this is the last walk which means we 5934 * need to reset fe_desc_logged in all the flows. 5935 */ 5936 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL) 5937 return (0); 5938 list_insert_tail(lstate->mi_list, ninfo); 5939 flent->fe_desc_logged = B_TRUE; 5940 } 5941 5942 /* 5943 * Regardless of the error, we want to proceed in case we have to 5944 * reset fe_desc_logged. 5945 */ 5946 ninfo = mac_write_flow_stats(flent); 5947 if (ninfo == NULL) 5948 return (-1); 5949 5950 list_insert_tail(lstate->mi_list, ninfo); 5951 5952 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 5953 flent->fe_desc_logged = B_FALSE; 5954 5955 return (0); 5956 } 5957 5958 /* 5959 * Log the description for each mac client of this mac_impl_t, if it 5960 * hasn't already been done. Additionally, log statistics for the link as 5961 * well. Walk the flow table and log information for each flow as well. 5962 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 5963 * also fe_desc_logged, if flow logging is on) since we want to log the 5964 * description if and when logging is restarted. 5965 * 5966 * Return 0 upon success or -1 upon failure 5967 */ 5968 static int 5969 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate) 5970 { 5971 mac_client_impl_t *mcip; 5972 netinfo_t *ninfo; 5973 5974 i_mac_perim_enter(mip); 5975 /* 5976 * Only walk the client list for NIC and etherstub 5977 */ 5978 if ((mip->mi_state_flags & MIS_DISABLED) || 5979 ((mip->mi_state_flags & MIS_IS_VNIC) && 5980 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) { 5981 i_mac_perim_exit(mip); 5982 return (0); 5983 } 5984 5985 for (mcip = mip->mi_clients_list; mcip != NULL; 5986 mcip = mcip->mci_client_next) { 5987 if (!MCIP_DATAPATH_SETUP(mcip)) 5988 continue; 5989 if (lstate->mi_lenable) { 5990 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 5991 ninfo = mac_write_link_desc(mcip); 5992 if (ninfo == NULL) { 5993 /* 5994 * We can't terminate it if this is the last 5995 * walk, else there might be some links with 5996 * mi_desc_logged set to true, which means 5997 * their description won't be logged the next 5998 * time logging is started (similarly for the 5999 * flows within such links). We can continue 6000 * without walking the flow table (i.e. to 6001 * set fe_desc_logged to false) because we 6002 * won't have written any flow stuff for this 6003 * link as we haven't logged the link itself. 6004 */ 6005 i_mac_perim_exit(mip); 6006 if (lstate->mi_last) 6007 return (0); 6008 else 6009 return (-1); 6010 } 6011 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 6012 list_insert_tail(lstate->mi_list, ninfo); 6013 } 6014 } 6015 6016 ninfo = mac_write_link_stats(mcip); 6017 if (ninfo == NULL && !lstate->mi_last) { 6018 i_mac_perim_exit(mip); 6019 return (-1); 6020 } 6021 list_insert_tail(lstate->mi_list, ninfo); 6022 6023 if (lstate->mi_last) 6024 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 6025 6026 if (lstate->mi_fenable) { 6027 if (mcip->mci_subflow_tab != NULL) { 6028 (void) mac_flow_walk_nolock( 6029 mcip->mci_subflow_tab, mac_log_flowinfo, 6030 lstate); 6031 } 6032 } 6033 } 6034 i_mac_perim_exit(mip); 6035 return (0); 6036 } 6037 6038 /* 6039 * modhash walker function to add a mac_impl_t to a list 6040 */ 6041 /*ARGSUSED*/ 6042 static uint_t 6043 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 6044 { 6045 list_t *list = (list_t *)arg; 6046 mac_impl_t *mip = (mac_impl_t *)val; 6047 6048 if ((mip->mi_state_flags & MIS_DISABLED) == 0) { 6049 list_insert_tail(list, mip); 6050 mip->mi_ref++; 6051 } 6052 6053 return (MH_WALK_CONTINUE); 6054 } 6055 6056 void 6057 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate) 6058 { 6059 list_t mac_impl_list; 6060 mac_impl_t *mip; 6061 netinfo_t *ninfo; 6062 6063 /* Create list of mac_impls */ 6064 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock)); 6065 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t, 6066 mi_node)); 6067 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list); 6068 rw_exit(&i_mac_impl_lock); 6069 6070 /* Create log entries for each mac_impl */ 6071 for (mip = list_head(&mac_impl_list); mip != NULL; 6072 mip = list_next(&mac_impl_list, mip)) { 6073 if (i_mac_impl_log(mip, lstate) != 0) 6074 continue; 6075 } 6076 6077 /* Remove elements and destroy list of mac_impls */ 6078 rw_enter(&i_mac_impl_lock, RW_WRITER); 6079 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) { 6080 mip->mi_ref--; 6081 } 6082 rw_exit(&i_mac_impl_lock); 6083 list_destroy(&mac_impl_list); 6084 6085 /* 6086 * Write log entries to files outside of locks, free associated 6087 * structures, and remove entries from the list. 6088 */ 6089 while ((ninfo = list_head(net_log_list)) != NULL) { 6090 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type); 6091 list_remove(net_log_list, ninfo); 6092 kmem_free(ninfo->ni_record, ninfo->ni_size); 6093 kmem_free(ninfo, sizeof (*ninfo)); 6094 } 6095 list_destroy(net_log_list); 6096 } 6097 6098 /* 6099 * The timer thread that runs every mac_logging_interval seconds and logs 6100 * link and/or flow information. 6101 */ 6102 /* ARGSUSED */ 6103 void 6104 mac_log_linkinfo(void *arg) 6105 { 6106 i_mac_log_state_t lstate; 6107 list_t net_log_list; 6108 6109 list_create(&net_log_list, sizeof (netinfo_t), 6110 offsetof(netinfo_t, ni_link)); 6111 6112 rw_enter(&i_mac_impl_lock, RW_READER); 6113 if (!mac_flow_log_enable && !mac_link_log_enable) { 6114 rw_exit(&i_mac_impl_lock); 6115 return; 6116 } 6117 lstate.mi_fenable = mac_flow_log_enable; 6118 lstate.mi_lenable = mac_link_log_enable; 6119 lstate.mi_last = B_FALSE; 6120 lstate.mi_list = &net_log_list; 6121 6122 /* Write log entries for each mac_impl in the list */ 6123 i_mac_log_info(&net_log_list, &lstate); 6124 6125 if (mac_flow_log_enable || mac_link_log_enable) { 6126 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 6127 SEC_TO_TICK(mac_logging_interval)); 6128 } 6129 } 6130 6131 typedef struct i_mac_fastpath_state_s { 6132 boolean_t mf_disable; 6133 int mf_err; 6134 } i_mac_fastpath_state_t; 6135 6136 /* modhash walker function to enable or disable fastpath */ 6137 /*ARGSUSED*/ 6138 static uint_t 6139 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val, 6140 void *arg) 6141 { 6142 i_mac_fastpath_state_t *state = arg; 6143 mac_handle_t mh = (mac_handle_t)val; 6144 6145 if (state->mf_disable) 6146 state->mf_err = mac_fastpath_disable(mh); 6147 else 6148 mac_fastpath_enable(mh); 6149 6150 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 6151 } 6152 6153 /* 6154 * Start the logging timer. 6155 */ 6156 int 6157 mac_start_logusage(mac_logtype_t type, uint_t interval) 6158 { 6159 i_mac_fastpath_state_t dstate = {B_TRUE, 0}; 6160 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6161 int err; 6162 6163 rw_enter(&i_mac_impl_lock, RW_WRITER); 6164 switch (type) { 6165 case MAC_LOGTYPE_FLOW: 6166 if (mac_flow_log_enable) { 6167 rw_exit(&i_mac_impl_lock); 6168 return (0); 6169 } 6170 /* FALLTHRU */ 6171 case MAC_LOGTYPE_LINK: 6172 if (mac_link_log_enable) { 6173 rw_exit(&i_mac_impl_lock); 6174 return (0); 6175 } 6176 break; 6177 default: 6178 ASSERT(0); 6179 } 6180 6181 /* Disable fastpath */ 6182 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate); 6183 if ((err = dstate.mf_err) != 0) { 6184 /* Reenable fastpath */ 6185 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6186 rw_exit(&i_mac_impl_lock); 6187 return (err); 6188 } 6189 6190 switch (type) { 6191 case MAC_LOGTYPE_FLOW: 6192 mac_flow_log_enable = B_TRUE; 6193 /* FALLTHRU */ 6194 case MAC_LOGTYPE_LINK: 6195 mac_link_log_enable = B_TRUE; 6196 break; 6197 } 6198 6199 mac_logging_interval = interval; 6200 rw_exit(&i_mac_impl_lock); 6201 mac_log_linkinfo(NULL); 6202 return (0); 6203 } 6204 6205 /* 6206 * Stop the logging timer if both link and flow logging are turned off. 6207 */ 6208 void 6209 mac_stop_logusage(mac_logtype_t type) 6210 { 6211 i_mac_log_state_t lstate; 6212 i_mac_fastpath_state_t estate = {B_FALSE, 0}; 6213 list_t net_log_list; 6214 6215 list_create(&net_log_list, sizeof (netinfo_t), 6216 offsetof(netinfo_t, ni_link)); 6217 6218 rw_enter(&i_mac_impl_lock, RW_WRITER); 6219 6220 lstate.mi_fenable = mac_flow_log_enable; 6221 lstate.mi_lenable = mac_link_log_enable; 6222 lstate.mi_list = &net_log_list; 6223 6224 /* Last walk */ 6225 lstate.mi_last = B_TRUE; 6226 6227 switch (type) { 6228 case MAC_LOGTYPE_FLOW: 6229 if (lstate.mi_fenable) { 6230 ASSERT(mac_link_log_enable); 6231 mac_flow_log_enable = B_FALSE; 6232 mac_link_log_enable = B_FALSE; 6233 break; 6234 } 6235 /* FALLTHRU */ 6236 case MAC_LOGTYPE_LINK: 6237 if (!lstate.mi_lenable || mac_flow_log_enable) { 6238 rw_exit(&i_mac_impl_lock); 6239 return; 6240 } 6241 mac_link_log_enable = B_FALSE; 6242 break; 6243 default: 6244 ASSERT(0); 6245 } 6246 6247 /* Reenable fastpath */ 6248 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate); 6249 6250 (void) untimeout(mac_logging_timer); 6251 mac_logging_timer = NULL; 6252 6253 /* Write log entries for each mac_impl in the list */ 6254 i_mac_log_info(&net_log_list, &lstate); 6255 } 6256 6257 /* 6258 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 6259 */ 6260 void 6261 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 6262 { 6263 pri_t pri; 6264 int count; 6265 mac_soft_ring_set_t *mac_srs; 6266 6267 if (flent->fe_rx_srs_cnt <= 0) 6268 return; 6269 6270 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 6271 SRST_FLOW) { 6272 pri = FLOW_PRIORITY(mcip->mci_min_pri, 6273 mcip->mci_max_pri, 6274 flent->fe_resource_props.mrp_priority); 6275 } else { 6276 pri = mcip->mci_max_pri; 6277 } 6278 6279 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 6280 mac_srs = flent->fe_rx_srs[count]; 6281 mac_update_srs_priority(mac_srs, pri); 6282 } 6283 /* 6284 * If we have a Tx SRS, we need to modify all the threads associated 6285 * with it. 6286 */ 6287 if (flent->fe_tx_srs != NULL) 6288 mac_update_srs_priority(flent->fe_tx_srs, pri); 6289 } 6290 6291 /* 6292 * RX and TX rings are reserved according to different semantics depending 6293 * on the requests from the MAC clients and type of rings: 6294 * 6295 * On the Tx side, by default we reserve individual rings, independently from 6296 * the groups. 6297 * 6298 * On the Rx side, the reservation is at the granularity of the group 6299 * of rings, and used for v12n level 1 only. It has a special case for the 6300 * primary client. 