1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2018 Joyent, Inc.
25 * Copyright 2017 RackTop Systems.
26 */
27
28 /*
29 * - General Introduction:
30 *
31 * This file contains the implementation of the MAC client kernel
32 * API and related code. The MAC client API allows a kernel module
33 * to gain access to a MAC instance (physical NIC, link aggregation, etc).
34 * It allows a MAC client to associate itself with a MAC address,
35 * VLANs, callback functions for data traffic and for promiscuous mode.
36 * The MAC client API is also used to specify the properties associated
37 * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
38 * These properties are further used to determine the hardware resources
39 * to allocate to the various MAC clients.
40 *
41 * - Primary MAC clients:
42 *
43 * The MAC client API refers to "primary MAC clients". A primary MAC
44 * client is a client which "owns" the primary MAC address of
45 * the underlying MAC instance. The primary MAC address is called out
46 * since it is associated with specific semantics: the primary MAC
47 * address is the MAC address which is assigned to the IP interface
48 * when it is plumbed, and the primary MAC address is assigned
49 * to VLAN data-links. The primary address of a MAC instance can
50 * also change dynamically from under the MAC client, for example
51 * as a result of a change of state of a link aggregation. In that
52 * case the MAC layer automatically updates all data-structures which
53 * refer to the current value of the primary MAC address. Typical
54 * primary MAC clients are dls, aggr, and xnb. A typical non-primary
55 * MAC client is the vnic driver.
56 *
57 * - Virtual Switching:
58 *
59 * The MAC layer implements a virtual switch between the MAC clients
60 * (primary and non-primary) defined on top of the same underlying
61 * NIC (physical, link aggregation, etc). The virtual switch is
62 * VLAN-aware, i.e. it allows multiple MAC clients to be member
63 * of one or more VLANs, and the virtual switch will distribute
64 * multicast tagged packets only to the member of the corresponding
65 * VLANs.
66 *
67 * - Upper vs Lower MAC:
68 *
69 * Creating a VNIC on top of a MAC instance effectively causes
70 * two MAC instances to be layered on top of each other, one for
71 * the VNIC(s), one for the underlying MAC instance (physical NIC,
72 * link aggregation, etc). In the code below we refer to the
73 * underlying NIC as the "lower MAC", and we refer to VNICs as
74 * the "upper MAC".
75 *
76 * - Pass-through for VNICs:
77 *
78 * When VNICs are created on top of an underlying MAC, this causes
79 * a layering of two MAC instances. Since the lower MAC already
80 * does the switching and demultiplexing to its MAC clients, the
81 * upper MAC would simply have to pass packets to the layer below
82 * or above it, which would introduce overhead. In order to avoid
83 * this overhead, the MAC layer implements a pass-through mechanism
84 * for VNICs. When a VNIC opens the lower MAC instance, it saves
85 * the MAC client handle it optains from the MAC layer. When a MAC
86 * client opens a VNIC (upper MAC), the MAC layer detects that
87 * the MAC being opened is a VNIC, and gets the MAC client handle
88 * that the VNIC driver obtained from the lower MAC. This exchange
89 * is done through a private capability between the MAC layer
90 * and the VNIC driver. The upper MAC then returns that handle
91 * directly to its MAC client. Any operation done by the upper
92 * MAC client is now done on the lower MAC client handle, which
93 * allows the VNIC driver to be completely bypassed for the
94 * performance sensitive data-path.
95 *
96 * - Secondary MACs for VNICs:
97 *
98 * VNICs support multiple upper mac clients to enable support for
99 * multiple MAC addresses on the VNIC. When the VNIC is created the
100 * initial mac client is the primary upper mac. Any additional mac
101 * clients are secondary macs. These are kept in sync with the primary
102 * (for things such as the rx function and resource control settings)
103 * using the same private capability interface between the MAC layer
104 * and the VNIC layer.
105 *
106 */
107
108 #include <sys/types.h>
109 #include <sys/conf.h>
110 #include <sys/id_space.h>
111 #include <sys/esunddi.h>
112 #include <sys/stat.h>
113 #include <sys/mkdev.h>
114 #include <sys/stream.h>
115 #include <sys/strsun.h>
116 #include <sys/strsubr.h>
117 #include <sys/dlpi.h>
118 #include <sys/modhash.h>
119 #include <sys/mac_impl.h>
120 #include <sys/mac_client_impl.h>
121 #include <sys/mac_soft_ring.h>
122 #include <sys/mac_stat.h>
123 #include <sys/dls.h>
124 #include <sys/dld.h>
125 #include <sys/modctl.h>
126 #include <sys/fs/dv_node.h>
127 #include <sys/thread.h>
128 #include <sys/proc.h>
129 #include <sys/callb.h>
130 #include <sys/cpuvar.h>
131 #include <sys/atomic.h>
132 #include <sys/sdt.h>
133 #include <sys/mac_flow.h>
134 #include <sys/ddi_intr_impl.h>
135 #include <sys/disp.h>
136 #include <sys/sdt.h>
137 #include <sys/vnic.h>
138 #include <sys/vnic_impl.h>
139 #include <sys/vlan.h>
140 #include <inet/ip.h>
141 #include <inet/ip6.h>
142 #include <sys/exacct.h>
143 #include <sys/exacct_impl.h>
144 #include <inet/nd.h>
145 #include <sys/ethernet.h>
146
147 kmem_cache_t *mac_client_impl_cache;
148 kmem_cache_t *mac_promisc_impl_cache;
149
150 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
151 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
152 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
153 mac_unicast_impl_t *);
154 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
155 flow_entry_t *);
156 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
157 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
158 static void mac_virtual_link_update(mac_impl_t *);
159 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t,
160 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *);
161 static void mac_client_datapath_teardown(mac_client_handle_t,
162 mac_unicast_impl_t *, flow_entry_t *);
163 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *);
164
165 /* ARGSUSED */
166 static int
167 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
168 {
169 int i;
170 mac_client_impl_t *mcip = buf;
171
172 bzero(buf, MAC_CLIENT_IMPL_SIZE);
173 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
174 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
175
176 ASSERT(mac_tx_percpu_cnt >= 0);
177 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
178 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
179 MUTEX_DRIVER, NULL);
180 }
181 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
182
183 return (0);
184 }
185
186 /* ARGSUSED */
187 static void
188 i_mac_client_impl_dtor(void *buf, void *arg)
189 {
190 int i;
191 mac_client_impl_t *mcip = buf;
192
193 ASSERT(mcip->mci_promisc_list == NULL);
194 ASSERT(mcip->mci_unicast_list == NULL);
195 ASSERT(mcip->mci_state_flags == 0);
196 ASSERT(mcip->mci_tx_flag == 0);
197
198 mutex_destroy(&mcip->mci_tx_cb_lock);
199
200 ASSERT(mac_tx_percpu_cnt >= 0);
201 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
202 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
203 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
204 }
205 cv_destroy(&mcip->mci_tx_cv);
206 }
207
208 /* ARGSUSED */
209 static int
210 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
211 {
212 mac_promisc_impl_t *mpip = buf;
213
214 bzero(buf, sizeof (mac_promisc_impl_t));
215 mpip->mpi_mci_link.mcb_objp = buf;
216 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
217 mpip->mpi_mi_link.mcb_objp = buf;
218 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
219 return (0);
220 }
221
222 /* ARGSUSED */
223 static void
224 i_mac_promisc_impl_dtor(void *buf, void *arg)
225 {
226 mac_promisc_impl_t *mpip = buf;
227
228 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
229 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
230 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
231 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
232
233 mpip->mpi_mci_link.mcb_objp = NULL;
234 mpip->mpi_mci_link.mcb_objsize = 0;
235 mpip->mpi_mi_link.mcb_objp = NULL;
236 mpip->mpi_mi_link.mcb_objsize = 0;
237
238 ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
239 mpip->mpi_mci_link.mcb_objsize = 0;
240 }
241
242 void
243 mac_client_init(void)
244 {
245 ASSERT(mac_tx_percpu_cnt >= 0);
246
247 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
248 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
249 i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
250 ASSERT(mac_client_impl_cache != NULL);
251
252 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
253 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
254 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
255 ASSERT(mac_promisc_impl_cache != NULL);
256 }
257
258 void
259 mac_client_fini(void)
260 {
261 kmem_cache_destroy(mac_client_impl_cache);
262 kmem_cache_destroy(mac_promisc_impl_cache);
263 }
264
265 /*
266 * Return the lower MAC client handle from the VNIC driver for the
267 * specified VNIC MAC instance.
268 */
269 mac_client_impl_t *
270 mac_vnic_lower(mac_impl_t *mip)
271 {
272 mac_capab_vnic_t cap;
273 mac_client_impl_t *mcip;
274
275 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
276 mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
277
278 return (mcip);
279 }
280
281 /*
282 * Update the secondary macs
283 */
284 void
285 mac_vnic_secondary_update(mac_impl_t *mip)
286 {
287 mac_capab_vnic_t cap;
288
289 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
290 cap.mcv_mac_secondary_update(cap.mcv_arg);
291 }
292
293 /*
294 * Return the MAC client handle of the primary MAC client for the
295 * specified MAC instance, or NULL otherwise.
296 */
297 mac_client_impl_t *
298 mac_primary_client_handle(mac_impl_t *mip)
299 {
300 mac_client_impl_t *mcip;
301
302 if (mip->mi_state_flags & MIS_IS_VNIC)
303 return (mac_vnic_lower(mip));
304
305 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
306
307 for (mcip = mip->mi_clients_list; mcip != NULL;
308 mcip = mcip->mci_client_next) {
309 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
310 return (mcip);
311 }
312 return (NULL);
313 }
314
315 /*
316 * Open a MAC specified by its MAC name.
317 */
318 int
319 mac_open(const char *macname, mac_handle_t *mhp)
320 {
321 mac_impl_t *mip;
322 int err;
323
324 /*
325 * Look up its entry in the global hash table.
326 */
327 if ((err = mac_hold(macname, &mip)) != 0)
328 return (err);
329
330 /*
331 * Hold the dip associated to the MAC to prevent it from being
332 * detached. For a softmac, its underlying dip is held by the
333 * mi_open() callback.
334 *
335 * This is done to be more tolerant with some defective drivers,
336 * which incorrectly handle mac_unregister() failure in their
337 * xxx_detach() routine. For example, some drivers ignore the
338 * failure of mac_unregister() and free all resources that
339 * that are needed for data transmition.
340 */
341 e_ddi_hold_devi(mip->mi_dip);
342
343 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
344 *mhp = (mac_handle_t)mip;
345 return (0);
346 }
347
348 /*
349 * The mac perimeter is used in both mac_open and mac_close by the
350 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
351 */
352 i_mac_perim_enter(mip);
353 mip->mi_oref++;
354 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
355 *mhp = (mac_handle_t)mip;
356 i_mac_perim_exit(mip);
357 return (0);
358 }
359 mip->mi_oref--;
360 ddi_release_devi(mip->mi_dip);
361 mac_rele(mip);
362 i_mac_perim_exit(mip);
363 return (err);
364 }
365
366 /*
367 * Open a MAC specified by its linkid.
368 */
369 int
370 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
371 {
372 dls_dl_handle_t dlh;
373 int err;
374
375 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
376 return (err);
377
378 dls_devnet_prop_task_wait(dlh);
379
380 err = mac_open(dls_devnet_mac(dlh), mhp);
381
382 dls_devnet_rele_tmp(dlh);
383 return (err);
384 }
385
386 /*
387 * Open a MAC specified by its link name.
388 */
389 int
390 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
391 {
392 datalink_id_t linkid;
393 int err;
394
395 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
396 return (err);
397 return (mac_open_by_linkid(linkid, mhp));
398 }
399
400 /*
401 * Close the specified MAC.
402 */
403 void
404 mac_close(mac_handle_t mh)
405 {
406 mac_impl_t *mip = (mac_impl_t *)mh;
407
408 i_mac_perim_enter(mip);
409 /*
410 * The mac perimeter is used in both mac_open and mac_close by the
411 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
412 */
413 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
414 ASSERT(mip->mi_oref != 0);
415 if (--mip->mi_oref == 0) {
416 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
417 mip->mi_close(mip->mi_driver);
418 }
419 }
420 i_mac_perim_exit(mip);
421 ddi_release_devi(mip->mi_dip);
422 mac_rele(mip);
423 }
424
425 /*
426 * Misc utility functions to retrieve various information about a MAC
427 * instance or a MAC client.
428 */
429
430 const mac_info_t *
431 mac_info(mac_handle_t mh)
432 {
433 return (&((mac_impl_t *)mh)->mi_info);
434 }
435
436 dev_info_t *
437 mac_devinfo_get(mac_handle_t mh)
438 {
439 return (((mac_impl_t *)mh)->mi_dip);
440 }
441
442 void *
443 mac_driver(mac_handle_t mh)
444 {
445 return (((mac_impl_t *)mh)->mi_driver);
446 }
447
448 const char *
449 mac_name(mac_handle_t mh)
450 {
451 return (((mac_impl_t *)mh)->mi_name);
452 }
453
454 int
455 mac_type(mac_handle_t mh)
456 {
457 return (((mac_impl_t *)mh)->mi_type->mt_type);
458 }
459
460 int
461 mac_nativetype(mac_handle_t mh)
462 {
463 return (((mac_impl_t *)mh)->mi_type->mt_nativetype);
464 }
465
466 char *
467 mac_client_name(mac_client_handle_t mch)
468 {
469 return (((mac_client_impl_t *)mch)->mci_name);
470 }
471
472 minor_t
473 mac_minor(mac_handle_t mh)
474 {
475 return (((mac_impl_t *)mh)->mi_minor);
476 }
477
478 /*
479 * Return the VID associated with a MAC client. This function should
480 * be called for clients which are associated with only one VID.
481 */
482 uint16_t
483 mac_client_vid(mac_client_handle_t mch)
484 {
485 uint16_t vid = VLAN_ID_NONE;
486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
487 flow_desc_t flow_desc;
488
489 if (mcip->mci_nflents == 0)
490 return (vid);
491
492 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
493
494 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
495 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
496 vid = flow_desc.fd_vid;
497
498 return (vid);
499 }
500
501 /*
502 * Return whether the specified MAC client corresponds to a VLAN VNIC.
503 */
504 boolean_t
505 mac_client_is_vlan_vnic(mac_client_handle_t mch)
506 {
507 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
508
509 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
510 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
511 }
512
513 /*
514 * Return the link speed associated with the specified MAC client.
515 *
516 * The link speed of a MAC client is equal to the smallest value of
517 * 1) the current link speed of the underlying NIC, or
518 * 2) the bandwidth limit set for the MAC client.
519 *
520 * Note that the bandwidth limit can be higher than the speed
521 * of the underlying NIC. This is allowed to avoid spurious
522 * administration action failures or artifically lowering the
523 * bandwidth limit of a link that may have temporarily lowered
524 * its link speed due to hardware problem or administrator action.
525 */
526 static uint64_t
527 mac_client_ifspeed(mac_client_impl_t *mcip)
528 {
529 mac_impl_t *mip = mcip->mci_mip;
530 uint64_t nic_speed;
531
532 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
533
534 if (nic_speed == 0) {
535 return (0);
536 } else {
537 uint64_t policy_limit = (uint64_t)-1;
538
539 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
540 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
541
542 return (MIN(policy_limit, nic_speed));
543 }
544 }
545
546 /*
547 * Return the link state of the specified client. If here are more
548 * than one clients of the underying mac_impl_t, the link state
549 * will always be UP regardless of the link state of the underlying
550 * mac_impl_t. This is needed to allow the MAC clients to continue
551 * to communicate with each other even when the physical link of
552 * their mac_impl_t is down.
