1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright 2017 RackTop Systems. 26 */ 27 28 /* 29 * - General Introduction: 30 * 31 * This file contains the implementation of the MAC client kernel 32 * API and related code. The MAC client API allows a kernel module 33 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 34 * It allows a MAC client to associate itself with a MAC address, 35 * VLANs, callback functions for data traffic and for promiscuous mode. 36 * The MAC client API is also used to specify the properties associated 37 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 38 * These properties are further used to determine the hardware resources 39 * to allocate to the various MAC clients. 40 * 41 * - Primary MAC clients: 42 * 43 * The MAC client API refers to "primary MAC clients". A primary MAC 44 * client is a client which "owns" the primary MAC address of 45 * the underlying MAC instance. The primary MAC address is called out 46 * since it is associated with specific semantics: the primary MAC 47 * address is the MAC address which is assigned to the IP interface 48 * when it is plumbed, and the primary MAC address is assigned 49 * to VLAN data-links. The primary address of a MAC instance can 50 * also change dynamically from under the MAC client, for example 51 * as a result of a change of state of a link aggregation. In that 52 * case the MAC layer automatically updates all data-structures which 53 * refer to the current value of the primary MAC address. Typical 54 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 55 * MAC client is the vnic driver. 56 * 57 * - Virtual Switching: 58 * 59 * The MAC layer implements a virtual switch between the MAC clients 60 * (primary and non-primary) defined on top of the same underlying 61 * NIC (physical, link aggregation, etc). The virtual switch is 62 * VLAN-aware, i.e. it allows multiple MAC clients to be member 63 * of one or more VLANs, and the virtual switch will distribute 64 * multicast tagged packets only to the member of the corresponding 65 * VLANs. 66 * 67 * - Upper vs Lower MAC: 68 * 69 * Creating a VNIC on top of a MAC instance effectively causes 70 * two MAC instances to be layered on top of each other, one for 71 * the VNIC(s), one for the underlying MAC instance (physical NIC, 72 * link aggregation, etc). In the code below we refer to the 73 * underlying NIC as the "lower MAC", and we refer to VNICs as 74 * the "upper MAC". 75 * 76 * - Pass-through for VNICs: 77 * 78 * When VNICs are created on top of an underlying MAC, this causes 79 * a layering of two MAC instances. Since the lower MAC already 80 * does the switching and demultiplexing to its MAC clients, the 81 * upper MAC would simply have to pass packets to the layer below 82 * or above it, which would introduce overhead. In order to avoid 83 * this overhead, the MAC layer implements a pass-through mechanism 84 * for VNICs. When a VNIC opens the lower MAC instance, it saves 85 * the MAC client handle it optains from the MAC layer. When a MAC 86 * client opens a VNIC (upper MAC), the MAC layer detects that 87 * the MAC being opened is a VNIC, and gets the MAC client handle 88 * that the VNIC driver obtained from the lower MAC. This exchange 89 * is done through a private capability between the MAC layer 90 * and the VNIC driver. The upper MAC then returns that handle 91 * directly to its MAC client. Any operation done by the upper 92 * MAC client is now done on the lower MAC client handle, which 93 * allows the VNIC driver to be completely bypassed for the 94 * performance sensitive data-path. 95 * 96 * - Secondary MACs for VNICs: 97 * 98 * VNICs support multiple upper mac clients to enable support for 99 * multiple MAC addresses on the VNIC. When the VNIC is created the 100 * initial mac client is the primary upper mac. Any additional mac 101 * clients are secondary macs. These are kept in sync with the primary 102 * (for things such as the rx function and resource control settings) 103 * using the same private capability interface between the MAC layer 104 * and the VNIC layer. 105 * 106 */ 107 108 #include <sys/types.h> 109 #include <sys/conf.h> 110 #include <sys/id_space.h> 111 #include <sys/esunddi.h> 112 #include <sys/stat.h> 113 #include <sys/mkdev.h> 114 #include <sys/stream.h> 115 #include <sys/strsun.h> 116 #include <sys/strsubr.h> 117 #include <sys/dlpi.h> 118 #include <sys/modhash.h> 119 #include <sys/mac_impl.h> 120 #include <sys/mac_client_impl.h> 121 #include <sys/mac_soft_ring.h> 122 #include <sys/mac_stat.h> 123 #include <sys/dls.h> 124 #include <sys/dld.h> 125 #include <sys/modctl.h> 126 #include <sys/fs/dv_node.h> 127 #include <sys/thread.h> 128 #include <sys/proc.h> 129 #include <sys/callb.h> 130 #include <sys/cpuvar.h> 131 #include <sys/atomic.h> 132 #include <sys/sdt.h> 133 #include <sys/mac_flow.h> 134 #include <sys/ddi_intr_impl.h> 135 #include <sys/disp.h> 136 #include <sys/sdt.h> 137 #include <sys/vnic.h> 138 #include <sys/vnic_impl.h> 139 #include <sys/vlan.h> 140 #include <inet/ip.h> 141 #include <inet/ip6.h> 142 #include <sys/exacct.h> 143 #include <sys/exacct_impl.h> 144 #include <inet/nd.h> 145 #include <sys/ethernet.h> 146 147 kmem_cache_t *mac_client_impl_cache; 148 kmem_cache_t *mac_promisc_impl_cache; 149 150 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 151 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 152 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 153 mac_unicast_impl_t *); 154 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 155 flow_entry_t *); 156 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 157 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 158 static void mac_virtual_link_update(mac_impl_t *); 159 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t, 160 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *); 161 static void mac_client_datapath_teardown(mac_client_handle_t, 162 mac_unicast_impl_t *, flow_entry_t *); 163 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *); 164 165 /* ARGSUSED */ 166 static int 167 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 168 { 169 int i; 170 mac_client_impl_t *mcip = buf; 171 172 bzero(buf, MAC_CLIENT_IMPL_SIZE); 173 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 174 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 175 176 ASSERT(mac_tx_percpu_cnt >= 0); 177 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 178 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 179 MUTEX_DRIVER, NULL); 180 } 181 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 182 183 return (0); 184 } 185 186 /* ARGSUSED */ 187 static void 188 i_mac_client_impl_dtor(void *buf, void *arg) 189 { 190 int i; 191 mac_client_impl_t *mcip = buf; 192 193 ASSERT(mcip->mci_promisc_list == NULL); 194 ASSERT(mcip->mci_unicast_list == NULL); 195 ASSERT(mcip->mci_state_flags == 0); 196 ASSERT(mcip->mci_tx_flag == 0); 197 198 mutex_destroy(&mcip->mci_tx_cb_lock); 199 200 ASSERT(mac_tx_percpu_cnt >= 0); 201 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 202 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 203 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 204 } 205 cv_destroy(&mcip->mci_tx_cv); 206 } 207 208 /* ARGSUSED */ 209 static int 210 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 211 { 212 mac_promisc_impl_t *mpip = buf; 213 214 bzero(buf, sizeof (mac_promisc_impl_t)); 215 mpip->mpi_mci_link.mcb_objp = buf; 216 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 217 mpip->mpi_mi_link.mcb_objp = buf; 218 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 219 return (0); 220 } 221 222 /* ARGSUSED */ 223 static void 224 i_mac_promisc_impl_dtor(void *buf, void *arg) 225 { 226 mac_promisc_impl_t *mpip = buf; 227 228 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 229 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 230 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 231 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 232 233 mpip->mpi_mci_link.mcb_objp = NULL; 234 mpip->mpi_mci_link.mcb_objsize = 0; 235 mpip->mpi_mi_link.mcb_objp = NULL; 236 mpip->mpi_mi_link.mcb_objsize = 0; 237 238 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 239 mpip->mpi_mci_link.mcb_objsize = 0; 240 } 241 242 void 243 mac_client_init(void) 244 { 245 ASSERT(mac_tx_percpu_cnt >= 0); 246 247 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 248 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 249 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 250 ASSERT(mac_client_impl_cache != NULL); 251 252 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 253 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 254 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 255 ASSERT(mac_promisc_impl_cache != NULL); 256 } 257 258 void 259 mac_client_fini(void) 260 { 261 kmem_cache_destroy(mac_client_impl_cache); 262 kmem_cache_destroy(mac_promisc_impl_cache); 263 } 264 265 /* 266 * Return the lower MAC client handle from the VNIC driver for the 267 * specified VNIC MAC instance. 268 */ 269 mac_client_impl_t * 270 mac_vnic_lower(mac_impl_t *mip) 271 { 272 mac_capab_vnic_t cap; 273 mac_client_impl_t *mcip; 274 275 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 276 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 277 278 return (mcip); 279 } 280 281 /* 282 * Update the secondary macs 283 */ 284 void 285 mac_vnic_secondary_update(mac_impl_t *mip) 286 { 287 mac_capab_vnic_t cap; 288 289 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 290 cap.mcv_mac_secondary_update(cap.mcv_arg); 291 } 292 293 /* 294 * Return the MAC client handle of the primary MAC client for the 295 * specified MAC instance, or NULL otherwise. 296 */ 297 mac_client_impl_t * 298 mac_primary_client_handle(mac_impl_t *mip) 299 { 300 mac_client_impl_t *mcip; 301 302 if (mip->mi_state_flags & MIS_IS_VNIC) 303 return (mac_vnic_lower(mip)); 304 305 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 306 307 for (mcip = mip->mi_clients_list; mcip != NULL; 308 mcip = mcip->mci_client_next) { 309 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 310 return (mcip); 311 } 312 return (NULL); 313 } 314 315 /* 316 * Open a MAC specified by its MAC name. 317 */ 318 int 319 mac_open(const char *macname, mac_handle_t *mhp) 320 { 321 mac_impl_t *mip; 322 int err; 323 324 /* 325 * Look up its entry in the global hash table. 326 */ 327 if ((err = mac_hold(macname, &mip)) != 0) 328 return (err); 329 330 /* 331 * Hold the dip associated to the MAC to prevent it from being 332 * detached. For a softmac, its underlying dip is held by the 333 * mi_open() callback. 334 * 335 * This is done to be more tolerant with some defective drivers, 336 * which incorrectly handle mac_unregister() failure in their 337 * xxx_detach() routine. For example, some drivers ignore the 338 * failure of mac_unregister() and free all resources that 339 * that are needed for data transmition. 340 */ 341 e_ddi_hold_devi(mip->mi_dip); 342 343 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 344 *mhp = (mac_handle_t)mip; 345 return (0); 346 } 347 348 /* 349 * The mac perimeter is used in both mac_open and mac_close by the 350 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 351 */ 352 i_mac_perim_enter(mip); 353 mip->mi_oref++; 354 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 355 *mhp = (mac_handle_t)mip; 356 i_mac_perim_exit(mip); 357 return (0); 358 } 359 mip->mi_oref--; 360 ddi_release_devi(mip->mi_dip); 361 mac_rele(mip); 362 i_mac_perim_exit(mip); 363 return (err); 364 } 365 366 /* 367 * Open a MAC specified by its linkid. 368 */ 369 int 370 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 371 { 372 dls_dl_handle_t dlh; 373 int err; 374 375 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 376 return (err); 377 378 dls_devnet_prop_task_wait(dlh); 379 380 err = mac_open(dls_devnet_mac(dlh), mhp); 381 382 dls_devnet_rele_tmp(dlh); 383 return (err); 384 } 385 386 /* 387 * Open a MAC specified by its link name. 388 */ 389 int 390 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 391 { 392 datalink_id_t linkid; 393 int err; 394 395 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 396 return (err); 397 return (mac_open_by_linkid(linkid, mhp)); 398 } 399 400 /* 401 * Close the specified MAC. 402 */ 403 void 404 mac_close(mac_handle_t mh) 405 { 406 mac_impl_t *mip = (mac_impl_t *)mh; 407 408 i_mac_perim_enter(mip); 409 /* 410 * The mac perimeter is used in both mac_open and mac_close by the 411 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 412 */ 413 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 414 ASSERT(mip->mi_oref != 0); 415 if (--mip->mi_oref == 0) { 416 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 417 mip->mi_close(mip->mi_driver); 418 } 419 } 420 i_mac_perim_exit(mip); 421 ddi_release_devi(mip->mi_dip); 422 mac_rele(mip); 423 } 424 425 /* 426 * Misc utility functions to retrieve various information about a MAC 427 * instance or a MAC client. 428 */ 429 430 const mac_info_t * 431 mac_info(mac_handle_t mh) 432 { 433 return (&((mac_impl_t *)mh)->mi_info); 434 } 435 436 dev_info_t * 437 mac_devinfo_get(mac_handle_t mh) 438 { 439 return (((mac_impl_t *)mh)->mi_dip); 440 } 441 442 void * 443 mac_driver(mac_handle_t mh) 444 { 445 return (((mac_impl_t *)mh)->mi_driver); 446 } 447 448 const char * 449 mac_name(mac_handle_t mh) 450 { 451 return (((mac_impl_t *)mh)->mi_name); 452 } 453 454 int 455 mac_type(mac_handle_t mh) 456 { 457 return (((mac_impl_t *)mh)->mi_type->mt_type); 458 } 459 460 int 461 mac_nativetype(mac_handle_t mh) 462 { 463 return (((mac_impl_t *)mh)->mi_type->mt_nativetype); 464 } 465 466 char * 467 mac_client_name(mac_client_handle_t mch) 468 { 469 return (((mac_client_impl_t *)mch)->mci_name); 470 } 471 472 minor_t 473 mac_minor(mac_handle_t mh) 474 { 475 return (((mac_impl_t *)mh)->mi_minor); 476 } 477 478 /* 479 * Return the VID associated with a MAC client. This function should 480 * be called for clients which are associated with only one VID. 481 */ 482 uint16_t 483 mac_client_vid(mac_client_handle_t mch) 484 { 485 uint16_t vid = VLAN_ID_NONE; 486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 487 flow_desc_t flow_desc; 488 489 if (mcip->mci_nflents == 0) 490 return (vid); 491 492 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 493 494 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 495 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 496 vid = flow_desc.fd_vid; 497 498 return (vid); 499 } 500 501 /* 502 * Return whether the specified MAC client corresponds to a VLAN VNIC. 503 */ 504 boolean_t 505 mac_client_is_vlan_vnic(mac_client_handle_t mch) 506 { 507 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 508 509 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) && 510 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0)); 511 } 512 513 /* 514 * Return the link speed associated with the specified MAC client. 515 * 516 * The link speed of a MAC client is equal to the smallest value of 517 * 1) the current link speed of the underlying NIC, or 518 * 2) the bandwidth limit set for the MAC client. 519 * 520 * Note that the bandwidth limit can be higher than the speed 521 * of the underlying NIC. This is allowed to avoid spurious 522 * administration action failures or artifically lowering the 523 * bandwidth limit of a link that may have temporarily lowered 524 * its link speed due to hardware problem or administrator action. 525 */ 526 static uint64_t 527 mac_client_ifspeed(mac_client_impl_t *mcip) 528 { 529 mac_impl_t *mip = mcip->mci_mip; 530 uint64_t nic_speed; 531 532 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 533 534 if (nic_speed == 0) { 535 return (0); 536 } else { 537 uint64_t policy_limit = (uint64_t)-1; 538 539 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 540 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 541 542 return (MIN(policy_limit, nic_speed)); 543 } 544 } 545 546 /* 547 * Return the link state of the specified client. If here are more 548 * than one clients of the underying mac_impl_t, the link state 549 * will always be UP regardless of the link state of the underlying 550 * mac_impl_t. This is needed to allow the MAC clients to continue 551 * to communicate with each other even when the physical link of 552 * their mac_impl_t is down. 553 */ 554 static uint64_t 555 mac_client_link_state(mac_client_impl_t *mcip) 556 { 557 mac_impl_t *mip = mcip->mci_mip; 558 uint16_t vid; 559 mac_client_impl_t *mci_list; 560 mac_unicast_impl_t *mui_list, *oth_mui_list; 561 562 /* 563 * Returns LINK_STATE_UP if there are other MAC clients defined on 564 * mac_impl_t which share same VLAN ID as that of mcip. Note that 565 * if 'mcip' has more than one VID's then we match ANY one of the 566 * VID's with other MAC client's VID's and return LINK_STATE_UP. 567 */ 568 rw_enter(&mcip->mci_rw_lock, RW_READER); 569 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 570 mui_list = mui_list->mui_next) { 571 vid = mui_list->mui_vid; 572 for (mci_list = mip->mi_clients_list; mci_list != NULL; 573 mci_list = mci_list->mci_client_next) { 574 if (mci_list == mcip) 575 continue; 576 for (oth_mui_list = mci_list->mci_unicast_list; 577 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 578 mui_next) { 579 if (vid == oth_mui_list->mui_vid) { 580 rw_exit(&mcip->mci_rw_lock); 581 return (LINK_STATE_UP); 582 } 583 } 584 } 585 } 586 rw_exit(&mcip->mci_rw_lock); 587 588 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 589 } 590 591 /* 592 * These statistics are consumed by dladm show-link -s <vnic>, 593 * dladm show-vnic -s and netstat. With the introduction of dlstat, 594 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while 595 * netstat will consume from kstats introduced for dlstat. This code 596 * will be removed at that time. 597 */ 598 599 /* 600 * Return the statistics of a MAC client. These statistics are different 601 * then the statistics of the underlying MAC which are returned by 602 * mac_stat_get(). 603 * 604 * Note that for things based on the tx and rx stats, mac will end up clobbering 605 * those stats when the underlying set of rings in the srs changes. As such, we 606 * need to source not only the current set, but also the historical set when 607 * returning to the client, lest our counters appear to go backwards. 608 */ 609 uint64_t 610 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 611 { 612 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 613 mac_impl_t *mip = mcip->mci_mip; 614 flow_entry_t *flent = mcip->mci_flent; 615 mac_soft_ring_set_t *mac_srs; 616 mac_rx_stats_t *mac_rx_stat, *old_rx_stat; 617 mac_tx_stats_t *mac_tx_stat, *old_tx_stat; 618 int i; 619 uint64_t val = 0; 620 621 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 622 mac_tx_stat = &mac_srs->srs_tx.st_stat; 623 old_rx_stat = &mcip->mci_misc_stat.mms_defunctrxlanestats; 624 old_tx_stat = &mcip->mci_misc_stat.mms_defuncttxlanestats; 625 626 switch (stat) { 627 case MAC_STAT_LINK_STATE: 628 val = mac_client_link_state(mcip); 629 break; 630 case MAC_STAT_LINK_UP: 631 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 632 break; 633 case MAC_STAT_PROMISC: 634 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 635 break; 636 case MAC_STAT_LOWLINK_STATE: 637 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE); 638 break; 639 case MAC_STAT_IFSPEED: 640 val = mac_client_ifspeed(mcip); 641 break; 642 case MAC_STAT_MULTIRCV: 643 val = mcip->mci_misc_stat.mms_multircv; 644 break; 645 case MAC_STAT_BRDCSTRCV: 646 val = mcip->mci_misc_stat.mms_brdcstrcv; 647 break; 648 case MAC_STAT_MULTIXMT: 649 val = mcip->mci_misc_stat.mms_multixmt; 650 break; 651 case MAC_STAT_BRDCSTXMT: 652 val = mcip->mci_misc_stat.mms_brdcstxmt; 653 break; 654 case MAC_STAT_OBYTES: 655 val = mac_tx_stat->mts_obytes; 656 val += old_tx_stat->mts_obytes; 657 break; 658 case MAC_STAT_OPACKETS: 659 val = mac_tx_stat->mts_opackets; 660 val += old_tx_stat->mts_opackets; 661 break; 662 case MAC_STAT_OERRORS: 663 val = mac_tx_stat->mts_oerrors; 664 val += old_tx_stat->mts_oerrors; 665 break; 666 case MAC_STAT_IPACKETS: 667 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 668 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 669 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 670 val += mac_rx_stat->mrs_intrcnt + 671 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 672 } 673 val += old_rx_stat->mrs_intrcnt + old_rx_stat->mrs_pollcnt + 674 old_rx_stat->mrs_lclcnt; 675 break; 676 case MAC_STAT_RBYTES: 677 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 678 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 679 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 680 val += mac_rx_stat->mrs_intrbytes + 681 mac_rx_stat->mrs_pollbytes + 682 mac_rx_stat->mrs_lclbytes; 683 } 684 val += old_rx_stat->mrs_intrbytes + old_rx_stat->mrs_pollbytes + 685 old_rx_stat->mrs_lclbytes; 686 break; 687 case MAC_STAT_IERRORS: 688 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 689 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 690 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 691 val += mac_rx_stat->mrs_ierrors; 692 } 693 val += old_rx_stat->mrs_ierrors; 694 break; 695 default: 696 val = mac_driver_stat_default(mip, stat); 697 break; 698 } 699 700 return (val); 701 } 702 703 /* 704 * Return the statistics of the specified MAC instance. 