6301 * 6302 * If a share is allocated to a MAC client, we allocate a TX group and an 6303 * RX group to the client, and assign TX rings and RX rings to these 6304 * groups according to information gathered from the driver through 6305 * the share capability. 6306 * 6307 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 6308 * to allocate individual rings out of a group and program the hw classifier 6309 * based on IP address or higher level criteria. 6310 */ 6311 6312 /* 6313 * mac_reserve_tx_ring() 6314 * Reserve a unused ring by marking it with MR_INUSE state. 6315 * As reserved, the ring is ready to function. 6316 * 6317 * Notes for Hybrid I/O: 6318 * 6319 * If a specific ring is needed, it is specified through the desired_ring 6320 * argument. Otherwise that argument is set to NULL. 6321 * If the desired ring was previous allocated to another client, this 6322 * function swaps it with a new ring from the group of unassigned rings. 6323 */ 6324 mac_ring_t * 6325 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 6326 { 6327 mac_group_t *group; 6328 mac_grp_client_t *mgcp; 6329 mac_client_impl_t *mcip; 6330 mac_soft_ring_set_t *srs; 6331 6332 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6333 6334 /* 6335 * Find an available ring and start it before changing its status. 6336 * The unassigned rings are at the end of the mi_tx_groups 6337 * array. 6338 */ 6339 group = MAC_DEFAULT_TX_GROUP(mip); 6340 6341 /* Can't take the default ring out of the default group */ 6342 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring); 6343 6344 if (desired_ring->mr_state == MR_FREE) { 6345 ASSERT(MAC_GROUP_NO_CLIENT(group)); 6346 if (mac_start_ring(desired_ring) != 0) 6347 return (NULL); 6348 return (desired_ring); 6349 } 6350 /* 6351 * There are clients using this ring, so let's move the clients 6352 * away from using this ring. 6353 */ 6354 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6355 mcip = mgcp->mgc_client; 6356 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6357 srs = MCIP_TX_SRS(mcip); 6358 ASSERT(mac_tx_srs_ring_present(srs, desired_ring)); 6359 mac_tx_invoke_callbacks(mcip, 6360 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs, 6361 desired_ring)); 6362 mac_tx_srs_del_ring(srs, desired_ring); 6363 mac_tx_client_restart((mac_client_handle_t)mcip); 6364 } 6365 return (desired_ring); 6366 } 6367 6368 /* 6369 * For a non-default group with multiple clients, return the primary client. 6370 */ 6371 static mac_client_impl_t * 6372 mac_get_grp_primary(mac_group_t *grp) 6373 { 6374 mac_grp_client_t *mgcp = grp->mrg_clients; 6375 mac_client_impl_t *mcip; 6376 6377 while (mgcp != NULL) { 6378 mcip = mgcp->mgc_client; 6379 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) 6380 return (mcip); 6381 mgcp = mgcp->mgc_next; 6382 } 6383 return (NULL); 6384 } 6385 6386 /* 6387 * Hybrid I/O specifies the ring that should be given to a share. 6388 * If the ring is already used by clients, then we need to release 6389 * the ring back to the default group so that we can give it to 6390 * the share. This means the clients using this ring now get a 6391 * replacement ring. If there aren't any replacement rings, this 6392 * function returns a failure. 6393 */ 6394 static int 6395 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type, 6396 mac_ring_t *ring, mac_ring_t **rings, int nrings) 6397 { 6398 mac_group_t *group = (mac_group_t *)ring->mr_gh; 6399 mac_resource_props_t *mrp; 6400 mac_client_impl_t *mcip; 6401 mac_group_t *defgrp; 6402 mac_ring_t *tring; 6403 mac_group_t *tgrp; 6404 int i; 6405 int j; 6406 6407 mcip = MAC_GROUP_ONLY_CLIENT(group); 6408 if (mcip == NULL) 6409 mcip = mac_get_grp_primary(group); 6410 ASSERT(mcip != NULL); 6411 ASSERT(mcip->mci_share == 0); 6412 6413 mrp = MCIP_RESOURCE_PROPS(mcip); 6414 if (ring_type == MAC_RING_TYPE_RX) { 6415 defgrp = mip->mi_rx_donor_grp; 6416 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) { 6417 /* Need to put this mac client in the default group */ 6418 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 6419 return (ENOSPC); 6420 } else { 6421 /* 6422 * Switch this ring with some other ring from 6423 * the default group. 6424 */ 6425 for (tring = defgrp->mrg_rings; tring != NULL; 6426 tring = tring->mr_next) { 6427 if (tring->mr_index == 0) 6428 continue; 6429 for (j = 0; j < nrings; j++) { 6430 if (rings[j] == tring) 6431 break; 6432 } 6433 if (j >= nrings) 6434 break; 6435 } 6436 if (tring == NULL) 6437 return (ENOSPC); 6438 if (mac_group_mov_ring(mip, group, tring) != 0) 6439 return (ENOSPC); 6440 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6441 (void) mac_group_mov_ring(mip, defgrp, tring); 6442 return (ENOSPC); 6443 } 6444 } 6445 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6446 return (0); 6447 } 6448 6449 defgrp = MAC_DEFAULT_TX_GROUP(mip); 6450 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6451 /* 6452 * See if we can get a spare ring to replace the default 6453 * ring. 6454 */ 6455 if (defgrp->mrg_cur_count == 1) { 6456 /* 6457 * Need to get a ring from another client, see if 6458 * there are any clients that can be moved to 6459 * the default group, thereby freeing some rings. 6460 */ 6461 for (i = 0; i < mip->mi_tx_group_count; i++) { 6462 tgrp = &mip->mi_tx_groups[i]; 6463 if (tgrp->mrg_state == 6464 MAC_GROUP_STATE_REGISTERED) { 6465 continue; 6466 } 6467 mcip = MAC_GROUP_ONLY_CLIENT(tgrp); 6468 if (mcip == NULL) 6469 mcip = mac_get_grp_primary(tgrp); 6470 ASSERT(mcip != NULL); 6471 mrp = MCIP_RESOURCE_PROPS(mcip); 6472 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6473 ASSERT(tgrp->mrg_cur_count == 1); 6474 /* 6475 * If this ring is part of the 6476 * rings asked by the share we cannot 6477 * use it as the default ring. 6478 */ 6479 for (j = 0; j < nrings; j++) { 6480 if (rings[j] == tgrp->mrg_rings) 6481 break; 6482 } 6483 if (j < nrings) 6484 continue; 6485 mac_tx_client_quiesce( 6486 (mac_client_handle_t)mcip); 6487 mac_tx_switch_group(mcip, tgrp, 6488 defgrp); 6489 mac_tx_client_restart( 6490 (mac_client_handle_t)mcip); 6491 break; 6492 } 6493 } 6494 /* 6495 * All the rings are reserved, can't give up the 6496 * default ring. 6497 */ 6498 if (defgrp->mrg_cur_count <= 1) 6499 return (ENOSPC); 6500 } 6501 /* 6502 * Swap the default ring with another. 6503 */ 6504 for (tring = defgrp->mrg_rings; tring != NULL; 6505 tring = tring->mr_next) { 6506 /* 6507 * If this ring is part of the rings asked by the 6508 * share we cannot use it as the default ring. 6509 */ 6510 for (j = 0; j < nrings; j++) { 6511 if (rings[j] == tring) 6512 break; 6513 } 6514 if (j >= nrings) 6515 break; 6516 } 6517 ASSERT(tring != NULL); 6518 mip->mi_default_tx_ring = (mac_ring_handle_t)tring; 6519 return (0); 6520 } 6521 /* 6522 * The Tx ring is with a group reserved by a MAC client. See if 6523 * we can swap it. 6524 */ 6525 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 6526 mcip = MAC_GROUP_ONLY_CLIENT(group); 6527 if (mcip == NULL) 6528 mcip = mac_get_grp_primary(group); 6529 ASSERT(mcip != NULL); 6530 mrp = MCIP_RESOURCE_PROPS(mcip); 6531 mac_tx_client_quiesce((mac_client_handle_t)mcip); 6532 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) { 6533 ASSERT(group->mrg_cur_count == 1); 6534 /* Put this mac client in the default group */ 6535 mac_tx_switch_group(mcip, group, defgrp); 6536 } else { 6537 /* 6538 * Switch this ring with some other ring from 6539 * the default group. 6540 */ 6541 for (tring = defgrp->mrg_rings; tring != NULL; 6542 tring = tring->mr_next) { 6543 if (tring == (mac_ring_t *)mip->mi_default_tx_ring) 6544 continue; 6545 /* 6546 * If this ring is part of the rings asked by the 6547 * share we cannot use it for swapping. 6548 */ 6549 for (j = 0; j < nrings; j++) { 6550 if (rings[j] == tring) 6551 break; 6552 } 6553 if (j >= nrings) 6554 break; 6555 } 6556 if (tring == NULL) { 6557 mac_tx_client_restart((mac_client_handle_t)mcip); 6558 return (ENOSPC); 6559 } 6560 if (mac_group_mov_ring(mip, group, tring) != 0) { 6561 mac_tx_client_restart((mac_client_handle_t)mcip); 6562 return (ENOSPC); 6563 } 6564 if (mac_group_mov_ring(mip, defgrp, ring) != 0) { 6565 (void) mac_group_mov_ring(mip, defgrp, tring); 6566 mac_tx_client_restart((mac_client_handle_t)mcip); 6567 return (ENOSPC); 6568 } 6569 } 6570 mac_tx_client_restart((mac_client_handle_t)mcip); 6571 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp); 6572 return (0); 6573 } 6574 6575 /* 6576 * Populate a zero-ring group with rings. If the share is non-NULL, 6577 * the rings are chosen according to that share. 6578 * Invoked after allocating a new RX or TX group through 6579 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 6580 * Returns zero on success, an errno otherwise. 6581 */ 6582 int 6583 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 6584 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share, 6585 uint32_t ringcnt) 6586 { 6587 mac_ring_t **rings, *ring; 6588 uint_t nrings; 6589 int rv = 0, i = 0, j; 6590 6591 ASSERT((ring_type == MAC_RING_TYPE_RX && 6592 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) || 6593 (ring_type == MAC_RING_TYPE_TX && 6594 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)); 6595 6596 /* 6597 * First find the rings to allocate to the group. 6598 */ 6599 if (share != 0) { 6600 /* get rings through ms_squery() */ 6601 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 6602 ASSERT(nrings != 0); 6603 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 6604 KM_SLEEP); 6605 mip->mi_share_capab.ms_squery(share, ring_type, 6606 (mac_ring_handle_t *)rings, &nrings); 6607 for (i = 0; i < nrings; i++) { 6608 /* 6609 * If we have given this ring to a non-default 6610 * group, we need to check if we can get this 6611 * ring. 6612 */ 6613 ring = rings[i]; 6614 if (ring->mr_gh != (mac_group_handle_t)src_group || 6615 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6616 if (mac_reclaim_ring_from_grp(mip, ring_type, 6617 ring, rings, nrings) != 0) { 6618 rv = ENOSPC; 6619 goto bail; 6620 } 6621 } 6622 } 6623 } else { 6624 /* 6625 * Pick one ring from default group. 6626 * 6627 * for now pick the second ring which requires the first ring 6628 * at index 0 to stay in the default group, since it is the 6629 * ring which carries the multicast traffic. 