553 */
554 static uint64_t
555 mac_client_link_state(mac_client_impl_t *mcip)
556 {
557 mac_impl_t *mip = mcip->mci_mip;
558 uint16_t vid;
559 mac_client_impl_t *mci_list;
560 mac_unicast_impl_t *mui_list, *oth_mui_list;
561
562 /*
563 * Returns LINK_STATE_UP if there are other MAC clients defined on
564 * mac_impl_t which share same VLAN ID as that of mcip. Note that
565 * if 'mcip' has more than one VID's then we match ANY one of the
566 * VID's with other MAC client's VID's and return LINK_STATE_UP.
567 */
568 rw_enter(&mcip->mci_rw_lock, RW_READER);
569 for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
570 mui_list = mui_list->mui_next) {
571 vid = mui_list->mui_vid;
572 for (mci_list = mip->mi_clients_list; mci_list != NULL;
573 mci_list = mci_list->mci_client_next) {
574 if (mci_list == mcip)
575 continue;
576 for (oth_mui_list = mci_list->mci_unicast_list;
577 oth_mui_list != NULL; oth_mui_list = oth_mui_list->
578 mui_next) {
579 if (vid == oth_mui_list->mui_vid) {
580 rw_exit(&mcip->mci_rw_lock);
581 return (LINK_STATE_UP);
582 }
583 }
584 }
585 }
586 rw_exit(&mcip->mci_rw_lock);
587
588 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
589 }
590
591 /*
592 * These statistics are consumed by dladm show-link -s <vnic>,
593 * dladm show-vnic -s and netstat. With the introduction of dlstat,
594 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while
595 * netstat will consume from kstats introduced for dlstat. This code
596 * will be removed at that time.
597 */
598
599 /*
600 * Return the statistics of a MAC client. These statistics are different
601 * then the statistics of the underlying MAC which are returned by
602 * mac_stat_get().
603 *
604 * Note that for things based on the tx and rx stats, mac will end up clobbering
605 * those stats when the underlying set of rings in the srs changes. As such, we
606 * need to source not only the current set, but also the historical set when
607 * returning to the client, lest our counters appear to go backwards.
608 */
609 uint64_t
610 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
611 {
612 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
613 mac_impl_t *mip = mcip->mci_mip;
614 flow_entry_t *flent = mcip->mci_flent;
615 mac_soft_ring_set_t *mac_srs;
616 mac_rx_stats_t *mac_rx_stat, *old_rx_stat;
617 mac_tx_stats_t *mac_tx_stat, *old_tx_stat;
618 int i;
619 uint64_t val = 0;
620
621 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
622 mac_tx_stat = &mac_srs->srs_tx.st_stat;
623 old_rx_stat = &mcip->mci_misc_stat.mms_defunctrxlanestats;
624 old_tx_stat = &mcip->mci_misc_stat.mms_defuncttxlanestats;
625
626 switch (stat) {
627 case MAC_STAT_LINK_STATE:
628 val = mac_client_link_state(mcip);
629 break;
630 case MAC_STAT_LINK_UP:
631 val = (mac_client_link_state(mcip) == LINK_STATE_UP);
632 break;
633 case MAC_STAT_PROMISC:
634 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
635 break;
636 case MAC_STAT_LOWLINK_STATE:
637 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE);
638 break;
639 case MAC_STAT_IFSPEED:
640 val = mac_client_ifspeed(mcip);
641 break;
642 case MAC_STAT_MULTIRCV:
643 val = mcip->mci_misc_stat.mms_multircv;
644 break;
645 case MAC_STAT_BRDCSTRCV:
646 val = mcip->mci_misc_stat.mms_brdcstrcv;
647 break;
648 case MAC_STAT_MULTIXMT:
649 val = mcip->mci_misc_stat.mms_multixmt;
650 break;
651 case MAC_STAT_BRDCSTXMT:
652 val = mcip->mci_misc_stat.mms_brdcstxmt;
653 break;
654 case MAC_STAT_OBYTES:
655 val = mac_tx_stat->mts_obytes;
656 val += old_tx_stat->mts_obytes;
657 break;
658 case MAC_STAT_OPACKETS:
659 val = mac_tx_stat->mts_opackets;
660 val += old_tx_stat->mts_opackets;
661 break;
662 case MAC_STAT_OERRORS:
663 val = mac_tx_stat->mts_oerrors;
664 val += old_tx_stat->mts_oerrors;
665 break;
666 case MAC_STAT_IPACKETS:
667 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
668 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
669 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
670 val += mac_rx_stat->mrs_intrcnt +
671 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
672 }
673 val += old_rx_stat->mrs_intrcnt + old_rx_stat->mrs_pollcnt +
674 old_rx_stat->mrs_lclcnt;
675 break;
676 case MAC_STAT_RBYTES:
677 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
678 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
679 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
680 val += mac_rx_stat->mrs_intrbytes +
681 mac_rx_stat->mrs_pollbytes +
682 mac_rx_stat->mrs_lclbytes;
683 }
684 val += old_rx_stat->mrs_intrbytes + old_rx_stat->mrs_pollbytes +
685 old_rx_stat->mrs_lclbytes;
686 break;
687 case MAC_STAT_IERRORS:
688 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
689 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
690 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
691 val += mac_rx_stat->mrs_ierrors;
692 }
693 val += old_rx_stat->mrs_ierrors;
694 break;
695 default:
696 val = mac_driver_stat_default(mip, stat);
697 break;
698 }
699
700 return (val);
701 }
702
703 /*
704 * Return the statistics of the specified MAC instance.
705 */
706 uint64_t
707 mac_stat_get(mac_handle_t mh, uint_t stat)
708 {
709 mac_impl_t *mip = (mac_impl_t *)mh;
710 uint64_t val;
711 int ret;
712
713 /*
714 * The range of stat determines where it is maintained. Stat
715 * values from 0 up to (but not including) MAC_STAT_MIN are
716 * mainteined by the mac module itself. Everything else is
717 * maintained by the driver.
718 *
719 * If the mac_impl_t being queried corresponds to a VNIC,
720 * the stats need to be queried from the lower MAC client
721 * corresponding to the VNIC. (The mac_link_update()
722 * invoked by the driver to the lower MAC causes the *lower
723 * MAC* to update its mi_linkstate, and send a notification
724 * to its MAC clients. Due to the VNIC passthrough,
725 * these notifications are sent to the upper MAC clients
726 * of the VNIC directly, and the upper mac_impl_t of the VNIC
727 * does not have a valid mi_linkstate.
728 */
729 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
730 /* these stats are maintained by the mac module itself */
731 switch (stat) {
732 case MAC_STAT_LINK_STATE:
733 return (mip->mi_linkstate);
734 case MAC_STAT_LINK_UP:
735 return (mip->mi_linkstate == LINK_STATE_UP);
736 case MAC_STAT_PROMISC:
737 return (mip->mi_devpromisc != 0);
738 case MAC_STAT_LOWLINK_STATE:
739 return (mip->mi_lowlinkstate);
740 default:
741 ASSERT(B_FALSE);
742 }
743 }
744
745 /*
746 * Call the driver to get the given statistic.
747 */
748 ret = mip->mi_getstat(mip->mi_driver, stat, &val);
749 if (ret != 0) {
750 /*
751 * The driver doesn't support this statistic. Get the
752 * statistic's default value.
753 */
754 val = mac_driver_stat_default(mip, stat);
755 }
756 return (val);
757 }
758
759 /*
760 * Query hardware rx ring corresponding to the pseudo ring.
761 */
762 uint64_t
763 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
764 {
765 return (mac_rx_ring_stat_get(handle, stat));
766 }
767
768 /*
769 * Query hardware tx ring corresponding to the pseudo ring.
770 */
771 uint64_t
772 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
773 {
774 return (mac_tx_ring_stat_get(handle, stat));
775 }
776
777 /*
778 * Utility function which returns the VID associated with a flow entry.
779 */
780 uint16_t
781 i_mac_flow_vid(flow_entry_t *flent)
782 {
783 flow_desc_t flow_desc;
784
785 mac_flow_get_desc(flent, &flow_desc);
786
787 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
788 return (flow_desc.fd_vid);
789 return (VLAN_ID_NONE);
790 }
791
792 /*
793 * Verify the validity of the specified unicast MAC address. Returns B_TRUE
794 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
795 * length.
796 */
797 boolean_t
798 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
799 {
800 mac_impl_t *mip = (mac_impl_t *)mh;
801
802 /*
803 * Verify the address. No lock is needed since mi_type and plugin
804 * details don't change after mac_register().
805 */
806 if ((len != mip->mi_type->mt_addr_length) ||
807 (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
808 mip->mi_pdata)) != 0) {
809 return (B_FALSE);
810 } else {
811 return (B_TRUE);
812 }
813 }
814
815 void
816 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
817 {
818 mac_impl_t *mip = (mac_impl_t *)mh;
819
820 if (min_sdu != NULL)
821 *min_sdu = mip->mi_sdu_min;
822 if (max_sdu != NULL)
823 *max_sdu = mip->mi_sdu_max;
824 }
825
826 void
827 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu,
828 uint_t *multicast_sdu)
829 {
830 mac_impl_t *mip = (mac_impl_t *)mh;
831
832 if (min_sdu != NULL)
833 *min_sdu = mip->mi_sdu_min;
834 if (max_sdu != NULL)
835 *max_sdu = mip->mi_sdu_max;
836 if (multicast_sdu != NULL)
837 *multicast_sdu = mip->mi_sdu_multicast;
838 }
839
840 /*
841 * Update the MAC unicast address of the specified client's flows. Currently
842 * only one unicast MAC unicast address is allowed per client.
843 */
844 static void
845 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
846 {
847 mac_impl_t *mip = mcip->mci_mip;
848 flow_entry_t *flent = mcip->mci_flent;
849 mac_address_t *map = mcip->mci_unicast;
850 flow_desc_t flow_desc;
851
852 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
853 ASSERT(flent != NULL);
854
855 mac_flow_get_desc(flent, &flow_desc);
856 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
857
858 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
859 mac_flow_set_desc(flent, &flow_desc);
860
861 /*
862 * The v6 local and SLAAC addrs (used by mac protection) need to be
863 * regenerated because our mac address has changed.
864 */
865 mac_protect_update_mac_token(mcip);
866
867 /*
868 * When there are multiple VLANs sharing the same MAC address,
869 * each gets its own MAC client, except when running on sun4v
870 * vsw. In that case the mci_flent_list is used to place
871 * multiple VLAN flows on one MAC client. If we ever get rid
872 * of vsw then this code can go, but until then we need to
873 * update all flow entries.
874 */
875 for (flent = mcip->mci_flent_list; flent != NULL;
876 flent = flent->fe_client_next) {
877 mac_flow_get_desc(flent, &flow_desc);
878 if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
879 flent->fe_type & FLOW_VNIC_MAC))
880 continue;
881
882 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
883 mac_flow_set_desc(flent, &flow_desc);
884 }
885 }
886
887 /*
888 * Update all clients that share the same unicast address.
889 */
890 void
891 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
892 {
893 mac_client_impl_t *mcip;
894
895 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
896
897 /*
898 * Find all clients that share the same unicast MAC address and update
899 * them appropriately.
900 */
901 for (mcip = mip->mi_clients_list; mcip != NULL;
902 mcip = mcip->mci_client_next) {
903 /*
904 * Ignore clients that don't share this MAC address.
905 */
906 if (map != mcip->mci_unicast)
907 continue;
908
909 /*
910 * Update those clients with same old unicast MAC address.
911 */
912 mac_unicast_update_client_flow(mcip);
913 }
914 }
915
916 /*
917 * Update the unicast MAC address of the specified VNIC MAC client.
918 *
919 * Check whether the operation is valid. Any of following cases should fail:
920 *
921 * 1. It's a VLAN type of VNIC.
922 * 2. The new value is current "primary" MAC address.
923 * 3. The current MAC address is shared with other clients.
924 * 4. The new MAC address has been used. This case will be valid when
925 * client migration is fully supported.
926 */
927 int
928 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
929 {
930 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
931 mac_impl_t *mip = mcip->mci_mip;
932 mac_address_t *map = mcip->mci_unicast;
933 int err;
934
935 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
936 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
937 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
938
939 i_mac_perim_enter(mip);
940
941 /*
942 * If this is a VLAN type of VNIC, it's using "primary" MAC address
943 * of the underlying interface. Must fail here. Refer to case 1 above.
944 */
945 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
946 i_mac_perim_exit(mip);
947 return (ENOTSUP);
948 }
949
950 /*
951 * If the new address is the "primary" one, must fail. Refer to
952 * case 2 above.
953 */
954 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
955 i_mac_perim_exit(mip);
956 return (EACCES);
957 }
958
959 /*
960 * If the address is shared by multiple clients, must fail. Refer
961 * to case 3 above.
962 */
963 if (mac_check_macaddr_shared(map)) {
964 i_mac_perim_exit(mip);
965 return (EBUSY);
966 }
967
968 /*
969 * If the new address has been used, must fail for now. Refer to
970 * case 4 above.
971 */
972 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
973 i_mac_perim_exit(mip);
974 return (ENOTSUP);
975 }
976
977 /*
978 * Update the MAC address.
979 */
980 err = mac_update_macaddr(map, (uint8_t *)addr);
981
982 if (err != 0) {
983 i_mac_perim_exit(mip);
984 return (err);
985 }
986
987 /*
988 * Update all flows of this MAC client.
989 */
990 mac_unicast_update_client_flow(mcip);
991
992 i_mac_perim_exit(mip);
993 return (0);
994 }
995
996 /*
997 * Program the new primary unicast address of the specified MAC.
998 *
999 * Function mac_update_macaddr() takes care different types of underlying
1000 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
1001 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
1002 * which will take care of updating the MAC address of the corresponding
1003 * MAC client.
1004 *
1005 * This is the only interface that allow the client to update the "primary"
1006 * MAC address of the underlying MAC. The new value must have not been
1007 * used by other clients.
1008 */
1009 int
1010 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
1011 {
1012 mac_impl_t *mip = (mac_impl_t *)mh;
1013 mac_address_t *map;
1014 int err;
1015
1016 /* verify the address validity */
1017 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
1018 return (EINVAL);
1019
1020 i_mac_perim_enter(mip);
1021
1022 /*
1023 * If the new value is the same as the current primary address value,
1024 * there's nothing to do.
1025 */
1026 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
1027 i_mac_perim_exit(mip);
1028 return (0);
1029 }
1030
1031 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
1032 i_mac_perim_exit(mip);
1033 return (EBUSY);
1034 }
1035
1036 map = mac_find_macaddr(mip, mip->mi_addr);
1037 ASSERT(map != NULL);
1038
1039 /*
1040 * Update the MAC address.
1041 */
1042 if (mip->mi_state_flags & MIS_IS_AGGR) {
1043 mac_capab_aggr_t aggr_cap;
1044
1045 /*
1046 * If the MAC is an aggregation, other than the unicast
1047 * addresses programming, aggr must be informed about this
1048 * primary unicst address change to change its MAC address
1049 * policy to be user-specified.