705 */ 706 uint64_t 707 mac_stat_get(mac_handle_t mh, uint_t stat) 708 { 709 mac_impl_t *mip = (mac_impl_t *)mh; 710 uint64_t val; 711 int ret; 712 713 /* 714 * The range of stat determines where it is maintained. Stat 715 * values from 0 up to (but not including) MAC_STAT_MIN are 716 * mainteined by the mac module itself. Everything else is 717 * maintained by the driver. 718 * 719 * If the mac_impl_t being queried corresponds to a VNIC, 720 * the stats need to be queried from the lower MAC client 721 * corresponding to the VNIC. (The mac_link_update() 722 * invoked by the driver to the lower MAC causes the *lower 723 * MAC* to update its mi_linkstate, and send a notification 724 * to its MAC clients. Due to the VNIC passthrough, 725 * these notifications are sent to the upper MAC clients 726 * of the VNIC directly, and the upper mac_impl_t of the VNIC 727 * does not have a valid mi_linkstate. 728 */ 729 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 730 /* these stats are maintained by the mac module itself */ 731 switch (stat) { 732 case MAC_STAT_LINK_STATE: 733 return (mip->mi_linkstate); 734 case MAC_STAT_LINK_UP: 735 return (mip->mi_linkstate == LINK_STATE_UP); 736 case MAC_STAT_PROMISC: 737 return (mip->mi_devpromisc != 0); 738 case MAC_STAT_LOWLINK_STATE: 739 return (mip->mi_lowlinkstate); 740 default: 741 ASSERT(B_FALSE); 742 } 743 } 744 745 /* 746 * Call the driver to get the given statistic. 747 */ 748 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 749 if (ret != 0) { 750 /* 751 * The driver doesn't support this statistic. Get the 752 * statistic's default value. 753 */ 754 val = mac_driver_stat_default(mip, stat); 755 } 756 return (val); 757 } 758 759 /* 760 * Query hardware rx ring corresponding to the pseudo ring. 761 */ 762 uint64_t 763 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 764 { 765 return (mac_rx_ring_stat_get(handle, stat)); 766 } 767 768 /* 769 * Query hardware tx ring corresponding to the pseudo ring. 770 */ 771 uint64_t 772 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 773 { 774 return (mac_tx_ring_stat_get(handle, stat)); 775 } 776 777 /* 778 * Utility function which returns the VID associated with a flow entry. 779 */ 780 uint16_t 781 i_mac_flow_vid(flow_entry_t *flent) 782 { 783 flow_desc_t flow_desc; 784 785 mac_flow_get_desc(flent, &flow_desc); 786 787 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 788 return (flow_desc.fd_vid); 789 return (VLAN_ID_NONE); 790 } 791 792 /* 793 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 794 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 795 * length. 796 */ 797 boolean_t 798 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 799 { 800 mac_impl_t *mip = (mac_impl_t *)mh; 801 802 /* 803 * Verify the address. No lock is needed since mi_type and plugin 804 * details don't change after mac_register(). 805 */ 806 if ((len != mip->mi_type->mt_addr_length) || 807 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 808 mip->mi_pdata)) != 0) { 809 return (B_FALSE); 810 } else { 811 return (B_TRUE); 812 } 813 } 814 815 void 816 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 817 { 818 mac_impl_t *mip = (mac_impl_t *)mh; 819 820 if (min_sdu != NULL) 821 *min_sdu = mip->mi_sdu_min; 822 if (max_sdu != NULL) 823 *max_sdu = mip->mi_sdu_max; 824 } 825 826 void 827 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu, 828 uint_t *multicast_sdu) 829 { 830 mac_impl_t *mip = (mac_impl_t *)mh; 831 832 if (min_sdu != NULL) 833 *min_sdu = mip->mi_sdu_min; 834 if (max_sdu != NULL) 835 *max_sdu = mip->mi_sdu_max; 836 if (multicast_sdu != NULL) 837 *multicast_sdu = mip->mi_sdu_multicast; 838 } 839 840 /* 841 * Update the MAC unicast address of the specified client's flows. Currently 842 * only one unicast MAC unicast address is allowed per client. 843 */ 844 static void 845 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 846 { 847 mac_impl_t *mip = mcip->mci_mip; 848 flow_entry_t *flent = mcip->mci_flent; 849 mac_address_t *map = mcip->mci_unicast; 850 flow_desc_t flow_desc; 851 852 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 853 ASSERT(flent != NULL); 854 855 mac_flow_get_desc(flent, &flow_desc); 856 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 857 858 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 859 mac_flow_set_desc(flent, &flow_desc); 860 861 /* 862 * The v6 local and SLAAC addrs (used by mac protection) need to be 863 * regenerated because our mac address has changed. 864 */ 865 mac_protect_update_mac_token(mcip); 866 867 /* 868 * When there are multiple VLANs sharing the same MAC address, 869 * each gets its own MAC client, except when running on sun4v 870 * vsw. In that case the mci_flent_list is used to place 871 * multiple VLAN flows on one MAC client. If we ever get rid 872 * of vsw then this code can go, but until then we need to 873 * update all flow entries. 874 */ 875 for (flent = mcip->mci_flent_list; flent != NULL; 876 flent = flent->fe_client_next) { 877 mac_flow_get_desc(flent, &flow_desc); 878 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 879 flent->fe_type & FLOW_VNIC_MAC)) 880 continue; 881 882 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 883 mac_flow_set_desc(flent, &flow_desc); 884 } 885 } 886 887 /* 888 * Update all clients that share the same unicast address. 889 */ 890 void 891 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 892 { 893 mac_client_impl_t *mcip; 894 895 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 896 897 /* 898 * Find all clients that share the same unicast MAC address and update 899 * them appropriately. 900 */ 901 for (mcip = mip->mi_clients_list; mcip != NULL; 902 mcip = mcip->mci_client_next) { 903 /* 904 * Ignore clients that don't share this MAC address. 905 */ 906 if (map != mcip->mci_unicast) 907 continue; 908 909 /* 910 * Update those clients with same old unicast MAC address. 911 */ 912 mac_unicast_update_client_flow(mcip); 913 } 914 } 915 916 /* 917 * Update the unicast MAC address of the specified VNIC MAC client. 918 * 919 * Check whether the operation is valid. Any of following cases should fail: 920 * 921 * 1. It's a VLAN type of VNIC. 922 * 2. The new value is current "primary" MAC address. 923 * 3. The current MAC address is shared with other clients. 924 * 4. The new MAC address has been used. This case will be valid when 925 * client migration is fully supported. 926 */ 927 int 928 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 929 { 930 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 931 mac_impl_t *mip = mcip->mci_mip; 932 mac_address_t *map = mcip->mci_unicast; 933 int err; 934 935 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 936 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 937 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 938 939 i_mac_perim_enter(mip); 940 941 /* 942 * If this is a VLAN type of VNIC, it's using "primary" MAC address 943 * of the underlying interface. Must fail here. Refer to case 1 above. 944 */ 945 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 946 i_mac_perim_exit(mip); 947 return (ENOTSUP); 948 } 949 950 /* 951 * If the new address is the "primary" one, must fail. Refer to 952 * case 2 above. 953 */ 954 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 955 i_mac_perim_exit(mip); 956 return (EACCES); 957 } 958 959 /* 960 * If the address is shared by multiple clients, must fail. Refer 961 * to case 3 above. 962 */ 963 if (mac_check_macaddr_shared(map)) { 964 i_mac_perim_exit(mip); 965 return (EBUSY); 966 } 967 968 /* 969 * If the new address has been used, must fail for now. Refer to 970 * case 4 above. 971 */ 972 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 973 i_mac_perim_exit(mip); 974 return (ENOTSUP); 975 } 976 977 /* 978 * Update the MAC address. 979 */ 980 err = mac_update_macaddr(map, (uint8_t *)addr); 981 982 if (err != 0) { 983 i_mac_perim_exit(mip); 984 return (err); 985 } 986 987 /* 988 * Update all flows of this MAC client. 989 */ 990 mac_unicast_update_client_flow(mcip); 991 992 i_mac_perim_exit(mip); 993 return (0); 994 } 995 996 /* 997 * Program the new primary unicast address of the specified MAC. 998 * 999 * Function mac_update_macaddr() takes care different types of underlying 1000 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 1001 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 1002 * which will take care of updating the MAC address of the corresponding 1003 * MAC client. 1004 * 1005 * This is the only interface that allow the client to update the "primary" 1006 * MAC address of the underlying MAC. The new value must have not been 1007 * used by other clients. 1008 */ 1009 int 1010 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 1011 { 1012 mac_impl_t *mip = (mac_impl_t *)mh; 1013 mac_address_t *map; 1014 int err; 1015 1016 /* verify the address validity */ 1017 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 1018 return (EINVAL); 1019 1020 i_mac_perim_enter(mip); 1021 1022 /* 1023 * If the new value is the same as the current primary address value, 1024 * there's nothing to do. 1025 */ 1026 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 1027 i_mac_perim_exit(mip); 1028 return (0); 1029 } 1030 1031 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 1032 i_mac_perim_exit(mip); 1033 return (EBUSY); 1034 } 1035 1036 map = mac_find_macaddr(mip, mip->mi_addr); 1037 ASSERT(map != NULL); 1038 1039 /* 1040 * Update the MAC address. 1041 */ 1042 if (mip->mi_state_flags & MIS_IS_AGGR) { 1043 mac_capab_aggr_t aggr_cap; 1044 1045 /* 1046 * If the MAC is an aggregation, other than the unicast 1047 * addresses programming, aggr must be informed about this 1048 * primary unicst address change to change its MAC address 1049 * policy to be user-specified. 1050 */ 1051 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 1052 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 1053 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 1054 if (err == 0) 1055 bcopy(addr, map->ma_addr, map->ma_len); 1056 } else { 1057 err = mac_update_macaddr(map, (uint8_t *)addr); 1058 } 1059 1060 if (err != 0) { 1061 i_mac_perim_exit(mip); 1062 return (err); 1063 } 1064 1065 mac_unicast_update_clients(mip, map); 1066 1067 /* 1068 * Save the new primary MAC address in mac_impl_t. 1069 */ 1070 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 1071 1072 i_mac_perim_exit(mip); 1073 1074 if (err == 0) 1075 i_mac_notify(mip, MAC_NOTE_UNICST); 1076 1077 return (err); 1078 } 1079 1080 /* 1081 * Return the current primary MAC address of the specified MAC. 1082 */ 1083 void 1084 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 1085 { 1086 mac_impl_t *mip = (mac_impl_t *)mh; 1087 1088 rw_enter(&mip->mi_rw_lock, RW_READER); 1089 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 1090 rw_exit(&mip->mi_rw_lock); 1091 } 1092 1093 /* 1094 * Return the secondary MAC address for the specified handle 1095 */ 1096 void 1097 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr) 1098 { 1099 mac_client_impl_t *mcip = (mac_client_impl_t *)mh; 1100 1101 ASSERT(mcip->mci_unicast != NULL); 1102 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len); 1103 } 1104 1105 /* 1106 * Return information about the use of the primary MAC address of the 1107 * specified MAC instance: 1108 * 1109 * - if client_name is non-NULL, it must point to a string of at 1110 * least MAXNAMELEN bytes, and will be set to the name of the MAC 1111 * client which uses the primary MAC address. 1112 * 1113 * - if in_use is non-NULL, used to return whether the primary MAC 1114 * address is currently in use. 1115 */ 1116 void 1117 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 1118 { 1119 mac_impl_t *mip = (mac_impl_t *)mh; 1120 mac_client_impl_t *cur_client; 1121 1122 if (in_use != NULL) 1123 *in_use = B_FALSE; 1124 if (client_name != NULL) 1125 bzero(client_name, MAXNAMELEN); 1126 1127 /* 1128 * The mi_rw_lock is used to protect threads that don't hold the 1129 * mac perimeter to get a consistent view of the mi_clients_list. 1130 * Threads that modify the list must hold both the mac perimeter and 1131 * mi_rw_lock(RW_WRITER) 1132 */ 1133 rw_enter(&mip->mi_rw_lock, RW_READER); 1134 for (cur_client = mip->mi_clients_list; cur_client != NULL; 1135 cur_client = cur_client->mci_client_next) { 1136 if (mac_is_primary_client(cur_client) || 1137 (mip->mi_state_flags & MIS_IS_VNIC)) { 1138 rw_exit(&mip->mi_rw_lock); 1139 if (in_use != NULL) 1140 *in_use = B_TRUE; 1141 if (client_name != NULL) { 1142 bcopy(cur_client->mci_name, client_name, 1143 MAXNAMELEN); 1144 } 1145 return; 1146 } 1147 } 1148 rw_exit(&mip->mi_rw_lock); 1149 } 1150 1151 /* 1152 * Return the current destination MAC address of the specified MAC. 1153 */ 1154 boolean_t 1155 mac_dst_get(mac_handle_t mh, uint8_t *addr) 1156 { 1157 mac_impl_t *mip = (mac_impl_t *)mh; 1158 1159 rw_enter(&mip->mi_rw_lock, RW_READER); 1160 if (mip->mi_dstaddr_set) 1161 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length); 1162 rw_exit(&mip->mi_rw_lock); 1163 return (mip->mi_dstaddr_set); 1164 } 1165 1166 /* 1167 * Add the specified MAC client to the list of clients which opened 1168 * the specified MAC. 1169 */ 1170 static void 1171 mac_client_add(mac_client_impl_t *mcip) 1172 { 1173 mac_impl_t *mip = mcip->mci_mip; 1174 1175 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1176 1177 /* add VNIC to the front of the list */ 1178 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1179 mcip->mci_client_next = mip->mi_clients_list; 1180 mip->mi_clients_list = mcip; 1181 mip->mi_nclients++; 1182 rw_exit(&mip->mi_rw_lock); 1183 } 1184 1185 /* 1186 * Remove the specified MAC client from the list of clients which opened 1187 * the specified MAC. 1188 */ 1189 static void 1190 mac_client_remove(mac_client_impl_t *mcip) 1191 { 1192 mac_impl_t *mip = mcip->mci_mip; 1193 mac_client_impl_t **prev, *cclient; 1194 1195 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1196 1197 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1198 prev = &mip->mi_clients_list; 1199 cclient = *prev; 1200 while (cclient != NULL && cclient != mcip) { 1201 prev = &cclient->mci_client_next; 1202 cclient = *prev; 1203 } 1204 ASSERT(cclient != NULL); 1205 *prev = cclient->mci_client_next; 1206 mip->mi_nclients--; 1207 rw_exit(&mip->mi_rw_lock); 1208 } 1209 1210 static mac_unicast_impl_t * 1211 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1212 { 1213 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1214 1215 while ((muip != NULL) && (muip->mui_vid != vid)) 1216 muip = muip->mui_next; 1217 1218 return (muip); 1219 } 1220 1221 /* 1222 * Return whether the specified (MAC address, VID) tuple is already used by 1223 * one of the MAC clients associated with the specified MAC. 1224 */ 1225 static boolean_t 1226 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1227 { 1228 mac_client_impl_t *client; 1229 mac_address_t *map; 1230 1231 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1232 1233 for (client = mip->mi_clients_list; client != NULL; 1234 client = client->mci_client_next) { 1235 1236 /* 1237 * Ignore clients that don't have unicast address. 1238 */ 1239 if (client->mci_unicast_list == NULL) 1240 continue; 1241 1242 map = client->mci_unicast; 1243 1244 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1245 (mac_client_find_vid(client, vid) != NULL)) { 1246 return (B_TRUE); 1247 } 1248 } 1249 1250 return (B_FALSE); 1251 } 1252 1253 /* 1254 * Generate a random MAC address. The MAC address prefix is 1255 * stored in the array pointed to by mac_addr, and its length, in bytes, 1256 * is specified by prefix_len. The least significant bits 1257 * after prefix_len bytes are generated, and stored after the prefix 1258 * in the mac_addr array. 1259 */ 1260 int 1261 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1262 uint8_t *mac_addr, mac_diag_t *diag) 1263 { 1264 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1265 mac_impl_t *mip = mcip->mci_mip; 1266 size_t addr_len = mip->mi_type->mt_addr_length; 1267 1268 if (prefix_len >= addr_len) { 1269 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1270 return (EINVAL); 1271 } 1272 1273 /* check the prefix value */ 1274 if (prefix_len > 0) { 1275 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1276 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1277 addr_len)) { 1278 *diag = MAC_DIAG_MACPREFIX_INVALID; 1279 return (EINVAL); 1280 } 1281 } 1282 1283 /* generate the MAC address */ 1284 if (prefix_len < addr_len) { 1285 (void) random_get_pseudo_bytes(mac_addr + 1286 prefix_len, addr_len - prefix_len); 1287 } 1288 1289 *diag = 0; 1290 return (0); 1291 } 1292 1293 /* 1294 * Set the priority range for this MAC client. This will be used to 1295 * determine the absolute priority for the threads created for this 1296 * MAC client using the specified "low", "medium" and "high" level. 1297 * This will also be used for any subflows on this MAC client. 1298 */ 1299 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1300 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1301 MAXCLSYSPRI, (pri)); \ 1302 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1303 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1304 } 1305 1306 /* 1307 * MAC client open entry point. Return a new MAC client handle. Each 1308 * MAC client is associated with a name, specified through the 'name' 1309 * argument. 1310 */ 1311 int 1312 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1313 uint16_t flags) 1314 { 1315 mac_impl_t *mip = (mac_impl_t *)mh; 1316 mac_client_impl_t *mcip; 1317 int err = 0; 1318 boolean_t share_desired; 1319 flow_entry_t *flent = NULL; 1320 1321 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0; 1322 *mchp = NULL; 1323 1324 i_mac_perim_enter(mip); 1325 1326 if (mip->mi_state_flags & MIS_IS_VNIC) { 1327 /* 1328 * The underlying MAC is a VNIC. Return the MAC client 1329 * handle of the lower MAC which was obtained by 1330 * the VNIC driver when it did its mac_client_open(). 1331 */ 1332 1333 mcip = mac_vnic_lower(mip); 1334 1335 /* 1336 * Note that multiple mac clients share the same mcip in 1337 * this case. 1338 */ 1339 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1340 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1341 1342 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1343 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1344 1345 mip->mi_clients_list = mcip; 1346 i_mac_perim_exit(mip); 1347 *mchp = (mac_client_handle_t)mcip; 1348 1349 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *, 1350 mcip->mci_mip, mac_client_impl_t *, mcip); 1351 1352 return (err); 1353 } 1354 1355 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1356 1357 mcip->mci_mip = mip; 1358 mcip->mci_upper_mip = NULL; 1359 mcip->mci_rx_fn = mac_pkt_drop; 1360 mcip->mci_rx_arg = NULL; 1361 mcip->mci_rx_p_fn = NULL; 1362 mcip->mci_rx_p_arg = NULL; 1363 mcip->mci_p_unicast_list = NULL; 1364 mcip->mci_direct_rx_fn = NULL; 1365 mcip->mci_direct_rx_arg = NULL; 1366 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 1367 1368 mcip->mci_unicast_list = NULL; 1369 1370 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1371 mcip->mci_state_flags |= MCIS_IS_VNIC; 1372 1373 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1374 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1375 1376 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1377 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1378 1379 if (mip->mi_state_flags & MIS_IS_AGGR) 1380 mcip->mci_state_flags |= MCIS_IS_AGGR_CLIENT; 1381 1382 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1383 datalink_id_t linkid; 1384 1385 ASSERT(name == NULL); 1386 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1387 &linkid)) != 0) { 1388 goto done; 1389 } 1390 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1391 NULL, NULL)) != 0) { 1392 /* 1393 * Use mac name if dlmgmtd is not available. 1394 */ 1395 if (err == EBADF) { 1396 (void) strlcpy(mcip->mci_name, mip->mi_name, 1397 sizeof (mcip->mci_name)); 1398 err = 0; 1399 } else { 1400 goto done; 1401 } 1402 } 1403 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1404 } else { 1405 ASSERT(name != NULL); 1406 if (strlen(name) > MAXNAMELEN) { 1407 err = EINVAL; 1408 goto done; 1409 } 1410 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1411 } 1412 1413 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1414 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1415 1416 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR) 1417 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR; 1418 1419 mac_protect_init(mcip); 1420 1421 /* the subflow table will be created dynamically */ 1422 mcip->mci_subflow_tab = NULL; 1423 1424 mcip->mci_misc_stat.mms_multircv = 0; 1425 mcip->mci_misc_stat.mms_brdcstrcv = 0; 1426 mcip->mci_misc_stat.mms_multixmt = 0; 1427 mcip->mci_misc_stat.mms_brdcstxmt = 0; 1428 1429 /* Create an initial flow */ 1430 1431 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1432 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1433 FLOW_PRIMARY_MAC, &flent); 1434 if (err != 0) 1435 goto done; 1436 mcip->mci_flent = flent; 1437 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1438 flent->fe_mcip = mcip; 1439 /* 1440 * Place initial creation reference on the flow. This reference 1441 * is released in the corresponding delete action viz. 1442 * mac_unicast_remove after waiting for all transient refs to 1443 * to go away. The wait happens in mac_flow_wait. 1444 */ 1445 FLOW_REFHOLD(flent); 1446 1447 /* 1448 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1449 * will have the right value for mac_rx_srs_setup(). 