6630 * We need a better way for a driver to indicate this, 6631 * for example a per-ring flag. 6632 */ 6633 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t), 6634 KM_SLEEP); 6635 for (ring = src_group->mrg_rings; ring != NULL; 6636 ring = ring->mr_next) { 6637 if (ring_type == MAC_RING_TYPE_RX && 6638 ring->mr_index == 0) { 6639 continue; 6640 } 6641 if (ring_type == MAC_RING_TYPE_TX && 6642 ring == (mac_ring_t *)mip->mi_default_tx_ring) { 6643 continue; 6644 } 6645 rings[i++] = ring; 6646 if (i == ringcnt) 6647 break; 6648 } 6649 ASSERT(ring != NULL); 6650 nrings = i; 6651 /* Not enough rings as required */ 6652 if (nrings != ringcnt) { 6653 rv = ENOSPC; 6654 goto bail; 6655 } 6656 } 6657 6658 switch (ring_type) { 6659 case MAC_RING_TYPE_RX: 6660 if (src_group->mrg_cur_count - nrings < 1) { 6661 /* we ran out of rings */ 6662 rv = ENOSPC; 6663 goto bail; 6664 } 6665 6666 /* move receive rings to new group */ 6667 for (i = 0; i < nrings; i++) { 6668 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6669 if (rv != 0) { 6670 /* move rings back on failure */ 6671 for (j = 0; j < i; j++) { 6672 (void) mac_group_mov_ring(mip, 6673 src_group, rings[j]); 6674 } 6675 goto bail; 6676 } 6677 } 6678 break; 6679 6680 case MAC_RING_TYPE_TX: { 6681 mac_ring_t *tmp_ring; 6682 6683 /* move the TX rings to the new group */ 6684 for (i = 0; i < nrings; i++) { 6685 /* get the desired ring */ 6686 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 6687 if (tmp_ring == NULL) { 6688 rv = ENOSPC; 6689 goto bail; 6690 } 6691 ASSERT(tmp_ring == rings[i]); 6692 rv = mac_group_mov_ring(mip, new_group, rings[i]); 6693 if (rv != 0) { 6694 /* cleanup on failure */ 6695 for (j = 0; j < i; j++) { 6696 (void) mac_group_mov_ring(mip, 6697 MAC_DEFAULT_TX_GROUP(mip), 6698 rings[j]); 6699 } 6700 goto bail; 6701 } 6702 } 6703 break; 6704 } 6705 } 6706 6707 /* add group to share */ 6708 if (share != 0) 6709 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 6710 6711 bail: 6712 /* free temporary array of rings */ 6713 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 6714 6715 return (rv); 6716 } 6717 6718 void 6719 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 6720 { 6721 mac_grp_client_t *mgcp; 6722 6723 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 6724 if (mgcp->mgc_client == mcip) 6725 break; 6726 } 6727 6728 ASSERT(mgcp == NULL); 6729 6730 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 6731 mgcp->mgc_client = mcip; 6732 mgcp->mgc_next = grp->mrg_clients; 6733 grp->mrg_clients = mgcp; 6734 } 6735 6736 void 6737 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 6738 { 6739 mac_grp_client_t *mgcp, **pprev; 6740 6741 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 6742 pprev = &mgcp->mgc_next, mgcp = *pprev) { 6743 if (mgcp->mgc_client == mcip) 6744 break; 6745 } 6746 6747 ASSERT(mgcp != NULL); 6748 6749 *pprev = mgcp->mgc_next; 6750 kmem_free(mgcp, sizeof (mac_grp_client_t)); 6751 } 6752 6753 /* 6754 * Return true if any client on this group explicitly asked for HW 6755 * rings (of type mask) or have a bound share. 6756 */ 6757 static boolean_t 6758 i_mac_clients_hw(mac_group_t *grp, uint32_t mask) 6759 { 6760 mac_grp_client_t *mgcip; 6761 mac_client_impl_t *mcip; 6762 mac_resource_props_t *mrp; 6763 6764 for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) { 6765 mcip = mgcip->mgc_client; 6766 mrp = MCIP_RESOURCE_PROPS(mcip); 6767 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0) 6768 return (B_TRUE); 6769 } 6770 6771 return (B_FALSE); 6772 } 6773 6774 /* 6775 * Finds an available group and exclusively reserves it for a client. 6776 * The group is chosen to suit the flow's resource controls (bandwidth and 6777 * fanout requirements) and the address type. 6778 * If the requestor is the pimary MAC then return the group with the 6779 * largest number of rings, otherwise the default ring when available. 6780 */ 6781 mac_group_t * 6782 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move) 6783 { 6784 mac_share_handle_t share = mcip->mci_share; 6785 mac_impl_t *mip = mcip->mci_mip; 6786 mac_group_t *grp = NULL; 6787 int i; 6788 int err = 0; 6789 mac_address_t *map; 6790 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 6791 int nrings; 6792 int donor_grp_rcnt; 6793 boolean_t need_exclgrp = B_FALSE; 6794 int need_rings = 0; 6795 mac_group_t *candidate_grp = NULL; 6796 mac_client_impl_t *gclient; 6797 mac_group_t *donorgrp = NULL; 6798 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS; 6799 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 6800 boolean_t isprimary; 6801 6802 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 6803 6804 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 6805 6806 /* 6807 * Check if a group already has this MAC address (case of VLANs) 6808 * unless we are moving this MAC client from one group to another. 6809 */ 6810 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) { 6811 if (map->ma_group != NULL) 6812 return (map->ma_group); 6813 } 6814 6815 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0) 6816 return (NULL); 6817 6818 /* 6819 * If this client is requesting exclusive MAC access then 6820 * return NULL to ensure the client uses the default group. 6821 */ 6822 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) 6823 return (NULL); 6824 6825 /* For dynamic groups default unspecified to 1 */ 6826 if (rxhw && unspec && 6827 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6828 mrp->mrp_nrxrings = 1; 6829 } 6830 6831 /* 6832 * For static grouping we allow only specifying rings=0 and 6833 * unspecified 6834 */ 6835 if (rxhw && mrp->mrp_nrxrings > 0 && 6836 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) { 6837 return (NULL); 6838 } 6839 6840 if (rxhw) { 6841 /* 6842 * We have explicitly asked for a group (with nrxrings, 6843 * if unspec). 6844 */ 6845 if (unspec || mrp->mrp_nrxrings > 0) { 6846 need_exclgrp = B_TRUE; 6847 need_rings = mrp->mrp_nrxrings; 6848 } else if (mrp->mrp_nrxrings == 0) { 6849 /* 6850 * We have asked for a software group. 6851 */ 6852 return (NULL); 6853 } 6854 } else if (isprimary && mip->mi_nactiveclients == 1 && 6855 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 6856 /* 6857 * If the primary is the only active client on this 6858 * mip and we have not asked for any rings, we give 6859 * it the default group so that the primary gets to 6860 * use all the rings. 6861 */ 6862 return (NULL); 6863 } 6864 6865 /* The group that can donate rings */ 6866 donorgrp = mip->mi_rx_donor_grp; 6867 6868 /* 6869 * The number of rings that the default group can donate. 6870 * We need to leave at least one ring. 6871 */ 6872 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 6873 6874 /* 6875 * Try to exclusively reserve a RX group. 6876 * 6877 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary 6878 * client), try to reserve the a non-default RX group and give 6879 * it all the rings from the donor group, except the default ring 6880 * 6881 * For flows requiring HW_RING (unicast flow of other clients), try 6882 * to reserve non-default RX group with the specified number of 6883 * rings, if available. 6884 * 6885 * For flows that have not asked for software or hardware ring, 6886 * try to reserve a non-default group with 1 ring, if available. 6887 */ 6888 for (i = 1; i < mip->mi_rx_group_count; i++) { 6889 grp = &mip->mi_rx_groups[i]; 6890 6891 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 6892 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 6893 6894 /* 6895 * Check if this group could be a candidate group for 6896 * eviction if we need a group for this MAC client, 6897 * but there aren't any. A candidate group is one 6898 * that didn't ask for an exclusive group, but got 6899 * one and it has enough rings (combined with what 6900 * the donor group can donate) for the new MAC 6901 * client. 6902 */ 6903 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) { 6904 /* 6905 * If the donor group is not the default 6906 * group, don't bother looking for a candidate 6907 * group. If we don't have enough rings we 6908 * will check if the primary group can be 6909 * vacated. 6910 */ 6911 if (candidate_grp == NULL && 6912 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) { 6913 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) && 6914 (unspec || 6915 (grp->mrg_cur_count + donor_grp_rcnt >= 6916 need_rings))) { 6917 candidate_grp = grp; 6918 } 6919 } 6920 continue; 6921 } 6922 /* 6923 * This group could already be SHARED by other multicast 6924 * flows on this client. In that case, the group would 6925 * be shared and has already been started. 6926 */ 6927 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 6928 6929 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 6930 (mac_start_group(grp) != 0)) { 6931 continue; 6932 } 6933 6934 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 6935 break; 6936 ASSERT(grp->mrg_cur_count == 0); 6937 6938 /* 6939 * Populate the group. Rings should be taken 6940 * from the donor group. 6941 */ 6942 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1; 6943 6944 /* 6945 * If the donor group can't donate, let's just walk and 6946 * see if someone can vacate a group, so that we have 6947 * enough rings for this, unless we already have 6948 * identified a candiate group.. 6949 */ 6950 if (nrings <= donor_grp_rcnt) { 6951 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 6952 donorgrp, grp, share, nrings); 6953 if (err == 0) { 6954 /* 6955 * For a share i_mac_group_allocate_rings gets 6956 * the rings from the driver, let's populate 6957 * the property for the client now. 6958 */ 6959 if (share != 0) { 6960 mac_client_set_rings( 6961 (mac_client_handle_t)mcip, 6962 grp->mrg_cur_count, -1); 6963 } 6964 if (mac_is_primary_client(mcip) && !rxhw) 6965 mip->mi_rx_donor_grp = grp; 6966 break; 6967 } 6968 } 6969 6970 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 6971 mip->mi_name, int, grp->mrg_index, int, err); 6972 6973 /* 6974 * It's a dynamic group but the grouping operation 6975 * failed. 6976 */ 6977 mac_stop_group(grp); 6978 } 6979 6980 /* We didn't find an exclusive group for this MAC client */ 6981 if (i >= mip->mi_rx_group_count) { 6982 6983 if (!need_exclgrp) 6984 return (NULL); 6985 6986 /* 6987 * If we found a candidate group then move the 6988 * existing MAC client from the candidate_group to the 6989 * default group and give the candidate_group to the 6990 * new MAC client. If we didn't find a candidate 6991 * group, then check if the primary is in its own 6992 * group and if it can make way for this MAC client. 