1050 */
1051 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
1052 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
1053 err = aggr_cap.mca_unicst(mip->mi_driver, addr);
1054 if (err == 0)
1055 bcopy(addr, map->ma_addr, map->ma_len);
1056 } else {
1057 err = mac_update_macaddr(map, (uint8_t *)addr);
1058 }
1059
1060 if (err != 0) {
1061 i_mac_perim_exit(mip);
1062 return (err);
1063 }
1064
1065 mac_unicast_update_clients(mip, map);
1066
1067 /*
1068 * Save the new primary MAC address in mac_impl_t.
1069 */
1070 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
1071
1072 i_mac_perim_exit(mip);
1073
1074 if (err == 0)
1075 i_mac_notify(mip, MAC_NOTE_UNICST);
1076
1077 return (err);
1078 }
1079
1080 /*
1081 * Return the current primary MAC address of the specified MAC.
1082 */
1083 void
1084 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
1085 {
1086 mac_impl_t *mip = (mac_impl_t *)mh;
1087
1088 rw_enter(&mip->mi_rw_lock, RW_READER);
1089 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
1090 rw_exit(&mip->mi_rw_lock);
1091 }
1092
1093 /*
1094 * Return the secondary MAC address for the specified handle
1095 */
1096 void
1097 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr)
1098 {
1099 mac_client_impl_t *mcip = (mac_client_impl_t *)mh;
1100
1101 ASSERT(mcip->mci_unicast != NULL);
1102 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len);
1103 }
1104
1105 /*
1106 * Return information about the use of the primary MAC address of the
1107 * specified MAC instance:
1108 *
1109 * - if client_name is non-NULL, it must point to a string of at
1110 * least MAXNAMELEN bytes, and will be set to the name of the MAC
1111 * client which uses the primary MAC address.
1112 *
1113 * - if in_use is non-NULL, used to return whether the primary MAC
1114 * address is currently in use.
1115 */
1116 void
1117 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
1118 {
1119 mac_impl_t *mip = (mac_impl_t *)mh;
1120 mac_client_impl_t *cur_client;
1121
1122 if (in_use != NULL)
1123 *in_use = B_FALSE;
1124 if (client_name != NULL)
1125 bzero(client_name, MAXNAMELEN);
1126
1127 /*
1128 * The mi_rw_lock is used to protect threads that don't hold the
1129 * mac perimeter to get a consistent view of the mi_clients_list.
1130 * Threads that modify the list must hold both the mac perimeter and
1131 * mi_rw_lock(RW_WRITER)
1132 */
1133 rw_enter(&mip->mi_rw_lock, RW_READER);
1134 for (cur_client = mip->mi_clients_list; cur_client != NULL;
1135 cur_client = cur_client->mci_client_next) {
1136 if (mac_is_primary_client(cur_client) ||
1137 (mip->mi_state_flags & MIS_IS_VNIC)) {
1138 rw_exit(&mip->mi_rw_lock);
1139 if (in_use != NULL)
1140 *in_use = B_TRUE;
1141 if (client_name != NULL) {
1142 bcopy(cur_client->mci_name, client_name,
1143 MAXNAMELEN);
1144 }
1145 return;
1146 }
1147 }
1148 rw_exit(&mip->mi_rw_lock);
1149 }
1150
1151 /*
1152 * Return the current destination MAC address of the specified MAC.
1153 */
1154 boolean_t
1155 mac_dst_get(mac_handle_t mh, uint8_t *addr)
1156 {
1157 mac_impl_t *mip = (mac_impl_t *)mh;
1158
1159 rw_enter(&mip->mi_rw_lock, RW_READER);
1160 if (mip->mi_dstaddr_set)
1161 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length);
1162 rw_exit(&mip->mi_rw_lock);
1163 return (mip->mi_dstaddr_set);
1164 }
1165
1166 /*
1167 * Add the specified MAC client to the list of clients which opened
1168 * the specified MAC.
1169 */
1170 static void
1171 mac_client_add(mac_client_impl_t *mcip)
1172 {
1173 mac_impl_t *mip = mcip->mci_mip;
1174
1175 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1176
1177 /* add VNIC to the front of the list */
1178 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1179 mcip->mci_client_next = mip->mi_clients_list;
1180 mip->mi_clients_list = mcip;
1181 mip->mi_nclients++;
1182 rw_exit(&mip->mi_rw_lock);
1183 }
1184
1185 /*
1186 * Remove the specified MAC client from the list of clients which opened
1187 * the specified MAC.
1188 */
1189 static void
1190 mac_client_remove(mac_client_impl_t *mcip)
1191 {
1192 mac_impl_t *mip = mcip->mci_mip;
1193 mac_client_impl_t **prev, *cclient;
1194
1195 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1196
1197 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1198 prev = &mip->mi_clients_list;
1199 cclient = *prev;
1200 while (cclient != NULL && cclient != mcip) {
1201 prev = &cclient->mci_client_next;
1202 cclient = *prev;
1203 }
1204 ASSERT(cclient != NULL);
1205 *prev = cclient->mci_client_next;
1206 mip->mi_nclients--;
1207 rw_exit(&mip->mi_rw_lock);
1208 }
1209
1210 static mac_unicast_impl_t *
1211 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1212 {
1213 mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1214
1215 while ((muip != NULL) && (muip->mui_vid != vid))
1216 muip = muip->mui_next;
1217
1218 return (muip);
1219 }
1220
1221 /*
1222 * Return whether the specified (MAC address, VID) tuple is already used by
1223 * one of the MAC clients associated with the specified MAC.
1224 */
1225 static boolean_t
1226 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1227 {
1228 mac_client_impl_t *client;
1229 mac_address_t *map;
1230
1231 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1232
1233 for (client = mip->mi_clients_list; client != NULL;
1234 client = client->mci_client_next) {
1235
1236 /*
1237 * Ignore clients that don't have unicast address.
1238 */
1239 if (client->mci_unicast_list == NULL)
1240 continue;
1241
1242 map = client->mci_unicast;
1243
1244 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1245 (mac_client_find_vid(client, vid) != NULL)) {
1246 return (B_TRUE);
1247 }
1248 }
1249
1250 return (B_FALSE);
1251 }
1252
1253 /*
1254 * Generate a random MAC address. The MAC address prefix is
1255 * stored in the array pointed to by mac_addr, and its length, in bytes,
1256 * is specified by prefix_len. The least significant bits
1257 * after prefix_len bytes are generated, and stored after the prefix
1258 * in the mac_addr array.
1259 */
1260 int
1261 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1262 uint8_t *mac_addr, mac_diag_t *diag)
1263 {
1264 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1265 mac_impl_t *mip = mcip->mci_mip;
1266 size_t addr_len = mip->mi_type->mt_addr_length;
1267
1268 if (prefix_len >= addr_len) {
1269 *diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1270 return (EINVAL);
1271 }
1272
1273 /* check the prefix value */
1274 if (prefix_len > 0) {
1275 bzero(mac_addr + prefix_len, addr_len - prefix_len);
1276 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1277 addr_len)) {
1278 *diag = MAC_DIAG_MACPREFIX_INVALID;
1279 return (EINVAL);
1280 }
1281 }
1282
1283 /* generate the MAC address */
1284 if (prefix_len < addr_len) {
1285 (void) random_get_pseudo_bytes(mac_addr +
1286 prefix_len, addr_len - prefix_len);
1287 }
1288
1289 *diag = 0;
1290 return (0);
1291 }
1292
1293 /*
1294 * Set the priority range for this MAC client. This will be used to
1295 * determine the absolute priority for the threads created for this
1296 * MAC client using the specified "low", "medium" and "high" level.
1297 * This will also be used for any subflows on this MAC client.
1298 */
1299 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \
1300 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \
1301 MAXCLSYSPRI, (pri)); \
1302 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \
1303 MAXCLSYSPRI, (mcip)->mci_min_pri); \
1304 }
1305
1306 /*
1307 * MAC client open entry point. Return a new MAC client handle. Each
1308 * MAC client is associated with a name, specified through the 'name'
1309 * argument.
1310 */
1311 int
1312 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1313 uint16_t flags)
1314 {
1315 mac_impl_t *mip = (mac_impl_t *)mh;
1316 mac_client_impl_t *mcip;
1317 int err = 0;
1318 boolean_t share_desired;
1319 flow_entry_t *flent = NULL;
1320
1321 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0;
1322 *mchp = NULL;
1323
1324 i_mac_perim_enter(mip);
1325
1326 if (mip->mi_state_flags & MIS_IS_VNIC) {
1327 /*
1328 * The underlying MAC is a VNIC. Return the MAC client
1329 * handle of the lower MAC which was obtained by
1330 * the VNIC driver when it did its mac_client_open().
1331 */
1332
1333 mcip = mac_vnic_lower(mip);
1334
1335 /*
1336 * Note that multiple mac clients share the same mcip in
1337 * this case.
1338 */
1339 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1340 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1341
1342 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1343 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1344
1345 mip->mi_clients_list = mcip;
1346 i_mac_perim_exit(mip);
1347 *mchp = (mac_client_handle_t)mcip;
1348
1349 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *,
1350 mcip->mci_mip, mac_client_impl_t *, mcip);
1351
1352 return (err);
1353 }
1354
1355 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1356
1357 mcip->mci_mip = mip;
1358 mcip->mci_upper_mip = NULL;
1359 mcip->mci_rx_fn = mac_pkt_drop;
1360 mcip->mci_rx_arg = NULL;
1361 mcip->mci_rx_p_fn = NULL;
1362 mcip->mci_rx_p_arg = NULL;
1363 mcip->mci_p_unicast_list = NULL;
1364 mcip->mci_direct_rx_fn = NULL;
1365 mcip->mci_direct_rx_arg = NULL;
1366 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
1367
1368 mcip->mci_unicast_list = NULL;
1369
1370 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1371 mcip->mci_state_flags |= MCIS_IS_VNIC;
1372
1373 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1374 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1375
1376 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1377 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1378
1379 if (mip->mi_state_flags & MIS_IS_AGGR)
1380 mcip->mci_state_flags |= MCIS_IS_AGGR_CLIENT;
1381
1382 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1383 datalink_id_t linkid;
1384
1385 ASSERT(name == NULL);
1386 if ((err = dls_devnet_macname2linkid(mip->mi_name,
1387 &linkid)) != 0) {
1388 goto done;
1389 }
1390 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1391 NULL, NULL)) != 0) {
1392 /*
1393 * Use mac name if dlmgmtd is not available.
1394 */
1395 if (err == EBADF) {
1396 (void) strlcpy(mcip->mci_name, mip->mi_name,
1397 sizeof (mcip->mci_name));
1398 err = 0;
1399 } else {
1400 goto done;
1401 }
1402 }
1403 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1404 } else {
1405 ASSERT(name != NULL);
1406 if (strlen(name) > MAXNAMELEN) {
1407 err = EINVAL;
1408 goto done;
1409 }
1410 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1411 }
1412
1413 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1414 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1415
1416 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR)
1417 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR;
1418
1419 mac_protect_init(mcip);
1420
1421 /* the subflow table will be created dynamically */
1422 mcip->mci_subflow_tab = NULL;
1423
1424 mcip->mci_misc_stat.mms_multircv = 0;
1425 mcip->mci_misc_stat.mms_brdcstrcv = 0;
1426 mcip->mci_misc_stat.mms_multixmt = 0;
1427 mcip->mci_misc_stat.mms_brdcstxmt = 0;
1428
1429 /* Create an initial flow */
1430
1431 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1432 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1433 FLOW_PRIMARY_MAC, &flent);
1434 if (err != 0)
1435 goto done;
1436 mcip->mci_flent = flent;
1437 FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1438 flent->fe_mcip = mcip;
1439 /*
1440 * Place initial creation reference on the flow. This reference
1441 * is released in the corresponding delete action viz.
1442 * mac_unicast_remove after waiting for all transient refs to
1443 * to go away. The wait happens in mac_flow_wait.
1444 */
1445 FLOW_REFHOLD(flent);
1446
1447 /*
1448 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1449 * will have the right value for mac_rx_srs_setup().
1450 */
1451 mac_client_add(mcip);
1452
1453 mcip->mci_share = 0;
1454 if (share_desired)
1455 i_mac_share_alloc(mcip);
1456
1457 /*
1458 * We will do mimimal datapath setup to allow a MAC client to
1459 * transmit or receive non-unicast packets without waiting
1460 * for mac_unicast_add.
1461 */
1462 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1463 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE,
1464 NULL, NULL, B_TRUE, NULL)) != 0) {
1465 goto done;
1466 }
1467 }
1468
1469 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1470 mcip->mci_mip, mac_client_impl_t *, mcip);
1471
1472 *mchp = (mac_client_handle_t)mcip;
1473 i_mac_perim_exit(mip);
1474 return (0);
1475
1476 done:
1477 i_mac_perim_exit(mip);
1478 mcip->mci_state_flags = 0;
1479 mcip->mci_tx_flag = 0;
1480 kmem_cache_free(mac_client_impl_cache, mcip);
1481 return (err);
1482 }
1483
1484 /*
1485 * Close the specified MAC client handle.
1486 */
1487 void
1488 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1489 {
1490 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1491 mac_impl_t *mip = mcip->mci_mip;
1492 flow_entry_t *flent;
1493
1494 i_mac_perim_enter(mip);
1495
1496 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1497 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1498
1499 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1500 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1501 /*
1502 * This is an upper VNIC client initiated operation.
1503 * The lower MAC client will be closed by the VNIC driver
1504 * when the VNIC is deleted.
1505 */
1506
1507 i_mac_perim_exit(mip);
1508 return;
1509 }
1510
1511 /* If we have only setup up minimal datapth setup, tear it down */
1512 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1513 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL,
1514 mcip->mci_flent);
1515 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR;
1516 }
1517
1518 /*
1519 * Remove the flent associated with the MAC client
1520 */
1521 flent = mcip->mci_flent;
1522 mcip->mci_flent = NULL;
1523 FLOW_FINAL_REFRELE(flent);
1524
1525 /*
1526 * MAC clients must remove the unicast addresses and promisc callbacks
1527 * they added before issuing a mac_client_close().
1528 */
1529 ASSERT(mcip->mci_unicast_list == NULL);
1530 ASSERT(mcip->mci_promisc_list == NULL);
1531 ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1532
1533 i_mac_share_free(mcip);
1534 mac_protect_fini(mcip);
1535 mac_client_remove(mcip);
1536
1537 i_mac_perim_exit(mip);
1538 mcip->mci_subflow_tab = NULL;
1539 mcip->mci_state_flags = 0;
1540 mcip->mci_tx_flag = 0;
1541 kmem_cache_free(mac_client_impl_cache, mch);
1542 }
1543
1544 /*
1545 * Set the Rx bypass receive callback and return B_TRUE. Return
1546 * B_FALSE if it's not possible to enable bypass.
1547 */
1548 boolean_t
1549 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1550 {
1551 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1552 mac_impl_t *mip = mcip->mci_mip;
1553
1554 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1555
1556 /*
1557 * If the client has more than one VLAN then process packets
1558 * through DLS. This should happen only when sun4v vsw is on
1559 * the scene.
1560 */
1561 if (mcip->mci_nvids > 1)
1562 return (B_FALSE);
1563
1564 /*
1565 * These are not accessed directly in the data path, and hence
1566 * don't need any protection
1567 */
1568 mcip->mci_direct_rx_fn = rx_fn;
1569 mcip->mci_direct_rx_arg = arg1;
1570 return (B_TRUE);
1571 }
1572
1573 /*
1574 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled.