1450 */ 1451 mac_client_add(mcip); 1452 1453 mcip->mci_share = 0; 1454 if (share_desired) 1455 i_mac_share_alloc(mcip); 1456 1457 /* 1458 * We will do mimimal datapath setup to allow a MAC client to 1459 * transmit or receive non-unicast packets without waiting 1460 * for mac_unicast_add. 1461 */ 1462 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1463 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE, 1464 NULL, NULL, B_TRUE, NULL)) != 0) { 1465 goto done; 1466 } 1467 } 1468 1469 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1470 mcip->mci_mip, mac_client_impl_t *, mcip); 1471 1472 *mchp = (mac_client_handle_t)mcip; 1473 i_mac_perim_exit(mip); 1474 return (0); 1475 1476 done: 1477 i_mac_perim_exit(mip); 1478 mcip->mci_state_flags = 0; 1479 mcip->mci_tx_flag = 0; 1480 kmem_cache_free(mac_client_impl_cache, mcip); 1481 return (err); 1482 } 1483 1484 /* 1485 * Close the specified MAC client handle. 1486 */ 1487 void 1488 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1489 { 1490 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1491 mac_impl_t *mip = mcip->mci_mip; 1492 flow_entry_t *flent; 1493 1494 i_mac_perim_enter(mip); 1495 1496 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1497 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1498 1499 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1500 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1501 /* 1502 * This is an upper VNIC client initiated operation. 1503 * The lower MAC client will be closed by the VNIC driver 1504 * when the VNIC is deleted. 1505 */ 1506 1507 i_mac_perim_exit(mip); 1508 return; 1509 } 1510 1511 /* If we have only setup up minimal datapth setup, tear it down */ 1512 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1513 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL, 1514 mcip->mci_flent); 1515 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR; 1516 } 1517 1518 /* 1519 * Remove the flent associated with the MAC client 1520 */ 1521 flent = mcip->mci_flent; 1522 mcip->mci_flent = NULL; 1523 FLOW_FINAL_REFRELE(flent); 1524 1525 /* 1526 * MAC clients must remove the unicast addresses and promisc callbacks 1527 * they added before issuing a mac_client_close(). 1528 */ 1529 ASSERT(mcip->mci_unicast_list == NULL); 1530 ASSERT(mcip->mci_promisc_list == NULL); 1531 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1532 1533 i_mac_share_free(mcip); 1534 mac_protect_fini(mcip); 1535 mac_client_remove(mcip); 1536 1537 i_mac_perim_exit(mip); 1538 mcip->mci_subflow_tab = NULL; 1539 mcip->mci_state_flags = 0; 1540 mcip->mci_tx_flag = 0; 1541 kmem_cache_free(mac_client_impl_cache, mch); 1542 } 1543 1544 /* 1545 * Set the Rx bypass receive callback and return B_TRUE. Return 1546 * B_FALSE if it's not possible to enable bypass. 1547 */ 1548 boolean_t 1549 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1550 { 1551 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1552 mac_impl_t *mip = mcip->mci_mip; 1553 1554 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1555 1556 /* 1557 * If the client has more than one VLAN then process packets 1558 * through DLS. This should happen only when sun4v vsw is on 1559 * the scene. 1560 */ 1561 if (mcip->mci_nvids > 1) 1562 return (B_FALSE); 1563 1564 /* 1565 * These are not accessed directly in the data path, and hence 1566 * don't need any protection 1567 */ 1568 mcip->mci_direct_rx_fn = rx_fn; 1569 mcip->mci_direct_rx_arg = arg1; 1570 return (B_TRUE); 1571 } 1572 1573 /* 1574 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled. 1575 */ 1576 void 1577 mac_rx_bypass_enable(mac_client_handle_t mch) 1578 { 1579 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE; 1580 } 1581 1582 void 1583 mac_rx_bypass_disable(mac_client_handle_t mch) 1584 { 1585 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE; 1586 } 1587 1588 /* 1589 * Set the receive callback for the specified MAC client. There can be 1590 * at most one such callback per MAC client. 1591 */ 1592 void 1593 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1594 { 1595 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1596 mac_impl_t *mip = mcip->mci_mip; 1597 mac_impl_t *umip = mcip->mci_upper_mip; 1598 1599 /* 1600 * Instead of adding an extra set of locks and refcnts in 1601 * the datapath at the mac client boundary, we temporarily quiesce 1602 * the SRS and related entities. We then change the receive function 1603 * without interference from any receive data thread and then reenable 1604 * the data flow subsequently. 1605 */ 1606 i_mac_perim_enter(mip); 1607 mac_rx_client_quiesce(mch); 1608 1609 mcip->mci_rx_fn = rx_fn; 1610 mcip->mci_rx_arg = arg; 1611 mac_rx_client_restart(mch); 1612 i_mac_perim_exit(mip); 1613 1614 /* 1615 * If we're changing the Rx function on the primary MAC of a VNIC, 1616 * make sure any secondary addresses on the VNIC are updated as well. 1617 */ 1618 if (umip != NULL) { 1619 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 1620 mac_vnic_secondary_update(umip); 1621 } 1622 } 1623 1624 /* 1625 * Reset the receive callback for the specified MAC client. 1626 */ 1627 void 1628 mac_rx_clear(mac_client_handle_t mch) 1629 { 1630 mac_rx_set(mch, mac_pkt_drop, NULL); 1631 } 1632 1633 void 1634 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch) 1635 { 1636 mac_client_impl_t *smcip = (mac_client_impl_t *)smch; 1637 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch; 1638 flow_entry_t *flent = dmcip->mci_flent; 1639 1640 /* This should only be called to setup secondary macs */ 1641 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1642 1643 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg); 1644 dmcip->mci_promisc_list = smcip->mci_promisc_list; 1645 1646 /* 1647 * Duplicate the primary mac resources to the secondary. 1648 * Since we already validated the resource controls when setting 1649 * them on the primary, we can ignore errors here. 1650 */ 1651 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip)); 1652 } 1653 1654 /* 1655 * Called when removing a secondary MAC. Currently only clears the promisc_list 1656 * since we share the primary mac's promisc_list. 1657 */ 1658 void 1659 mac_secondary_cleanup(mac_client_handle_t mch) 1660 { 1661 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1662 flow_entry_t *flent = mcip->mci_flent; 1663 1664 /* This should only be called for secondary macs */ 1665 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1666 mcip->mci_promisc_list = NULL; 1667 } 1668 1669 /* 1670 * Walk the MAC client subflow table and updates their priority values. 1671 */ 1672 static int 1673 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1674 { 1675 mac_flow_update_priority(arg, flent); 1676 return (0); 1677 } 1678 1679 void 1680 mac_update_subflow_priority(mac_client_impl_t *mcip) 1681 { 1682 (void) mac_flow_walk(mcip->mci_subflow_tab, 1683 mac_update_subflow_priority_cb, mcip); 1684 } 1685 1686 /* 1687 * Modify the TX or RX ring properties. We could either just move around 1688 * rings, i.e add/remove rings given to a client. Or this might cause the 1689 * client to move from hardware based to software or the other way around. 1690 * If we want to reset this property, then we clear the mask, additionally 1691 * if the client was given a non-default group we remove all rings except 1692 * for 1 and give it back to the default group. 1693 */ 1694 int 1695 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp, 1696 mac_resource_props_t *tmrp) 1697 { 1698 mac_impl_t *mip = mcip->mci_mip; 1699 flow_entry_t *flent = mcip->mci_flent; 1700 uint8_t *mac_addr; 1701 int err = 0; 1702 mac_group_t *defgrp; 1703 mac_group_t *group; 1704 mac_group_t *ngrp; 1705 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip); 1706 uint_t ringcnt; 1707 boolean_t unspec; 1708 1709 if (mcip->mci_share != 0) 1710 return (EINVAL); 1711 1712 if (mrp->mrp_mask & MRP_RX_RINGS) { 1713 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 1714 group = flent->fe_rx_ring_group; 1715 defgrp = MAC_DEFAULT_RX_GROUP(mip); 1716 mac_addr = flent->fe_flow_desc.fd_dst_mac; 1717 1718 /* 1719 * No resulting change. If we are resetting on a client on 1720 * which there was no rx rings property. For dynamic group 1721 * if we are setting the same number of rings already set. 1722 * For static group if we are requesting a group again. 1723 */ 1724 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1725 if (!(tmrp->mrp_mask & MRP_RX_RINGS)) 1726 return (0); 1727 } else { 1728 if (unspec) { 1729 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 1730 return (0); 1731 } else if (mip->mi_rx_group_type == 1732 MAC_GROUP_TYPE_DYNAMIC) { 1733 if ((tmrp->mrp_mask & MRP_RX_RINGS) && 1734 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) && 1735 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) { 1736 return (0); 1737 } 1738 } 1739 } 1740 /* Resetting the prop */ 1741 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1742 /* 1743 * We will just keep one ring and give others back if 1744 * we are not the primary. For the primary we give 1745 * all the rings in the default group except the 1746 * default ring. If it is a static group, then 1747 * we don't do anything, but clear the MRP_RX_RINGS 1748 * flag. 1749 */ 1750 if (group != defgrp) { 1751 if (mip->mi_rx_group_type == 1752 MAC_GROUP_TYPE_DYNAMIC) { 1753 /* 1754 * This group has reserved rings 1755 * that need to be released now, 1756 * so does the group. 1757 */ 1758 MAC_RX_RING_RELEASED(mip, 1759 group->mrg_cur_count); 1760 MAC_RX_GRP_RELEASED(mip); 1761 if ((flent->fe_type & 1762 FLOW_PRIMARY_MAC) != 0) { 1763 if (mip->mi_nactiveclients == 1764 1) { 1765 (void) 1766 mac_rx_switch_group( 1767 mcip, group, 1768 defgrp); 1769 return (0); 1770 } else { 1771 cmrp->mrp_nrxrings = 1772 group-> 1773 mrg_cur_count + 1774 defgrp-> 1775 mrg_cur_count - 1; 1776 } 1777 } else { 1778 cmrp->mrp_nrxrings = 1; 1779 } 1780 (void) mac_group_ring_modify(mcip, 1781 group, defgrp); 1782 } else { 1783 /* 1784 * If this is a static group, we 1785 * need to release the group. The 1786 * client will remain in the same 1787 * group till some other client 1788 * needs this group. 1789 */ 1790 MAC_RX_GRP_RELEASED(mip); 1791 } 1792 /* Let check if we can give this an excl group */ 1793 } else if (group == defgrp) { 1794 /* 1795 * If multiple clients share an 1796 * address then they must stay on the 1797 * default group. 1798 */ 1799 if (mac_check_macaddr_shared(mcip->mci_unicast)) 1800 return (0); 1801 1802 ngrp = mac_reserve_rx_group(mcip, mac_addr, 1803 B_TRUE); 1804 /* Couldn't give it a group, that's fine */ 1805 if (ngrp == NULL) 1806 return (0); 1807 /* Switch to H/W */ 1808 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 1809 0) { 1810 mac_stop_group(ngrp); 1811 return (0); 1812 } 1813 } 1814 /* 1815 * If the client is in the default group, we will 1816 * just clear the MRP_RX_RINGS and leave it as 1817 * it rather than look for an exclusive group 1818 * for it. 1819 */ 1820 return (0); 1821 } 1822 1823 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) { 1824 /* 1825 * We are requesting Rx rings. Try to reserve 1826 * a non-default group. 1827 * 1828 * If multiple clients share an address then 1829 * they must stay on the default group. 1830 */ 1831 if (mac_check_macaddr_shared(mcip->mci_unicast)) 1832 return (EINVAL); 1833 1834 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 1835 if (ngrp == NULL) 1836 return (ENOSPC); 1837 1838 /* Switch to H/W */ 1839 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 1840 mac_release_rx_group(mcip, ngrp); 1841 return (ENOSPC); 1842 } 1843 MAC_RX_GRP_RESERVED(mip); 1844 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1845 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1846 } else if (group != defgrp && !unspec && 1847 mrp->mrp_nrxrings == 0) { 1848 /* Switch to S/W */ 1849 ringcnt = group->mrg_cur_count; 1850 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 1851 return (ENOSPC); 1852 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1853 MAC_RX_GRP_RELEASED(mip); 1854 if (mip->mi_rx_group_type == 1855 MAC_GROUP_TYPE_DYNAMIC) { 1856 MAC_RX_RING_RELEASED(mip, ringcnt); 1857 } 1858 } 1859 } else if (group != defgrp && mip->mi_rx_group_type == 1860 MAC_GROUP_TYPE_DYNAMIC) { 1861 ringcnt = group->mrg_cur_count; 1862 err = mac_group_ring_modify(mcip, group, defgrp); 1863 if (err != 0) 1864 return (err); 1865 /* 1866 * Update the accounting. If this group 1867 * already had explicitly reserved rings, 1868 * we need to update the rings based on 1869 * the new ring count. If this group 1870 * had not explicitly reserved rings, 1871 * then we just reserve the rings asked for 1872 * and reserve the group. 1873 */ 1874 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1875 if (ringcnt > group->mrg_cur_count) { 1876 MAC_RX_RING_RELEASED(mip, 1877 ringcnt - group->mrg_cur_count); 1878 } else { 1879 MAC_RX_RING_RESERVED(mip, 1880 group->mrg_cur_count - ringcnt); 1881 } 1882 } else { 1883 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count); 1884 MAC_RX_GRP_RESERVED(mip); 1885 } 1886 } 1887 } 1888 if (mrp->mrp_mask & MRP_TX_RINGS) { 1889 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 1890 group = flent->fe_tx_ring_group; 1891 defgrp = MAC_DEFAULT_TX_GROUP(mip); 1892 1893 /* 1894 * For static groups we only allow rings=0 or resetting the 1895 * rings property. 1896 */ 1897 if (mrp->mrp_ntxrings > 0 && 1898 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 1899 return (ENOTSUP); 1900 } 1901 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1902 if (!(tmrp->mrp_mask & MRP_TX_RINGS)) 1903 return (0); 1904 } else { 1905 if (unspec) { 1906 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 1907 return (0); 1908 } else if (mip->mi_tx_group_type == 1909 MAC_GROUP_TYPE_DYNAMIC) { 1910 if ((tmrp->mrp_mask & MRP_TX_RINGS) && 1911 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) && 1912 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) { 1913 return (0); 1914 } 1915 } 1916 } 1917 /* Resetting the prop */ 1918 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1919 if (group != defgrp) { 1920 if (mip->mi_tx_group_type == 1921 MAC_GROUP_TYPE_DYNAMIC) { 1922 ringcnt = group->mrg_cur_count; 1923 if ((flent->fe_type & 1924 FLOW_PRIMARY_MAC) != 0) { 1925 mac_tx_client_quiesce( 1926 (mac_client_handle_t) 1927 mcip); 1928 mac_tx_switch_group(mcip, 1929 group, defgrp); 1930 mac_tx_client_restart( 1931 (mac_client_handle_t) 1932 mcip); 1933 MAC_TX_GRP_RELEASED(mip); 1934 MAC_TX_RING_RELEASED(mip, 1935 ringcnt); 1936 return (0); 1937 } 1938 cmrp->mrp_ntxrings = 1; 1939 (void) mac_group_ring_modify(mcip, 1940 group, defgrp); 1941 /* 1942 * This group has reserved rings 1943 * that need to be released now. 1944 */ 1945 MAC_TX_RING_RELEASED(mip, ringcnt); 1946 } 1947 /* 1948 * If this is a static group, we 1949 * need to release the group. The 1950 * client will remain in the same 1951 * group till some other client 1952 * needs this group. 1953 */ 1954 MAC_TX_GRP_RELEASED(mip); 1955 } else if (group == defgrp && 1956 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) { 1957 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1958 if (ngrp == NULL) 1959 return (0); 1960 mac_tx_client_quiesce( 1961 (mac_client_handle_t)mcip); 1962 mac_tx_switch_group(mcip, defgrp, ngrp); 1963 mac_tx_client_restart( 1964 (mac_client_handle_t)mcip); 1965 } 1966 /* 1967 * If the client is in the default group, we will 1968 * just clear the MRP_TX_RINGS and leave it as 1969 * it rather than look for an exclusive group 1970 * for it. 1971 */ 1972 return (0); 1973 } 1974 1975 /* Switch to H/W */ 1976 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) { 1977 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1978 if (ngrp == NULL) 1979 return (ENOSPC); 1980 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1981 mac_tx_switch_group(mcip, defgrp, ngrp); 1982 mac_tx_client_restart((mac_client_handle_t)mcip); 1983 MAC_TX_GRP_RESERVED(mip); 1984 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1985 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1986 /* Switch to S/W */ 1987 } else if (group != defgrp && !unspec && 1988 mrp->mrp_ntxrings == 0) { 1989 /* Switch to S/W */ 1990 ringcnt = group->mrg_cur_count; 1991 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1992 mac_tx_switch_group(mcip, group, defgrp); 1993 mac_tx_client_restart((mac_client_handle_t)mcip); 1994 if (tmrp->mrp_mask & MRP_TX_RINGS) { 1995 MAC_TX_GRP_RELEASED(mip); 1996 if (mip->mi_tx_group_type == 1997 MAC_GROUP_TYPE_DYNAMIC) { 1998 MAC_TX_RING_RELEASED(mip, ringcnt); 1999 } 2000 } 2001 } else if (group != defgrp && mip->mi_tx_group_type == 2002 MAC_GROUP_TYPE_DYNAMIC) { 2003 ringcnt = group->mrg_cur_count; 2004 err = mac_group_ring_modify(mcip, group, defgrp); 2005 if (err != 0) 2006 return (err); 2007 /* 2008 * Update the accounting. If this group 2009 * already had explicitly reserved rings, 2010 * we need to update the rings based on 2011 * the new ring count. If this group 2012 * had not explicitly reserved rings, 2013 * then we just reserve the rings asked for 2014 * and reserve the group. 2015 */ 2016 if (tmrp->mrp_mask & MRP_TX_RINGS) { 2017 if (ringcnt > group->mrg_cur_count) { 2018 MAC_TX_RING_RELEASED(mip, 2019 ringcnt - group->mrg_cur_count); 2020 } else { 2021 MAC_TX_RING_RESERVED(mip, 2022 group->mrg_cur_count - ringcnt); 2023 } 2024 } else { 2025 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count); 2026 MAC_TX_GRP_RESERVED(mip); 2027 } 2028 } 2029 } 2030 return (0); 2031 } 2032 2033 /* 2034 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 2035 * to initialize the cpu and resource control structure in the 2036 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 2037 * properties before the flow entry for the unicast address was created). 2038 */ 2039 static int 2040 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2041 { 2042 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2043 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2044 mac_impl_t *umip = mcip->mci_upper_mip; 2045 int err = 0; 2046 flow_entry_t *flent = mcip->mci_flent; 2047 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip); 2048 2049 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2050 2051 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 2052 mcip->mci_upper_mip : mip, mrp); 2053 if (err != 0) 2054 return (err); 2055 2056 /* 2057 * Copy over the existing properties since mac_update_resources 2058 * will modify the client's mrp. Currently, the saved property 2059 * is used to determine the difference between existing and 2060 * modified rings property. 2061 */ 2062 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 2063 bcopy(nmrp, omrp, sizeof (*omrp)); 2064 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2065 if (MCIP_DATAPATH_SETUP(mcip)) { 2066 /* 2067 * We support rings only for primary client when there are 2068 * multiple clients sharing the same MAC address (e.g. VLAN). 2069 */ 2070 if (mrp->mrp_mask & MRP_RX_RINGS || 2071 mrp->mrp_mask & MRP_TX_RINGS) { 2072 2073 if ((err = mac_client_set_rings_prop(mcip, mrp, 2074 omrp)) != 0) { 2075 if (omrp->mrp_mask & MRP_RX_RINGS) { 2076 nmrp->mrp_mask |= MRP_RX_RINGS; 2077 nmrp->mrp_nrxrings = omrp->mrp_nrxrings; 2078 } else { 2079 nmrp->mrp_mask &= ~MRP_RX_RINGS; 2080 nmrp->mrp_nrxrings = 0; 2081 } 2082 if (omrp->mrp_mask & MRP_TX_RINGS) { 2083 nmrp->mrp_mask |= MRP_TX_RINGS; 2084 nmrp->mrp_ntxrings = omrp->mrp_ntxrings; 2085 } else { 2086 nmrp->mrp_mask &= ~MRP_TX_RINGS; 2087 nmrp->mrp_ntxrings = 0; 2088 } 2089 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC) 2090 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 2091 else 2092 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 2093 2094 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC) 2095 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 2096 else 2097 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 2098 kmem_free(omrp, sizeof (*omrp)); 2099 return (err); 2100 } 2101 2102 /* 2103 * If we modified the rings property of the primary 2104 * we need to update the property fields of its 2105 * VLANs as they inherit the primary's properites. 2106 */ 2107 if (mac_is_primary_client(mcip)) { 2108 mac_set_prim_vlan_rings(mip, 2109 MCIP_RESOURCE_PROPS(mcip)); 2110 } 2111 } 2112 /* 2113 * We have to set this prior to calling mac_flow_modify. 