6993 */ 6994 if (candidate_grp == NULL && 6995 donorgrp != MAC_DEFAULT_RX_GROUP(mip) && 6996 donorgrp->mrg_cur_count >= need_rings) { 6997 candidate_grp = donorgrp; 6998 } 6999 if (candidate_grp != NULL) { 7000 boolean_t prim_grp = B_FALSE; 7001 7002 /* 7003 * Switch the existing MAC client from the 7004 * candidate group to the default group. If 7005 * the candidate group is the donor group, 7006 * then after the switch we need to update the 7007 * donor group too. 7008 */ 7009 grp = candidate_grp; 7010 gclient = grp->mrg_clients->mgc_client; 7011 VERIFY3P(gclient, !=, NULL); 7012 if (grp == mip->mi_rx_donor_grp) 7013 prim_grp = B_TRUE; 7014 if (mac_rx_switch_group(gclient, grp, 7015 MAC_DEFAULT_RX_GROUP(mip)) != 0) { 7016 return (NULL); 7017 } 7018 if (prim_grp) { 7019 mip->mi_rx_donor_grp = 7020 MAC_DEFAULT_RX_GROUP(mip); 7021 donorgrp = MAC_DEFAULT_RX_GROUP(mip); 7022 } 7023 7024 /* 7025 * Now give this group with the required rings 7026 * to this MAC client. 7027 */ 7028 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7029 if (mac_start_group(grp) != 0) 7030 return (NULL); 7031 7032 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7033 return (grp); 7034 7035 donor_grp_rcnt = donorgrp->mrg_cur_count - 1; 7036 ASSERT(grp->mrg_cur_count == 0); 7037 ASSERT(donor_grp_rcnt >= need_rings); 7038 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 7039 donorgrp, grp, share, need_rings); 7040 if (err == 0) { 7041 /* 7042 * For a share i_mac_group_allocate_rings gets 7043 * the rings from the driver, let's populate 7044 * the property for the client now. 7045 */ 7046 if (share != 0) { 7047 mac_client_set_rings( 7048 (mac_client_handle_t)mcip, 7049 grp->mrg_cur_count, -1); 7050 } 7051 DTRACE_PROBE2(rx__group__reserved, 7052 char *, mip->mi_name, int, grp->mrg_index); 7053 return (grp); 7054 } 7055 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 7056 mip->mi_name, int, grp->mrg_index, int, err); 7057 mac_stop_group(grp); 7058 } 7059 return (NULL); 7060 } 7061 ASSERT(grp != NULL); 7062 7063 DTRACE_PROBE2(rx__group__reserved, 7064 char *, mip->mi_name, int, grp->mrg_index); 7065 return (grp); 7066 } 7067 7068 /* 7069 * mac_rx_release_group() 7070 * 7071 * Release the group when it has no remaining clients. The group is 7072 * stopped and its shares are removed and all rings are assigned back 7073 * to default group. This should never be called against the default 7074 * group. 7075 */ 7076 void 7077 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 7078 { 7079 mac_impl_t *mip = mcip->mci_mip; 7080 mac_ring_t *ring; 7081 7082 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip)); 7083 ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE); 7084 7085 if (mip->mi_rx_donor_grp == group) 7086 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip); 7087 7088 /* 7089 * This is the case where there are no clients left. Any 7090 * SRS etc on this group have also be quiesced. 7091 */ 7092 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 7093 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 7094 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 7095 /* 7096 * Remove the SRS associated with the HW ring. 7097 * As a result, polling will be disabled. 7098 */ 7099 ring->mr_srs = NULL; 7100 } 7101 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED || 7102 ring->mr_state == MR_INUSE); 7103 if (ring->mr_state == MR_INUSE) { 7104 mac_stop_ring(ring); 7105 ring->mr_flag = 0; 7106 } 7107 } 7108 7109 /* remove group from share */ 7110 if (mcip->mci_share != 0) { 7111 mip->mi_share_capab.ms_sremove(mcip->mci_share, 7112 group->mrg_driver); 7113 } 7114 7115 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7116 mac_ring_t *ring; 7117 7118 /* 7119 * Rings were dynamically allocated to group. 7120 * Move rings back to default group. 7121 */ 7122 while ((ring = group->mrg_rings) != NULL) { 7123 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp, 7124 ring); 7125 } 7126 } 7127 mac_stop_group(group); 7128 /* 7129 * Possible improvement: See if we can assign the group just released 7130 * to a another client of the mip 7131 */ 7132 } 7133 7134 /* 7135 * Move the MAC address from fgrp to tgrp. 7136 */ 7137 static int 7138 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp, 7139 mac_group_t *tgrp) 7140 { 7141 mac_impl_t *mip = mcip->mci_mip; 7142 uint8_t maddr[MAXMACADDRLEN]; 7143 int err = 0; 7144 uint16_t vid; 7145 mac_unicast_impl_t *muip; 7146 boolean_t use_hw; 7147 7148 mac_rx_client_quiesce((mac_client_handle_t)mcip); 7149 VERIFY3P(mcip->mci_unicast, !=, NULL); 7150 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len); 7151 7152 /* 7153 * Does the client require MAC address hardware classifiction? 7154 */ 7155 use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0; 7156 vid = i_mac_flow_vid(mcip->mci_flent); 7157 7158 /* 7159 * You can never move an address that is shared by multiple 7160 * clients. mac_datapath_setup() ensures that clients sharing 7161 * an address are placed on the default group. This guarantees 7162 * that a non-default group will only ever have one client and 7163 * thus make full use of HW filters. 7164 */ 7165 if (mac_check_macaddr_shared(mcip->mci_unicast)) 7166 return (EINVAL); 7167 7168 err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid); 7169 7170 if (err != 0) { 7171 mac_rx_client_restart((mac_client_handle_t)mcip); 7172 return (err); 7173 } 7174 7175 /* 7176 * If this isn't the primary MAC address then the 7177 * mac_address_t has been freed by the last call to 7178 * mac_remove_macaddr_vlan(). In any case, NULL the reference 7179 * to avoid a dangling pointer. 7180 */ 7181 mcip->mci_unicast = NULL; 7182 7183 /* 7184 * We also have to NULL all the mui_map references -- sun4v 7185 * strikes again! 7186 */ 7187 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7188 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7189 muip->mui_map = NULL; 7190 rw_exit(&mcip->mci_rw_lock); 7191 7192 /* 7193 * Program the H/W Classifier first, if this fails we need not 7194 * proceed with the other stuff. 7195 */ 7196 if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) { 7197 int err2; 7198 7199 /* Revert back the H/W Classifier */ 7200 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw); 7201 7202 if (err2 != 0) { 7203 cmn_err(CE_WARN, "Failed to revert HW classification" 7204 " on MAC %s, for client %s: %d.", mip->mi_name, 7205 mcip->mci_name, err2); 7206 } 7207 7208 mac_rx_client_restart((mac_client_handle_t)mcip); 7209 return (err); 7210 } 7211 7212 /* 7213 * Get a reference to the new mac_address_t and update the 7214 * client's reference. Then restart the client and add the 7215 * other clients of this MAC addr (if they exsit). 7216 */ 7217 mcip->mci_unicast = mac_find_macaddr(mip, maddr); 7218 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 7219 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next) 7220 muip->mui_map = mcip->mci_unicast; 7221 rw_exit(&mcip->mci_rw_lock); 7222 mac_rx_client_restart((mac_client_handle_t)mcip); 7223 return (0); 7224 } 7225 7226 /* 7227 * Switch the MAC client from one group to another. This means we need 7228 * to remove the MAC address from the group, remove the MAC client, 7229 * teardown the SRSs and revert the group state. Then, we add the client 7230 * to the destination group, set the SRSs, and add the MAC address to the 7231 * group. 7232 */ 7233 int 7234 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7235 mac_group_t *tgrp) 7236 { 7237 int err; 7238 mac_group_state_t next_state; 7239 mac_client_impl_t *group_only_mcip; 7240 mac_client_impl_t *gmcip; 7241 mac_impl_t *mip = mcip->mci_mip; 7242 mac_grp_client_t *mgcp; 7243 7244 VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group); 7245 7246 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0) 7247 return (err); 7248 7249 /* 7250 * If the group is marked as reserved and in use by a single 7251 * client, then there is an SRS to teardown. 7252 */ 7253 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED && 7254 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7255 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE); 7256 } 7257 7258 /* 7259 * If we are moving the client from a non-default group, then 7260 * we know that any additional clients on this group share the 7261 * same MAC address. Since we moved the MAC address filter, we 7262 * need to move these clients too. 7263 * 7264 * If we are moving the client from the default group and its 7265 * MAC address has VLAN clients, then we must move those 7266 * clients as well. 7267 * 7268 * In both cases the idea is the same: we moved the MAC 7269 * address filter to the tgrp, so we must move all clients 7270 * using that MAC address to tgrp as well. 7271 */ 7272 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) { 7273 mgcp = fgrp->mrg_clients; 7274 while (mgcp != NULL) { 7275 gmcip = mgcp->mgc_client; 7276 mgcp = mgcp->mgc_next; 7277 mac_group_remove_client(fgrp, gmcip); 7278 mac_group_add_client(tgrp, gmcip); 7279 gmcip->mci_flent->fe_rx_ring_group = tgrp; 7280 } 7281 mac_release_rx_group(mcip, fgrp); 7282 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE); 7283 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED); 7284 } else { 7285 mac_group_remove_client(fgrp, mcip); 7286 mac_group_add_client(tgrp, mcip); 7287 mcip->mci_flent->fe_rx_ring_group = tgrp; 7288 7289 /* 7290 * If there are other clients (VLANs) sharing this address 7291 * then move them too. 7292 */ 7293 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7294 /* 7295 * We need to move all the clients that are using 7296 * this MAC address. 7297 */ 7298 mgcp = fgrp->mrg_clients; 7299 while (mgcp != NULL) { 7300 gmcip = mgcp->mgc_client; 7301 mgcp = mgcp->mgc_next; 7302 if (mcip->mci_unicast == gmcip->mci_unicast) { 7303 mac_group_remove_client(fgrp, gmcip); 7304 mac_group_add_client(tgrp, gmcip); 7305 gmcip->mci_flent->fe_rx_ring_group = 7306 tgrp; 7307 } 7308 } 7309 } 7310 7311 /* 7312 * The default group still handles multicast and 7313 * broadcast traffic; it won't transition to 7314 * MAC_GROUP_STATE_REGISTERED. 