1575 */
1576 void
1577 mac_rx_bypass_enable(mac_client_handle_t mch)
1578 {
1579 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE;
1580 }
1581
1582 void
1583 mac_rx_bypass_disable(mac_client_handle_t mch)
1584 {
1585 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE;
1586 }
1587
1588 /*
1589 * Set the receive callback for the specified MAC client. There can be
1590 * at most one such callback per MAC client.
1591 */
1592 void
1593 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1594 {
1595 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1596 mac_impl_t *mip = mcip->mci_mip;
1597 mac_impl_t *umip = mcip->mci_upper_mip;
1598
1599 /*
1600 * Instead of adding an extra set of locks and refcnts in
1601 * the datapath at the mac client boundary, we temporarily quiesce
1602 * the SRS and related entities. We then change the receive function
1603 * without interference from any receive data thread and then reenable
1604 * the data flow subsequently.
1605 */
1606 i_mac_perim_enter(mip);
1607 mac_rx_client_quiesce(mch);
1608
1609 mcip->mci_rx_fn = rx_fn;
1610 mcip->mci_rx_arg = arg;
1611 mac_rx_client_restart(mch);
1612 i_mac_perim_exit(mip);
1613
1614 /*
1615 * If we're changing the Rx function on the primary MAC of a VNIC,
1616 * make sure any secondary addresses on the VNIC are updated as well.
1617 */
1618 if (umip != NULL) {
1619 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
1620 mac_vnic_secondary_update(umip);
1621 }
1622 }
1623
1624 /*
1625 * Reset the receive callback for the specified MAC client.
1626 */
1627 void
1628 mac_rx_clear(mac_client_handle_t mch)
1629 {
1630 mac_rx_set(mch, mac_pkt_drop, NULL);
1631 }
1632
1633 void
1634 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch)
1635 {
1636 mac_client_impl_t *smcip = (mac_client_impl_t *)smch;
1637 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch;
1638 flow_entry_t *flent = dmcip->mci_flent;
1639
1640 /* This should only be called to setup secondary macs */
1641 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1642
1643 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg);
1644 dmcip->mci_promisc_list = smcip->mci_promisc_list;
1645
1646 /*
1647 * Duplicate the primary mac resources to the secondary.
1648 * Since we already validated the resource controls when setting
1649 * them on the primary, we can ignore errors here.
1650 */
1651 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip));
1652 }
1653
1654 /*
1655 * Called when removing a secondary MAC. Currently only clears the promisc_list
1656 * since we share the primary mac's promisc_list.
1657 */
1658 void
1659 mac_secondary_cleanup(mac_client_handle_t mch)
1660 {
1661 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1662 flow_entry_t *flent = mcip->mci_flent;
1663
1664 /* This should only be called for secondary macs */
1665 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1666 mcip->mci_promisc_list = NULL;
1667 }
1668
1669 /*
1670 * Walk the MAC client subflow table and updates their priority values.
1671 */
1672 static int
1673 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1674 {
1675 mac_flow_update_priority(arg, flent);
1676 return (0);
1677 }
1678
1679 void
1680 mac_update_subflow_priority(mac_client_impl_t *mcip)
1681 {
1682 (void) mac_flow_walk(mcip->mci_subflow_tab,
1683 mac_update_subflow_priority_cb, mcip);
1684 }
1685
1686 /*
1687 * Modify the TX or RX ring properties. We could either just move around
1688 * rings, i.e add/remove rings given to a client. Or this might cause the
1689 * client to move from hardware based to software or the other way around.
1690 * If we want to reset this property, then we clear the mask, additionally
1691 * if the client was given a non-default group we remove all rings except
1692 * for 1 and give it back to the default group.
1693 */
1694 int
1695 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp,
1696 mac_resource_props_t *tmrp)
1697 {
1698 mac_impl_t *mip = mcip->mci_mip;
1699 flow_entry_t *flent = mcip->mci_flent;
1700 uint8_t *mac_addr;
1701 int err = 0;
1702 mac_group_t *defgrp;
1703 mac_group_t *group;
1704 mac_group_t *ngrp;
1705 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip);
1706 uint_t ringcnt;
1707 boolean_t unspec;
1708
1709 if (mcip->mci_share != 0)
1710 return (EINVAL);
1711
1712 if (mrp->mrp_mask & MRP_RX_RINGS) {
1713 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
1714 group = flent->fe_rx_ring_group;
1715 defgrp = MAC_DEFAULT_RX_GROUP(mip);
1716 mac_addr = flent->fe_flow_desc.fd_dst_mac;
1717
1718 /*
1719 * No resulting change. If we are resetting on a client on
1720 * which there was no rx rings property. For dynamic group
1721 * if we are setting the same number of rings already set.
1722 * For static group if we are requesting a group again.
1723 */
1724 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1725 if (!(tmrp->mrp_mask & MRP_RX_RINGS))
1726 return (0);
1727 } else {
1728 if (unspec) {
1729 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
1730 return (0);
1731 } else if (mip->mi_rx_group_type ==
1732 MAC_GROUP_TYPE_DYNAMIC) {
1733 if ((tmrp->mrp_mask & MRP_RX_RINGS) &&
1734 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) &&
1735 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) {
1736 return (0);
1737 }
1738 }
1739 }
1740 /* Resetting the prop */
1741 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1742 /*
1743 * We will just keep one ring and give others back if
1744 * we are not the primary. For the primary we give
1745 * all the rings in the default group except the
1746 * default ring. If it is a static group, then
1747 * we don't do anything, but clear the MRP_RX_RINGS
1748 * flag.
1749 */
1750 if (group != defgrp) {
1751 if (mip->mi_rx_group_type ==
1752 MAC_GROUP_TYPE_DYNAMIC) {
1753 /*
1754 * This group has reserved rings
1755 * that need to be released now,
1756 * so does the group.
1757 */
1758 MAC_RX_RING_RELEASED(mip,
1759 group->mrg_cur_count);
1760 MAC_RX_GRP_RELEASED(mip);
1761 if ((flent->fe_type &
1762 FLOW_PRIMARY_MAC) != 0) {
1763 if (mip->mi_nactiveclients ==
1764 1) {
1765 (void)
1766 mac_rx_switch_group(
1767 mcip, group,
1768 defgrp);
1769 return (0);
1770 } else {
1771 cmrp->mrp_nrxrings =
1772 group->
1773 mrg_cur_count +
1774 defgrp->
1775 mrg_cur_count - 1;
1776 }
1777 } else {
1778 cmrp->mrp_nrxrings = 1;
1779 }
1780 (void) mac_group_ring_modify(mcip,
1781 group, defgrp);
1782 } else {
1783 /*
1784 * If this is a static group, we
1785 * need to release the group. The
1786 * client will remain in the same
1787 * group till some other client
1788 * needs this group.
1789 */
1790 MAC_RX_GRP_RELEASED(mip);
1791 }
1792 /* Let check if we can give this an excl group */
1793 } else if (group == defgrp) {
1794 /*
1795 * If multiple clients share an
1796 * address then they must stay on the
1797 * default group.
1798 */
1799 if (mac_check_macaddr_shared(mcip->mci_unicast))
1800 return (0);
1801
1802 ngrp = mac_reserve_rx_group(mcip, mac_addr,
1803 B_TRUE);
1804 /* Couldn't give it a group, that's fine */
1805 if (ngrp == NULL)
1806 return (0);
1807 /* Switch to H/W */
1808 if (mac_rx_switch_group(mcip, defgrp, ngrp) !=
1809 0) {
1810 mac_stop_group(ngrp);
1811 return (0);
1812 }
1813 }
1814 /*
1815 * If the client is in the default group, we will
1816 * just clear the MRP_RX_RINGS and leave it as
1817 * it rather than look for an exclusive group
1818 * for it.
1819 */
1820 return (0);
1821 }
1822
1823 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) {
1824 /*
1825 * We are requesting Rx rings. Try to reserve
1826 * a non-default group.
1827 *
1828 * If multiple clients share an address then
1829 * they must stay on the default group.
1830 */
1831 if (mac_check_macaddr_shared(mcip->mci_unicast))
1832 return (EINVAL);
1833
1834 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
1835 if (ngrp == NULL)
1836 return (ENOSPC);
1837
1838 /* Switch to H/W */
1839 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
1840 mac_release_rx_group(mcip, ngrp);
1841 return (ENOSPC);
1842 }
1843 MAC_RX_GRP_RESERVED(mip);
1844 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1845 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1846 } else if (group != defgrp && !unspec &&
1847 mrp->mrp_nrxrings == 0) {
1848 /* Switch to S/W */
1849 ringcnt = group->mrg_cur_count;
1850 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
1851 return (ENOSPC);
1852 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1853 MAC_RX_GRP_RELEASED(mip);
1854 if (mip->mi_rx_group_type ==
1855 MAC_GROUP_TYPE_DYNAMIC) {
1856 MAC_RX_RING_RELEASED(mip, ringcnt);
1857 }
1858 }
1859 } else if (group != defgrp && mip->mi_rx_group_type ==
1860 MAC_GROUP_TYPE_DYNAMIC) {
1861 ringcnt = group->mrg_cur_count;
1862 err = mac_group_ring_modify(mcip, group, defgrp);
1863 if (err != 0)
1864 return (err);
1865 /*
1866 * Update the accounting. If this group
1867 * already had explicitly reserved rings,
1868 * we need to update the rings based on
1869 * the new ring count. If this group
1870 * had not explicitly reserved rings,
1871 * then we just reserve the rings asked for
1872 * and reserve the group.
1873 */
1874 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1875 if (ringcnt > group->mrg_cur_count) {
1876 MAC_RX_RING_RELEASED(mip,
1877 ringcnt - group->mrg_cur_count);
1878 } else {
1879 MAC_RX_RING_RESERVED(mip,
1880 group->mrg_cur_count - ringcnt);
1881 }
1882 } else {
1883 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count);
1884 MAC_RX_GRP_RESERVED(mip);
1885 }
1886 }
1887 }
1888 if (mrp->mrp_mask & MRP_TX_RINGS) {
1889 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
1890 group = flent->fe_tx_ring_group;
1891 defgrp = MAC_DEFAULT_TX_GROUP(mip);
1892
1893 /*
1894 * For static groups we only allow rings=0 or resetting the
1895 * rings property.
1896 */
1897 if (mrp->mrp_ntxrings > 0 &&
1898 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
1899 return (ENOTSUP);
1900 }
1901 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1902 if (!(tmrp->mrp_mask & MRP_TX_RINGS))
1903 return (0);
1904 } else {
1905 if (unspec) {
1906 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
1907 return (0);
1908 } else if (mip->mi_tx_group_type ==
1909 MAC_GROUP_TYPE_DYNAMIC) {
1910 if ((tmrp->mrp_mask & MRP_TX_RINGS) &&
1911 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) &&
1912 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) {
1913 return (0);
1914 }
1915 }
1916 }
1917 /* Resetting the prop */
1918 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1919 if (group != defgrp) {
1920 if (mip->mi_tx_group_type ==
1921 MAC_GROUP_TYPE_DYNAMIC) {
1922 ringcnt = group->mrg_cur_count;
1923 if ((flent->fe_type &
1924 FLOW_PRIMARY_MAC) != 0) {
1925 mac_tx_client_quiesce(
1926 (mac_client_handle_t)
1927 mcip);
1928 mac_tx_switch_group(mcip,
1929 group, defgrp);
1930 mac_tx_client_restart(
1931 (mac_client_handle_t)
1932 mcip);
1933 MAC_TX_GRP_RELEASED(mip);
1934 MAC_TX_RING_RELEASED(mip,
1935 ringcnt);
1936 return (0);
1937 }
1938 cmrp->mrp_ntxrings = 1;
1939 (void) mac_group_ring_modify(mcip,
1940 group, defgrp);
1941 /*
1942 * This group has reserved rings
1943 * that need to be released now.
1944 */
1945 MAC_TX_RING_RELEASED(mip, ringcnt);
1946 }
1947 /*
1948 * If this is a static group, we
1949 * need to release the group. The
1950 * client will remain in the same
1951 * group till some other client
1952 * needs this group.
1953 */
1954 MAC_TX_GRP_RELEASED(mip);
1955 } else if (group == defgrp &&
1956 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) {
1957 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1958 if (ngrp == NULL)
1959 return (0);
1960 mac_tx_client_quiesce(
1961 (mac_client_handle_t)mcip);
1962 mac_tx_switch_group(mcip, defgrp, ngrp);
1963 mac_tx_client_restart(
1964 (mac_client_handle_t)mcip);
1965 }
1966 /*
1967 * If the client is in the default group, we will
1968 * just clear the MRP_TX_RINGS and leave it as
1969 * it rather than look for an exclusive group
1970 * for it.
1971 */
1972 return (0);
1973 }
1974
1975 /* Switch to H/W */
1976 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) {
1977 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1978 if (ngrp == NULL)
1979 return (ENOSPC);
1980 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1981 mac_tx_switch_group(mcip, defgrp, ngrp);
1982 mac_tx_client_restart((mac_client_handle_t)mcip);
1983 MAC_TX_GRP_RESERVED(mip);
1984 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1985 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1986 /* Switch to S/W */
1987 } else if (group != defgrp && !unspec &&
1988 mrp->mrp_ntxrings == 0) {
1989 /* Switch to S/W */
1990 ringcnt = group->mrg_cur_count;
1991 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1992 mac_tx_switch_group(mcip, group, defgrp);
1993 mac_tx_client_restart((mac_client_handle_t)mcip);
1994 if (tmrp->mrp_mask & MRP_TX_RINGS) {
1995 MAC_TX_GRP_RELEASED(mip);
1996 if (mip->mi_tx_group_type ==
1997 MAC_GROUP_TYPE_DYNAMIC) {
1998 MAC_TX_RING_RELEASED(mip, ringcnt);
1999 }
2000 }
2001 } else if (group != defgrp && mip->mi_tx_group_type ==
2002 MAC_GROUP_TYPE_DYNAMIC) {
2003 ringcnt = group->mrg_cur_count;
2004 err = mac_group_ring_modify(mcip, group, defgrp);
2005 if (err != 0)
2006 return (err);
2007 /*
2008 * Update the accounting. If this group
2009 * already had explicitly reserved rings,
2010 * we need to update the rings based on
2011 * the new ring count. If this group
2012 * had not explicitly reserved rings,
2013 * then we just reserve the rings asked for
2014 * and reserve the group.
2015 */
2016 if (tmrp->mrp_mask & MRP_TX_RINGS) {
2017 if (ringcnt > group->mrg_cur_count) {
2018 MAC_TX_RING_RELEASED(mip,
2019 ringcnt - group->mrg_cur_count);
2020 } else {
2021 MAC_TX_RING_RESERVED(mip,
2022 group->mrg_cur_count - ringcnt);
2023 }
2024 } else {
2025 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count);
2026 MAC_TX_GRP_RESERVED(mip);
2027 }
2028 }
2029 }
2030 return (0);
2031 }
2032
2033 /*
2034 * When the MAC client is being brought up (i.e. we do a unicast_add) we need
2035 * to initialize the cpu and resource control structure in the
2036 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
2037 * properties before the flow entry for the unicast address was created).
2038 */
2039 static int
2040 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2041 {
2042 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2043 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2044 mac_impl_t *umip = mcip->mci_upper_mip;
2045 int err = 0;
2046 flow_entry_t *flent = mcip->mci_flent;
2047 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip);
2048
2049 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2050
2051 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
2052 mcip->mci_upper_mip : mip, mrp);
2053 if (err != 0)
2054 return (err);
2055
2056 /*
2057 * Copy over the existing properties since mac_update_resources
2058 * will modify the client's mrp. Currently, the saved property
2059 * is used to determine the difference between existing and
2060 * modified rings property.