2114 */ 2115 if (mrp->mrp_mask & MRP_PRIORITY) { 2116 if (mrp->mrp_priority == MPL_RESET) { 2117 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2118 MPL_LINK_DEFAULT); 2119 } else { 2120 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2121 mrp->mrp_priority); 2122 } 2123 } 2124 2125 mac_flow_modify(mip->mi_flow_tab, flent, mrp); 2126 if (mrp->mrp_mask & MRP_PRIORITY) 2127 mac_update_subflow_priority(mcip); 2128 2129 /* Apply these resource settings to any secondary macs */ 2130 if (umip != NULL) { 2131 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 2132 mac_vnic_secondary_update(umip); 2133 } 2134 } 2135 kmem_free(omrp, sizeof (*omrp)); 2136 return (0); 2137 } 2138 2139 static int 2140 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 2141 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 2142 flow_entry_t **flent, mac_resource_props_t *mrp) 2143 { 2144 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2145 flow_desc_t flow_desc; 2146 char flowname[MAXFLOWNAMELEN]; 2147 int err; 2148 uint_t flent_flags; 2149 2150 /* 2151 * First unicast address being added, create a new flow 2152 * for that MAC client. 2153 */ 2154 bzero(&flow_desc, sizeof (flow_desc)); 2155 2156 ASSERT(mac_addr != NULL || 2157 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)); 2158 if (mac_addr != NULL) { 2159 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 2160 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 2161 } 2162 flow_desc.fd_mask = FLOW_LINK_DST; 2163 if (vid != 0) { 2164 flow_desc.fd_vid = vid; 2165 flow_desc.fd_mask |= FLOW_LINK_VID; 2166 } 2167 2168 /* 2169 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 2170 * and FLOW_VNIC. Even though they're a hack inherited 2171 * from the SRS code, we'll keep them for now. They're currently 2172 * consumed by mac_datapath_setup() to create the SRS. 2173 * That code should be eventually moved out of 2174 * mac_datapath_setup() and moved to a mac_srs_create() 2175 * function of some sort to keep things clean. 2176 * 2177 * Also, there's no reason why the SRS for the primary MAC 2178 * client should be different than any other MAC client. Until 2179 * this is cleaned-up, we support only one MAC unicast address 2180 * per client. 2181 * 2182 * We set FLOW_PRIMARY_MAC for the primary MAC address, 2183 * FLOW_VNIC for everything else. 2184 */ 2185 if (is_primary) 2186 flent_flags = FLOW_PRIMARY_MAC; 2187 else 2188 flent_flags = FLOW_VNIC_MAC; 2189 2190 /* 2191 * For the first flow we use the MAC client's name - mci_name, for 2192 * subsequent ones we just create a name with the VID. This is 2193 * so that we can add these flows to the same flow table. This is 2194 * fine as the flow name (except for the one with the MAC client's 2195 * name) is not visible. When the first flow is removed, we just replace 2196 * its fdesc with another from the list, so we will still retain the 2197 * flent with the MAC client's flow name. 2198 */ 2199 if (first_flow) { 2200 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 2201 } else { 2202 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 2203 flent_flags = FLOW_NO_STATS; 2204 } 2205 2206 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 2207 flent_flags, flent)) != 0) 2208 return (err); 2209 2210 mac_misc_stat_create(*flent); 2211 FLOW_MARK(*flent, FE_INCIPIENT); 2212 (*flent)->fe_mcip = mcip; 2213 2214 /* 2215 * Place initial creation reference on the flow. This reference 2216 * is released in the corresponding delete action viz. 2217 * mac_unicast_remove after waiting for all transient refs to 2218 * to go away. The wait happens in mac_flow_wait. 2219 * We have already held the reference in mac_client_open(). 2220 */ 2221 if (!first_flow) 2222 FLOW_REFHOLD(*flent); 2223 return (0); 2224 } 2225 2226 /* Refresh the multicast grouping for this VID. */ 2227 int 2228 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 2229 { 2230 flow_entry_t *flent = arg; 2231 mac_client_impl_t *mcip = flent->fe_mcip; 2232 uint16_t vid; 2233 flow_desc_t flow_desc; 2234 2235 mac_flow_get_desc(flent, &flow_desc); 2236 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 2237 flow_desc.fd_vid : VLAN_ID_NONE; 2238 2239 /* 2240 * We don't call mac_multicast_add()/mac_multicast_remove() as 2241 * we want to add/remove for this specific vid. 2242 */ 2243 if (add) { 2244 return (mac_bcast_add(mcip, addrp, vid, 2245 MAC_ADDRTYPE_MULTICAST)); 2246 } else { 2247 mac_bcast_delete(mcip, addrp, vid); 2248 return (0); 2249 } 2250 } 2251 2252 static void 2253 mac_update_single_active_client(mac_impl_t *mip) 2254 { 2255 mac_client_impl_t *client = NULL; 2256 2257 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2258 2259 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2260 if (mip->mi_nactiveclients == 1) { 2261 /* 2262 * Find the one active MAC client from the list of MAC 2263 * clients. The active MAC client has at least one 2264 * unicast address. 2265 */ 2266 for (client = mip->mi_clients_list; client != NULL; 2267 client = client->mci_client_next) { 2268 if (client->mci_unicast_list != NULL) 2269 break; 2270 } 2271 ASSERT(client != NULL); 2272 } 2273 2274 /* 2275 * mi_single_active_client is protected by the MAC impl's read/writer 2276 * lock, which allows mac_rx() to check the value of that pointer 2277 * as a reader. 2278 */ 2279 mip->mi_single_active_client = client; 2280 rw_exit(&mip->mi_rw_lock); 2281 } 2282 2283 /* 2284 * Set up the data path. Called from i_mac_unicast_add after having 2285 * done all the validations including making sure this is an active 2286 * client (i.e that is ready to process packets.) 2287 */ 2288 static int 2289 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid, 2290 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary, 2291 mac_unicast_impl_t *muip) 2292 { 2293 mac_impl_t *mip = mcip->mci_mip; 2294 boolean_t mac_started = B_FALSE; 2295 boolean_t bcast_added = B_FALSE; 2296 boolean_t nactiveclients_added = B_FALSE; 2297 flow_entry_t *flent; 2298 int err = 0; 2299 boolean_t no_unicast; 2300 2301 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2302 2303 if ((err = mac_start((mac_handle_t)mip)) != 0) 2304 goto bail; 2305 2306 mac_started = B_TRUE; 2307 2308 /* add the MAC client to the broadcast address group by default */ 2309 if (mip->mi_type->mt_brdcst_addr != NULL) { 2310 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 2311 MAC_ADDRTYPE_BROADCAST); 2312 if (err != 0) 2313 goto bail; 2314 bcast_added = B_TRUE; 2315 } 2316 2317 /* 2318 * If this is the first unicast address addition for this 2319 * client, reuse the pre-allocated larval flow entry associated with 2320 * the MAC client. 2321 */ 2322 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL; 2323 2324 /* We are configuring the unicast flow now */ 2325 if (!MCIP_DATAPATH_SETUP(mcip)) { 2326 2327 if (mrp != NULL) { 2328 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2329 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority : 2330 MPL_LINK_DEFAULT); 2331 } 2332 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2333 isprimary, B_TRUE, &flent, mrp)) != 0) 2334 goto bail; 2335 2336 mip->mi_nactiveclients++; 2337 nactiveclients_added = B_TRUE; 2338 2339 /* 2340 * This will allocate the RX ring group if possible for the 2341 * flow and program the software classifier as needed. 2342 */ 2343 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 2344 goto bail; 2345 2346 if (no_unicast) 2347 goto done_setup; 2348 /* 2349 * The unicast MAC address must have been added successfully. 2350 */ 2351 ASSERT(mcip->mci_unicast != NULL); 2352 2353 /* 2354 * Push down the sub-flows that were defined on this link 2355 * hitherto. The flows are added to the active flow table 2356 * and SRS, softrings etc. are created as needed. 2357 */ 2358 mac_link_init_flows((mac_client_handle_t)mcip); 2359 } else { 2360 mac_address_t *map = mcip->mci_unicast; 2361 2362 ASSERT(!no_unicast); 2363 /* 2364 * A unicast flow already exists for that MAC client 2365 * so this flow must be the same MAC address but with 2366 * a different VID. It has been checked by 2367 * mac_addr_in_use(). 2368 * 2369 * We will use the SRS etc. from the initial 2370 * mci_flent. We don't need to create a kstat for 2371 * this, as except for the fdesc, everything will be 2372 * used from the first flent. 2373 * 2374 * The only time we should see multiple flents on the 2375 * same MAC client is on the sun4v vsw. If we removed 2376 * that code we should be able to remove the entire 2377 * notion of multiple flents on a MAC client (this 2378 * doesn't affect sub/user flows because they have 2379 * their own list unrelated to mci_flent_list). 2380 */ 2381 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 2382 err = EINVAL; 2383 goto bail; 2384 } 2385 2386 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2387 isprimary, B_FALSE, &flent, NULL)) != 0) { 2388 goto bail; 2389 } 2390 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 2391 FLOW_FINAL_REFRELE(flent); 2392 goto bail; 2393 } 2394 2395 /* update the multicast group for this vid */ 2396 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2397 (void *)flent, B_TRUE); 2398 2399 } 2400 2401 /* populate the shared MAC address */ 2402 muip->mui_map = mcip->mci_unicast; 2403 2404 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 2405 muip->mui_next = mcip->mci_unicast_list; 2406 mcip->mci_unicast_list = muip; 2407 rw_exit(&mcip->mci_rw_lock); 2408 2409 done_setup: 2410 /* 2411 * First add the flent to the flow list of this mcip. Then set 2412 * the mip's mi_single_active_client if needed. The Rx path assumes 2413 * that mip->mi_single_active_client will always have an associated 2414 * flent. 2415 */ 2416 mac_client_add_to_flow_list(mcip, flent); 2417 if (nactiveclients_added) 2418 mac_update_single_active_client(mip); 2419 /* 2420 * Trigger a renegotiation of the capabilities when the number of 2421 * active clients changes from 1 to 2, since some of the capabilities 2422 * might have to be disabled. Also send a MAC_NOTE_LINK notification 2423 * to all the MAC clients whenever physical link is DOWN. 2424 */ 2425 if (mip->mi_nactiveclients == 2) { 2426 mac_capab_update((mac_handle_t)mip); 2427 mac_virtual_link_update(mip); 2428 } 2429 /* 2430 * Now that the setup is complete, clear the INCIPIENT flag. 2431 * The flag was set to avoid incoming packets seeing inconsistent 2432 * structures while the setup was in progress. Clear the mci_tx_flag 2433 * by calling mac_tx_client_block. It is possible that 2434 * mac_unicast_remove was called prior to this mac_unicast_add which 2435 * could have set the MCI_TX_QUIESCE flag. 2436 */ 2437 if (flent->fe_rx_ring_group != NULL) 2438 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 2439 FLOW_UNMARK(flent, FE_INCIPIENT); 2440 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 2441 mac_tx_client_unblock(mcip); 2442 return (0); 2443 bail: 2444 if (bcast_added) 2445 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 2446 2447 if (nactiveclients_added) 2448 mip->mi_nactiveclients--; 2449 2450 if (mac_started) 2451 mac_stop((mac_handle_t)mip); 2452 2453 return (err); 2454 } 2455 2456 /* 2457 * Return the passive primary MAC client, if present. The passive client is 2458 * a stand-by client that has the same unicast address as another that is 2459 * currenly active. Once the active client goes away, the passive client 2460 * becomes active. 2461 */ 2462 static mac_client_impl_t * 2463 mac_get_passive_primary_client(mac_impl_t *mip) 2464 { 2465 mac_client_impl_t *mcip; 2466 2467 for (mcip = mip->mi_clients_list; mcip != NULL; 2468 mcip = mcip->mci_client_next) { 2469 if (mac_is_primary_client(mcip) && 2470 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2471 return (mcip); 2472 } 2473 } 2474 return (NULL); 2475 } 2476 2477 /* 2478 * Add a new unicast address to the MAC client. 2479 * 2480 * The MAC address can be specified either by value, or the MAC client 2481 * can specify that it wants to use the primary MAC address of the 2482 * underlying MAC. See the introductory comments at the beginning 2483 * of this file for more more information on primary MAC addresses. 2484 * 2485 * Note also the tuple (MAC address, VID) must be unique 2486 * for the MAC clients defined on top of the same underlying MAC 2487 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 2488 * 2489 * In no case can a client use the PVID for the MAC, if the MAC has one set. 2490 */ 2491 int 2492 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2493 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2494 { 2495 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2496 mac_impl_t *mip = mcip->mci_mip; 2497 int err; 2498 uint_t mac_len = mip->mi_type->mt_addr_length; 2499 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 2500 boolean_t fastpath_disabled = B_FALSE; 2501 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 2502 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 2503 mac_resource_props_t *mrp; 2504 boolean_t passive_client = B_FALSE; 2505 mac_unicast_impl_t *muip; 2506 boolean_t is_vnic_primary = 2507 (flags & MAC_UNICAST_VNIC_PRIMARY); 2508 2509 /* 2510 * When the VID is non-zero the underlying MAC cannot be a 2511 * VNIC. I.e., dladm create-vlan cannot take a VNIC as 2512 * argument, only the primary MAC client. 2513 */ 2514 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != VLAN_ID_NONE))); 2515 2516 /* 2517 * Can't unicast add if the client asked only for minimal datapath 2518 * setup. 2519 */ 2520 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) 2521 return (ENOTSUP); 2522 2523 /* 2524 * Check for an attempted use of the current Port VLAN ID, if enabled. 2525 * No client may use it. 2526 */ 2527 if (mip->mi_pvid != VLAN_ID_NONE && vid == mip->mi_pvid) 2528 return (EBUSY); 2529 2530 /* 2531 * Check whether it's the primary client and flag it. 2532 */ 2533 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 2534 vid == VLAN_ID_NONE) 2535 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 2536 2537 /* 2538 * is_vnic_primary is true when we come here as a VLAN VNIC 2539 * which uses the primary MAC client's address but with a non-zero 2540 * VID. In this case the MAC address is not specified by an upper 2541 * MAC client. 2542 */ 2543 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 2544 !is_vnic_primary) { 2545 /* 2546 * The address is being set by the upper MAC client 2547 * of a VNIC. The MAC address was already set by the 2548 * VNIC driver during VNIC creation. 2549 * 2550 * Note: a VNIC has only one MAC address. We return 2551 * the MAC unicast address handle of the lower MAC client 2552 * corresponding to the VNIC. We allocate a new entry 2553 * which is flagged appropriately, so that mac_unicast_remove() 2554 * doesn't attempt to free the original entry that 2555 * was allocated by the VNIC driver. 2556 */ 2557 ASSERT(mcip->mci_unicast != NULL); 2558 2559 /* Check for VLAN flags, if present */ 2560 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2561 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2562 2563 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2564 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2565 2566 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2567 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2568 2569 /* 2570 * Ensure that the primary unicast address of the VNIC 2571 * is added only once unless we have the 2572 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not 2573 * a passive MAC client). 2574 */ 2575 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) { 2576 if ((mcip->mci_flags & 2577 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2578 (mcip->mci_flags & 2579 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2580 return (EBUSY); 2581 } 2582 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2583 passive_client = B_TRUE; 2584 } 2585 2586 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2587 2588 /* 2589 * Create a handle for vid 0. 2590 */ 2591 ASSERT(vid == VLAN_ID_NONE); 2592 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2593 muip->mui_vid = vid; 2594 *mah = (mac_unicast_handle_t)muip; 2595 /* 2596 * This will be used by the caller to defer setting the 2597 * rx functions. 2598 */ 2599 if (passive_client) 2600 return (EAGAIN); 2601 return (0); 2602 } 2603 2604 /* primary MAC clients cannot be opened on top of anchor VNICs */ 2605 if ((is_vnic_primary || is_primary) && 2606 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 2607 return (ENXIO); 2608 } 2609 2610 /* 2611 * If this is a VNIC/VLAN, disable softmac fast-path. This is 2612 * only relevant to legacy devices which use softmac to 2613 * interface with GLDv3. 2614 */ 2615 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2616 err = mac_fastpath_disable((mac_handle_t)mip); 2617 if (err != 0) 2618 return (err); 2619 fastpath_disabled = B_TRUE; 2620 } 2621 2622 /* 2623 * Return EBUSY if: 2624 * - there is an exclusively active mac client exists. 2625 * - this is an exclusive active mac client but 2626 * a. there is already active mac clients exist, or 2627 * b. fastpath streams are already plumbed on this legacy device 2628 * - the mac creator has disallowed active mac clients. 2629 */ 2630 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) { 2631 if (fastpath_disabled) 2632 mac_fastpath_enable((mac_handle_t)mip); 2633 return (EBUSY); 2634 } 2635 2636 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2637 ASSERT(!fastpath_disabled); 2638 if (mip->mi_nactiveclients != 0) 2639 return (EBUSY); 2640 2641 if ((mip->mi_state_flags & MIS_LEGACY) && 2642 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) { 2643 return (EBUSY); 2644 } 2645 mip->mi_state_flags |= MIS_EXCLUSIVE; 2646 } 2647 2648 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 2649 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC | 2650 MCIS_IS_AGGR_PORT))) { 2651 /* 2652 * Apply the property cached in the mac_impl_t to the primary 2653 * mac client. If the mac client is a VNIC or an aggregation 2654 * port, its property should be set in the mcip when the 2655 * VNIC/aggr was created. 2656 */ 2657 mac_get_resources((mac_handle_t)mip, mrp); 2658 (void) mac_client_set_resources(mch, mrp); 2659 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2660 /* 2661 * This is a VLAN client sharing the address of the 2662 * primary MAC client; i.e., one created via dladm 2663 * create-vlan. We don't support specifying ring 2664 * properties for this type of client as it inherits 2665 * these from the primary MAC client. 2666 */ 2667 if (is_vnic_primary) { 2668 mac_resource_props_t *vmrp; 2669 2670 vmrp = MCIP_RESOURCE_PROPS(mcip); 2671 if (vmrp->mrp_mask & MRP_RX_RINGS || 2672 vmrp->mrp_mask & MRP_TX_RINGS) { 2673 if (fastpath_disabled) 2674 mac_fastpath_enable((mac_handle_t)mip); 2675 kmem_free(mrp, sizeof (*mrp)); 2676 return (ENOTSUP); 2677 } 2678 /* 2679 * Additionally we also need to inherit any 2680 * rings property from the MAC. 2681 */ 2682 mac_get_resources((mac_handle_t)mip, mrp); 2683 if (mrp->mrp_mask & MRP_RX_RINGS) { 2684 vmrp->mrp_mask |= MRP_RX_RINGS; 2685 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 2686 } 2687 if (mrp->mrp_mask & MRP_TX_RINGS) { 2688 vmrp->mrp_mask |= MRP_TX_RINGS; 2689 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 2690 } 2691 } 2692 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp)); 2693 } 2694 2695 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2696 muip->mui_vid = vid; 2697 2698 if (is_primary || is_vnic_primary) { 2699 mac_addr = mip->mi_addr; 2700 } else { 2701 2702 /* 2703 * Verify the validity of the specified MAC addresses value. 2704 */ 2705 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 2706 *diag = MAC_DIAG_MACADDR_INVALID; 2707 err = EINVAL; 2708 goto bail_out; 2709 } 2710 2711 /* 2712 * Make sure that the specified MAC address is different 2713 * than the unicast MAC address of the underlying NIC. 2714 */ 2715 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 2716 *diag = MAC_DIAG_MACADDR_NIC; 2717 err = EINVAL; 2718 goto bail_out; 2719 } 2720 } 2721 2722 /* 2723 * Set the flags here so that if this is a passive client, we 2724 * can return and set it when we call mac_client_datapath_setup 2725 * when this becomes the active client. If we defer to using these 2726 * flags to mac_client_datapath_setup, then for a passive client, 2727 * we'd have to store the flags somewhere (probably fe_flags) 2728 * and then use it. 2729 */ 2730 if (!MCIP_DATAPATH_SETUP(mcip)) { 2731 if (is_unicast_hw) { 2732 /* 2733 * The client requires a hardware MAC address slot 2734 * for that unicast address. Since we support only 2735 * one unicast MAC address per client, flag the 2736 * MAC client itself. 2737 */ 2738 mcip->mci_state_flags |= MCIS_UNICAST_HW; 2739 } 2740 2741 /* Check for VLAN flags, if present */ 2742 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2743 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2744 2745 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2746 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2747 2748 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2749 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2750 } else { 2751 /* 2752 * Assert that the specified flags are consistent with the 2753 * flags specified by previous calls to mac_unicast_add(). 