7315 */ 7316 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED) 7317 mac_rx_group_unmark(fgrp, MR_CONDEMNED); 7318 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED); 7319 } 7320 7321 next_state = mac_group_next_state(tgrp, &group_only_mcip, 7322 MAC_DEFAULT_RX_GROUP(mip), B_TRUE); 7323 mac_set_group_state(tgrp, next_state); 7324 7325 /* 7326 * If the destination group is reserved, then setup the SRSes. 7327 * Otherwise make sure to use SW classification. 7328 */ 7329 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 7330 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK); 7331 mac_fanout_setup(mcip, mcip->mci_flent, 7332 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL, 7333 NULL); 7334 mac_rx_group_unmark(tgrp, MR_INCIPIENT); 7335 } else { 7336 mac_rx_switch_grp_to_sw(tgrp); 7337 } 7338 7339 return (0); 7340 } 7341 7342 /* 7343 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 7344 * when a share was allocated to the client. 7345 */ 7346 mac_group_t * 7347 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move) 7348 { 7349 mac_impl_t *mip = mcip->mci_mip; 7350 mac_group_t *grp = NULL; 7351 int rv; 7352 int i; 7353 int err; 7354 mac_group_t *defgrp; 7355 mac_share_handle_t share = mcip->mci_share; 7356 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7357 int nrings; 7358 int defnrings; 7359 boolean_t need_exclgrp = B_FALSE; 7360 int need_rings = 0; 7361 mac_group_t *candidate_grp = NULL; 7362 mac_client_impl_t *gclient; 7363 mac_resource_props_t *gmrp; 7364 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS; 7365 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 7366 boolean_t isprimary; 7367 7368 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC; 7369 7370 /* 7371 * When we come here for a VLAN on the primary (dladm create-vlan), 7372 * we need to pair it along with the primary (to keep it consistent 7373 * with the RX side). So, we check if the primary is already assigned 7374 * to a group and return the group if so. The other way is also 7375 * true, i.e. the VLAN is already created and now we are plumbing 7376 * the primary. 7377 */ 7378 if (!move && isprimary) { 7379 for (gclient = mip->mi_clients_list; gclient != NULL; 7380 gclient = gclient->mci_client_next) { 7381 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC && 7382 gclient->mci_flent->fe_tx_ring_group != NULL) { 7383 return (gclient->mci_flent->fe_tx_ring_group); 7384 } 7385 } 7386 } 7387 7388 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0) 7389 return (NULL); 7390 7391 /* For dynamic groups, default unspec to 1 */ 7392 if (txhw && unspec && 7393 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7394 mrp->mrp_ntxrings = 1; 7395 } 7396 /* 7397 * For static grouping we allow only specifying rings=0 and 7398 * unspecified 7399 */ 7400 if (txhw && mrp->mrp_ntxrings > 0 && 7401 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) { 7402 return (NULL); 7403 } 7404 7405 if (txhw) { 7406 /* 7407 * We have explicitly asked for a group (with ntxrings, 7408 * if unspec). 7409 */ 7410 if (unspec || mrp->mrp_ntxrings > 0) { 7411 need_exclgrp = B_TRUE; 7412 need_rings = mrp->mrp_ntxrings; 7413 } else if (mrp->mrp_ntxrings == 0) { 7414 /* 7415 * We have asked for a software group. 7416 */ 7417 return (NULL); 7418 } 7419 } 7420 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7421 /* 7422 * The number of rings that the default group can donate. 7423 * We need to leave at least one ring - the default ring - in 7424 * this group. 7425 */ 7426 defnrings = defgrp->mrg_cur_count - 1; 7427 7428 /* 7429 * Primary gets default group unless explicitly told not 7430 * to (i.e. rings > 0). 7431 */ 7432 if (isprimary && !need_exclgrp) 7433 return (NULL); 7434 7435 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1; 7436 for (i = 0; i < mip->mi_tx_group_count; i++) { 7437 grp = &mip->mi_tx_groups[i]; 7438 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 7439 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) { 7440 /* 7441 * Select a candidate for replacement if we don't 7442 * get an exclusive group. A candidate group is one 7443 * that didn't ask for an exclusive group, but got 7444 * one and it has enough rings (combined with what 7445 * the default group can donate) for the new MAC 7446 * client. 7447 */ 7448 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED && 7449 candidate_grp == NULL) { 7450 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7451 VERIFY3P(gclient, !=, NULL); 7452 gmrp = MCIP_RESOURCE_PROPS(gclient); 7453 if (gclient->mci_share == 0 && 7454 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 && 7455 (unspec || 7456 (grp->mrg_cur_count + defnrings) >= 7457 need_rings)) { 7458 candidate_grp = grp; 7459 } 7460 } 7461 continue; 7462 } 7463 /* 7464 * If the default can't donate let's just walk and 7465 * see if someone can vacate a group, so that we have 7466 * enough rings for this. 7467 */ 7468 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC || 7469 nrings <= defnrings) { 7470 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) { 7471 rv = mac_start_group(grp); 7472 ASSERT(rv == 0); 7473 } 7474 break; 7475 } 7476 } 7477 7478 /* The default group */ 7479 if (i >= mip->mi_tx_group_count) { 7480 /* 7481 * If we need an exclusive group and have identified a 7482 * candidate group we switch the MAC client from the 7483 * candidate group to the default group and give the 7484 * candidate group to this client. 7485 */ 7486 if (need_exclgrp && candidate_grp != NULL) { 7487 /* 7488 * Switch the MAC client from the candidate 7489 * group to the default group. We know the 7490 * candidate_grp came from a reserved group 7491 * and thus only has one client. 7492 */ 7493 grp = candidate_grp; 7494 gclient = MAC_GROUP_ONLY_CLIENT(grp); 7495 VERIFY3P(gclient, !=, NULL); 7496 mac_tx_client_quiesce((mac_client_handle_t)gclient); 7497 mac_tx_switch_group(gclient, grp, defgrp); 7498 mac_tx_client_restart((mac_client_handle_t)gclient); 7499 7500 /* 7501 * Give the candidate group with the specified number 7502 * of rings to this MAC client. 7503 */ 7504 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 7505 rv = mac_start_group(grp); 7506 ASSERT(rv == 0); 7507 7508 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) 7509 return (grp); 7510 7511 ASSERT(grp->mrg_cur_count == 0); 7512 ASSERT(defgrp->mrg_cur_count > need_rings); 7513 7514 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, 7515 defgrp, grp, share, need_rings); 7516 if (err == 0) { 7517 /* 7518 * For a share i_mac_group_allocate_rings gets 7519 * the rings from the driver, let's populate 7520 * the property for the client now. 7521 */ 7522 if (share != 0) { 7523 mac_client_set_rings( 7524 (mac_client_handle_t)mcip, -1, 7525 grp->mrg_cur_count); 7526 } 7527 mip->mi_tx_group_free--; 7528 return (grp); 7529 } 7530 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, 7531 mip->mi_name, int, grp->mrg_index, int, err); 7532 mac_stop_group(grp); 7533 } 7534 return (NULL); 7535 } 7536 /* 7537 * We got an exclusive group, but it is not dynamic. 7538 */ 7539 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 7540 mip->mi_tx_group_free--; 7541 return (grp); 7542 } 7543 7544 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp, 7545 share, nrings); 7546 if (rv != 0) { 7547 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 7548 char *, mip->mi_name, int, grp->mrg_index, int, rv); 7549 mac_stop_group(grp); 7550 return (NULL); 7551 } 7552 /* 7553 * For a share i_mac_group_allocate_rings gets the rings from the 7554 * driver, let's populate the property for the client now. 7555 */ 7556 if (share != 0) { 7557 mac_client_set_rings((mac_client_handle_t)mcip, -1, 7558 grp->mrg_cur_count); 7559 } 7560 mip->mi_tx_group_free--; 7561 return (grp); 7562 } 7563 7564 void 7565 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp) 7566 { 7567 mac_impl_t *mip = mcip->mci_mip; 7568 mac_share_handle_t share = mcip->mci_share; 7569 mac_ring_t *ring; 7570 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip); 7571 mac_group_t *defgrp; 7572 7573 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7574 if (srs != NULL) { 7575 if (srs->srs_soft_ring_count > 0) { 7576 for (ring = grp->mrg_rings; ring != NULL; 7577 ring = ring->mr_next) { 7578 ASSERT(mac_tx_srs_ring_present(srs, ring)); 7579 mac_tx_invoke_callbacks(mcip, 7580 (mac_tx_cookie_t) 7581 mac_tx_srs_get_soft_ring(srs, ring)); 7582 mac_tx_srs_del_ring(srs, ring); 7583 } 7584 } else { 7585 ASSERT(srs->srs_tx.st_arg2 != NULL); 7586 srs->srs_tx.st_arg2 = NULL; 7587 mac_srs_stat_delete(srs); 7588 } 7589 } 7590 if (share != 0) 7591 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 7592 7593 /* move the ring back to the pool */ 7594 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 7595 while ((ring = grp->mrg_rings) != NULL) 7596 (void) mac_group_mov_ring(mip, defgrp, ring); 7597 } 7598 mac_stop_group(grp); 7599 mip->mi_tx_group_free++; 7600 } 7601 7602 /* 7603 * Disassociate a MAC client from a group, i.e go through the rings in the 7604 * group and delete all the soft rings tied to them. 7605 */ 7606 static void 7607 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent) 7608 { 7609 mac_client_impl_t *mcip = flent->fe_mcip; 7610 mac_soft_ring_set_t *tx_srs; 7611 mac_srs_tx_t *tx; 7612 mac_ring_t *ring; 7613 7614 tx_srs = flent->fe_tx_srs; 7615 tx = &tx_srs->srs_tx; 7616 7617 /* Single ring case we haven't created any soft rings */ 7618 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE || 7619 tx->st_mode == SRS_TX_DEFAULT) { 7620 tx->st_arg2 = NULL; 7621 mac_srs_stat_delete(tx_srs); 7622 /* Fanout case, where we have to dismantle the soft rings */ 7623 } else { 7624 for (ring = fgrp->mrg_rings; ring != NULL; 7625 ring = ring->mr_next) { 7626 ASSERT(mac_tx_srs_ring_present(tx_srs, ring)); 7627 mac_tx_invoke_callbacks(mcip, 7628 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs, 7629 ring)); 7630 mac_tx_srs_del_ring(tx_srs, ring); 7631 } 7632 ASSERT(tx->st_arg2 == NULL); 7633 } 7634 } 7635 7636 /* 7637 * Switch the MAC client from one group to another. This means we need 7638 * to remove the MAC client, teardown the SRSs and revert the group state. 