2061 */
2062 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
2063 bcopy(nmrp, omrp, sizeof (*omrp));
2064 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2065 if (MCIP_DATAPATH_SETUP(mcip)) {
2066 /*
2067 * We support rings only for primary client when there are
2068 * multiple clients sharing the same MAC address (e.g. VLAN).
2069 */
2070 if (mrp->mrp_mask & MRP_RX_RINGS ||
2071 mrp->mrp_mask & MRP_TX_RINGS) {
2072
2073 if ((err = mac_client_set_rings_prop(mcip, mrp,
2074 omrp)) != 0) {
2075 if (omrp->mrp_mask & MRP_RX_RINGS) {
2076 nmrp->mrp_mask |= MRP_RX_RINGS;
2077 nmrp->mrp_nrxrings = omrp->mrp_nrxrings;
2078 } else {
2079 nmrp->mrp_mask &= ~MRP_RX_RINGS;
2080 nmrp->mrp_nrxrings = 0;
2081 }
2082 if (omrp->mrp_mask & MRP_TX_RINGS) {
2083 nmrp->mrp_mask |= MRP_TX_RINGS;
2084 nmrp->mrp_ntxrings = omrp->mrp_ntxrings;
2085 } else {
2086 nmrp->mrp_mask &= ~MRP_TX_RINGS;
2087 nmrp->mrp_ntxrings = 0;
2088 }
2089 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC)
2090 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
2091 else
2092 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
2093
2094 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC)
2095 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
2096 else
2097 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
2098 kmem_free(omrp, sizeof (*omrp));
2099 return (err);
2100 }
2101
2102 /*
2103 * If we modified the rings property of the primary
2104 * we need to update the property fields of its
2105 * VLANs as they inherit the primary's properites.
2106 */
2107 if (mac_is_primary_client(mcip)) {
2108 mac_set_prim_vlan_rings(mip,
2109 MCIP_RESOURCE_PROPS(mcip));
2110 }
2111 }
2112 /*
2113 * We have to set this prior to calling mac_flow_modify.
2114 */
2115 if (mrp->mrp_mask & MRP_PRIORITY) {
2116 if (mrp->mrp_priority == MPL_RESET) {
2117 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2118 MPL_LINK_DEFAULT);
2119 } else {
2120 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2121 mrp->mrp_priority);
2122 }
2123 }
2124
2125 mac_flow_modify(mip->mi_flow_tab, flent, mrp);
2126 if (mrp->mrp_mask & MRP_PRIORITY)
2127 mac_update_subflow_priority(mcip);
2128
2129 /* Apply these resource settings to any secondary macs */
2130 if (umip != NULL) {
2131 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
2132 mac_vnic_secondary_update(umip);
2133 }
2134 }
2135 kmem_free(omrp, sizeof (*omrp));
2136 return (0);
2137 }
2138
2139 static int
2140 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
2141 uint16_t vid, boolean_t is_primary, boolean_t first_flow,
2142 flow_entry_t **flent, mac_resource_props_t *mrp)
2143 {
2144 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2145 flow_desc_t flow_desc;
2146 char flowname[MAXFLOWNAMELEN];
2147 int err;
2148 uint_t flent_flags;
2149
2150 /*
2151 * First unicast address being added, create a new flow
2152 * for that MAC client.
2153 */
2154 bzero(&flow_desc, sizeof (flow_desc));
2155
2156 ASSERT(mac_addr != NULL ||
2157 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR));
2158 if (mac_addr != NULL) {
2159 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
2160 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
2161 }
2162 flow_desc.fd_mask = FLOW_LINK_DST;
2163 if (vid != 0) {
2164 flow_desc.fd_vid = vid;
2165 flow_desc.fd_mask |= FLOW_LINK_VID;
2166 }
2167
2168 /*
2169 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
2170 * and FLOW_VNIC. Even though they're a hack inherited
2171 * from the SRS code, we'll keep them for now. They're currently
2172 * consumed by mac_datapath_setup() to create the SRS.
2173 * That code should be eventually moved out of
2174 * mac_datapath_setup() and moved to a mac_srs_create()
2175 * function of some sort to keep things clean.
2176 *
2177 * Also, there's no reason why the SRS for the primary MAC
2178 * client should be different than any other MAC client. Until
2179 * this is cleaned-up, we support only one MAC unicast address
2180 * per client.
2181 *
2182 * We set FLOW_PRIMARY_MAC for the primary MAC address,
2183 * FLOW_VNIC for everything else.
2184 */
2185 if (is_primary)
2186 flent_flags = FLOW_PRIMARY_MAC;
2187 else
2188 flent_flags = FLOW_VNIC_MAC;
2189
2190 /*
2191 * For the first flow we use the MAC client's name - mci_name, for
2192 * subsequent ones we just create a name with the VID. This is
2193 * so that we can add these flows to the same flow table. This is
2194 * fine as the flow name (except for the one with the MAC client's
2195 * name) is not visible. When the first flow is removed, we just replace
2196 * its fdesc with another from the list, so we will still retain the
2197 * flent with the MAC client's flow name.
2198 */
2199 if (first_flow) {
2200 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
2201 } else {
2202 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
2203 flent_flags = FLOW_NO_STATS;
2204 }
2205
2206 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
2207 flent_flags, flent)) != 0)
2208 return (err);
2209
2210 mac_misc_stat_create(*flent);
2211 FLOW_MARK(*flent, FE_INCIPIENT);
2212 (*flent)->fe_mcip = mcip;
2213
2214 /*
2215 * Place initial creation reference on the flow. This reference
2216 * is released in the corresponding delete action viz.
2217 * mac_unicast_remove after waiting for all transient refs to
2218 * to go away. The wait happens in mac_flow_wait.
2219 * We have already held the reference in mac_client_open().
2220 */
2221 if (!first_flow)
2222 FLOW_REFHOLD(*flent);
2223 return (0);
2224 }
2225
2226 /* Refresh the multicast grouping for this VID. */
2227 int
2228 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
2229 {
2230 flow_entry_t *flent = arg;
2231 mac_client_impl_t *mcip = flent->fe_mcip;
2232 uint16_t vid;
2233 flow_desc_t flow_desc;
2234
2235 mac_flow_get_desc(flent, &flow_desc);
2236 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
2237 flow_desc.fd_vid : VLAN_ID_NONE;
2238
2239 /*
2240 * We don't call mac_multicast_add()/mac_multicast_remove() as
2241 * we want to add/remove for this specific vid.
2242 */
2243 if (add) {
2244 return (mac_bcast_add(mcip, addrp, vid,
2245 MAC_ADDRTYPE_MULTICAST));
2246 } else {
2247 mac_bcast_delete(mcip, addrp, vid);
2248 return (0);
2249 }
2250 }
2251
2252 static void
2253 mac_update_single_active_client(mac_impl_t *mip)
2254 {
2255 mac_client_impl_t *client = NULL;
2256
2257 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2258
2259 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2260 if (mip->mi_nactiveclients == 1) {
2261 /*
2262 * Find the one active MAC client from the list of MAC
2263 * clients. The active MAC client has at least one
2264 * unicast address.
2265 */
2266 for (client = mip->mi_clients_list; client != NULL;
2267 client = client->mci_client_next) {
2268 if (client->mci_unicast_list != NULL)
2269 break;
2270 }
2271 ASSERT(client != NULL);
2272 }
2273
2274 /*
2275 * mi_single_active_client is protected by the MAC impl's read/writer
2276 * lock, which allows mac_rx() to check the value of that pointer
2277 * as a reader.
2278 */
2279 mip->mi_single_active_client = client;
2280 rw_exit(&mip->mi_rw_lock);
2281 }
2282
2283 /*
2284 * Set up the data path. Called from i_mac_unicast_add after having
2285 * done all the validations including making sure this is an active
2286 * client (i.e that is ready to process packets.)
2287 */
2288 static int
2289 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
2290 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
2291 mac_unicast_impl_t *muip)
2292 {
2293 mac_impl_t *mip = mcip->mci_mip;
2294 boolean_t mac_started = B_FALSE;
2295 boolean_t bcast_added = B_FALSE;
2296 boolean_t nactiveclients_added = B_FALSE;
2297 flow_entry_t *flent;
2298 int err = 0;
2299 boolean_t no_unicast;
2300
2301 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2302
2303 if ((err = mac_start((mac_handle_t)mip)) != 0)
2304 goto bail;
2305
2306 mac_started = B_TRUE;
2307
2308 /* add the MAC client to the broadcast address group by default */
2309 if (mip->mi_type->mt_brdcst_addr != NULL) {
2310 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
2311 MAC_ADDRTYPE_BROADCAST);
2312 if (err != 0)
2313 goto bail;
2314 bcast_added = B_TRUE;
2315 }
2316
2317 /*
2318 * If this is the first unicast address addition for this
2319 * client, reuse the pre-allocated larval flow entry associated with
2320 * the MAC client.
2321 */
2322 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
2323
2324 /* We are configuring the unicast flow now */
2325 if (!MCIP_DATAPATH_SETUP(mcip)) {
2326
2327 if (mrp != NULL) {
2328 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2329 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
2330 MPL_LINK_DEFAULT);
2331 }
2332 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2333 isprimary, B_TRUE, &flent, mrp)) != 0)
2334 goto bail;
2335
2336 mip->mi_nactiveclients++;
2337 nactiveclients_added = B_TRUE;
2338
2339 /*
2340 * This will allocate the RX ring group if possible for the
2341 * flow and program the software classifier as needed.
2342 */
2343 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
2344 goto bail;
2345
2346 if (no_unicast)
2347 goto done_setup;
2348 /*
2349 * The unicast MAC address must have been added successfully.
2350 */
2351 ASSERT(mcip->mci_unicast != NULL);
2352
2353 /*
2354 * Push down the sub-flows that were defined on this link
2355 * hitherto. The flows are added to the active flow table
2356 * and SRS, softrings etc. are created as needed.
2357 */
2358 mac_link_init_flows((mac_client_handle_t)mcip);
2359 } else {
2360 mac_address_t *map = mcip->mci_unicast;
2361
2362 ASSERT(!no_unicast);
2363 /*
2364 * A unicast flow already exists for that MAC client
2365 * so this flow must be the same MAC address but with
2366 * a different VID. It has been checked by
2367 * mac_addr_in_use().
2368 *
2369 * We will use the SRS etc. from the initial
2370 * mci_flent. We don't need to create a kstat for
2371 * this, as except for the fdesc, everything will be
2372 * used from the first flent.
2373 *
2374 * The only time we should see multiple flents on the
2375 * same MAC client is on the sun4v vsw. If we removed
2376 * that code we should be able to remove the entire
2377 * notion of multiple flents on a MAC client (this
2378 * doesn't affect sub/user flows because they have
2379 * their own list unrelated to mci_flent_list).
2380 */
2381 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
2382 err = EINVAL;
2383 goto bail;
2384 }
2385
2386 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2387 isprimary, B_FALSE, &flent, NULL)) != 0) {
2388 goto bail;
2389 }
2390 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
2391 FLOW_FINAL_REFRELE(flent);
2392 goto bail;
2393 }
2394
2395 /* update the multicast group for this vid */
2396 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2397 (void *)flent, B_TRUE);
2398
2399 }
2400
2401 /* populate the shared MAC address */
2402 muip->mui_map = mcip->mci_unicast;
2403
2404 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2405 muip->mui_next = mcip->mci_unicast_list;
2406 mcip->mci_unicast_list = muip;
2407 rw_exit(&mcip->mci_rw_lock);
2408
2409 done_setup:
2410 /*
2411 * First add the flent to the flow list of this mcip. Then set
2412 * the mip's mi_single_active_client if needed. The Rx path assumes
2413 * that mip->mi_single_active_client will always have an associated
2414 * flent.
2415 */
2416 mac_client_add_to_flow_list(mcip, flent);
2417 if (nactiveclients_added)
2418 mac_update_single_active_client(mip);
2419 /*
2420 * Trigger a renegotiation of the capabilities when the number of
2421 * active clients changes from 1 to 2, since some of the capabilities
2422 * might have to be disabled. Also send a MAC_NOTE_LINK notification
2423 * to all the MAC clients whenever physical link is DOWN.
2424 */
2425 if (mip->mi_nactiveclients == 2) {
2426 mac_capab_update((mac_handle_t)mip);
2427 mac_virtual_link_update(mip);
2428 }
2429 /*
2430 * Now that the setup is complete, clear the INCIPIENT flag.
2431 * The flag was set to avoid incoming packets seeing inconsistent
2432 * structures while the setup was in progress. Clear the mci_tx_flag
2433 * by calling mac_tx_client_block. It is possible that
2434 * mac_unicast_remove was called prior to this mac_unicast_add which
2435 * could have set the MCI_TX_QUIESCE flag.
2436 */
2437 if (flent->fe_rx_ring_group != NULL)
2438 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
2439 FLOW_UNMARK(flent, FE_INCIPIENT);
2440 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
2441 mac_tx_client_unblock(mcip);
2442 return (0);
2443 bail:
2444 if (bcast_added)
2445 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
2446
2447 if (nactiveclients_added)
2448 mip->mi_nactiveclients--;
2449
2450 if (mac_started)
2451 mac_stop((mac_handle_t)mip);
2452
2453 return (err);
2454 }
2455
2456 /*
2457 * Return the passive primary MAC client, if present. The passive client is
2458 * a stand-by client that has the same unicast address as another that is
2459 * currenly active. Once the active client goes away, the passive client
2460 * becomes active.
2461 */
2462 static mac_client_impl_t *
2463 mac_get_passive_primary_client(mac_impl_t *mip)
2464 {
2465 mac_client_impl_t *mcip;
2466
2467 for (mcip = mip->mi_clients_list; mcip != NULL;
2468 mcip = mcip->mci_client_next) {
2469 if (mac_is_primary_client(mcip) &&
2470 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2471 return (mcip);
2472 }
2473 }
2474 return (NULL);
2475 }
2476
2477 /*
2478 * Add a new unicast address to the MAC client.
2479 *
2480 * The MAC address can be specified either by value, or the MAC client
2481 * can specify that it wants to use the primary MAC address of the
2482 * underlying MAC. See the introductory comments at the beginning
2483 * of this file for more more information on primary MAC addresses.
2484 *
2485 * Note also the tuple (MAC address, VID) must be unique
2486 * for the MAC clients defined on top of the same underlying MAC
2487 * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
2488 *
2489 * In no case can a client use the PVID for the MAC, if the MAC has one set.
2490 */
2491 int
2492 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2493 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2494 {
2495 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2496 mac_impl_t *mip = mcip->mci_mip;
2497 int err;
2498 uint_t mac_len = mip->mi_type->mt_addr_length;
2499 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
2500 boolean_t fastpath_disabled = B_FALSE;
2501 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
2502 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
2503 mac_resource_props_t *mrp;
2504 boolean_t passive_client = B_FALSE;
2505 mac_unicast_impl_t *muip;
2506 boolean_t is_vnic_primary =
2507 (flags & MAC_UNICAST_VNIC_PRIMARY);
2508
2509 /*
2510 * When the VID is non-zero the underlying MAC cannot be a
2511 * VNIC. I.e., dladm create-vlan cannot take a VNIC as
2512 * argument, only the primary MAC client.