2754 */ 2755 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 && 2756 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) || 2757 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 && 2758 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0)); 2759 2760 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 && 2761 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) || 2762 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 && 2763 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0)); 2764 2765 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 && 2766 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) || 2767 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 && 2768 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0)); 2769 2770 /* 2771 * Make sure the client is consistent about its requests 2772 * for MAC addresses. I.e. all requests from the clients 2773 * must have the MAC_UNICAST_HW flag set or clear. 2774 */ 2775 if (((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 2776 !is_unicast_hw) || 2777 ((mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 2778 is_unicast_hw)) { 2779 err = EINVAL; 2780 goto bail_out; 2781 } 2782 } 2783 /* 2784 * Make sure the MAC address is not already used by 2785 * another MAC client defined on top of the same 2786 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY 2787 * set when we allow a passive client to be present which will 2788 * be activated when the currently active client goes away - this 2789 * works only with primary addresses. 2790 */ 2791 if ((check_dups || is_primary || is_vnic_primary) && 2792 mac_addr_in_use(mip, mac_addr, vid)) { 2793 /* 2794 * Must have set the multiple primary address flag when 2795 * we did a mac_client_open AND this should be a primary 2796 * MAC client AND there should not already be a passive 2797 * primary. If all is true then we let this succeed 2798 * even if the address is a dup. 2799 */ 2800 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2801 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 || 2802 mac_get_passive_primary_client(mip) != NULL) { 2803 *diag = MAC_DIAG_MACADDR_INUSE; 2804 err = EEXIST; 2805 goto bail_out; 2806 } 2807 ASSERT((mcip->mci_flags & 2808 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0); 2809 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2810 kmem_free(mrp, sizeof (*mrp)); 2811 2812 /* 2813 * Stash the unicast address handle, we will use it when 2814 * we set up the passive client. 2815 */ 2816 mcip->mci_p_unicast_list = muip; 2817 *mah = (mac_unicast_handle_t)muip; 2818 return (0); 2819 } 2820 2821 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp, 2822 is_primary || is_vnic_primary, muip); 2823 if (err != 0) 2824 goto bail_out; 2825 2826 kmem_free(mrp, sizeof (*mrp)); 2827 *mah = (mac_unicast_handle_t)muip; 2828 return (0); 2829 2830 bail_out: 2831 if (fastpath_disabled) 2832 mac_fastpath_enable((mac_handle_t)mip); 2833 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2834 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2835 if (mip->mi_state_flags & MIS_LEGACY) { 2836 mip->mi_capab_legacy.ml_active_clear( 2837 mip->mi_driver); 2838 } 2839 } 2840 kmem_free(mrp, sizeof (*mrp)); 2841 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2842 return (err); 2843 } 2844 2845 /* 2846 * Wrapper function to mac_unicast_add when we want to have the same mac 2847 * client open for two instances, one that is currently active and another 2848 * that will become active when the current one is removed. In this case 2849 * mac_unicast_add will return EGAIN and we will save the rx function and 2850 * arg which will be used when we activate the passive client in 2851 * mac_unicast_remove. 2852 */ 2853 int 2854 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr, 2855 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag, 2856 mac_rx_t rx_fn, void *arg) 2857 { 2858 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2859 uint_t err; 2860 2861 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2862 if (err != 0 && err != EAGAIN) 2863 return (err); 2864 if (err == EAGAIN) { 2865 if (rx_fn != NULL) { 2866 mcip->mci_rx_p_fn = rx_fn; 2867 mcip->mci_rx_p_arg = arg; 2868 } 2869 return (0); 2870 } 2871 if (rx_fn != NULL) 2872 mac_rx_set(mch, rx_fn, arg); 2873 return (err); 2874 } 2875 2876 int 2877 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2878 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2879 { 2880 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 2881 uint_t err; 2882 2883 i_mac_perim_enter(mip); 2884 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2885 i_mac_perim_exit(mip); 2886 2887 return (err); 2888 } 2889 2890 static void 2891 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip, 2892 flow_entry_t *flent) 2893 { 2894 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2895 mac_impl_t *mip = mcip->mci_mip; 2896 boolean_t no_unicast; 2897 2898 /* 2899 * If we have not added a unicast address for this MAC client, just 2900 * teardown the datapath. 2901 */ 2902 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2903 2904 if (!no_unicast) { 2905 /* 2906 * We would have initialized subflows etc. only if we brought 2907 * up the primary client and set the unicast unicast address 2908 * etc. Deactivate the flows. The flow entry will be removed 2909 * from the active flow tables, and the associated SRS, 2910 * softrings etc will be deleted. But the flow entry itself 2911 * won't be destroyed, instead it will continue to be archived 2912 * off the the global flow hash list, for a possible future 2913 * activation when say IP is plumbed again. 2914 */ 2915 mac_link_release_flows(mch); 2916 } 2917 mip->mi_nactiveclients--; 2918 mac_update_single_active_client(mip); 2919 2920 /* Tear down the data path */ 2921 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2922 2923 /* 2924 * Prevent any future access to the flow entry through the mci_flent 2925 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2926 * mac_bcast_send is also under mi_rw_lock. 2927 */ 2928 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2929 flent = mcip->mci_flent; 2930 mac_client_remove_flow_from_list(mcip, flent); 2931 2932 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2933 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2934 2935 /* 2936 * This is the last unicast address being removed and there shouldn't 2937 * be any outbound data threads at this point coming down from mac 2938 * clients. We have waited for the data threads to finish before 2939 * starting dld_str_detach. Non-data threads must access TX SRS 2940 * under mi_rw_lock. 2941 */ 2942 rw_exit(&mip->mi_rw_lock); 2943 2944 /* 2945 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2946 * contain other flags, such as FE_CONDEMNED, which we need to 2947 * cleared. We don't call mac_flow_cleanup() for this unicast 2948 * flow as we have a already cleaned up SRSs etc. (via the teadown 2949 * path). We just clear the stats and reset the initial callback 2950 * function, the rest will be set when we call mac_flow_create, 2951 * if at all. 2952 */ 2953 mutex_enter(&flent->fe_lock); 2954 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2955 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2956 flent->fe_flags = FE_MC_NO_DATAPATH; 2957 flow_stat_destroy(flent); 2958 mac_misc_stat_delete(flent); 2959 2960 /* Initialize the receiver function to a safe routine */ 2961 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2962 flent->fe_cb_arg1 = NULL; 2963 flent->fe_cb_arg2 = NULL; 2964 2965 flent->fe_index = -1; 2966 mutex_exit(&flent->fe_lock); 2967 2968 if (mip->mi_type->mt_brdcst_addr != NULL) { 2969 ASSERT(muip != NULL || no_unicast); 2970 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2971 muip != NULL ? muip->mui_vid : VLAN_ID_NONE); 2972 } 2973 2974 if (mip->mi_nactiveclients == 1) { 2975 mac_capab_update((mac_handle_t)mip); 2976 mac_virtual_link_update(mip); 2977 } 2978 2979 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2980 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2981 2982 if (mip->mi_state_flags & MIS_LEGACY) 2983 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver); 2984 } 2985 2986 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2987 2988 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2989 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2990 2991 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2992 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 2993 2994 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 2995 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 2996 2997 if (muip != NULL) 2998 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2999 mac_protect_cancel_timer(mcip); 3000 mac_protect_flush_dynamic(mcip); 3001 3002 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat)); 3003 /* 3004 * Disable fastpath if this is a VNIC or a VLAN. 3005 */ 3006 if (mcip->mci_state_flags & MCIS_IS_VNIC) 3007 mac_fastpath_enable((mac_handle_t)mip); 3008 mac_stop((mac_handle_t)mip); 3009 } 3010 3011 /* 3012 * Remove a MAC address which was previously added by mac_unicast_add(). 3013 */ 3014 int 3015 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 3016 { 3017 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3018 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 3019 mac_unicast_impl_t *pre; 3020 mac_impl_t *mip = mcip->mci_mip; 3021 flow_entry_t *flent; 3022 uint16_t mui_vid; 3023 3024 i_mac_perim_enter(mip); 3025 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 3026 /* 3027 * Call made by the upper MAC client of a VNIC. 3028 * There's nothing much to do, the unicast address will 3029 * be removed by the VNIC driver when the VNIC is deleted, 3030 * but let's ensure that all our transmit is done before 3031 * the client does a mac_client_stop lest it trigger an 3032 * assert in the driver. 3033 */ 3034 ASSERT(muip->mui_vid == VLAN_ID_NONE); 3035 3036 mac_tx_client_flush(mcip); 3037 3038 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 3039 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3040 if (mcip->mci_rx_p_fn != NULL) { 3041 mac_rx_set(mch, mcip->mci_rx_p_fn, 3042 mcip->mci_rx_p_arg); 3043 mcip->mci_rx_p_fn = NULL; 3044 mcip->mci_rx_p_arg = NULL; 3045 } 3046 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3047 i_mac_perim_exit(mip); 3048 return (0); 3049 } 3050 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 3051 3052 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3053 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3054 3055 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3056 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3057 3058 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3059 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3060 3061 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3062 i_mac_perim_exit(mip); 3063 return (0); 3064 } 3065 3066 ASSERT(muip != NULL); 3067 3068 /* 3069 * We are removing a passive client, we haven't setup the datapath 3070 * for this yet, so nothing much to do. 3071 */ 3072 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 3073 3074 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0); 3075 ASSERT(mcip->mci_p_unicast_list == muip); 3076 3077 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3078 3079 mcip->mci_p_unicast_list = NULL; 3080 mcip->mci_rx_p_fn = NULL; 3081 mcip->mci_rx_p_arg = NULL; 3082 3083 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 3084 3085 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3086 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3087 3088 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3089 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3090 3091 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3092 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3093 3094 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3095 i_mac_perim_exit(mip); 3096 return (0); 3097 } 3098 3099 /* 3100 * Remove the VID from the list of client's VIDs. 3101 */ 3102 pre = mcip->mci_unicast_list; 3103 if (muip == pre) { 3104 mcip->mci_unicast_list = muip->mui_next; 3105 } else { 3106 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 3107 pre = pre->mui_next; 3108 ASSERT(pre->mui_next == muip); 3109 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3110 pre->mui_next = muip->mui_next; 3111 rw_exit(&mcip->mci_rw_lock); 3112 } 3113 3114 if (!mac_client_single_rcvr(mcip)) { 3115 /* 3116 * This MAC client is shared by more than one unicast 3117 * addresses, so we will just remove the flent 3118 * corresponding to the address being removed. We don't invoke 3119 * mac_rx_classify_flow_rem() since the additional flow is 3120 * not associated with its own separate set of SRS and rings, 3121 * and these constructs are still needed for the remaining 3122 * flows. 3123 */ 3124 flent = mac_client_get_flow(mcip, muip); 3125 VERIFY3P(flent, !=, NULL); 3126 3127 /* 3128 * The first one is disappearing, need to make sure 3129 * we replace it with another from the list of 3130 * shared clients. 3131 */ 3132 if (flent == mcip->mci_flent) 3133 flent = mac_client_swap_mciflent(mcip); 3134 mac_client_remove_flow_from_list(mcip, flent); 3135 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 3136 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 3137 3138 /* 3139 * The multicast groups that were added by the client so 3140 * far must be removed from the brodcast domain corresponding 3141 * to the VID being removed. 3142 */ 3143 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 3144 (void *)flent, B_FALSE); 3145 3146 if (mip->mi_type->mt_brdcst_addr != NULL) { 3147 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 3148 muip->mui_vid); 3149 } 3150 3151 FLOW_FINAL_REFRELE(flent); 3152 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE)); 3153 3154 /* 3155 * Enable fastpath if this is a VNIC or a VLAN. 3156 */ 3157 if (mcip->mci_state_flags & MCIS_IS_VNIC) 3158 mac_fastpath_enable((mac_handle_t)mip); 3159 mac_stop((mac_handle_t)mip); 3160 i_mac_perim_exit(mip); 3161 return (0); 3162 } 3163 3164 mui_vid = muip->mui_vid; 3165 mac_client_datapath_teardown(mch, muip, flent); 3166 3167 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && 3168 mui_vid == VLAN_ID_NONE) { 3169 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 3170 } else { 3171 i_mac_perim_exit(mip); 3172 return (0); 3173 } 3174 3175 /* 3176 * If we are removing the primary, check if we have a passive primary 3177 * client that we need to activate now. 3178 */ 3179 mcip = mac_get_passive_primary_client(mip); 3180 if (mcip != NULL) { 3181 mac_resource_props_t *mrp; 3182 mac_unicast_impl_t *muip; 3183 3184 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3185 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3186 3187 /* 3188 * Apply the property cached in the mac_impl_t to the 3189 * primary mac client. 3190 */ 3191 mac_get_resources((mac_handle_t)mip, mrp); 3192 (void) mac_client_set_resources(mch, mrp); 3193 ASSERT(mcip->mci_p_unicast_list != NULL); 3194 muip = mcip->mci_p_unicast_list; 3195 mcip->mci_p_unicast_list = NULL; 3196 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE, 3197 mip->mi_addr, mrp, B_TRUE, muip) == 0) { 3198 if (mcip->mci_rx_p_fn != NULL) { 3199 mac_rx_set(mch, mcip->mci_rx_p_fn, 3200 mcip->mci_rx_p_arg); 3201 mcip->mci_rx_p_fn = NULL; 3202 mcip->mci_rx_p_arg = NULL; 3203 } 3204 } else { 3205 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3206 } 3207 kmem_free(mrp, sizeof (*mrp)); 3208 } 3209 i_mac_perim_exit(mip); 3210 return (0); 3211 } 3212 3213 /* 3214 * Multicast add function invoked by MAC clients. 3215 */ 3216 int 3217 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 3218 { 3219 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3220 mac_impl_t *mip = mcip->mci_mip; 3221 flow_entry_t *flent = mcip->mci_flent_list; 3222 flow_entry_t *prev_fe = NULL; 3223 uint16_t vid; 3224 int err = 0; 3225 3226 /* Verify the address is a valid multicast address */ 3227 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 3228 mip->mi_pdata)) != 0) 3229 return (err); 3230 3231 i_mac_perim_enter(mip); 3232 while (flent != NULL) { 3233 vid = i_mac_flow_vid(flent); 3234 3235 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 3236 MAC_ADDRTYPE_MULTICAST); 3237 if (err != 0) 3238 break; 3239 prev_fe = flent; 3240 flent = flent->fe_client_next; 3241 } 3242 3243 /* 3244 * If we failed adding, then undo all, rather than partial 3245 * success. 3246 */ 3247 if (flent != NULL && prev_fe != NULL) { 3248 flent = mcip->mci_flent_list; 3249 while (flent != prev_fe->fe_client_next) { 3250 vid = i_mac_flow_vid(flent); 3251 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3252 flent = flent->fe_client_next; 3253 } 3254 } 3255 i_mac_perim_exit(mip); 3256 return (err); 3257 } 3258 3259 /* 3260 * Multicast delete function invoked by MAC clients. 3261 */ 3262 void 3263 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 3264 { 3265 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3266 mac_impl_t *mip = mcip->mci_mip; 3267 flow_entry_t *flent; 3268 uint16_t vid; 3269 3270 i_mac_perim_enter(mip); 3271 for (flent = mcip->mci_flent_list; flent != NULL; 3272 flent = flent->fe_client_next) { 3273 vid = i_mac_flow_vid(flent); 3274 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3275 } 3276 i_mac_perim_exit(mip); 3277 } 3278 3279 /* 3280 * When a MAC client desires to capture packets on an interface, 3281 * it registers a promiscuous call back with mac_promisc_add(). 3282 * There are three types of promiscuous callbacks: 3283 * 3284 * * MAC_CLIENT_PROMISC_ALL 3285 * Captures all packets sent and received by the MAC client, 3286 * the physical interface, as well as all other MAC clients 3287 * defined on top of the same MAC. 3288 * 3289 * * MAC_CLIENT_PROMISC_FILTERED 3290 * Captures all packets sent and received by the MAC client, 3291 * plus all multicast traffic sent and received by the phyisical 3292 * interface and the other MAC clients. 3293 * 3294 * * MAC_CLIENT_PROMISC_MULTI 3295 * Captures all broadcast and multicast packets sent and 3296 * received by the MAC clients as well as the physical interface. 3297 * 3298 * In all cases, the underlying MAC is put in promiscuous mode. 3299 */ 3300 int 3301 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 3302 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 3303 { 3304 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3305 mac_impl_t *mip = mcip->mci_mip; 3306 mac_promisc_impl_t *mpip; 3307 mac_cb_info_t *mcbi; 3308 int rc; 3309 3310 i_mac_perim_enter(mip); 3311 3312 if ((rc = mac_start((mac_handle_t)mip)) != 0) { 3313 i_mac_perim_exit(mip); 3314 return (rc); 3315 } 3316 3317 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 3318 type == MAC_CLIENT_PROMISC_ALL && 3319 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) { 3320 /* 3321 * The function is being invoked by the upper MAC client 3322 * of a VNIC. The VNIC should only see the traffic 3323 * it is entitled to. 3324 */ 3325 type = MAC_CLIENT_PROMISC_FILTERED; 3326 } 3327 3328 3329 /* 3330 * Turn on promiscuous mode for the underlying NIC. 3331 * This is needed even for filtered callbacks which 3332 * expect to receive all multicast traffic on the wire. 3333 * 3334 * Physical promiscuous mode should not be turned on if 3335 * MAC_PROMISC_FLAGS_NO_PHYS is set. 3336 */ 3337 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 3338 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) { 3339 mac_stop((mac_handle_t)mip); 3340 i_mac_perim_exit(mip); 3341 return (rc); 3342 } 3343 } 3344 3345 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 3346 3347 mpip->mpi_type = type; 3348 mpip->mpi_fn = fn; 3349 mpip->mpi_arg = arg; 3350 mpip->mpi_mcip = mcip; 3351 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 3352 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 3353 mpip->mpi_strip_vlan_tag = 3354 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0); 3355 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0); 3356 3357 mcbi = &mip->mi_promisc_cb_info; 3358 mutex_enter(mcbi->mcbi_lockp); 3359 3360 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 3361 &mpip->mpi_mci_link); 3362 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 3363 &mpip->mpi_mi_link); 3364 3365 mutex_exit(mcbi->mcbi_lockp); 3366 3367 *mphp = (mac_promisc_handle_t)mpip; 3368 3369 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3370 mac_impl_t *umip = mcip->mci_upper_mip; 3371 3372 ASSERT(umip != NULL); 3373 mac_vnic_secondary_update(umip); 3374 } 3375 3376 i_mac_perim_exit(mip); 3377 3378 return (0); 3379 } 3380 3381 /* 3382 * Remove a multicast address previously aded through mac_promisc_add(). 3383 */ 3384 void 3385 mac_promisc_remove(mac_promisc_handle_t mph) 3386 { 3387 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 3388 mac_client_impl_t *mcip = mpip->mpi_mcip; 3389 mac_impl_t *mip = mcip->mci_mip; 3390 mac_cb_info_t *mcbi; 3391 int rv; 3392 3393 i_mac_perim_enter(mip); 3394 3395 /* 3396 * Even if the device can't be reset into normal mode, we still 3397 * need to clear the client promisc callbacks. The client may want 3398 * to close the mac end point and we can't have stale callbacks. 3399 */ 3400 if (!