7639 * Then, we add the client to the destination roup, set the SRSs etc. 7640 */ 7641 void 7642 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp, 7643 mac_group_t *tgrp) 7644 { 7645 mac_client_impl_t *group_only_mcip; 7646 mac_impl_t *mip = mcip->mci_mip; 7647 flow_entry_t *flent = mcip->mci_flent; 7648 mac_group_t *defgrp; 7649 mac_grp_client_t *mgcp; 7650 mac_client_impl_t *gmcip; 7651 flow_entry_t *gflent; 7652 7653 defgrp = MAC_DEFAULT_TX_GROUP(mip); 7654 ASSERT(fgrp == flent->fe_tx_ring_group); 7655 7656 if (fgrp == defgrp) { 7657 /* 7658 * If this is the primary we need to find any VLANs on 7659 * the primary and move them too. 7660 */ 7661 mac_group_remove_client(fgrp, mcip); 7662 mac_tx_dismantle_soft_rings(fgrp, flent); 7663 if (mac_check_macaddr_shared(mcip->mci_unicast)) { 7664 mgcp = fgrp->mrg_clients; 7665 while (mgcp != NULL) { 7666 gmcip = mgcp->mgc_client; 7667 mgcp = mgcp->mgc_next; 7668 if (mcip->mci_unicast != gmcip->mci_unicast) 7669 continue; 7670 mac_tx_client_quiesce( 7671 (mac_client_handle_t)gmcip); 7672 7673 gflent = gmcip->mci_flent; 7674 mac_group_remove_client(fgrp, gmcip); 7675 mac_tx_dismantle_soft_rings(fgrp, gflent); 7676 7677 mac_group_add_client(tgrp, gmcip); 7678 gflent->fe_tx_ring_group = tgrp; 7679 /* We could directly set this to SHARED */ 7680 tgrp->mrg_state = mac_group_next_state(tgrp, 7681 &group_only_mcip, defgrp, B_FALSE); 7682 7683 mac_tx_srs_group_setup(gmcip, gflent, 7684 SRST_LINK); 7685 mac_fanout_setup(gmcip, gflent, 7686 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7687 gmcip, NULL, NULL); 7688 7689 mac_tx_client_restart( 7690 (mac_client_handle_t)gmcip); 7691 } 7692 } 7693 if (MAC_GROUP_NO_CLIENT(fgrp)) { 7694 mac_ring_t *ring; 7695 int cnt; 7696 int ringcnt; 7697 7698 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7699 /* 7700 * Additionally, we also need to stop all 7701 * the rings in the default group, except 7702 * the default ring. The reason being 7703 * this group won't be released since it is 7704 * the default group, so the rings won't 7705 * be stopped otherwise. 7706 */ 7707 ringcnt = fgrp->mrg_cur_count; 7708 ring = fgrp->mrg_rings; 7709 for (cnt = 0; cnt < ringcnt; cnt++) { 7710 if (ring->mr_state == MR_INUSE && 7711 ring != 7712 (mac_ring_t *)mip->mi_default_tx_ring) { 7713 mac_stop_ring(ring); 7714 ring->mr_flag = 0; 7715 } 7716 ring = ring->mr_next; 7717 } 7718 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) { 7719 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED; 7720 } else { 7721 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED); 7722 } 7723 } else { 7724 /* 7725 * We could have VLANs sharing the non-default group with 7726 * the primary. 7727 */ 7728 mgcp = fgrp->mrg_clients; 7729 while (mgcp != NULL) { 7730 gmcip = mgcp->mgc_client; 7731 mgcp = mgcp->mgc_next; 7732 if (gmcip == mcip) 7733 continue; 7734 mac_tx_client_quiesce((mac_client_handle_t)gmcip); 7735 gflent = gmcip->mci_flent; 7736 7737 mac_group_remove_client(fgrp, gmcip); 7738 mac_tx_dismantle_soft_rings(fgrp, gflent); 7739 7740 mac_group_add_client(tgrp, gmcip); 7741 gflent->fe_tx_ring_group = tgrp; 7742 /* We could directly set this to SHARED */ 7743 tgrp->mrg_state = mac_group_next_state(tgrp, 7744 &group_only_mcip, defgrp, B_FALSE); 7745 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK); 7746 mac_fanout_setup(gmcip, gflent, 7747 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver, 7748 gmcip, NULL, NULL); 7749 7750 mac_tx_client_restart((mac_client_handle_t)gmcip); 7751 } 7752 mac_group_remove_client(fgrp, mcip); 7753 mac_release_tx_group(mcip, fgrp); 7754 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED; 7755 } 7756 7757 /* Add it to the tgroup */ 7758 mac_group_add_client(tgrp, mcip); 7759 flent->fe_tx_ring_group = tgrp; 7760 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip, 7761 defgrp, B_FALSE); 7762 7763 mac_tx_srs_group_setup(mcip, flent, SRST_LINK); 7764 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip), 7765 mac_rx_deliver, mcip, NULL, NULL); 7766 } 7767 7768 /* 7769 * This is a 1-time control path activity initiated by the client (IP). 7770 * The mac perimeter protects against other simultaneous control activities, 7771 * for example an ioctl that attempts to change the degree of fanout and 7772 * increase or decrease the number of softrings associated with this Tx SRS. 7773 */ 7774 static mac_tx_notify_cb_t * 7775 mac_client_tx_notify_add(mac_client_impl_t *mcip, 7776 mac_tx_notify_t notify, void *arg) 7777 { 7778 mac_cb_info_t *mcbi; 7779 mac_tx_notify_cb_t *mtnfp; 7780 7781 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7782 7783 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 7784 mtnfp->mtnf_fn = notify; 7785 mtnfp->mtnf_arg = arg; 7786 mtnfp->mtnf_link.mcb_objp = mtnfp; 7787 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 7788 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 7789 7790 mcbi = &mcip->mci_tx_notify_cb_info; 7791 mutex_enter(mcbi->mcbi_lockp); 7792 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 7793 mutex_exit(mcbi->mcbi_lockp); 7794 return (mtnfp); 7795 } 7796 7797 static void 7798 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 7799 { 7800 mac_cb_info_t *mcbi; 7801 mac_cb_t **cblist; 7802 7803 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 7804 7805 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 7806 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 7807 cmn_err(CE_WARN, 7808 "mac_client_tx_notify_remove: callback not " 7809 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 7810 return; 7811 } 7812 7813 mcbi = &mcip->mci_tx_notify_cb_info; 7814 cblist = &mcip->mci_tx_notify_cb_list; 7815 mutex_enter(mcbi->mcbi_lockp); 7816 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 7817 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 7818 else 7819 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 7820 mutex_exit(mcbi->mcbi_lockp); 7821 } 7822 7823 /* 7824 * mac_client_tx_notify(): 7825 * call to add and remove flow control callback routine. 7826 */ 7827 mac_tx_notify_handle_t 7828 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 7829 void *ptr) 7830 { 7831 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 7832 mac_tx_notify_cb_t *mtnfp = NULL; 7833 7834 i_mac_perim_enter(mcip->mci_mip); 7835 7836 if (callb_func != NULL) { 7837 /* Add a notify callback */ 7838 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 7839 } else { 7840 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 7841 } 7842 i_mac_perim_exit(mcip->mci_mip); 7843 7844 return ((mac_tx_notify_handle_t)mtnfp); 7845 } 7846 7847 void 7848 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 7849 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 7850 { 7851 mac_bridge_tx_cb = txf; 7852 mac_bridge_rx_cb = rxf; 7853 mac_bridge_ref_cb = reff; 7854 mac_bridge_ls_cb = lsf; 7855 } 7856 7857 int 7858 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 7859 { 7860 mac_impl_t *mip = (mac_impl_t *)mh; 7861 int retv; 7862 7863 mutex_enter(&mip->mi_bridge_lock); 7864 if (mip->mi_bridge_link == NULL) { 7865 mip->mi_bridge_link = link; 7866 retv = 0; 7867 } else { 7868 retv = EBUSY; 7869 } 7870 mutex_exit(&mip->mi_bridge_lock); 7871 if (retv == 0) { 7872 mac_poll_state_change(mh, B_FALSE); 7873 mac_capab_update(mh); 7874 } 7875 return (retv); 7876 } 7877 7878 /* 7879 * Disable bridging on the indicated link. 7880 */ 7881 void 7882 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 7883 { 7884 mac_impl_t *mip = (mac_impl_t *)mh; 7885 7886 mutex_enter(&mip->mi_bridge_lock); 7887 ASSERT(mip->mi_bridge_link == link); 7888 mip->mi_bridge_link = NULL; 7889 mutex_exit(&mip->mi_bridge_lock); 7890 mac_poll_state_change(mh, B_TRUE); 7891 mac_capab_update(mh); 7892 } 7893 7894 void 7895 mac_no_active(mac_handle_t mh) 7896 { 7897 mac_impl_t *mip = (mac_impl_t *)mh; 7898 7899 i_mac_perim_enter(mip); 7900 mip->mi_state_flags |= MIS_NO_ACTIVE; 7901 i_mac_perim_exit(mip); 7902 } 7903 7904 /* 7905 * Walk the primary VLAN clients whenever the primary's rings property 7906 * changes and update the mac_resource_props_t for the VLAN's client. 7907 * We need to do this since we don't support setting these properties 7908 * on the primary's VLAN clients, but the VLAN clients have to 7909 * follow the primary w.r.t the rings property. 7910 */ 7911 void 7912 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp) 7913 { 7914 mac_client_impl_t *vmcip; 7915 mac_resource_props_t *vmrp; 7916 7917 for (vmcip = mip->mi_clients_list; vmcip != NULL; 7918 vmcip = vmcip->mci_client_next) { 7919 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) || 7920 mac_client_vid((mac_client_handle_t)vmcip) == 7921 VLAN_ID_NONE) { 7922 continue; 7923 } 7924 vmrp = MCIP_RESOURCE_PROPS(vmcip); 7925 7926 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 7927 if (mrp->mrp_mask & MRP_RX_RINGS) 7928 vmrp->mrp_mask |= MRP_RX_RINGS; 7929 else if (vmrp->mrp_mask & MRP_RX_RINGS) 7930 vmrp->mrp_mask &= ~MRP_RX_RINGS; 7931 7932 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 7933 if (mrp->mrp_mask & MRP_TX_RINGS) 7934 vmrp->mrp_mask |= MRP_TX_RINGS; 7935 else if (vmrp->mrp_mask & MRP_TX_RINGS) 7936 vmrp->mrp_mask &= ~MRP_TX_RINGS; 7937 7938 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 7939 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 7940 else 7941 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 7942 7943 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 7944 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 7945 else 7946 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 7947 } 7948 } 7949 7950 /* 7951 * We are adding or removing ring(s) from a group. The source for taking 7952 * rings is the default group. The destination for giving rings back is 7953 * the default group. 7954 */ 7955 int 7956 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group, 7957 mac_group_t *defgrp) 7958 { 7959 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 7960 uint_t modify; 7961 int count; 7962 mac_ring_t *ring; 7963 mac_ring_t *next; 7964 mac_impl_t *mip = mcip->mci_mip; 7965 mac_ring_t **rings; 7966 uint_t ringcnt; 7967 int i = 0; 7968 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX; 7969 int start; 7970 int end; 7971 mac_group_t *tgrp; 7972 int j; 7973 int rv = 0; 7974 7975 /* 7976 * If we are asked for just a group, we give 1 ring, else 7977 * the specified number of rings. 