2513 */
2514 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != VLAN_ID_NONE)));
2515
2516 /*
2517 * Can't unicast add if the client asked only for minimal datapath
2518 * setup.
2519 */
2520 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)
2521 return (ENOTSUP);
2522
2523 /*
2524 * Check for an attempted use of the current Port VLAN ID, if enabled.
2525 * No client may use it.
2526 */
2527 if (mip->mi_pvid != VLAN_ID_NONE && vid == mip->mi_pvid)
2528 return (EBUSY);
2529
2530 /*
2531 * Check whether it's the primary client and flag it.
2532 */
2533 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2534 vid == VLAN_ID_NONE)
2535 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
2536
2537 /*
2538 * is_vnic_primary is true when we come here as a VLAN VNIC
2539 * which uses the primary MAC client's address but with a non-zero
2540 * VID. In this case the MAC address is not specified by an upper
2541 * MAC client.
2542 */
2543 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2544 !is_vnic_primary) {
2545 /*
2546 * The address is being set by the upper MAC client
2547 * of a VNIC. The MAC address was already set by the
2548 * VNIC driver during VNIC creation.
2549 *
2550 * Note: a VNIC has only one MAC address. We return
2551 * the MAC unicast address handle of the lower MAC client
2552 * corresponding to the VNIC. We allocate a new entry
2553 * which is flagged appropriately, so that mac_unicast_remove()
2554 * doesn't attempt to free the original entry that
2555 * was allocated by the VNIC driver.
2556 */
2557 ASSERT(mcip->mci_unicast != NULL);
2558
2559 /* Check for VLAN flags, if present */
2560 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2561 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2562
2563 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2564 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2565
2566 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2567 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2568
2569 /*
2570 * Ensure that the primary unicast address of the VNIC
2571 * is added only once unless we have the
2572 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
2573 * a passive MAC client).
2574 */
2575 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
2576 if ((mcip->mci_flags &
2577 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2578 (mcip->mci_flags &
2579 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2580 return (EBUSY);
2581 }
2582 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2583 passive_client = B_TRUE;
2584 }
2585
2586 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2587
2588 /*
2589 * Create a handle for vid 0.
2590 */
2591 ASSERT(vid == VLAN_ID_NONE);
2592 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2593 muip->mui_vid = vid;
2594 *mah = (mac_unicast_handle_t)muip;
2595 /*
2596 * This will be used by the caller to defer setting the
2597 * rx functions.
2598 */
2599 if (passive_client)
2600 return (EAGAIN);
2601 return (0);
2602 }
2603
2604 /* primary MAC clients cannot be opened on top of anchor VNICs */
2605 if ((is_vnic_primary || is_primary) &&
2606 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
2607 return (ENXIO);
2608 }
2609
2610 /*
2611 * If this is a VNIC/VLAN, disable softmac fast-path. This is
2612 * only relevant to legacy devices which use softmac to
2613 * interface with GLDv3.
2614 */
2615 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2616 err = mac_fastpath_disable((mac_handle_t)mip);
2617 if (err != 0)
2618 return (err);
2619 fastpath_disabled = B_TRUE;
2620 }
2621
2622 /*
2623 * Return EBUSY if:
2624 * - there is an exclusively active mac client exists.
2625 * - this is an exclusive active mac client but
2626 * a. there is already active mac clients exist, or
2627 * b. fastpath streams are already plumbed on this legacy device
2628 * - the mac creator has disallowed active mac clients.
2629 */
2630 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) {
2631 if (fastpath_disabled)
2632 mac_fastpath_enable((mac_handle_t)mip);
2633 return (EBUSY);
2634 }
2635
2636 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2637 ASSERT(!fastpath_disabled);
2638 if (mip->mi_nactiveclients != 0)
2639 return (EBUSY);
2640
2641 if ((mip->mi_state_flags & MIS_LEGACY) &&
2642 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
2643 return (EBUSY);
2644 }
2645 mip->mi_state_flags |= MIS_EXCLUSIVE;
2646 }
2647
2648 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
2649 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
2650 MCIS_IS_AGGR_PORT))) {
2651 /*
2652 * Apply the property cached in the mac_impl_t to the primary
2653 * mac client. If the mac client is a VNIC or an aggregation
2654 * port, its property should be set in the mcip when the
2655 * VNIC/aggr was created.
2656 */
2657 mac_get_resources((mac_handle_t)mip, mrp);
2658 (void) mac_client_set_resources(mch, mrp);
2659 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2660 /*
2661 * This is a VLAN client sharing the address of the
2662 * primary MAC client; i.e., one created via dladm
2663 * create-vlan. We don't support specifying ring
2664 * properties for this type of client as it inherits
2665 * these from the primary MAC client.
2666 */
2667 if (is_vnic_primary) {
2668 mac_resource_props_t *vmrp;
2669
2670 vmrp = MCIP_RESOURCE_PROPS(mcip);
2671 if (vmrp->mrp_mask & MRP_RX_RINGS ||
2672 vmrp->mrp_mask & MRP_TX_RINGS) {
2673 if (fastpath_disabled)
2674 mac_fastpath_enable((mac_handle_t)mip);
2675 kmem_free(mrp, sizeof (*mrp));
2676 return (ENOTSUP);
2677 }
2678 /*
2679 * Additionally we also need to inherit any
2680 * rings property from the MAC.
2681 */
2682 mac_get_resources((mac_handle_t)mip, mrp);
2683 if (mrp->mrp_mask & MRP_RX_RINGS) {
2684 vmrp->mrp_mask |= MRP_RX_RINGS;
2685 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
2686 }
2687 if (mrp->mrp_mask & MRP_TX_RINGS) {
2688 vmrp->mrp_mask |= MRP_TX_RINGS;
2689 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
2690 }
2691 }
2692 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp));
2693 }
2694
2695 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2696 muip->mui_vid = vid;
2697
2698 if (is_primary || is_vnic_primary) {
2699 mac_addr = mip->mi_addr;
2700 } else {
2701
2702 /*
2703 * Verify the validity of the specified MAC addresses value.
2704 */
2705 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
2706 *diag = MAC_DIAG_MACADDR_INVALID;
2707 err = EINVAL;
2708 goto bail_out;
2709 }
2710
2711 /*
2712 * Make sure that the specified MAC address is different
2713 * than the unicast MAC address of the underlying NIC.
2714 */
2715 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2716 *diag = MAC_DIAG_MACADDR_NIC;
2717 err = EINVAL;
2718 goto bail_out;
2719 }
2720 }
2721
2722 /*
2723 * Set the flags here so that if this is a passive client, we
2724 * can return and set it when we call mac_client_datapath_setup
2725 * when this becomes the active client. If we defer to using these
2726 * flags to mac_client_datapath_setup, then for a passive client,
2727 * we'd have to store the flags somewhere (probably fe_flags)
2728 * and then use it.
2729 */
2730 if (!MCIP_DATAPATH_SETUP(mcip)) {
2731 if (is_unicast_hw) {
2732 /*
2733 * The client requires a hardware MAC address slot
2734 * for that unicast address. Since we support only
2735 * one unicast MAC address per client, flag the
2736 * MAC client itself.
2737 */
2738 mcip->mci_state_flags |= MCIS_UNICAST_HW;
2739 }
2740
2741 /* Check for VLAN flags, if present */
2742 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2743 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2744
2745 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2746 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2747
2748 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2749 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2750 } else {
2751 /*
2752 * Assert that the specified flags are consistent with the
2753 * flags specified by previous calls to mac_unicast_add().
2754 */
2755 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2756 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2757 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2758 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2759
2760 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2761 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2762 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2763 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2764
2765 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2766 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2767 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2768 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2769
2770 /*
2771 * Make sure the client is consistent about its requests
2772 * for MAC addresses. I.e. all requests from the clients
2773 * must have the MAC_UNICAST_HW flag set or clear.
2774 */
2775 if (((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2776 !is_unicast_hw) ||
2777 ((mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2778 is_unicast_hw)) {
2779 err = EINVAL;
2780 goto bail_out;
2781 }
2782 }
2783 /*
2784 * Make sure the MAC address is not already used by
2785 * another MAC client defined on top of the same
2786 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2787 * set when we allow a passive client to be present which will
2788 * be activated when the currently active client goes away - this
2789 * works only with primary addresses.
2790 */
2791 if ((check_dups || is_primary || is_vnic_primary) &&
2792 mac_addr_in_use(mip, mac_addr, vid)) {
2793 /*
2794 * Must have set the multiple primary address flag when
2795 * we did a mac_client_open AND this should be a primary
2796 * MAC client AND there should not already be a passive
2797 * primary. If all is true then we let this succeed
2798 * even if the address is a dup.
2799 */
2800 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2801 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2802 mac_get_passive_primary_client(mip) != NULL) {
2803 *diag = MAC_DIAG_MACADDR_INUSE;
2804 err = EEXIST;
2805 goto bail_out;
2806 }
2807 ASSERT((mcip->mci_flags &
2808 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2809 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2810 kmem_free(mrp, sizeof (*mrp));
2811
2812 /*
2813 * Stash the unicast address handle, we will use it when
2814 * we set up the passive client.
2815 */
2816 mcip->mci_p_unicast_list = muip;
2817 *mah = (mac_unicast_handle_t)muip;
2818 return (0);
2819 }
2820
2821 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp,
2822 is_primary || is_vnic_primary, muip);
2823 if (err != 0)
2824 goto bail_out;
2825
2826 kmem_free(mrp, sizeof (*mrp));
2827 *mah = (mac_unicast_handle_t)muip;
2828 return (0);
2829
2830 bail_out:
2831 if (fastpath_disabled)
2832 mac_fastpath_enable((mac_handle_t)mip);
2833 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2834 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2835 if (mip->mi_state_flags & MIS_LEGACY) {
2836 mip->mi_capab_legacy.ml_active_clear(
2837 mip->mi_driver);
2838 }
2839 }
2840 kmem_free(mrp, sizeof (*mrp));
2841 kmem_free(muip, sizeof (mac_unicast_impl_t));
2842 return (err);
2843 }
2844
2845 /*
2846 * Wrapper function to mac_unicast_add when we want to have the same mac
2847 * client open for two instances, one that is currently active and another
2848 * that will become active when the current one is removed. In this case
2849 * mac_unicast_add will return EGAIN and we will save the rx function and
2850 * arg which will be used when we activate the passive client in
2851 * mac_unicast_remove.
2852 */
2853 int
2854 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2855 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag,
2856 mac_rx_t rx_fn, void *arg)
2857 {
2858 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2859 uint_t err;
2860
2861 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2862 if (err != 0 && err != EAGAIN)
2863 return (err);
2864 if (err == EAGAIN) {
2865 if (rx_fn != NULL) {
2866 mcip->mci_rx_p_fn = rx_fn;
2867 mcip->mci_rx_p_arg = arg;
2868 }
2869 return (0);
2870 }
2871 if (rx_fn != NULL)
2872 mac_rx_set(mch, rx_fn, arg);
2873 return (err);
2874 }
2875
2876 int
2877 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2878 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2879 {
2880 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2881 uint_t err;
2882
2883 i_mac_perim_enter(mip);
2884 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2885 i_mac_perim_exit(mip);
2886
2887 return (err);
2888 }
2889
2890 static void
2891 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2892 flow_entry_t *flent)
2893 {
2894 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2895 mac_impl_t *mip = mcip->mci_mip;
2896 boolean_t no_unicast;
2897
2898 /*
2899 * If we have not added a unicast address for this MAC client, just
2900 * teardown the datapath.
2901 */
2902 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2903
2904 if (!no_unicast) {
2905 /*
2906 * We would have initialized subflows etc. only if we brought
2907 * up the primary client and set the unicast unicast address
2908 * etc. Deactivate the flows. The flow entry will be removed
2909 * from the active flow tables, and the associated SRS,
2910 * softrings etc will be deleted. But the flow entry itself
2911 * won't be destroyed, instead it will continue to be archived
2912 * off the the global flow hash list, for a possible future
2913 * activation when say IP is plumbed again.
2914 */
2915 mac_link_release_flows(mch);
2916 }
2917 mip->mi_nactiveclients--;
2918 mac_update_single_active_client(mip);
2919
2920 /* Tear down the data path */
2921 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2922
2923 /*
2924 * Prevent any future access to the flow entry through the mci_flent
2925 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2926 * mac_bcast_send is also under mi_rw_lock.
2927 */
2928 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2929 flent = mcip->mci_flent;
2930 mac_client_remove_flow_from_list(mcip, flent);
2931
2932 if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2933 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2934
2935 /*
2936 * This is the last unicast address being removed and there shouldn't
2937 * be any outbound data threads at this point coming down from mac
2938 * clients. We have waited for the data threads to finish before
2939 * starting dld_str_detach. Non-data threads must access TX SRS
2940 * under mi_rw_lock.
2941 */
2942 rw_exit(&mip->mi_rw_lock);
2943
2944 /*
2945 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2946 * contain other flags, such as FE_CONDEMNED, which we need to
2947 * cleared. We don't call mac_flow_cleanup() for this unicast
2948 * flow as we have a already cleaned up SRSs etc. (via the teadown
2949 * path). We just clear the stats and reset the initial callback
2950 * function, the rest will be set when we call mac_flow_create,
2951 * if at all.
2952 */
2953 mutex_enter(&flent->fe_lock);
2954 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2955 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2956 flent->fe_flags = FE_MC_NO_DATAPATH;
2957 flow_stat_destroy(flent);
2958 mac_misc_stat_delete(flent);
2959
2960 /* Initialize the receiver function to a safe routine */
2961 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2962 flent->fe_cb_arg1 = NULL;
2963 flent->fe_cb_arg2 = NULL;
2964
2965 flent->fe_index = -1;
2966 mutex_exit(&flent->fe_lock);
2967
2968 if (mip->mi_type->mt_brdcst_addr != NULL) {
2969 ASSERT(muip != NULL || no_unicast);
2970 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2971 muip != NULL ? muip->mui_vid : VLAN_ID_NONE);
2972 }
2973
2974 if (mip->mi_nactiveclients == 1) {
2975 mac_capab_update((mac_handle_t)mip);
2976 mac_virtual_link_update(mip);
2977 }
2978
2979 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2980 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2981
2982 if (mip->mi_state_flags & MIS_LEGACY)
2983 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2984 }
2985
2986 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2987
2988 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2989 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2990
2991 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2992 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2993
2994 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2995 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2996
2997 if (muip != NULL)
2998 kmem_free(muip, sizeof (mac_unicast_impl_t));
2999 mac_protect_cancel_timer(mcip);
3000 mac_protect_flush_dynamic(mcip);
3001
3002 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat));
3003 /*
3004 * Disable fastpath if this is a VNIC or a VLAN.
3005 */
3006 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3007 mac_fastpath_enable((mac_handle_t)mip);
3008 mac_stop((mac_handle_t)mip);
3009 }
3010
3011 /*
3012 * Remove a MAC address which was previously added by mac_unicast_add().
3013 */
3014 int
3015 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
3016 {
3017 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3018 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
3019 mac_unicast_impl_t *pre;
3020 mac_impl_t *mip = mcip->mci_mip;
3021 flow_entry_t *flent;
3022 uint16_t mui_vid;
3023
3024 i_mac_perim_enter(mip);
3025 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
3026 /*
3027 * Call made by the upper MAC client of a VNIC.
3028 * There's nothing much to do, the unicast address will
3029 * be removed by the VNIC driver when the VNIC is deleted,
3030 * but let's ensure that all our transmit is done before
3031 * the client does a mac_client_stop lest it trigger an
3032 * assert in the driver.