(mpip->mpi_no_phys)) { 3401 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) { 3402 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous" 3403 " mode because of error 0x%x", mip->mi_name, rv); 3404 } 3405 } 3406 mcbi = &mip->mi_promisc_cb_info; 3407 mutex_enter(mcbi->mcbi_lockp); 3408 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 3409 &mpip->mpi_mi_link)) { 3410 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 3411 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 3412 kmem_cache_free(mac_promisc_impl_cache, mpip); 3413 } else { 3414 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 3415 } 3416 3417 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3418 mac_impl_t *umip = mcip->mci_upper_mip; 3419 3420 ASSERT(umip != NULL); 3421 mac_vnic_secondary_update(umip); 3422 } 3423 3424 mutex_exit(mcbi->mcbi_lockp); 3425 mac_stop((mac_handle_t)mip); 3426 3427 i_mac_perim_exit(mip); 3428 } 3429 3430 /* 3431 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 3432 * that a control operation wants to quiesce the Tx data flow in which case 3433 * we return an error. Holding any of the per cpu locks ensures that the 3434 * mci_tx_flag won't change. 3435 * 3436 * 'CPU' must be accessed just once and used to compute the index into the 3437 * percpu array, and that index must be used for the entire duration of the 3438 * packet send operation. Note that the thread may be preempted and run on 3439 * another cpu any time and so we can't use 'CPU' more than once for the 3440 * operation. 3441 */ 3442 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 3443 { \ 3444 (error) = 0; \ 3445 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 3446 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3447 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 3448 (mytx)->pcpu_tx_refcnt++; \ 3449 } else { \ 3450 (error) = -1; \ 3451 } \ 3452 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3453 } 3454 3455 /* 3456 * Release the reference. If needed, signal any control operation waiting 3457 * for Tx quiescence. The wait and signal are always done using the 3458 * mci_tx_pcpu[0]'s lock 3459 */ 3460 #define MAC_TX_RELE(mcip, mytx) { \ 3461 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3462 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 3463 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 3464 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3465 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3466 cv_signal(&(mcip)->mci_tx_cv); \ 3467 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3468 } else { \ 3469 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3470 } \ 3471 } 3472 3473 /* 3474 * Send function invoked by MAC clients. 3475 */ 3476 mac_tx_cookie_t 3477 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 3478 uint16_t flag, mblk_t **ret_mp) 3479 { 3480 mac_tx_cookie_t cookie = 0; 3481 int error; 3482 mac_tx_percpu_t *mytx; 3483 mac_soft_ring_set_t *srs; 3484 flow_entry_t *flent; 3485 boolean_t is_subflow = B_FALSE; 3486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3487 mac_impl_t *mip = mcip->mci_mip; 3488 mac_srs_tx_t *srs_tx; 3489 3490 /* 3491 * Check whether the active Tx threads count is bumped already. 3492 */ 3493 if (!(flag & MAC_TX_NO_HOLD)) { 3494 MAC_TX_TRY_HOLD(mcip, mytx, error); 3495 if (error != 0) { 3496 freemsgchain(mp_chain); 3497 return (0); 3498 } 3499 } 3500 3501 /* 3502 * If mac protection is enabled, only the permissible packets will be 3503 * returned by mac_protect_check(). 3504 */ 3505 if ((mcip->mci_flent-> 3506 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 && 3507 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL) 3508 goto done; 3509 3510 if (mcip->mci_subflow_tab != NULL && 3511 mcip->mci_subflow_tab->ft_flow_count > 0 && 3512 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 3513 FLOW_OUTBOUND, &flent) == 0) { 3514 /* 3515 * The main assumption here is that if in the event 3516 * we get a chain, all the packets will be classified 3517 * to the same Flow/SRS. If this changes for any 3518 * reason, the following logic should change as well. 3519 * I suppose the fanout_hint also assumes this . 3520 */ 3521 ASSERT(flent != NULL); 3522 is_subflow = B_TRUE; 3523 } else { 3524 flent = mcip->mci_flent; 3525 } 3526 3527 srs = flent->fe_tx_srs; 3528 /* 3529 * This is to avoid panics with PF_PACKET that can call mac_tx() 3530 * against an interface that is not capable of sending. A rewrite 3531 * of the mac datapath is required to remove this limitation. 3532 */ 3533 if (srs == NULL) { 3534 freemsgchain(mp_chain); 3535 goto done; 3536 } 3537 3538 srs_tx = &srs->srs_tx; 3539 if (srs_tx->st_mode == SRS_TX_DEFAULT && 3540 (srs->srs_state & SRS_ENQUEUED) == 0 && 3541 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) { 3542 uint64_t obytes; 3543 3544 /* 3545 * Since dls always opens the underlying MAC, nclients equals 3546 * to 1 means that the only active client is dls itself acting 3547 * as a primary client of the MAC instance. Since dls will not 3548 * send tagged packets in that case, and dls is trusted to send 3549 * packets for its allowed VLAN(s), the VLAN tag insertion and 3550 * check is required only if nclients is greater than 1. 3551 */ 3552 if (mip->mi_nclients > 1) { 3553 if (MAC_VID_CHECK_NEEDED(mcip)) { 3554 int err = 0; 3555 3556 MAC_VID_CHECK(mcip, mp_chain, err); 3557 if (err != 0) { 3558 freemsg(mp_chain); 3559 mcip->mci_misc_stat.mms_txerrors++; 3560 goto done; 3561 } 3562 } 3563 if (MAC_TAG_NEEDED(mcip)) { 3564 mp_chain = mac_add_vlan_tag(mp_chain, 0, 3565 mac_client_vid(mch)); 3566 if (mp_chain == NULL) { 3567 mcip->mci_misc_stat.mms_txerrors++; 3568 goto done; 3569 } 3570 } 3571 } 3572 3573 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 3574 msgdsize(mp_chain)); 3575 3576 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 3577 if (mp_chain == NULL) { 3578 cookie = 0; 3579 SRS_TX_STAT_UPDATE(srs, opackets, 1); 3580 SRS_TX_STAT_UPDATE(srs, obytes, obytes); 3581 } else { 3582 mutex_enter(&srs->srs_lock); 3583 cookie = mac_tx_srs_no_desc(srs, mp_chain, 3584 flag, ret_mp); 3585 mutex_exit(&srs->srs_lock); 3586 } 3587 } else { 3588 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 3589 } 3590 3591 done: 3592 if (is_subflow) 3593 FLOW_REFRELE(flent); 3594 3595 if (!(flag & MAC_TX_NO_HOLD)) 3596 MAC_TX_RELE(mcip, mytx); 3597 3598 return (cookie); 3599 } 3600 3601 /* 3602 * mac_tx_is_blocked 3603 * 3604 * Given a cookie, it returns if the ring identified by the cookie is 3605 * flow-controlled or not. If NULL is passed in place of a cookie, 3606 * then it finds out if any of the underlying rings belonging to the 3607 * SRS is flow controlled or not and returns that status. 3608 */ 3609 /* ARGSUSED */ 3610 boolean_t 3611 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 3612 { 3613 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3614 mac_soft_ring_set_t *mac_srs; 3615 mac_soft_ring_t *sringp; 3616 boolean_t blocked = B_FALSE; 3617 mac_tx_percpu_t *mytx; 3618 int err; 3619 int i; 3620 3621 /* 3622 * Bump the reference count so that mac_srs won't be deleted. 3623 * If the client is currently quiesced and we failed to bump 3624 * the reference, return B_TRUE so that flow control stays 3625 * as enabled. 3626 * 3627 * Flow control will then be disabled once the client is no 3628 * longer quiesced. 3629 */ 3630 MAC_TX_TRY_HOLD(mcip, mytx, err); 3631 if (err != 0) 3632 return (B_TRUE); 3633 3634 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) { 3635 MAC_TX_RELE(mcip, mytx); 3636 return (B_FALSE); 3637 } 3638 3639 mutex_enter(&mac_srs->srs_lock); 3640 /* 3641 * Only in the case of TX_FANOUT and TX_AGGR, the underlying 3642 * softring (s_ring_state) will have the HIWAT set. This is 3643 * the multiple Tx ring flow control case. For all other 3644 * case, SRS (srs_state) will store the condition. 3645 */ 3646 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 3647 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) { 3648 if (cookie != 0) { 3649 sringp = (mac_soft_ring_t *)cookie; 3650 mutex_enter(&sringp->s_ring_lock); 3651 if (sringp->s_ring_state & S_RING_TX_HIWAT) 3652 blocked = B_TRUE; 3653 mutex_exit(&sringp->s_ring_lock); 3654 } else { 3655 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) { 3656 sringp = mac_srs->srs_tx_soft_rings[i]; 3657 mutex_enter(&sringp->s_ring_lock); 3658 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 3659 blocked = B_TRUE; 3660 mutex_exit(&sringp->s_ring_lock); 3661 break; 3662 } 3663 mutex_exit(&sringp->s_ring_lock); 3664 } 3665 } 3666 } else { 3667 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 3668 } 3669 mutex_exit(&mac_srs->srs_lock); 3670 MAC_TX_RELE(mcip, mytx); 3671 return (blocked); 3672 } 3673 3674 /* 3675 * Check if the MAC client is the primary MAC client. 3676 */ 3677 boolean_t 3678 mac_is_primary_client(mac_client_impl_t *mcip) 3679 { 3680 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 3681 } 3682 3683 void 3684 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 3685 { 3686 mac_impl_t *mip = (mac_impl_t *)mh; 3687 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 3688 3689 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 3690 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 3691 /* 3692 * If ndd props were registered, call them. 3693 * Note that ndd ioctls are Obsolete 3694 */ 3695 mac_ndd_ioctl(mip, wq, bp); 3696 return; 3697 } 3698 3699 /* 3700 * Call the driver to handle the ioctl. The driver may not support 3701 * any ioctls, in which case we reply with a NAK on its behalf. 3702 */ 3703 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 3704 mip->mi_ioctl(mip->mi_driver, wq, bp); 3705 else 3706 miocnak(wq, bp, 0, EINVAL); 3707 } 3708 3709 /* 3710 * Return the link state of the specified MAC instance. 3711 */ 3712 link_state_t 3713 mac_link_get(mac_handle_t mh) 3714 { 3715 return (((mac_impl_t *)mh)->mi_linkstate); 3716 } 3717 3718 /* 3719 * Add a mac client specified notification callback. Please see the comments 3720 * above mac_callback_add() for general information about mac callback 3721 * addition/deletion in the presence of mac callback list walkers 3722 */ 3723 mac_notify_handle_t 3724 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 3725 { 3726 mac_impl_t *mip = (mac_impl_t *)mh; 3727 mac_notify_cb_t *mncb; 3728 mac_cb_info_t *mcbi; 3729 3730 /* 3731 * Allocate a notify callback structure, fill in the details and 3732 * use the mac callback list manipulation functions to chain into 3733 * the list of callbacks. 3734 */ 3735 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 3736 mncb->mncb_fn = notify_fn; 3737 mncb->mncb_arg = arg; 3738 mncb->mncb_mip = mip; 3739 mncb->mncb_link.mcb_objp = mncb; 3740 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 3741 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 3742 3743 mcbi = &mip->mi_notify_cb_info; 3744 3745 i_mac_perim_enter(mip); 3746 mutex_enter(mcbi->mcbi_lockp); 3747 3748 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 3749 &mncb->mncb_link); 3750 3751 mutex_exit(mcbi->mcbi_lockp); 3752 i_mac_perim_exit(mip); 3753 return ((mac_notify_handle_t)mncb); 3754 } 3755 3756 void 3757 mac_notify_remove_wait(mac_handle_t mh) 3758 { 3759 mac_impl_t *mip = (mac_impl_t *)mh; 3760 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 3761 3762 mutex_enter(mcbi->mcbi_lockp); 3763 mac_callback_remove_wait(&mip->mi_notify_cb_info); 3764 mutex_exit(mcbi->mcbi_lockp); 3765 } 3766 3767 /* 3768 * Remove a mac client specified notification callback 3769 */ 3770 int 3771 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 3772 { 3773 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 3774 mac_impl_t *mip = mncb->mncb_mip; 3775 mac_cb_info_t *mcbi; 3776 int err = 0; 3777 3778 mcbi = &mip->mi_notify_cb_info; 3779 3780 i_mac_perim_enter(mip); 3781 mutex_enter(mcbi->mcbi_lockp); 3782 3783 ASSERT(mncb->mncb_link.mcb_objp == mncb); 3784 /* 3785 * If there aren't any list walkers, the remove would succeed 3786 * inline, else we wait for the deferred remove to complete 3787 */ 3788 if (mac_callback_remove(&mip->mi_notify_cb_info, 3789 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 3790 kmem_free(mncb, sizeof (mac_notify_cb_t)); 3791 } else { 3792 err = EBUSY; 3793 } 3794 3795 mutex_exit(mcbi->mcbi_lockp); 3796 i_mac_perim_exit(mip); 3797 3798 /* 3799 * If we failed to remove the notification callback and "wait" is set 3800 * to be B_TRUE, wait for the callback to finish after we exit the 3801 * mac perimeter. 3802 */ 3803 if (err != 0 && wait) { 3804 mac_notify_remove_wait((mac_handle_t)mip); 3805 return (0); 3806 } 3807 3808 return (err); 3809 } 3810 3811 /* 3812 * Associate resource management callbacks with the specified MAC 3813 * clients. 3814 */ 3815 3816 void 3817 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 3818 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 3819 mac_resource_restart_t restart, mac_resource_bind_t bind, 3820 void *arg) 3821 { 3822 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3823 3824 mcip->mci_resource_add = add; 3825 mcip->mci_resource_remove = remove; 3826 mcip->mci_resource_quiesce = quiesce; 3827 mcip->mci_resource_restart = restart; 3828 mcip->mci_resource_bind = bind; 3829 mcip->mci_resource_arg = arg; 3830 } 3831 3832 void 3833 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 3834 { 3835 /* update the 'resource_add' callback */ 3836 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 3837 } 3838 3839 /* 3840 * Sets up the client resources and enable the polling interface over all the 3841 * SRS's and the soft rings of the client 3842 */ 3843 void 3844 mac_client_poll_enable(mac_client_handle_t mch) 3845 { 3846 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3847 mac_soft_ring_set_t *mac_srs; 3848 flow_entry_t *flent; 3849 int i; 3850 3851 flent = mcip->mci_flent; 3852 ASSERT(flent != NULL); 3853 3854 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 3855 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3856 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3857 ASSERT(mac_srs->srs_mcip == mcip); 3858 mac_srs_client_poll_enable(mcip, mac_srs); 3859 } 3860 } 3861 3862 /* 3863 * Tears down the client resources and disable the polling interface over all 3864 * the SRS's and the soft rings of the client 3865 */ 3866 void 3867 mac_client_poll_disable(mac_client_handle_t mch) 3868 { 3869 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3870 mac_soft_ring_set_t *mac_srs; 3871 flow_entry_t *flent; 3872 int i; 3873 3874 flent = mcip->mci_flent; 3875 ASSERT(flent != NULL); 3876 3877 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 3878 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3879 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3880 ASSERT(mac_srs->srs_mcip == mcip); 3881 mac_srs_client_poll_disable(mcip, mac_srs); 3882 } 3883 } 3884 3885 /* 3886 * Associate the CPUs specified by the given property with a MAC client. 3887 */ 3888 int 3889 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 3890 { 3891 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3892 mac_impl_t *mip = mcip->mci_mip; 3893 int err = 0; 3894 3895 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3896 3897 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 3898 mcip->mci_upper_mip : mip, mrp)) != 0) { 3899 return (err); 3900 } 3901 if (MCIP_DATAPATH_SETUP(mcip)) 3902 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 3903 3904 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 3905 return (0); 3906 } 3907 3908 /* 3909 * Apply the specified properties to the specified MAC client. 3910 */ 3911 int 3912 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3913 { 3914 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3915 mac_impl_t *mip = mcip->mci_mip; 3916 int err = 0; 3917 3918 i_mac_perim_enter(mip); 3919 3920 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 3921 err = mac_resource_ctl_set(mch, mrp); 3922 if (err != 0) 3923 goto done; 3924 } 3925 3926 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) { 3927 err = mac_cpu_set(mch, mrp); 3928 if (err != 0) 3929 goto done; 3930 } 3931 3932 if (mrp->mrp_mask & MRP_PROTECT) { 3933 err = mac_protect_set(mch, mrp); 3934 if (err != 0) 3935 goto done; 3936 } 3937 3938 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS)) 3939 err = mac_resource_ctl_set(mch, mrp); 3940 3941 done: 3942 i_mac_perim_exit(mip); 3943 return (err); 3944 } 3945 3946 /* 3947 * Return the properties currently associated with the specified MAC client. 3948 */ 3949 void 3950 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3951 { 3952 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3953 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 3954 3955 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3956 } 3957 3958 /* 3959 * Return the effective properties currently associated with the specified 3960 * MAC client. 3961 */ 3962 void 3963 mac_client_get_effective_resources(mac_client_handle_t mch, 3964 mac_resource_props_t *mrp) 3965 { 3966 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3967 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip); 3968 3969 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3970 } 3971 3972 /* 3973 * Pass a copy of the specified packet to the promiscuous callbacks 3974 * of the specified MAC. 3975 * 3976 * If sender is NULL, the function is being invoked for a packet chain 3977 * received from the wire. If sender is non-NULL, it points to 3978 * the MAC client from which the packet is being sent. 3979 * 3980 * The packets are distributed to the promiscuous callbacks as follows: 3981 * 3982 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 3983 * - all broadcast and multicast packets are sent to the 3984 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 3985 * 3986 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 3987 * after classification by mac_rx_deliver(). 3988 */ 3989 3990 static void 3991 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 3992 boolean_t loopback) 3993 { 3994 mblk_t *mp_copy, *mp_next; 3995 3996 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) { 3997 mp_copy = copymsg(mp); 3998 if (mp_copy == NULL) 3999 return; 4000 4001 if (mpip->mpi_strip_vlan_tag) { 4002 mp_copy = mac_strip_vlan_tag_chain(mp_copy); 4003 if (mp_copy == NULL) 4004 return; 4005 } 4006 mp_next = NULL; 4007 } else { 4008 mp_copy = mp; 4009 mp_next = mp->b_next; 4010 } 4011 mp_copy->b_next = NULL; 4012 4013 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 4014 if (mp_copy == mp) 4015 mp->b_next = mp_next; 4016 } 4017 4018 /* 4019 * Return the VID of a packet. Zero if the packet is not tagged. 4020 */ 4021 static uint16_t 4022 mac_ether_vid(mblk_t *mp) 4023 { 4024 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 4025 4026 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 4027 struct ether_vlan_header *t_evhp = 4028 (struct ether_vlan_header *)mp->b_rptr; 4029 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 4030 } 4031 4032 return (0); 4033 } 4034 4035 /* 4036 * Return whether the specified packet contains a multicast or broadcast 4037 * destination MAC address. 4038 */ 4039 static boolean_t 4040 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 4041 { 4042 mac_header_info_t hdr_info; 4043 4044 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 4045 return (B_FALSE); 4046 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 4047 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 4048 } 4049 4050 /* 4051 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 4052 * "sender" points to the sender MAC client for outbound packets, and 4053 * is set to NULL for inbound packets. 4054 */ 4055 void 4056 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 4057 mac_client_impl_t *sender) 4058 { 4059 mac_promisc_impl_t *mpip; 4060 mac_cb_t *mcb; 4061 mblk_t *mp; 4062 boolean_t is_mcast, is_sender; 4063 4064 MAC_PROMISC_WALKER_INC(mip); 4065 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4066 is_mcast = mac_is_mcast(mip, mp); 4067 /* send packet to interested callbacks */ 4068 for (mcb = mip->mi_promisc_list; mcb != NULL; 4069 mcb = mcb->mcb_nextp) { 4070 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4071 is_sender = (mpip->mpi_mcip == sender); 4072 4073 if (is_sender && mpip->mpi_no_tx_loop) 4074 /* 4075 * The sender doesn't want to receive 4076 * copies of the packets it sends. 4077 */ 4078 continue; 4079 4080 /* this client doesn't need any packets (bridge) */ 4081 if (mpip->mpi_fn == NULL) 4082 continue; 4083 4084 /* 4085 * For an ethernet MAC, don't displatch a multicast 4086 * packet to a non-PROMISC_ALL callbacks unless the VID 4087 * of the packet matches the VID of the client. 4088 */ 4089 if (is_mcast && 4090 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 4091 !mac_client_check_flow_vid(mpip->mpi_mcip, 4092 mac_ether_vid(mp))) 4093 continue; 4094 4095 if (is_sender || 4096 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 4097 is_mcast) 4098 mac_promisc_dispatch_one(mpip, mp, is_sender); 4099 } 4100 } 4101 MAC_PROMISC_WALKER_DCR(mip); 4102 } 4103 4104 void 4105 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 4106 { 4107 mac_impl_t *mip = mcip->mci_mip; 4108 mac_promisc_impl_t *mpip; 4109 boolean_t is_mcast; 4110 mblk_t *mp; 4111 mac_cb_t *mcb; 4112 4113 /* 4114 * The unicast packets for the MAC client still 4115 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 4116 * promiscuous callbacks. The broadcast and multicast 4117 * packets were delivered from mac_rx(). 