7978 */ 7979 if (rx_group) { 7980 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1: 7981 mrp->mrp_nrxrings; 7982 } else { 7983 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1: 7984 mrp->mrp_ntxrings; 7985 } 7986 7987 /* don't allow modifying rings for a share for now. */ 7988 ASSERT(mcip->mci_share == 0); 7989 7990 if (ringcnt == group->mrg_cur_count) 7991 return (0); 7992 7993 if (group->mrg_cur_count > ringcnt) { 7994 modify = group->mrg_cur_count - ringcnt; 7995 if (rx_group) { 7996 if (mip->mi_rx_donor_grp == group) { 7997 ASSERT(mac_is_primary_client(mcip)); 7998 mip->mi_rx_donor_grp = defgrp; 7999 } else { 8000 defgrp = mip->mi_rx_donor_grp; 8001 } 8002 } 8003 ring = group->mrg_rings; 8004 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t), 8005 KM_SLEEP); 8006 j = 0; 8007 for (count = 0; count < modify; count++) { 8008 next = ring->mr_next; 8009 rv = mac_group_mov_ring(mip, defgrp, ring); 8010 if (rv != 0) { 8011 /* cleanup on failure */ 8012 for (j = 0; j < count; j++) { 8013 (void) mac_group_mov_ring(mip, group, 8014 rings[j]); 8015 } 8016 break; 8017 } 8018 rings[j++] = ring; 8019 ring = next; 8020 } 8021 kmem_free(rings, modify * sizeof (mac_ring_handle_t)); 8022 return (rv); 8023 } 8024 if (ringcnt >= MAX_RINGS_PER_GROUP) 8025 return (EINVAL); 8026 8027 modify = ringcnt - group->mrg_cur_count; 8028 8029 if (rx_group) { 8030 if (group != mip->mi_rx_donor_grp) 8031 defgrp = mip->mi_rx_donor_grp; 8032 else 8033 /* 8034 * This is the donor group with all the remaining 8035 * rings. Default group now gets to be the donor 8036 */ 8037 mip->mi_rx_donor_grp = defgrp; 8038 start = 1; 8039 end = mip->mi_rx_group_count; 8040 } else { 8041 start = 0; 8042 end = mip->mi_tx_group_count - 1; 8043 } 8044 /* 8045 * If the default doesn't have any rings, lets see if we can 8046 * take rings given to an h/w client that doesn't need it. 8047 * For now, we just see if there is any one client that can donate 8048 * all the required rings. 8049 */ 8050 if (defgrp->mrg_cur_count < (modify + 1)) { 8051 for (i = start; i < end; i++) { 8052 if (rx_group) { 8053 tgrp = &mip->mi_rx_groups[i]; 8054 if (tgrp == group || tgrp->mrg_state < 8055 MAC_GROUP_STATE_RESERVED) { 8056 continue; 8057 } 8058 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS)) 8059 continue; 8060 mcip = tgrp->mrg_clients->mgc_client; 8061 VERIFY3P(mcip, !=, NULL); 8062 if ((tgrp->mrg_cur_count + 8063 defgrp->mrg_cur_count) < (modify + 1)) { 8064 continue; 8065 } 8066 if (mac_rx_switch_group(mcip, tgrp, 8067 defgrp) != 0) { 8068 return (ENOSPC); 8069 } 8070 } else { 8071 tgrp = &mip->mi_tx_groups[i]; 8072 if (tgrp == group || tgrp->mrg_state < 8073 MAC_GROUP_STATE_RESERVED) { 8074 continue; 8075 } 8076 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS)) 8077 continue; 8078 mcip = tgrp->mrg_clients->mgc_client; 8079 VERIFY3P(mcip, !=, NULL); 8080 if ((tgrp->mrg_cur_count + 8081 defgrp->mrg_cur_count) < (modify + 1)) { 8082 continue; 8083 } 8084 /* OK, we can switch this to s/w */ 8085 mac_tx_client_quiesce( 8086 (mac_client_handle_t)mcip); 8087 mac_tx_switch_group(mcip, tgrp, defgrp); 8088 mac_tx_client_restart( 8089 (mac_client_handle_t)mcip); 8090 } 8091 } 8092 if (defgrp->mrg_cur_count < (modify + 1)) 8093 return (ENOSPC); 8094 } 8095 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp, 8096 group, mcip->mci_share, modify)) != 0) { 8097 return (rv); 8098 } 8099 return (0); 8100 } 8101 8102 /* 8103 * Given the poolname in mac_resource_props, find the cpupart 8104 * that is associated with this pool. The cpupart will be used 8105 * later for finding the cpus to be bound to the networking threads. 8106 * 8107 * use_default is set B_TRUE if pools are enabled and pool_default 8108 * is returned. This avoids a 2nd lookup to set the poolname 8109 * for pool-effective. 8110 * 8111 * returns: 8112 * 8113 * NULL - pools are disabled or if the 'cpus' property is set. 8114 * cpupart of pool_default - pools are enabled and the pool 8115 * is not available or poolname is blank 8116 * cpupart of named pool - pools are enabled and the pool 8117 * is available. 8118 */ 8119 cpupart_t * 8120 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default) 8121 { 8122 pool_t *pool; 8123 cpupart_t *cpupart; 8124 8125 *use_default = B_FALSE; 8126 8127 /* CPUs property is set */ 8128 if (mrp->mrp_mask & MRP_CPUS) 8129 return (NULL); 8130 8131 ASSERT(pool_lock_held()); 8132 8133 /* Pools are disabled, no pset */ 8134 if (pool_state == POOL_DISABLED) 8135 return (NULL); 8136 8137 /* Pools property is set */ 8138 if (mrp->mrp_mask & MRP_POOL) { 8139 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) { 8140 /* Pool not found */ 8141 DTRACE_PROBE1(mac_pset_find_no_pool, char *, 8142 mrp->mrp_pool); 8143 *use_default = B_TRUE; 8144 pool = pool_default; 8145 } 8146 /* Pools property is not set */ 8147 } else { 8148 *use_default = B_TRUE; 8149 pool = pool_default; 8150 } 8151 8152 /* Find the CPU pset that corresponds to the pool */ 8153 mutex_enter(&cpu_lock); 8154 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) { 8155 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t, 8156 pool->pool_pset->pset_id); 8157 } 8158 mutex_exit(&cpu_lock); 8159 8160 return (cpupart); 8161 } 8162 8163 void 8164 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart, 8165 mac_resource_props_t *mrp, mac_resource_props_t *emrp) 8166 { 8167 ASSERT(pool_lock_held()); 8168 8169 if (cpupart != NULL) { 8170 emrp->mrp_mask |= MRP_POOL; 8171 if (use_default) { 8172 (void) strcpy(emrp->mrp_pool, 8173 "pool_default"); 8174 } else { 8175 ASSERT(strlen(mrp->mrp_pool) != 0); 8176 (void) strcpy(emrp->mrp_pool, 8177 mrp->mrp_pool); 8178 } 8179 } else { 8180 emrp->mrp_mask &= ~MRP_POOL; 8181 bzero(emrp->mrp_pool, MAXPATHLEN); 8182 } 8183 } 8184 8185 struct mac_pool_arg { 8186 char mpa_poolname[MAXPATHLEN]; 8187 pool_event_t mpa_what; 8188 }; 8189 8190 /*ARGSUSED*/ 8191 static uint_t 8192 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 8193 { 8194 struct mac_pool_arg *mpa = arg; 8195 mac_impl_t *mip = (mac_impl_t *)val; 8196 mac_client_impl_t *mcip; 8197 mac_resource_props_t *mrp, *emrp; 8198 boolean_t pool_update = B_FALSE; 8199 boolean_t pool_clear = B_FALSE; 8200 boolean_t use_default = B_FALSE; 8201 cpupart_t *cpupart = NULL; 8202 8203 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 8204 i_mac_perim_enter(mip); 8205 for (mcip = mip->mi_clients_list; mcip != NULL; 8206 mcip = mcip->mci_client_next) { 8207 pool_update = B_FALSE; 8208 pool_clear = B_FALSE; 8209 use_default = B_FALSE; 8210 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 8211 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8212 8213 /* 8214 * When pools are enabled 8215 */ 8216 if ((mpa->mpa_what == POOL_E_ENABLE) && 8217 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8218 mrp->mrp_mask |= MRP_POOL; 8219 pool_update = B_TRUE; 8220 } 8221 8222 /* 8223 * When pools are disabled 8224 */ 8225 if ((mpa->mpa_what == POOL_E_DISABLE) && 8226 ((mrp->mrp_mask & MRP_CPUS) == 0)) { 8227 mrp->mrp_mask |= MRP_POOL; 8228 pool_clear = B_TRUE; 8229 } 8230 8231 /* 8232 * Look for links with the pool property set and the poolname 8233 * matching the one which is changing. 8234 */ 8235 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) { 8236 /* 8237 * The pool associated with the link has changed. 8238 */ 8239 if (mpa->mpa_what == POOL_E_CHANGE) { 8240 mrp->mrp_mask |= MRP_POOL; 8241 pool_update = B_TRUE; 8242 } 8243 } 8244 8245 /* 8246 * This link is associated with pool_default and 8247 * pool_default has changed. 8248 */ 8249 if ((mpa->mpa_what == POOL_E_CHANGE) && 8250 (strcmp(emrp->mrp_pool, "pool_default") == 0) && 8251 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) { 8252 mrp->mrp_mask |= MRP_POOL; 8253 pool_update = B_TRUE; 8254 } 8255 8256 /* 8257 * Get new list of cpus for the pool, bind network 8258 * threads to new list of cpus and update resources. 8259 */ 8260 if (pool_update) { 8261 if (MCIP_DATAPATH_SETUP(mcip)) { 8262 pool_lock(); 8263 cpupart = mac_pset_find(mrp, &use_default); 8264 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8265 mac_rx_deliver, mcip, NULL, cpupart); 8266 mac_set_pool_effective(use_default, cpupart, 8267 mrp, emrp); 8268 pool_unlock(); 8269 } 8270 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8271 B_FALSE); 8272 } 8273 8274 /* 8275 * Clear the effective pool and bind network threads 8276 * to any available CPU. 8277 */ 8278 if (pool_clear) { 8279 if (MCIP_DATAPATH_SETUP(mcip)) { 8280 emrp->mrp_mask &= ~MRP_POOL; 8281 bzero(emrp->mrp_pool, MAXPATHLEN); 8282 mac_fanout_setup(mcip, mcip->mci_flent, mrp, 8283 mac_rx_deliver, mcip, NULL, NULL); 8284 } 8285 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), 8286 B_FALSE); 8287 } 8288 } 8289 i_mac_perim_exit(mip); 8290 kmem_free(mrp, sizeof (*mrp)); 8291 return (MH_WALK_CONTINUE); 8292 } 8293 8294 static void 8295 mac_pool_update(void *arg) 8296 { 8297 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg); 8298 kmem_free(arg, sizeof (struct mac_pool_arg)); 8299 } 8300 8301 /* 8302 * Callback function to be executed when a noteworthy pool event 8303 * takes place. 8304 */ 8305 /* ARGSUSED */ 8306 static void 8307 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg) 8308 { 8309 pool_t *pool; 8310 char *poolname = NULL; 8311 struct mac_pool_arg *mpa; 8312 8313 pool_lock(); 8314 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP); 8315 8316 switch (what) { 8317 case POOL_E_ENABLE: 8318 case POOL_E_DISABLE: 8319 break; 8320 8321 case POOL_E_CHANGE: 8322 pool = pool_lookup_pool_by_id(id); 8323 if (pool == NULL) { 8324 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8325 pool_unlock(); 8326 return; 8327 } 8328 pool_get_name(pool, &poolname); 8329 (void) strlcpy(mpa->mpa_poolname, poolname, 8330 sizeof (mpa->mpa_poolname)); 8331 break; 8332 8333 default: 8334 kmem_free(mpa, sizeof (struct mac_pool_arg)); 8335 pool_unlock(); 8336 return; 8337 } 8338 pool_unlock(); 8339 8340 mpa->mpa_what = what; 8341 8342 mac_pool_update(mpa); 8343 } 8344 8345 /* 8346 * Set effective rings property. This could be called from datapath_setup/ 8347 * datapath_teardown or set-linkprop. 8348 * If the group is reserved we just go ahead and set the effective rings. 8349 * Additionally, for TX this could mean the default group has lost/gained 8350 * some rings, so if the default group is reserved, we need to adjust the 8351 * effective rings for the default group clients. For RX, if we are working 8352 * with the non-default group, we just need to reset the effective props 8353 * for the default group clients. 