3033 */
3034 ASSERT(muip->mui_vid == VLAN_ID_NONE);
3035
3036 mac_tx_client_flush(mcip);
3037
3038 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3039 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3040 if (mcip->mci_rx_p_fn != NULL) {
3041 mac_rx_set(mch, mcip->mci_rx_p_fn,
3042 mcip->mci_rx_p_arg);
3043 mcip->mci_rx_p_fn = NULL;
3044 mcip->mci_rx_p_arg = NULL;
3045 }
3046 kmem_free(muip, sizeof (mac_unicast_impl_t));
3047 i_mac_perim_exit(mip);
3048 return (0);
3049 }
3050 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
3051
3052 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3053 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3054
3055 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3056 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3057
3058 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3059 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3060
3061 kmem_free(muip, sizeof (mac_unicast_impl_t));
3062 i_mac_perim_exit(mip);
3063 return (0);
3064 }
3065
3066 ASSERT(muip != NULL);
3067
3068 /*
3069 * We are removing a passive client, we haven't setup the datapath
3070 * for this yet, so nothing much to do.
3071 */
3072 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3073
3074 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
3075 ASSERT(mcip->mci_p_unicast_list == muip);
3076
3077 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3078
3079 mcip->mci_p_unicast_list = NULL;
3080 mcip->mci_rx_p_fn = NULL;
3081 mcip->mci_rx_p_arg = NULL;
3082
3083 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
3084
3085 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3086 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3087
3088 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3089 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3090
3091 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3092 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3093
3094 kmem_free(muip, sizeof (mac_unicast_impl_t));
3095 i_mac_perim_exit(mip);
3096 return (0);
3097 }
3098
3099 /*
3100 * Remove the VID from the list of client's VIDs.
3101 */
3102 pre = mcip->mci_unicast_list;
3103 if (muip == pre) {
3104 mcip->mci_unicast_list = muip->mui_next;
3105 } else {
3106 while ((pre->mui_next != NULL) && (pre->mui_next != muip))
3107 pre = pre->mui_next;
3108 ASSERT(pre->mui_next == muip);
3109 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3110 pre->mui_next = muip->mui_next;
3111 rw_exit(&mcip->mci_rw_lock);
3112 }
3113
3114 if (!mac_client_single_rcvr(mcip)) {
3115 /*
3116 * This MAC client is shared by more than one unicast
3117 * addresses, so we will just remove the flent
3118 * corresponding to the address being removed. We don't invoke
3119 * mac_rx_classify_flow_rem() since the additional flow is
3120 * not associated with its own separate set of SRS and rings,
3121 * and these constructs are still needed for the remaining
3122 * flows.
3123 */
3124 flent = mac_client_get_flow(mcip, muip);
3125 VERIFY3P(flent, !=, NULL);
3126
3127 /*
3128 * The first one is disappearing, need to make sure
3129 * we replace it with another from the list of
3130 * shared clients.
3131 */
3132 if (flent == mcip->mci_flent)
3133 flent = mac_client_swap_mciflent(mcip);
3134 mac_client_remove_flow_from_list(mcip, flent);
3135 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
3136 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
3137
3138 /*
3139 * The multicast groups that were added by the client so
3140 * far must be removed from the brodcast domain corresponding
3141 * to the VID being removed.
3142 */
3143 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
3144 (void *)flent, B_FALSE);
3145
3146 if (mip->mi_type->mt_brdcst_addr != NULL) {
3147 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
3148 muip->mui_vid);
3149 }
3150
3151 FLOW_FINAL_REFRELE(flent);
3152 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
3153
3154 /*
3155 * Enable fastpath if this is a VNIC or a VLAN.
3156 */
3157 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3158 mac_fastpath_enable((mac_handle_t)mip);
3159 mac_stop((mac_handle_t)mip);
3160 i_mac_perim_exit(mip);
3161 return (0);
3162 }
3163
3164 mui_vid = muip->mui_vid;
3165 mac_client_datapath_teardown(mch, muip, flent);
3166
3167 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) &&
3168 mui_vid == VLAN_ID_NONE) {
3169 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
3170 } else {
3171 i_mac_perim_exit(mip);
3172 return (0);
3173 }
3174
3175 /*
3176 * If we are removing the primary, check if we have a passive primary
3177 * client that we need to activate now.
3178 */
3179 mcip = mac_get_passive_primary_client(mip);
3180 if (mcip != NULL) {
3181 mac_resource_props_t *mrp;
3182 mac_unicast_impl_t *muip;
3183
3184 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3185 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3186
3187 /*
3188 * Apply the property cached in the mac_impl_t to the
3189 * primary mac client.
3190 */
3191 mac_get_resources((mac_handle_t)mip, mrp);
3192 (void) mac_client_set_resources(mch, mrp);
3193 ASSERT(mcip->mci_p_unicast_list != NULL);
3194 muip = mcip->mci_p_unicast_list;
3195 mcip->mci_p_unicast_list = NULL;
3196 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
3197 mip->mi_addr, mrp, B_TRUE, muip) == 0) {
3198 if (mcip->mci_rx_p_fn != NULL) {
3199 mac_rx_set(mch, mcip->mci_rx_p_fn,
3200 mcip->mci_rx_p_arg);
3201 mcip->mci_rx_p_fn = NULL;
3202 mcip->mci_rx_p_arg = NULL;
3203 }
3204 } else {
3205 kmem_free(muip, sizeof (mac_unicast_impl_t));
3206 }
3207 kmem_free(mrp, sizeof (*mrp));
3208 }
3209 i_mac_perim_exit(mip);
3210 return (0);
3211 }
3212
3213 /*
3214 * Multicast add function invoked by MAC clients.
3215 */
3216 int
3217 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
3218 {
3219 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3220 mac_impl_t *mip = mcip->mci_mip;
3221 flow_entry_t *flent = mcip->mci_flent_list;
3222 flow_entry_t *prev_fe = NULL;
3223 uint16_t vid;
3224 int err = 0;
3225
3226 /* Verify the address is a valid multicast address */
3227 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
3228 mip->mi_pdata)) != 0)
3229 return (err);
3230
3231 i_mac_perim_enter(mip);
3232 while (flent != NULL) {
3233 vid = i_mac_flow_vid(flent);
3234
3235 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
3236 MAC_ADDRTYPE_MULTICAST);
3237 if (err != 0)
3238 break;
3239 prev_fe = flent;
3240 flent = flent->fe_client_next;
3241 }
3242
3243 /*
3244 * If we failed adding, then undo all, rather than partial
3245 * success.
3246 */
3247 if (flent != NULL && prev_fe != NULL) {
3248 flent = mcip->mci_flent_list;
3249 while (flent != prev_fe->fe_client_next) {
3250 vid = i_mac_flow_vid(flent);
3251 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3252 flent = flent->fe_client_next;
3253 }
3254 }
3255 i_mac_perim_exit(mip);
3256 return (err);
3257 }
3258
3259 /*
3260 * Multicast delete function invoked by MAC clients.
3261 */
3262 void
3263 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
3264 {
3265 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3266 mac_impl_t *mip = mcip->mci_mip;
3267 flow_entry_t *flent;
3268 uint16_t vid;
3269
3270 i_mac_perim_enter(mip);
3271 for (flent = mcip->mci_flent_list; flent != NULL;
3272 flent = flent->fe_client_next) {
3273 vid = i_mac_flow_vid(flent);
3274 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3275 }
3276 i_mac_perim_exit(mip);
3277 }
3278
3279 /*
3280 * When a MAC client desires to capture packets on an interface,
3281 * it registers a promiscuous call back with mac_promisc_add().
3282 * There are three types of promiscuous callbacks:
3283 *
3284 * * MAC_CLIENT_PROMISC_ALL
3285 * Captures all packets sent and received by the MAC client,
3286 * the physical interface, as well as all other MAC clients
3287 * defined on top of the same MAC.
3288 *
3289 * * MAC_CLIENT_PROMISC_FILTERED
3290 * Captures all packets sent and received by the MAC client,
3291 * plus all multicast traffic sent and received by the phyisical
3292 * interface and the other MAC clients.
3293 *
3294 * * MAC_CLIENT_PROMISC_MULTI
3295 * Captures all broadcast and multicast packets sent and
3296 * received by the MAC clients as well as the physical interface.
3297 *
3298 * In all cases, the underlying MAC is put in promiscuous mode.
3299 */
3300 int
3301 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
3302 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
3303 {
3304 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3305 mac_impl_t *mip = mcip->mci_mip;
3306 mac_promisc_impl_t *mpip;
3307 mac_cb_info_t *mcbi;
3308 int rc;
3309
3310 i_mac_perim_enter(mip);
3311
3312 if ((rc = mac_start((mac_handle_t)mip)) != 0) {
3313 i_mac_perim_exit(mip);
3314 return (rc);
3315 }
3316
3317 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
3318 type == MAC_CLIENT_PROMISC_ALL &&
3319 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) {
3320 /*
3321 * The function is being invoked by the upper MAC client
3322 * of a VNIC. The VNIC should only see the traffic
3323 * it is entitled to.
3324 */
3325 type = MAC_CLIENT_PROMISC_FILTERED;
3326 }
3327
3328
3329 /*
3330 * Turn on promiscuous mode for the underlying NIC.
3331 * This is needed even for filtered callbacks which
3332 * expect to receive all multicast traffic on the wire.
3333 *
3334 * Physical promiscuous mode should not be turned on if
3335 * MAC_PROMISC_FLAGS_NO_PHYS is set.
3336 */
3337 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
3338 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
3339 mac_stop((mac_handle_t)mip);
3340 i_mac_perim_exit(mip);
3341 return (rc);
3342 }
3343 }
3344
3345 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
3346
3347 mpip->mpi_type = type;
3348 mpip->mpi_fn = fn;
3349 mpip->mpi_arg = arg;
3350 mpip->mpi_mcip = mcip;
3351 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
3352 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
3353 mpip->mpi_strip_vlan_tag =
3354 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
3355 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0);
3356
3357 mcbi = &mip->mi_promisc_cb_info;
3358 mutex_enter(mcbi->mcbi_lockp);
3359
3360 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
3361 &mpip->mpi_mci_link);
3362 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
3363 &mpip->mpi_mi_link);
3364
3365 mutex_exit(mcbi->mcbi_lockp);
3366
3367 *mphp = (mac_promisc_handle_t)mpip;
3368
3369 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3370 mac_impl_t *umip = mcip->mci_upper_mip;
3371
3372 ASSERT(umip != NULL);
3373 mac_vnic_secondary_update(umip);
3374 }
3375
3376 i_mac_perim_exit(mip);
3377
3378 return (0);
3379 }
3380
3381 /*
3382 * Remove a multicast address previously aded through mac_promisc_add().
3383 */
3384 void
3385 mac_promisc_remove(mac_promisc_handle_t mph)
3386 {
3387 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
3388 mac_client_impl_t *mcip = mpip->mpi_mcip;
3389 mac_impl_t *mip = mcip->mci_mip;
3390 mac_cb_info_t *mcbi;
3391 int rv;
3392
3393 i_mac_perim_enter(mip);
3394
3395 /*
3396 * Even if the device can't be reset into normal mode, we still
3397 * need to clear the client promisc callbacks. The client may want
3398 * to close the mac end point and we can't have stale callbacks.
3399 */
3400 if (!(mpip->mpi_no_phys)) {
3401 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
3402 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
3403 " mode because of error 0x%x", mip->mi_name, rv);
3404 }
3405 }
3406 mcbi = &mip->mi_promisc_cb_info;
3407 mutex_enter(mcbi->mcbi_lockp);
3408 if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
3409 &mpip->mpi_mi_link)) {
3410 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
3411 &mcip->mci_promisc_list, &mpip->mpi_mci_link));
3412 kmem_cache_free(mac_promisc_impl_cache, mpip);
3413 } else {
3414 mac_callback_remove_wait(&mip->mi_promisc_cb_info);
3415 }
3416
3417 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3418 mac_impl_t *umip = mcip->mci_upper_mip;
3419
3420 ASSERT(umip != NULL);
3421 mac_vnic_secondary_update(umip);
3422 }
3423
3424 mutex_exit(mcbi->mcbi_lockp);
3425 mac_stop((mac_handle_t)mip);
3426
3427 i_mac_perim_exit(mip);
3428 }
3429
3430 /*
3431 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
3432 * that a control operation wants to quiesce the Tx data flow in which case
3433 * we return an error. Holding any of the per cpu locks ensures that the
3434 * mci_tx_flag won't change.
3435 *
3436 * 'CPU' must be accessed just once and used to compute the index into the
3437 * percpu array, and that index must be used for the entire duration of the
3438 * packet send operation. Note that the thread may be preempted and run on
3439 * another cpu any time and so we can't use 'CPU' more than once for the
3440 * operation.
3441 */
3442 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \
3443 { \
3444 (error) = 0; \
3445 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
3446 mutex_enter(&(mytx)->pcpu_tx_lock); \
3447 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \
3448 (mytx)->pcpu_tx_refcnt++; \
3449 } else { \
3450 (error) = -1; \
3451 } \
3452 mutex_exit(&(mytx)->pcpu_tx_lock); \
3453 }
3454
3455 /*
3456 * Release the reference. If needed, signal any control operation waiting
3457 * for Tx quiescence. The wait and signal are always done using the
3458 * mci_tx_pcpu[0]'s lock
3459 */
3460 #define MAC_TX_RELE(mcip, mytx) { \
3461 mutex_enter(&(mytx)->pcpu_tx_lock); \
3462 if (--(mytx)->pcpu_tx_refcnt == 0 && \
3463 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \
3464 mutex_exit(&(mytx)->pcpu_tx_lock); \
3465 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3466 cv_signal(&(mcip)->mci_tx_cv); \
3467 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3468 } else { \
3469 mutex_exit(&(mytx)->pcpu_tx_lock); \
3470 } \
3471 }
3472
3473 /*
3474 * Send function invoked by MAC clients.
3475 */
3476 mac_tx_cookie_t
3477 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
3478 uint16_t flag, mblk_t **ret_mp)
3479 {
3480 mac_tx_cookie_t cookie = 0;
3481 int error;
3482 mac_tx_percpu_t *mytx;
3483 mac_soft_ring_set_t *srs;
3484 flow_entry_t *flent;
3485 boolean_t is_subflow = B_FALSE;
3486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3487 mac_impl_t *mip = mcip->mci_mip;
3488 mac_srs_tx_t *srs_tx;
3489
3490 /*
3491 * Check whether the active Tx threads count is bumped already.
3492 */
3493 if (!(flag & MAC_TX_NO_HOLD)) {
3494 MAC_TX_TRY_HOLD(mcip, mytx, error);
3495 if (error != 0) {
3496 freemsgchain(mp_chain);
3497 return (0);
3498 }
3499 }
3500
3501 /*
3502 * If mac protection is enabled, only the permissible packets will be
3503 * returned by mac_protect_check().
3504 */
3505 if ((mcip->mci_flent->
3506 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 &&
3507 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL)
3508 goto done;
3509
3510 if (mcip->mci_subflow_tab != NULL &&
3511 mcip->mci_subflow_tab->ft_flow_count > 0 &&
3512 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
3513 FLOW_OUTBOUND, &flent) == 0) {
3514 /*
3515 * The main assumption here is that if in the event
3516 * we get a chain, all the packets will be classified
3517 * to the same Flow/SRS. If this changes for any
3518 * reason, the following logic should change as well.