4118 */ 4119 MAC_PROMISC_WALKER_INC(mip); 4120 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4121 is_mcast = mac_is_mcast(mip, mp); 4122 for (mcb = mcip->mci_promisc_list; mcb != NULL; 4123 mcb = mcb->mcb_nextp) { 4124 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4125 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 4126 !is_mcast) { 4127 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 4128 } 4129 } 4130 } 4131 MAC_PROMISC_WALKER_DCR(mip); 4132 } 4133 4134 /* 4135 * Return the margin value currently assigned to the specified MAC instance. 4136 */ 4137 void 4138 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 4139 { 4140 mac_impl_t *mip = (mac_impl_t *)mh; 4141 4142 rw_enter(&(mip->mi_rw_lock), RW_READER); 4143 *marginp = mip->mi_margin; 4144 rw_exit(&(mip->mi_rw_lock)); 4145 } 4146 4147 /* 4148 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 4149 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 4150 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 4151 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 4152 * cannot disappear while we are accessing it. 4153 */ 4154 typedef struct i_mac_info_state_s { 4155 const char *mi_name; 4156 mac_info_t *mi_infop; 4157 } i_mac_info_state_t; 4158 4159 /*ARGSUSED*/ 4160 static uint_t 4161 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4162 { 4163 i_mac_info_state_t *statep = arg; 4164 mac_impl_t *mip = (mac_impl_t *)val; 4165 4166 if (mip->mi_state_flags & MIS_DISABLED) 4167 return (MH_WALK_CONTINUE); 4168 4169 if (strcmp(statep->mi_name, 4170 ddi_driver_name(mip->mi_dip)) != 0) 4171 return (MH_WALK_CONTINUE); 4172 4173 statep->mi_infop = &mip->mi_info; 4174 return (MH_WALK_TERMINATE); 4175 } 4176 4177 boolean_t 4178 mac_info_get(const char *name, mac_info_t *minfop) 4179 { 4180 i_mac_info_state_t state; 4181 4182 rw_enter(&i_mac_impl_lock, RW_READER); 4183 state.mi_name = name; 4184 state.mi_infop = NULL; 4185 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 4186 if (state.mi_infop == NULL) { 4187 rw_exit(&i_mac_impl_lock); 4188 return (B_FALSE); 4189 } 4190 *minfop = *state.mi_infop; 4191 rw_exit(&i_mac_impl_lock); 4192 return (B_TRUE); 4193 } 4194 4195 /* 4196 * To get the capabilities that MAC layer cares about, such as rings, factory 4197 * mac address, vnic or not, it should directly invoke this function. If the 4198 * link is part of a bridge, then the only "capability" it has is the inability 4199 * to do zero copy. 4200 */ 4201 boolean_t 4202 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4203 { 4204 mac_impl_t *mip = (mac_impl_t *)mh; 4205 4206 if (mip->mi_bridge_link != NULL) 4207 return (cap == MAC_CAPAB_NO_ZCOPY); 4208 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 4209 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 4210 else 4211 return (B_FALSE); 4212 } 4213 4214 /* 4215 * Capability query function. If number of active mac clients is greater than 4216 * 1, only limited capabilities can be advertised to the caller no matter the 4217 * driver has certain capability or not. Else, we query the driver to get the 4218 * capability. 4219 */ 4220 boolean_t 4221 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4222 { 4223 mac_impl_t *mip = (mac_impl_t *)mh; 4224 4225 /* 4226 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM, 4227 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised. 4228 */ 4229 if (mip->mi_nactiveclients > 1) { 4230 switch (cap) { 4231 case MAC_CAPAB_NO_ZCOPY: 4232 return (B_TRUE); 4233 case MAC_CAPAB_LEGACY: 4234 case MAC_CAPAB_HCKSUM: 4235 case MAC_CAPAB_NO_NATIVEVLAN: 4236 break; 4237 default: 4238 return (B_FALSE); 4239 } 4240 } 4241 4242 /* else get capab from driver */ 4243 return (i_mac_capab_get(mh, cap, cap_data)); 4244 } 4245 4246 boolean_t 4247 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 4248 { 4249 mac_impl_t *mip = (mac_impl_t *)mh; 4250 4251 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 4252 mip->mi_pdata)); 4253 } 4254 4255 mblk_t * 4256 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 4257 size_t extra_len) 4258 { 4259 mac_impl_t *mip = (mac_impl_t *)mh; 4260 const uint8_t *hdr_daddr; 4261 4262 /* 4263 * If the MAC is point-to-point with a fixed destination address, then 4264 * we must always use that destination in the MAC header. 4265 */ 4266 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr); 4267 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap, 4268 mip->mi_pdata, payload, extra_len)); 4269 } 4270 4271 int 4272 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4273 { 4274 mac_impl_t *mip = (mac_impl_t *)mh; 4275 4276 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 4277 mhip)); 4278 } 4279 4280 int 4281 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4282 { 4283 mac_impl_t *mip = (mac_impl_t *)mh; 4284 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER); 4285 int err = 0; 4286 4287 /* 4288 * Packets should always be at least 16 bit aligned. 4289 */ 4290 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t))); 4291 4292 if ((err = mac_header_info(mh, mp, mhip)) != 0) 4293 return (err); 4294 4295 /* 4296 * If this is a VLAN-tagged Ethernet packet, then the SAP in the 4297 * mac_header_info_t as returned by mac_header_info() is 4298 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header. 4299 */ 4300 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) { 4301 struct ether_vlan_header *evhp; 4302 uint16_t sap; 4303 mblk_t *tmp = NULL; 4304 size_t size; 4305 4306 size = sizeof (struct ether_vlan_header); 4307 if (MBLKL(mp) < size) { 4308 /* 4309 * Pullup the message in order to get the MAC header 4310 * infomation. Note that this is a read-only function, 4311 * we keep the input packet intact. 4312 */ 4313 if ((tmp = msgpullup(mp, size)) == NULL) 4314 return (EINVAL); 4315 4316 mp = tmp; 4317 } 4318 evhp = (struct ether_vlan_header *)mp->b_rptr; 4319 sap = ntohs(evhp->ether_type); 4320 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap); 4321 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header); 4322 mhip->mhi_tci = ntohs(evhp->ether_tci); 4323 mhip->mhi_istagged = B_TRUE; 4324 freemsg(tmp); 4325 4326 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI) 4327 return (EINVAL); 4328 } else { 4329 mhip->mhi_istagged = B_FALSE; 4330 mhip->mhi_tci = 0; 4331 } 4332 4333 return (0); 4334 } 4335 4336 mblk_t * 4337 mac_header_cook(mac_handle_t mh, mblk_t *mp) 4338 { 4339 mac_impl_t *mip = (mac_impl_t *)mh; 4340 4341 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 4342 if (DB_REF(mp) > 1) { 4343 mblk_t *newmp = copymsg(mp); 4344 if (newmp == NULL) 4345 return (NULL); 4346 freemsg(mp); 4347 mp = newmp; 4348 } 4349 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 4350 mip->mi_pdata)); 4351 } 4352 return (mp); 4353 } 4354 4355 mblk_t * 4356 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 4357 { 4358 mac_impl_t *mip = (mac_impl_t *)mh; 4359 4360 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 4361 if (DB_REF(mp) > 1) { 4362 mblk_t *newmp = copymsg(mp); 4363 if (newmp == NULL) 4364 return (NULL); 4365 freemsg(mp); 4366 mp = newmp; 4367 } 4368 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 4369 mip->mi_pdata)); 4370 } 4371 return (mp); 4372 } 4373 4374 uint_t 4375 mac_addr_len(mac_handle_t mh) 4376 { 4377 mac_impl_t *mip = (mac_impl_t *)mh; 4378 4379 return (mip->mi_type->mt_addr_length); 4380 } 4381 4382 /* True if a MAC is a VNIC */ 4383 boolean_t 4384 mac_is_vnic(mac_handle_t mh) 4385 { 4386 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 4387 } 4388 4389 mac_handle_t 4390 mac_get_lower_mac_handle(mac_handle_t mh) 4391 { 4392 mac_impl_t *mip = (mac_impl_t *)mh; 4393 4394 ASSERT(mac_is_vnic(mh)); 4395 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 4396 } 4397 4398 boolean_t 4399 mac_is_vnic_primary(mac_handle_t mh) 4400 { 4401 mac_impl_t *mip = (mac_impl_t *)mh; 4402 4403 ASSERT(mac_is_vnic(mh)); 4404 return (((vnic_t *)mip->mi_driver)->vn_addr_type == 4405 VNIC_MAC_ADDR_TYPE_PRIMARY); 4406 } 4407 4408 void 4409 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 4410 boolean_t is_user_flow) 4411 { 4412 if (nmrp != NULL && cmrp != NULL) { 4413 if (nmrp->mrp_mask & MRP_PRIORITY) { 4414 if (nmrp->mrp_priority == MPL_RESET) { 4415 cmrp->mrp_mask &= ~MRP_PRIORITY; 4416 if (is_user_flow) { 4417 cmrp->mrp_priority = 4418 MPL_SUBFLOW_DEFAULT; 4419 } else { 4420 cmrp->mrp_priority = MPL_LINK_DEFAULT; 4421 } 4422 } else { 4423 cmrp->mrp_mask |= MRP_PRIORITY; 4424 cmrp->mrp_priority = nmrp->mrp_priority; 4425 } 4426 } 4427 if (nmrp->mrp_mask & MRP_MAXBW) { 4428 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) { 4429 cmrp->mrp_mask &= ~MRP_MAXBW; 4430 cmrp->mrp_maxbw = 0; 4431 } else { 4432 cmrp->mrp_mask |= MRP_MAXBW; 4433 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 4434 } 4435 } 4436 if (nmrp->mrp_mask & MRP_CPUS) 4437 MAC_COPY_CPUS(nmrp, cmrp); 4438 4439 if (nmrp->mrp_mask & MRP_POOL) { 4440 if (strlen(nmrp->mrp_pool) == 0) { 4441 cmrp->mrp_mask &= ~MRP_POOL; 4442 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool)); 4443 } else { 4444 cmrp->mrp_mask |= MRP_POOL; 4445 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool, 4446 sizeof (cmrp->mrp_pool)); 4447 } 4448 4449 } 4450 4451 if (nmrp->mrp_mask & MRP_PROTECT) 4452 mac_protect_update(nmrp, cmrp); 4453 4454 /* 4455 * Update the rings specified. 4456 */ 4457 if (nmrp->mrp_mask & MRP_RX_RINGS) { 4458 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4459 cmrp->mrp_mask &= ~MRP_RX_RINGS; 4460 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4461 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4462 cmrp->mrp_nrxrings = 0; 4463 } else { 4464 cmrp->mrp_mask |= MRP_RX_RINGS; 4465 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings; 4466 } 4467 } 4468 if (nmrp->mrp_mask & MRP_TX_RINGS) { 4469 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4470 cmrp->mrp_mask &= ~MRP_TX_RINGS; 4471 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4472 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4473 cmrp->mrp_ntxrings = 0; 4474 } else { 4475 cmrp->mrp_mask |= MRP_TX_RINGS; 4476 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings; 4477 } 4478 } 4479 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4480 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4481 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4482 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4483 4484 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4485 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4486 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4487 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4488 } 4489 } 4490 4491 /* 4492 * i_mac_set_resources: 4493 * 4494 * This routine associates properties with the primary MAC client of 4495 * the specified MAC instance. 4496 * - Cache the properties in mac_impl_t 4497 * - Apply the properties to the primary MAC client if exists 4498 */ 4499 int 4500 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4501 { 4502 mac_impl_t *mip = (mac_impl_t *)mh; 4503 mac_client_impl_t *mcip; 4504 int err = 0; 4505 uint32_t resmask, newresmask; 4506 mac_resource_props_t *tmrp, *umrp; 4507 4508 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4509 4510 err = mac_validate_props(mip, mrp); 4511 if (err != 0) 4512 return (err); 4513 4514 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP); 4515 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp)); 4516 resmask = umrp->mrp_mask; 4517 mac_update_resources(mrp, umrp, B_FALSE); 4518 newresmask = umrp->mrp_mask; 4519 4520 if (resmask == 0 && newresmask != 0) { 4521 /* 4522 * Bandwidth, priority, cpu or pool link properties configured, 4523 * must disable fastpath. 4524 */ 4525 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) { 4526 kmem_free(umrp, sizeof (*umrp)); 4527 return (err); 4528 } 4529 } 4530 4531 /* 4532 * Since bind_cpu may be modified by mac_client_set_resources() 4533 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 4534 * This allows us to cache only user edits in mip. 4535 */ 4536 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP); 4537 bcopy(mrp, tmrp, sizeof (*tmrp)); 4538 mcip = mac_primary_client_handle(mip); 4539 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) { 4540 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp); 4541 } else if ((mrp->mrp_mask & MRP_RX_RINGS || 4542 mrp->mrp_mask & MRP_TX_RINGS)) { 4543 mac_client_impl_t *vmcip; 4544 4545 /* 4546 * If the primary is not up, we need to check if there 4547 * are any VLANs on this primary. If there are then 4548 * we need to set this property on the VLANs since 4549 * VLANs follow the primary they are based on. Just 4550 * look for the first VLAN and change its properties, 4551 * all the other VLANs should be in the same group. 4552 */ 4553 for (vmcip = mip->mi_clients_list; vmcip != NULL; 4554 vmcip = vmcip->mci_client_next) { 4555 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) && 4556 mac_client_vid((mac_client_handle_t)vmcip) != 4557 VLAN_ID_NONE) { 4558 break; 4559 } 4560 } 4561 if (vmcip != NULL) { 4562 mac_resource_props_t *omrp; 4563 mac_resource_props_t *vmrp; 4564 4565 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 4566 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp)); 4567 /* 4568 * We dont' call mac_update_resources since we 4569 * want to take only the ring properties and 4570 * not all the properties that may have changed. 4571 */ 4572 vmrp = MCIP_RESOURCE_PROPS(vmcip); 4573 if (mrp->mrp_mask & MRP_RX_RINGS) { 4574 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4575 vmrp->mrp_mask &= ~MRP_RX_RINGS; 4576 if (vmrp->mrp_mask & 4577 MRP_RXRINGS_UNSPEC) { 4578 vmrp->mrp_mask &= 4579 ~MRP_RXRINGS_UNSPEC; 4580 } 4581 vmrp->mrp_nrxrings = 0; 4582 } else { 4583 vmrp->mrp_mask |= MRP_RX_RINGS; 4584 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 4585 } 4586 } 4587 if (mrp->mrp_mask & MRP_TX_RINGS) { 4588 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4589 vmrp->mrp_mask &= ~MRP_TX_RINGS; 4590 if (vmrp->mrp_mask & 4591 MRP_TXRINGS_UNSPEC) { 4592 vmrp->mrp_mask &= 4593 ~MRP_TXRINGS_UNSPEC; 4594 } 4595 vmrp->mrp_ntxrings = 0; 4596 } else { 4597 vmrp->mrp_mask |= MRP_TX_RINGS; 4598 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 4599 } 4600 } 4601 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4602 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4603 4604 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4605 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4606 4607 if ((err = mac_client_set_rings_prop(vmcip, mrp, 4608 omrp)) != 0) { 4609 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip), 4610 sizeof (*omrp)); 4611 } else { 4612 mac_set_prim_vlan_rings(mip, vmrp); 4613 } 4614 kmem_free(omrp, sizeof (*omrp)); 4615 } 4616 } 4617 4618 /* Only update the values if mac_client_set_resources succeeded */ 4619 if (err == 0) { 4620 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp)); 4621 /* 4622 * If bandwidth, priority or cpu link properties cleared, 4623 * renable fastpath. 4624 */ 4625 if (resmask != 0 && newresmask == 0) 4626 mac_fastpath_enable((mac_handle_t)mip); 4627 } else if (resmask == 0 && newresmask != 0) { 4628 mac_fastpath_enable((mac_handle_t)mip); 4629 } 4630 kmem_free(tmrp, sizeof (*tmrp)); 4631 kmem_free(umrp, sizeof (*umrp)); 4632 return (err); 4633 } 4634 4635 int 4636 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4637 { 4638 int err; 4639 4640 i_mac_perim_enter((mac_impl_t *)mh); 4641 err = i_mac_set_resources(mh, mrp); 4642 i_mac_perim_exit((mac_impl_t *)mh); 4643 return (err); 4644 } 4645 4646 /* 4647 * Get the properties cached for the specified MAC instance. 4648 */ 4649 void 4650 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4651 { 4652 mac_impl_t *mip = (mac_impl_t *)mh; 4653 mac_client_impl_t *mcip; 4654 4655 mcip = mac_primary_client_handle(mip); 4656 if (mcip != NULL) { 4657 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 4658 return; 4659 } 4660 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 4661 } 4662 4663 /* 4664 * Get the effective properties from the primary client of the 4665 * specified MAC instance. 4666 */ 4667 void 4668 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4669 { 4670 mac_impl_t *mip = (mac_impl_t *)mh; 4671 mac_client_impl_t *mcip; 4672 4673 mcip = mac_primary_client_handle(mip); 4674 if (mcip != NULL) { 4675 mac_client_get_effective_resources((mac_client_handle_t)mcip, 4676 mrp); 4677 return; 4678 } 4679 bzero(mrp, sizeof (mac_resource_props_t)); 4680 } 4681 4682 int 4683 mac_set_pvid(mac_handle_t mh, uint16_t pvid) 4684 { 4685 mac_impl_t *mip = (mac_impl_t *)mh; 4686 mac_client_impl_t *mcip; 4687 mac_unicast_impl_t *muip; 4688 4689 i_mac_perim_enter(mip); 4690 if (pvid != 0) { 4691 for (mcip = mip->mi_clients_list; mcip != NULL; 4692 mcip = mcip->mci_client_next) { 4693 for (muip = mcip->mci_unicast_list; muip != NULL; 4694 muip = muip->mui_next) { 4695 if (muip->mui_vid == pvid) { 4696 i_mac_perim_exit(mip); 4697 return (EBUSY); 4698 } 4699 } 4700 } 4701 } 4702 mip->mi_pvid = pvid; 4703 i_mac_perim_exit(mip); 4704 return (0); 4705 } 4706 4707 uint16_t 4708 mac_get_pvid(mac_handle_t mh) 4709 { 4710 mac_impl_t *mip = (mac_impl_t *)mh; 4711 4712 return (mip->mi_pvid); 4713 } 4714 4715 uint32_t 4716 mac_get_llimit(mac_handle_t mh) 4717 { 4718 mac_impl_t *mip = (mac_impl_t *)mh; 4719 4720 return (mip->mi_llimit); 4721 } 4722 4723 uint32_t 4724 mac_get_ldecay(mac_handle_t mh) 4725 { 4726 mac_impl_t *mip = (mac_impl_t *)mh; 4727 4728 return (mip->mi_ldecay); 4729 } 4730 4731 /* 4732 * Rename a mac client, its flow, and the kstat. 4733 */ 4734 int 4735 mac_rename_primary(mac_handle_t mh, const char *new_name) 4736 { 4737 mac_impl_t *mip = (mac_impl_t *)mh; 4738 mac_client_impl_t *cur_clnt = NULL; 4739 flow_entry_t *fep; 4740 4741 i_mac_perim_enter(mip); 4742 4743 /* 4744 * VNICs: we need to change the sys flow name and 4745 * the associated flow kstat. 4746 */ 4747 if (mip->mi_state_flags & MIS_IS_VNIC) { 4748 mac_client_impl_t *mcip = mac_vnic_lower(mip); 4749 ASSERT(new_name != NULL); 4750 mac_rename_flow_names(mcip, new_name); 4751 mac_stat_rename(mcip); 4752 goto done; 4753 } 4754 /* 4755 * This mac may itself be an aggr link, or it may have some client 4756 * which is an aggr port. For both cases, we need to change the 4757 * aggr port's mac client name, its flow name and the associated flow 4758 * kstat. 4759 */ 4760 if (mip->mi_state_flags & MIS_IS_AGGR) { 4761 mac_capab_aggr_t aggr_cap; 4762 mac_rename_fn_t rename_fn; 4763 boolean_t ret; 4764 4765 ASSERT(new_name != NULL); 4766 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 4767 (void *)(&aggr_cap)); 4768 ASSERT(ret == B_TRUE); 4769 rename_fn = aggr_cap.mca_rename_fn; 4770 rename_fn(new_name, mip->mi_driver); 4771 /* 4772 * The aggr's client name and kstat flow name will be 4773 * updated below, i.e. via mac_rename_flow_names. 4774 */ 4775 } 4776 4777 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 4778 cur_clnt = cur_clnt->mci_client_next) { 4779 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 4780 if (new_name != NULL) { 4781 char *str_st = cur_clnt->mci_name; 4782 char *str_del = strchr(str_st, '-'); 4783 4784 ASSERT(str_del != NULL); 4785 bzero(str_del + 1, MAXNAMELEN - 4786 (str_del - str_st + 1)); 4787 bcopy(new_name, str_del + 1, 4788 strlen(new_name)); 4789 } 4790 fep = cur_clnt->mci_flent; 4791 mac_rename_flow(fep, cur_clnt->mci_name); 4792 break; 4793 } else if (new_name != NULL && 4794 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 4795 mac_rename_flow_names(cur_clnt, new_name); 4796 break; 4797 } 4798 } 4799 4800 /* Recreate kstats associated with aggr pseudo rings */ 4801 if (mip->mi_state_flags & MIS_IS_AGGR) 4802 mac_pseudo_ring_stat_rename(mip); 4803 4804 done: 4805 i_mac_perim_exit(mip); 4806 return (0); 4807 } 4808 4809 /* 4810 * Rename the MAC client's flow names 4811 */ 4812 static void 4813 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 4814 { 4815 flow_entry_t *flent; 4816 uint16_t vid; 4817 char flowname[MAXFLOWNAMELEN]; 4818 mac_impl_t *mip = mcip->mci_mip; 4819 4820 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4821 4822 /* 4823 * Use mi_rw_lock to ensure that threads not in the mac perimeter 4824 * see a self-consistent value for mci_name 4825 */ 4826 rw_enter(&mip->mi_rw_lock, RW_WRITER); 4827 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 4828 rw_exit(&mip->mi_rw_lock); 4829 4830 mac_rename_flow(mcip->mci_flent, new_name); 4831 4832 if (mcip->mci_nflents == 1) 4833 return; 4834 4835 /* 4836 * We have to rename all the others too, no stats to destroy for 4837 * these. 4838 */ 4839 for (flent = mcip->mci_flent_list; flent != NULL; 4840 flent = flent->fe_client_next) { 4841 if (flent != mcip->mci_flent) { 4842 vid = i_mac_flow_vid(flent); 4843 (void) sprintf(flowname, "%s%u", new_name, vid); 4844 mac_flow_set_name(flent, flowname); 4845 } 4846 } 4847 } 4848 4849 4850 /* 4851 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 4852 * defined for the specified MAC client. 