8354 */ 8355 void 8356 mac_set_rings_effective(mac_client_impl_t *mcip) 8357 { 8358 mac_impl_t *mip = mcip->mci_mip; 8359 mac_group_t *grp; 8360 mac_group_t *defgrp; 8361 flow_entry_t *flent = mcip->mci_flent; 8362 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip); 8363 mac_grp_client_t *mgcp; 8364 mac_client_impl_t *gmcip; 8365 8366 grp = flent->fe_rx_ring_group; 8367 if (grp != NULL) { 8368 defgrp = MAC_DEFAULT_RX_GROUP(mip); 8369 /* 8370 * If we have reserved a group, set the effective rings 8371 * to the ring count in the group. 8372 */ 8373 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8374 emrp->mrp_mask |= MRP_RX_RINGS; 8375 emrp->mrp_nrxrings = grp->mrg_cur_count; 8376 } 8377 8378 /* 8379 * We go through the clients in the shared group and 8380 * reset the effective properties. It is possible this 8381 * might have already been done for some client (i.e. 8382 * if some client is being moved to a group that is 8383 * already shared). The case where the default group is 8384 * RESERVED is taken care of above (note in the RX side if 8385 * there is a non-default group, the default group is always 8386 * SHARED). 8387 */ 8388 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8389 if (grp->mrg_state == MAC_GROUP_STATE_SHARED) 8390 mgcp = grp->mrg_clients; 8391 else 8392 mgcp = defgrp->mrg_clients; 8393 while (mgcp != NULL) { 8394 gmcip = mgcp->mgc_client; 8395 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8396 if (emrp->mrp_mask & MRP_RX_RINGS) { 8397 emrp->mrp_mask &= ~MRP_RX_RINGS; 8398 emrp->mrp_nrxrings = 0; 8399 } 8400 mgcp = mgcp->mgc_next; 8401 } 8402 } 8403 } 8404 8405 /* Now the TX side */ 8406 grp = flent->fe_tx_ring_group; 8407 if (grp != NULL) { 8408 defgrp = MAC_DEFAULT_TX_GROUP(mip); 8409 8410 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8411 emrp->mrp_mask |= MRP_TX_RINGS; 8412 emrp->mrp_ntxrings = grp->mrg_cur_count; 8413 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) { 8414 mgcp = grp->mrg_clients; 8415 while (mgcp != NULL) { 8416 gmcip = mgcp->mgc_client; 8417 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8418 if (emrp->mrp_mask & MRP_TX_RINGS) { 8419 emrp->mrp_mask &= ~MRP_TX_RINGS; 8420 emrp->mrp_ntxrings = 0; 8421 } 8422 mgcp = mgcp->mgc_next; 8423 } 8424 } 8425 8426 /* 8427 * If the group is not the default group and the default 8428 * group is reserved, the ring count in the default group 8429 * might have changed, update it. 8430 */ 8431 if (grp != defgrp && 8432 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) { 8433 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp); 8434 emrp = MCIP_EFFECTIVE_PROPS(gmcip); 8435 emrp->mrp_ntxrings = defgrp->mrg_cur_count; 8436 } 8437 } 8438 emrp = MCIP_EFFECTIVE_PROPS(mcip); 8439 } 8440 8441 /* 8442 * Check if the primary is in the default group. If so, see if we 8443 * can give it a an exclusive group now that another client is 8444 * being configured. We take the primary out of the default group 8445 * because the multicast/broadcast packets for the all the clients 8446 * will land in the default ring in the default group which means 8447 * any client in the default group, even if it is the only on in 8448 * the group, will lose exclusive access to the rings, hence 8449 * polling. 8450 */ 8451 mac_client_impl_t * 8452 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw) 8453 { 8454 mac_impl_t *mip = mcip->mci_mip; 8455 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip); 8456 flow_entry_t *flent = mcip->mci_flent; 8457 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 8458 uint8_t *mac_addr; 8459 mac_group_t *ngrp; 8460 8461 /* 8462 * Check if the primary is in the default group, if not 8463 * or if it is explicitly configured to be in the default 8464 * group OR set the RX rings property, return. 8465 */ 8466 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS) 8467 return (NULL); 8468 8469 /* 8470 * If the new client needs an exclusive group and we 8471 * don't have another for the primary, return. 8472 */ 8473 if (rxhw && mip->mi_rxhwclnt_avail < 2) 8474 return (NULL); 8475 8476 mac_addr = flent->fe_flow_desc.fd_dst_mac; 8477 /* 8478 * We call this when we are setting up the datapath for 8479 * the first non-primary. 8480 */ 8481 ASSERT(mip->mi_nactiveclients == 2); 8482 8483 /* 8484 * OK, now we have the primary that needs to be relocated. 8485 */ 8486 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 8487 if (ngrp == NULL) 8488 return (NULL); 8489 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 8490 mac_stop_group(ngrp); 8491 return (NULL); 8492 } 8493 return (mcip); 8494 } 8495 8496 void 8497 mac_transceiver_init(mac_impl_t *mip) 8498 { 8499 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER, 8500 &mip->mi_transceiver)) { 8501 /* 8502 * The driver set a flag that we don't know about. In this case, 8503 * we need to warn about that case and ignore this capability. 8504 */ 8505 if (mip->mi_transceiver.mct_flags != 0) { 8506 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver " 8507 "flags to invalid value: 0x%x, ignoring " 8508 "capability", mip->mi_transceiver.mct_flags); 8509 bzero(&mip->mi_transceiver, 8510 sizeof (mac_capab_transceiver_t)); 8511 } 8512 } else { 8513 bzero(&mip->mi_transceiver, 8514 sizeof (mac_capab_transceiver_t)); 8515 } 8516 } 8517 8518 int 8519 mac_transceiver_count(mac_handle_t mh, uint_t *countp) 8520 { 8521 mac_impl_t *mip = (mac_impl_t *)mh; 8522 8523 ASSERT(MAC_PERIM_HELD(mh)); 8524 8525 if (mip->mi_transceiver.mct_ntransceivers == 0) 8526 return (ENOTSUP); 8527 8528 *countp = mip->mi_transceiver.mct_ntransceivers; 8529 return (0); 8530 } 8531 8532 int 8533 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present, 8534 boolean_t *usable) 8535 { 8536 int ret; 8537 mac_transceiver_info_t info; 8538 8539 mac_impl_t *mip = (mac_impl_t *)mh; 8540 8541 ASSERT(MAC_PERIM_HELD(mh)); 8542 8543 if (mip->mi_transceiver.mct_info == NULL || 8544 mip->mi_transceiver.mct_ntransceivers == 0) 8545 return (ENOTSUP); 8546 8547 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8548 return (EINVAL); 8549 8550 bzero(&info, sizeof (mac_transceiver_info_t)); 8551 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid, 8552 &info)) != 0) { 8553 return (ret); 8554 } 8555 8556 *present = info.mti_present; 8557 *usable = info.mti_usable; 8558 return (0); 8559 } 8560 8561 int 8562 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf, 8563 size_t nbytes, off_t offset, size_t *nread) 8564 { 8565 int ret; 8566 size_t nr; 8567 mac_impl_t *mip = (mac_impl_t *)mh; 8568 8569 ASSERT(MAC_PERIM_HELD(mh)); 8570 8571 if (mip->mi_transceiver.mct_read == NULL) 8572 return (ENOTSUP); 8573 8574 if (tranid >= mip->mi_transceiver.mct_ntransceivers) 8575 return (EINVAL); 8576 8577 /* 8578 * All supported pages today are 256 bytes wide. Make sure offset + 8579 * nbytes never exceeds that. 8580 */ 8581 if (offset < 0 || offset >= 256 || nbytes > 256 || 8582 offset + nbytes > 256) 8583 return (EINVAL); 8584 8585 if (nread == NULL) 8586 nread = &nr; 8587 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf, 8588 nbytes, offset, nread); 8589 if (ret == 0 && *nread > nbytes) { 8590 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into " 8591 "%lu byte sized buffer, possible memory corruption", 8592 *nread, nbytes); 8593 } 8594 8595 return (ret); 8596 } 8597 8598 void 8599 mac_led_init(mac_impl_t *mip) 8600 { 8601 mip->mi_led_modes = MAC_LED_DEFAULT; 8602 8603 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) { 8604 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8605 return; 8606 } 8607 8608 if (mip->mi_led.mcl_flags != 0) { 8609 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8610 "flags to invalid value: 0x%x, ignoring " 8611 "capability", mip->mi_transceiver.mct_flags); 8612 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8613 return; 8614 } 8615 8616 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) { 8617 dev_err(mip->mi_dip, CE_WARN, "driver set led capability " 8618 "supported modes to invalid value: 0x%x, ignoring " 8619 "capability", mip->mi_transceiver.mct_flags); 8620 bzero(&mip->mi_led, sizeof (mac_capab_led_t)); 8621 return; 8622 } 8623 } 8624 8625 int 8626 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active) 8627 { 8628 mac_impl_t *mip = (mac_impl_t *)mh; 8629 8630 ASSERT(MAC_PERIM_HELD(mh)); 8631 8632 if (mip->mi_led.mcl_set == NULL) 8633 return (ENOTSUP); 8634 8635 *supported = mip->mi_led.mcl_modes; 8636 *active = mip->mi_led_modes; 8637 8638 return (0); 8639 } 8640 8641 /* 8642 * Update and multiplex the various LED requests. We only ever send one LED to 8643 * the underlying driver at a time. As such, we end up multiplexing all 8644 * requested states and picking one to send down to the driver. 8645 */ 8646 int 8647 mac_led_set(mac_handle_t mh, mac_led_mode_t desired) 8648 { 8649 int ret; 8650 mac_led_mode_t driver; 8651 8652 mac_impl_t *mip = (mac_impl_t *)mh; 8653 8654 ASSERT(MAC_PERIM_HELD(mh)); 8655 8656 /* 8657 * If we've been passed a desired value of zero, that indicates that 8658 * we're basically resetting to the value of zero, which is our default 8659 * value. 8660 */ 8661 if (desired == 0) 8662 desired = MAC_LED_DEFAULT; 8663 8664 if (mip->mi_led.mcl_set == NULL) 8665 return (ENOTSUP); 8666 8667 /* 8668 * Catch both values that we don't know about and those that the driver 8669 * doesn't support. 8670 */ 8671 if ((desired & ~MAC_LED_ALL) != 0) 8672 return (EINVAL); 8673 8674 if ((desired & ~mip->mi_led.mcl_modes) != 0) 8675 return (ENOTSUP); 8676 8677 /* 8678 * If we have the same value, then there is nothing to do. 8679 */ 8680 if (desired == mip->mi_led_modes) 8681 return (0); 8682 8683 /* 8684 * Based on the desired value, determine what to send to the driver. We 8685 * only will send a single bit to the driver at any given time. IDENT 8686 * takes priority over OFF or ON. We also let OFF take priority over the 8687 * rest. 8688 */ 8689 if (desired & MAC_LED_IDENT) { 8690 driver = MAC_LED_IDENT; 8691 } else if (desired & MAC_LED_OFF) { 8692 driver = MAC_LED_OFF; 8693 } else if (desired & MAC_LED_ON) { 8694 driver = MAC_LED_ON; 8695 } else { 8696 driver = MAC_LED_DEFAULT; 8697 } 8698 8699 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) { 8700 mip->mi_led_modes = desired; 8701 } 8702 8703 return (ret); 8704 }