4853 */ 4854 static void 4855 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4856 { 4857 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4858 /* 4859 * The promisc Rx data path walks the mci_flent_list. Protect by 4860 * using mi_rw_lock 4861 */ 4862 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4863 4864 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 4865 4866 /* Add it to the head */ 4867 flent->fe_client_next = mcip->mci_flent_list; 4868 mcip->mci_flent_list = flent; 4869 mcip->mci_nflents++; 4870 4871 /* 4872 * Keep track of the number of non-zero VIDs addresses per MAC 4873 * client to avoid figuring it out in the data-path. 4874 */ 4875 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4876 mcip->mci_nvids++; 4877 4878 rw_exit(&mcip->mci_rw_lock); 4879 } 4880 4881 /* 4882 * Remove a flow entry from the MAC client's list. 4883 */ 4884 static void 4885 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4886 { 4887 flow_entry_t *fe = mcip->mci_flent_list; 4888 flow_entry_t *prev_fe = NULL; 4889 4890 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4891 /* 4892 * The promisc Rx data path walks the mci_flent_list. Protect by 4893 * using mci_rw_lock 4894 */ 4895 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4896 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 4897 4898 while ((fe != NULL) && (fe != flent)) { 4899 prev_fe = fe; 4900 fe = fe->fe_client_next; 4901 } 4902 4903 ASSERT(fe != NULL); 4904 if (prev_fe == NULL) { 4905 /* Deleting the first node */ 4906 mcip->mci_flent_list = fe->fe_client_next; 4907 } else { 4908 prev_fe->fe_client_next = fe->fe_client_next; 4909 } 4910 mcip->mci_nflents--; 4911 4912 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4913 mcip->mci_nvids--; 4914 4915 rw_exit(&mcip->mci_rw_lock); 4916 } 4917 4918 /* 4919 * Check if the given VID belongs to this MAC client. 4920 */ 4921 boolean_t 4922 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 4923 { 4924 flow_entry_t *flent; 4925 uint16_t mci_vid; 4926 uint32_t cache = mcip->mci_vidcache; 4927 4928 /* 4929 * In hopes of not having to touch the mci_rw_lock, check to see if 4930 * this vid matches our cached result. 4931 */ 4932 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid) 4933 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE); 4934 4935 /* The mci_flent_list is protected by mci_rw_lock */ 4936 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4937 for (flent = mcip->mci_flent_list; flent != NULL; 4938 flent = flent->fe_client_next) { 4939 mci_vid = i_mac_flow_vid(flent); 4940 if (vid == mci_vid) { 4941 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE); 4942 rw_exit(&mcip->mci_rw_lock); 4943 return (B_TRUE); 4944 } 4945 } 4946 4947 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE); 4948 rw_exit(&mcip->mci_rw_lock); 4949 return (B_FALSE); 4950 } 4951 4952 /* 4953 * Get the flow entry for the specified <MAC addr, VID> tuple. 4954 */ 4955 static flow_entry_t * 4956 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 4957 { 4958 mac_address_t *map = mcip->mci_unicast; 4959 flow_entry_t *flent; 4960 uint16_t vid; 4961 flow_desc_t flow_desc; 4962 4963 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4964 4965 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 4966 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 4967 return (NULL); 4968 4969 for (flent = mcip->mci_flent_list; flent != NULL; 4970 flent = flent->fe_client_next) { 4971 vid = i_mac_flow_vid(flent); 4972 if (vid == muip->mui_vid) { 4973 return (flent); 4974 } 4975 } 4976 4977 return (NULL); 4978 } 4979 4980 /* 4981 * Since mci_flent has the SRSs, when we want to remove it, we replace 4982 * the flow_desc_t in mci_flent with that of an existing flent and then 4983 * remove that flent instead of mci_flent. 4984 */ 4985 static flow_entry_t * 4986 mac_client_swap_mciflent(mac_client_impl_t *mcip) 4987 { 4988 flow_entry_t *flent = mcip->mci_flent; 4989 flow_tab_t *ft = flent->fe_flow_tab; 4990 flow_entry_t *flent1; 4991 flow_desc_t fl_desc; 4992 char fl_name[MAXFLOWNAMELEN]; 4993 int err; 4994 4995 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4996 ASSERT(mcip->mci_nflents > 1); 4997 4998 /* get the next flent following the primary flent */ 4999 flent1 = mcip->mci_flent_list->fe_client_next; 5000 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 5001 5002 /* 5003 * Remove the flent from the flow table before updating the 5004 * flow descriptor as the hash depends on the flow descriptor. 5005 * This also helps incoming packet classification avoid having 5006 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 5007 * flow table is done under the fe_lock so that log or stat functions 5008 * see a self-consistent fe_flow_desc. The name and desc are specific 5009 * to a flow, the rest are shared by all the clients, including 5010 * resource control etc. 5011 */ 5012 mac_flow_remove(ft, flent, B_TRUE); 5013 mac_flow_remove(ft, flent1, B_TRUE); 5014 5015 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 5016 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 5017 5018 /* update the primary flow entry */ 5019 mutex_enter(&flent->fe_lock); 5020 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 5021 sizeof (flow_desc_t)); 5022 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 5023 mutex_exit(&flent->fe_lock); 5024 5025 /* update the flow entry that is to be freed */ 5026 mutex_enter(&flent1->fe_lock); 5027 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 5028 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 5029 mutex_exit(&flent1->fe_lock); 5030 5031 /* now reinsert the flow entries in the table */ 5032 err = mac_flow_add(ft, flent); 5033 ASSERT(err == 0); 5034 5035 err = mac_flow_add(ft, flent1); 5036 ASSERT(err == 0); 5037 5038 return (flent1); 5039 } 5040 5041 /* 5042 * Return whether there is only one flow entry associated with this 5043 * MAC client. 5044 */ 5045 static boolean_t 5046 mac_client_single_rcvr(mac_client_impl_t *mcip) 5047 { 5048 return (mcip->mci_nflents == 1); 5049 } 5050 5051 int 5052 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp) 5053 { 5054 boolean_t reset; 5055 uint32_t rings_needed; 5056 uint32_t rings_avail; 5057 mac_group_type_t gtype; 5058 mac_resource_props_t *mip_mrp; 5059 5060 if (mrp == NULL) 5061 return (0); 5062 5063 if (mrp->mrp_mask & MRP_PRIORITY) { 5064 mac_priority_level_t pri = mrp->mrp_priority; 5065 5066 if (pri < MPL_LOW || pri > MPL_RESET) 5067 return (EINVAL); 5068 } 5069 5070 if (mrp->mrp_mask & MRP_MAXBW) { 5071 uint64_t maxbw = mrp->mrp_maxbw; 5072 5073 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 5074 return (EINVAL); 5075 } 5076 if (mrp->mrp_mask & MRP_CPUS) { 5077 int i, j; 5078 mac_cpu_mode_t fanout; 5079 5080 if (mrp->mrp_ncpus > ncpus) 5081 return (EINVAL); 5082 5083 for (i = 0; i < mrp->mrp_ncpus; i++) { 5084 for (j = 0; j < mrp->mrp_ncpus; j++) { 5085 if (i != j && 5086 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) { 5087 return (EINVAL); 5088 } 5089 } 5090 } 5091 5092 for (i = 0; i < mrp->mrp_ncpus; i++) { 5093 cpu_t *cp; 5094 int rv; 5095 5096 mutex_enter(&cpu_lock); 5097 cp = cpu_get(mrp->mrp_cpu[i]); 5098 if (cp != NULL) 5099 rv = cpu_is_online(cp); 5100 else 5101 rv = 0; 5102 mutex_exit(&cpu_lock); 5103 if (rv == 0) 5104 return (EINVAL); 5105 } 5106 5107 fanout = mrp->mrp_fanout_mode; 5108 if (fanout < 0 || fanout > MCM_CPUS) 5109 return (EINVAL); 5110 } 5111 5112 if (mrp->mrp_mask & MRP_PROTECT) { 5113 int err = mac_protect_validate(mrp); 5114 if (err != 0) 5115 return (err); 5116 } 5117 5118 if (!(mrp->mrp_mask & MRP_RX_RINGS) && 5119 !(mrp->mrp_mask & MRP_TX_RINGS)) { 5120 return (0); 5121 } 5122 5123 /* 5124 * mip will be null when we come from mac_flow_create or 5125 * mac_link_flow_modify. In the latter case it is a user flow, 5126 * for which we don't support rings. In the former we would 5127 * have validated the props beforehand (i_mac_unicast_add -> 5128 * mac_client_set_resources -> validate for the primary and 5129 * vnic_dev_create -> mac_client_set_resources -> validate for 5130 * a vnic. 5131 */ 5132 if (mip == NULL) 5133 return (0); 5134 5135 /* 5136 * We don't support setting rings property for a VNIC that is using a 5137 * primary address (VLAN) 5138 */ 5139 if ((mip->mi_state_flags & MIS_IS_VNIC) && 5140 mac_is_vnic_primary((mac_handle_t)mip)) { 5141 return (ENOTSUP); 5142 } 5143 5144 mip_mrp = &mip->mi_resource_props; 5145 /* 5146 * The rings property should be validated against the NICs 5147 * resources 5148 */ 5149 if (mip->mi_state_flags & MIS_IS_VNIC) 5150 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip); 5151 5152 reset = mrp->mrp_mask & MRP_RINGS_RESET; 5153 /* 5154 * If groups are not supported, return error. 5155 */ 5156 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) || 5157 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) { 5158 return (EINVAL); 5159 } 5160 /* 5161 * If we are just resetting, there is no validation needed. 5162 */ 5163 if (reset) 5164 return (0); 5165 5166 if (mrp->mrp_mask & MRP_RX_RINGS) { 5167 rings_needed = mrp->mrp_nrxrings; 5168 /* 5169 * We just want to check if the number of additional 5170 * rings requested is available. 5171 */ 5172 if (mip_mrp->mrp_mask & MRP_RX_RINGS) { 5173 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings) 5174 /* Just check for the additional rings */ 5175 rings_needed -= mip_mrp->mrp_nrxrings; 5176 else 5177 /* We are not asking for additional rings */ 5178 rings_needed = 0; 5179 } 5180 rings_avail = mip->mi_rxrings_avail; 5181 gtype = mip->mi_rx_group_type; 5182 } else { 5183 rings_needed = mrp->mrp_ntxrings; 5184 /* Similarly for the TX rings */ 5185 if (mip_mrp->mrp_mask & MRP_TX_RINGS) { 5186 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings) 5187 /* Just check for the additional rings */ 5188 rings_needed -= mip_mrp->mrp_ntxrings; 5189 else 5190 /* We are not asking for additional rings */ 5191 rings_needed = 0; 5192 } 5193 rings_avail = mip->mi_txrings_avail; 5194 gtype = mip->mi_tx_group_type; 5195 } 5196 5197 /* Error if the group is dynamic .. */ 5198 if (gtype == MAC_GROUP_TYPE_DYNAMIC) { 5199 /* 5200 * .. and rings specified are more than available. 5201 */ 5202 if (rings_needed > rings_avail) 5203 return (EINVAL); 5204 } else { 5205 /* 5206 * OR group is static and we have specified some rings. 5207 */ 5208 if (rings_needed > 0) 5209 return (EINVAL); 5210 } 5211 return (0); 5212 } 5213 5214 /* 5215 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 5216 * underlying physical link is down. This is to allow MAC clients to 5217 * communicate with other clients. 5218 */ 5219 void 5220 mac_virtual_link_update(mac_impl_t *mip) 5221 { 5222 if (mip->mi_linkstate != LINK_STATE_UP) 5223 i_mac_notify(mip, MAC_NOTE_LINK); 5224 } 5225 5226 /* 5227 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 5228 * mac handle in the client. 5229 */ 5230 void 5231 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh, 5232 mac_resource_props_t *mrp) 5233 { 5234 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5235 mac_impl_t *mip = (mac_impl_t *)mh; 5236 5237 mcip->mci_upper_mip = mip; 5238 /* If there are any properties, copy it over too */ 5239 if (mrp != NULL) { 5240 bcopy(mrp, &mip->mi_resource_props, 5241 sizeof (mac_resource_props_t)); 5242 } 5243 } 5244 5245 /* 5246 * Mark the mac as being used exclusively by the single mac client that is 5247 * doing some control operation on this mac. No further opens of this mac 5248 * will be allowed until this client calls mac_unmark_exclusive. The mac 5249 * client calling this function must already be in the mac perimeter 5250 */ 5251 int 5252 mac_mark_exclusive(mac_handle_t mh) 5253 { 5254 mac_impl_t *mip = (mac_impl_t *)mh; 5255 5256 ASSERT(MAC_PERIM_HELD(mh)); 5257 /* 5258 * Look up its entry in the global hash table. 5259 */ 5260 rw_enter(&i_mac_impl_lock, RW_WRITER); 5261 if (mip->mi_state_flags & MIS_DISABLED) { 5262 rw_exit(&i_mac_impl_lock); 5263 return (ENOENT); 5264 } 5265 5266 /* 5267 * A reference to mac is held even if the link is not plumbed. 5268 * In i_dls_link_create() we open the MAC interface and hold the 5269 * reference. There is an additional reference for the mac_open 5270 * done in acquiring the mac perimeter 5271 */ 5272 if (mip->mi_ref != 2) { 5273 rw_exit(&i_mac_impl_lock); 5274 return (EBUSY); 5275 } 5276 5277 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5278 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 5279 rw_exit(&i_mac_impl_lock); 5280 return (0); 5281 } 5282 5283 void 5284 mac_unmark_exclusive(mac_handle_t mh) 5285 { 5286 mac_impl_t *mip = (mac_impl_t *)mh; 5287 5288 ASSERT(MAC_PERIM_HELD(mh)); 5289 5290 rw_enter(&i_mac_impl_lock, RW_WRITER); 5291 /* 1 for the creation and another for the perimeter */ 5292 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5293 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 5294 rw_exit(&i_mac_impl_lock); 5295 } 5296 5297 /* 5298 * Set the MTU for the specified MAC. 5299 */ 5300 int 5301 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 5302 { 5303 mac_impl_t *mip = (mac_impl_t *)mh; 5304 uint_t old_mtu; 5305 int rv = 0; 5306 5307 i_mac_perim_enter(mip); 5308 5309 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) { 5310 rv = ENOTSUP; 5311 goto bail; 5312 } 5313 5314 old_mtu = mip->mi_sdu_max; 5315 5316 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) { 5317 rv = EINVAL; 5318 goto bail; 5319 } 5320 5321 rw_enter(&mip->mi_rw_lock, RW_READER); 5322 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) { 5323 rv = EBUSY; 5324 rw_exit(&mip->mi_rw_lock); 5325 goto bail; 5326 } 5327 rw_exit(&mip->mi_rw_lock); 5328 5329 if (old_mtu != new_mtu) { 5330 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 5331 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 5332 if (rv != 0) 5333 goto bail; 5334 rv = mac_maxsdu_update(mh, new_mtu); 5335 ASSERT(rv == 0); 5336 } 5337 5338 bail: 5339 i_mac_perim_exit(mip); 5340 5341 if (rv == 0 && old_mtu_arg != NULL) 5342 *old_mtu_arg = old_mtu; 5343 return (rv); 5344 } 5345 5346 /* 5347 * Return the RX h/w information for the group indexed by grp_num. 5348 */ 5349 void 5350 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5351 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5352 char *clnts_name) 5353 { 5354 mac_impl_t *mip = (mac_impl_t *)mh; 5355 mac_grp_client_t *mcip; 5356 uint_t i = 0, index = 0; 5357 mac_ring_t *ring; 5358 5359 /* Revisit when we implement fully dynamic group allocation */ 5360 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 5361 5362 rw_enter(&mip->mi_rw_lock, RW_READER); 5363 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 5364 *type = mip->mi_rx_groups[grp_index].mrg_type; 5365 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 5366 ring = mip->mi_rx_groups[grp_index].mrg_rings; 5367 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count; 5368 index++) { 5369 rings[index] = ring->mr_index; 5370 ring = ring->mr_next; 5371 } 5372 /* Assuming the 1st is the default group */ 5373 index = 0; 5374 if (grp_index == 0) { 5375 (void) strlcpy(clnts_name, "<default,mcast>,", 5376 MAXCLIENTNAMELEN); 5377 index += strlen("<default,mcast>,"); 5378 } 5379 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 5380 mcip = mcip->mgc_next) { 5381 int name_len = strlen(mcip->mgc_client->mci_name); 5382 5383 /* 5384 * MAXCLIENTNAMELEN is the buffer size reserved for client 5385 * names. 5386 * XXXX Formating the client name string needs to be moved 5387 * to user land when fixing the size of dhi_clnts in 5388 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5389 * dhi_clntsin instead of MAXCLIENTNAMELEN 5390 */ 5391 if (index + name_len >= MAXCLIENTNAMELEN) { 5392 index = MAXCLIENTNAMELEN; 5393 break; 5394 } 5395 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5396 name_len); 5397 index += name_len; 5398 clnts_name[index++] = ','; 5399 i++; 5400 } 5401 5402 /* Get rid of the last , */ 5403 if (index > 0) 5404 clnts_name[index - 1] = '\0'; 5405 *n_clnts = i; 5406 rw_exit(&mip->mi_rw_lock); 5407 } 5408 5409 /* 5410 * Return the TX h/w information for the group indexed by grp_num. 5411 */ 5412 void 5413 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5414 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5415 char *clnts_name) 5416 { 5417 mac_impl_t *mip = (mac_impl_t *)mh; 5418 mac_grp_client_t *mcip; 5419 uint_t i = 0, index = 0; 5420 mac_ring_t *ring; 5421 5422 /* Revisit when we implement fully dynamic group allocation */ 5423 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count); 5424 5425 rw_enter(&mip->mi_rw_lock, RW_READER); 5426 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ? 5427 mip->mi_tx_groups[grp_index].mrg_index : grp_index; 5428 *type = mip->mi_tx_groups[grp_index].mrg_type; 5429 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count; 5430 ring = mip->mi_tx_groups[grp_index].mrg_rings; 5431 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count; 5432 index++) { 5433 rings[index] = ring->mr_index; 5434 ring = ring->mr_next; 5435 } 5436 index = 0; 5437 /* Default group has an index of -1 */ 5438 if (mip->mi_tx_groups[grp_index].mrg_index < 0) { 5439 (void) strlcpy(clnts_name, "<default>,", 5440 MAXCLIENTNAMELEN); 5441 index += strlen("<default>,"); 5442 } 5443 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL; 5444 mcip = mcip->mgc_next) { 5445 int name_len = strlen(mcip->mgc_client->mci_name); 5446 5447 /* 5448 * MAXCLIENTNAMELEN is the buffer size reserved for client 5449 * names. 5450 * XXXX Formating the client name string needs to be moved 5451 * to user land when fixing the size of dhi_clnts in 5452 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5453 * dhi_clntsin instead of MAXCLIENTNAMELEN 5454 */ 5455 if (index + name_len >= MAXCLIENTNAMELEN) { 5456 index = MAXCLIENTNAMELEN; 5457 break; 5458 } 5459 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5460 name_len); 5461 index += name_len; 5462 clnts_name[index++] = ','; 5463 i++; 5464 } 5465 5466 /* Get rid of the last , */ 5467 if (index > 0) 5468 clnts_name[index - 1] = '\0'; 5469 *n_clnts = i; 5470 rw_exit(&mip->mi_rw_lock); 5471 } 5472 5473 /* 5474 * Return the group count for RX or TX. 5475 */ 5476 uint_t 5477 mac_hwgrp_num(mac_handle_t mh, int type) 5478 { 5479 mac_impl_t *mip = (mac_impl_t *)mh; 5480 5481 /* 5482 * Return the Rx and Tx group count; for the Tx we need to 5483 * include the default too. 5484 */ 5485 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count : 5486 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0); 5487 } 5488 5489 /* 5490 * The total number of free TX rings for this MAC. 5491 */ 5492 uint_t 5493 mac_txavail_get(mac_handle_t mh) 5494 { 5495 mac_impl_t *mip = (mac_impl_t *)mh; 5496 5497 return (mip->mi_txrings_avail); 5498 } 5499 5500 /* 5501 * The total number of free RX rings for this MAC. 5502 */ 5503 uint_t 5504 mac_rxavail_get(mac_handle_t mh) 5505 { 5506 mac_impl_t *mip = (mac_impl_t *)mh; 5507 5508 return (mip->mi_rxrings_avail); 5509 } 5510 5511 /* 5512 * The total number of reserved RX rings on this MAC. 5513 */ 5514 uint_t 5515 mac_rxrsvd_get(mac_handle_t mh) 5516 { 5517 mac_impl_t *mip = (mac_impl_t *)mh; 5518 5519 return (mip->mi_rxrings_rsvd); 5520 } 5521 5522 /* 5523 * The total number of reserved TX rings on this MAC. 5524 */ 5525 uint_t 5526 mac_txrsvd_get(mac_handle_t mh) 5527 { 5528 mac_impl_t *mip = (mac_impl_t *)mh; 5529 5530 return (mip->mi_txrings_rsvd); 5531 } 5532 5533 /* 5534 * Total number of free RX groups on this MAC. 5535 */ 5536 uint_t 5537 mac_rxhwlnksavail_get(mac_handle_t mh) 5538 { 5539 mac_impl_t *mip = (mac_impl_t *)mh; 5540 5541 return (mip->mi_rxhwclnt_avail); 5542 } 5543 5544 /* 5545 * Total number of RX groups reserved on this MAC. 5546 */ 5547 uint_t 5548 mac_rxhwlnksrsvd_get(mac_handle_t mh) 5549 { 5550 mac_impl_t *mip = (mac_impl_t *)mh; 5551 5552 return (mip->mi_rxhwclnt_used); 5553 } 5554 5555 /* 5556 * Total number of free TX groups on this MAC. 5557 */ 5558 uint_t 5559 mac_txhwlnksavail_get(mac_handle_t mh) 5560 { 5561 mac_impl_t *mip = (mac_impl_t *)mh; 5562 5563 return (mip->mi_txhwclnt_avail); 5564 } 5565 5566 /* 5567 * Total number of TX groups reserved on this MAC. 5568 */ 5569 uint_t 5570 mac_txhwlnksrsvd_get(mac_handle_t mh) 5571 { 5572 mac_impl_t *mip = (mac_impl_t *)mh; 5573 5574 return (mip->mi_txhwclnt_used); 5575 } 5576 5577 /* 5578 * Initialize the rings property for a mac client. A non-0 value for 5579 * rxring or txring specifies the number of rings required, a value 5580 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need 5581 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE 5582 * means the system can decide whether it can give any rings or not. 5583 */ 5584 void 5585 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings) 5586 { 5587 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5588 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 5589 5590 if (rxrings != MAC_RXRINGS_DONTCARE) { 5591 mrp->mrp_mask |= MRP_RX_RINGS; 5592 mrp->mrp_nrxrings = rxrings; 5593 } 5594 5595 if (txrings != MAC_TXRINGS_DONTCARE) { 5596 mrp->mrp_mask |= MRP_TX_RINGS; 5597 mrp->mrp_ntxrings = txrings; 5598 } 5599 } 5600 5601 boolean_t 5602 mac_get_promisc_filtered(mac_client_handle_t mch) 5603 { 5604 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5605 5606 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED); 5607 } 5608 5609 void 5610 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable) 5611 { 5612 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5613 5614 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5615 if (enable) 5616 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED; 5617 else 5618 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED; 5619 }