3519 * I suppose the fanout_hint also assumes this .
3520 */
3521 ASSERT(flent != NULL);
3522 is_subflow = B_TRUE;
3523 } else {
3524 flent = mcip->mci_flent;
3525 }
3526
3527 srs = flent->fe_tx_srs;
3528 /*
3529 * This is to avoid panics with PF_PACKET that can call mac_tx()
3530 * against an interface that is not capable of sending. A rewrite
3531 * of the mac datapath is required to remove this limitation.
3532 */
3533 if (srs == NULL) {
3534 freemsgchain(mp_chain);
3535 goto done;
3536 }
3537
3538 srs_tx = &srs->srs_tx;
3539 if (srs_tx->st_mode == SRS_TX_DEFAULT &&
3540 (srs->srs_state & SRS_ENQUEUED) == 0 &&
3541 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) {
3542 uint64_t obytes;
3543
3544 /*
3545 * Since dls always opens the underlying MAC, nclients equals
3546 * to 1 means that the only active client is dls itself acting
3547 * as a primary client of the MAC instance. Since dls will not
3548 * send tagged packets in that case, and dls is trusted to send
3549 * packets for its allowed VLAN(s), the VLAN tag insertion and
3550 * check is required only if nclients is greater than 1.
3551 */
3552 if (mip->mi_nclients > 1) {
3553 if (MAC_VID_CHECK_NEEDED(mcip)) {
3554 int err = 0;
3555
3556 MAC_VID_CHECK(mcip, mp_chain, err);
3557 if (err != 0) {
3558 freemsg(mp_chain);
3559 mcip->mci_misc_stat.mms_txerrors++;
3560 goto done;
3561 }
3562 }
3563 if (MAC_TAG_NEEDED(mcip)) {
3564 mp_chain = mac_add_vlan_tag(mp_chain, 0,
3565 mac_client_vid(mch));
3566 if (mp_chain == NULL) {
3567 mcip->mci_misc_stat.mms_txerrors++;
3568 goto done;
3569 }
3570 }
3571 }
3572
3573 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
3574 msgdsize(mp_chain));
3575
3576 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
3577 if (mp_chain == NULL) {
3578 cookie = 0;
3579 SRS_TX_STAT_UPDATE(srs, opackets, 1);
3580 SRS_TX_STAT_UPDATE(srs, obytes, obytes);
3581 } else {
3582 mutex_enter(&srs->srs_lock);
3583 cookie = mac_tx_srs_no_desc(srs, mp_chain,
3584 flag, ret_mp);
3585 mutex_exit(&srs->srs_lock);
3586 }
3587 } else {
3588 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
3589 }
3590
3591 done:
3592 if (is_subflow)
3593 FLOW_REFRELE(flent);
3594
3595 if (!(flag & MAC_TX_NO_HOLD))
3596 MAC_TX_RELE(mcip, mytx);
3597
3598 return (cookie);
3599 }
3600
3601 /*
3602 * mac_tx_is_blocked
3603 *
3604 * Given a cookie, it returns if the ring identified by the cookie is
3605 * flow-controlled or not. If NULL is passed in place of a cookie,
3606 * then it finds out if any of the underlying rings belonging to the
3607 * SRS is flow controlled or not and returns that status.
3608 */
3609 /* ARGSUSED */
3610 boolean_t
3611 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
3612 {
3613 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3614 mac_soft_ring_set_t *mac_srs;
3615 mac_soft_ring_t *sringp;
3616 boolean_t blocked = B_FALSE;
3617 mac_tx_percpu_t *mytx;
3618 int err;
3619 int i;
3620
3621 /*
3622 * Bump the reference count so that mac_srs won't be deleted.
3623 * If the client is currently quiesced and we failed to bump
3624 * the reference, return B_TRUE so that flow control stays
3625 * as enabled.
3626 *
3627 * Flow control will then be disabled once the client is no
3628 * longer quiesced.
3629 */
3630 MAC_TX_TRY_HOLD(mcip, mytx, err);
3631 if (err != 0)
3632 return (B_TRUE);
3633
3634 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
3635 MAC_TX_RELE(mcip, mytx);
3636 return (B_FALSE);
3637 }
3638
3639 mutex_enter(&mac_srs->srs_lock);
3640 /*
3641 * Only in the case of TX_FANOUT and TX_AGGR, the underlying
3642 * softring (s_ring_state) will have the HIWAT set. This is
3643 * the multiple Tx ring flow control case. For all other
3644 * case, SRS (srs_state) will store the condition.
3645 */
3646 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3647 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) {
3648 if (cookie != 0) {
3649 sringp = (mac_soft_ring_t *)cookie;
3650 mutex_enter(&sringp->s_ring_lock);
3651 if (sringp->s_ring_state & S_RING_TX_HIWAT)
3652 blocked = B_TRUE;
3653 mutex_exit(&sringp->s_ring_lock);
3654 } else {
3655 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3656 sringp = mac_srs->srs_tx_soft_rings[i];
3657 mutex_enter(&sringp->s_ring_lock);
3658 if (sringp->s_ring_state & S_RING_TX_HIWAT) {
3659 blocked = B_TRUE;
3660 mutex_exit(&sringp->s_ring_lock);
3661 break;
3662 }
3663 mutex_exit(&sringp->s_ring_lock);
3664 }
3665 }
3666 } else {
3667 blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
3668 }
3669 mutex_exit(&mac_srs->srs_lock);
3670 MAC_TX_RELE(mcip, mytx);
3671 return (blocked);
3672 }
3673
3674 /*
3675 * Check if the MAC client is the primary MAC client.
3676 */
3677 boolean_t
3678 mac_is_primary_client(mac_client_impl_t *mcip)
3679 {
3680 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
3681 }
3682
3683 void
3684 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
3685 {
3686 mac_impl_t *mip = (mac_impl_t *)mh;
3687 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
3688
3689 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
3690 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
3691 /*
3692 * If ndd props were registered, call them.
3693 * Note that ndd ioctls are Obsolete
3694 */
3695 mac_ndd_ioctl(mip, wq, bp);
3696 return;
3697 }
3698
3699 /*
3700 * Call the driver to handle the ioctl. The driver may not support
3701 * any ioctls, in which case we reply with a NAK on its behalf.
3702 */
3703 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
3704 mip->mi_ioctl(mip->mi_driver, wq, bp);
3705 else
3706 miocnak(wq, bp, 0, EINVAL);
3707 }
3708
3709 /*
3710 * Return the link state of the specified MAC instance.
3711 */
3712 link_state_t
3713 mac_link_get(mac_handle_t mh)
3714 {
3715 return (((mac_impl_t *)mh)->mi_linkstate);
3716 }
3717
3718 /*
3719 * Add a mac client specified notification callback. Please see the comments
3720 * above mac_callback_add() for general information about mac callback
3721 * addition/deletion in the presence of mac callback list walkers
3722 */
3723 mac_notify_handle_t
3724 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
3725 {
3726 mac_impl_t *mip = (mac_impl_t *)mh;
3727 mac_notify_cb_t *mncb;
3728 mac_cb_info_t *mcbi;
3729
3730 /*
3731 * Allocate a notify callback structure, fill in the details and
3732 * use the mac callback list manipulation functions to chain into
3733 * the list of callbacks.
3734 */
3735 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
3736 mncb->mncb_fn = notify_fn;
3737 mncb->mncb_arg = arg;
3738 mncb->mncb_mip = mip;
3739 mncb->mncb_link.mcb_objp = mncb;
3740 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
3741 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
3742
3743 mcbi = &mip->mi_notify_cb_info;
3744
3745 i_mac_perim_enter(mip);
3746 mutex_enter(mcbi->mcbi_lockp);
3747
3748 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3749 &mncb->mncb_link);
3750
3751 mutex_exit(mcbi->mcbi_lockp);
3752 i_mac_perim_exit(mip);
3753 return ((mac_notify_handle_t)mncb);
3754 }
3755
3756 void
3757 mac_notify_remove_wait(mac_handle_t mh)
3758 {
3759 mac_impl_t *mip = (mac_impl_t *)mh;
3760 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info;
3761
3762 mutex_enter(mcbi->mcbi_lockp);
3763 mac_callback_remove_wait(&mip->mi_notify_cb_info);
3764 mutex_exit(mcbi->mcbi_lockp);
3765 }
3766
3767 /*
3768 * Remove a mac client specified notification callback
3769 */
3770 int
3771 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3772 {
3773 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh;
3774 mac_impl_t *mip = mncb->mncb_mip;
3775 mac_cb_info_t *mcbi;
3776 int err = 0;
3777
3778 mcbi = &mip->mi_notify_cb_info;
3779
3780 i_mac_perim_enter(mip);
3781 mutex_enter(mcbi->mcbi_lockp);
3782
3783 ASSERT(mncb->mncb_link.mcb_objp == mncb);
3784 /*
3785 * If there aren't any list walkers, the remove would succeed
3786 * inline, else we wait for the deferred remove to complete
3787 */
3788 if (mac_callback_remove(&mip->mi_notify_cb_info,
3789 &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3790 kmem_free(mncb, sizeof (mac_notify_cb_t));
3791 } else {
3792 err = EBUSY;
3793 }
3794
3795 mutex_exit(mcbi->mcbi_lockp);
3796 i_mac_perim_exit(mip);
3797
3798 /*
3799 * If we failed to remove the notification callback and "wait" is set
3800 * to be B_TRUE, wait for the callback to finish after we exit the
3801 * mac perimeter.
3802 */
3803 if (err != 0 && wait) {
3804 mac_notify_remove_wait((mac_handle_t)mip);
3805 return (0);
3806 }
3807
3808 return (err);
3809 }
3810
3811 /*
3812 * Associate resource management callbacks with the specified MAC
3813 * clients.
3814 */
3815
3816 void
3817 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3818 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3819 mac_resource_restart_t restart, mac_resource_bind_t bind,
3820 void *arg)
3821 {
3822 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3823
3824 mcip->mci_resource_add = add;
3825 mcip->mci_resource_remove = remove;
3826 mcip->mci_resource_quiesce = quiesce;
3827 mcip->mci_resource_restart = restart;
3828 mcip->mci_resource_bind = bind;
3829 mcip->mci_resource_arg = arg;
3830 }
3831
3832 void
3833 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3834 {
3835 /* update the 'resource_add' callback */
3836 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3837 }
3838
3839 /*
3840 * Sets up the client resources and enable the polling interface over all the
3841 * SRS's and the soft rings of the client
3842 */
3843 void
3844 mac_client_poll_enable(mac_client_handle_t mch)
3845 {
3846 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3847 mac_soft_ring_set_t *mac_srs;
3848 flow_entry_t *flent;
3849 int i;
3850
3851 flent = mcip->mci_flent;
3852 ASSERT(flent != NULL);
3853
3854 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
3855 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3856 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3857 ASSERT(mac_srs->srs_mcip == mcip);
3858 mac_srs_client_poll_enable(mcip, mac_srs);
3859 }
3860 }
3861
3862 /*
3863 * Tears down the client resources and disable the polling interface over all
3864 * the SRS's and the soft rings of the client
3865 */
3866 void
3867 mac_client_poll_disable(mac_client_handle_t mch)
3868 {
3869 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3870 mac_soft_ring_set_t *mac_srs;
3871 flow_entry_t *flent;
3872 int i;
3873
3874 flent = mcip->mci_flent;
3875 ASSERT(flent != NULL);
3876
3877 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3878 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3879 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3880 ASSERT(mac_srs->srs_mcip == mcip);
3881 mac_srs_client_poll_disable(mcip, mac_srs);
3882 }
3883 }
3884
3885 /*
3886 * Associate the CPUs specified by the given property with a MAC client.
3887 */
3888 int
3889 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3890 {
3891 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3892 mac_impl_t *mip = mcip->mci_mip;
3893 int err = 0;
3894
3895 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3896
3897 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
3898 mcip->mci_upper_mip : mip, mrp)) != 0) {
3899 return (err);
3900 }
3901 if (MCIP_DATAPATH_SETUP(mcip))
3902 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3903
3904 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3905 return (0);
3906 }
3907
3908 /*
3909 * Apply the specified properties to the specified MAC client.
3910 */
3911 int
3912 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3913 {
3914 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3915 mac_impl_t *mip = mcip->mci_mip;
3916 int err = 0;
3917
3918 i_mac_perim_enter(mip);
3919
3920 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3921 err = mac_resource_ctl_set(mch, mrp);
3922 if (err != 0)
3923 goto done;
3924 }
3925
3926 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) {
3927 err = mac_cpu_set(mch, mrp);
3928 if (err != 0)
3929 goto done;
3930 }
3931
3932 if (mrp->mrp_mask & MRP_PROTECT) {
3933 err = mac_protect_set(mch, mrp);
3934 if (err != 0)
3935 goto done;
3936 }
3937
3938 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS))
3939 err = mac_resource_ctl_set(mch, mrp);
3940
3941 done:
3942 i_mac_perim_exit(mip);
3943 return (err);
3944 }
3945
3946 /*
3947 * Return the properties currently associated with the specified MAC client.
3948 */
3949 void
3950 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3951 {
3952 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3953 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3954
3955 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3956 }
3957
3958 /*
3959 * Return the effective properties currently associated with the specified
3960 * MAC client.
3961 */
3962 void
3963 mac_client_get_effective_resources(mac_client_handle_t mch,
3964 mac_resource_props_t *mrp)
3965 {
3966 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3967 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip);
3968
3969 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3970 }
3971
3972 /*
3973 * Pass a copy of the specified packet to the promiscuous callbacks
3974 * of the specified MAC.
3975 *
3976 * If sender is NULL, the function is being invoked for a packet chain
3977 * received from the wire. If sender is non-NULL, it points to
3978 * the MAC client from which the packet is being sent.
3979 *
3980 * The packets are distributed to the promiscuous callbacks as follows:
3981 *
3982 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3983 * - all broadcast and multicast packets are sent to the
3984 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3985 *
3986 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3987 * after classification by mac_rx_deliver().
3988 */
3989
3990 static void
3991 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
3992 boolean_t loopback)
3993 {
3994 mblk_t *mp_copy, *mp_next;
3995
3996 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) {
3997 mp_copy = copymsg(mp);
3998 if (mp_copy == NULL)
3999 return;
4000
4001 if (mpip->mpi_strip_vlan_tag) {
4002 mp_copy = mac_strip_vlan_tag_chain(mp_copy);
4003 if (mp_copy == NULL)
4004 return;
4005 }
4006 mp_next = NULL;
4007 } else {
4008 mp_copy = mp;
4009 mp_next = mp->b_next;
4010 }
4011 mp_copy->b_next = NULL;
4012
4013 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
4014 if (mp_copy == mp)
4015 mp->b_next = mp_next;
4016 }
4017
4018 /*
4019 * Return the VID of a packet. Zero if the packet is not tagged.
4020 */
4021 static uint16_t
4022 mac_ether_vid(mblk_t *mp)
4023 {
4024 struct ether_header *eth = (struct ether_header *)mp->b_rptr;
4025
4026 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
4027 struct ether_vlan_header *t_evhp =
4028 (struct ether_vlan_header *)mp->b_rptr;
4029 return (VLAN_ID(ntohs(t_evhp->ether_tci)));
4030 }
4031
4032 return (0);
4033 }
4034
4035 /*
4036 * Return whether the specified packet contains a multicast or broadcast
4037 * destination MAC address.
4038 */
4039 static boolean_t
4040 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
4041 {
4042 mac_header_info_t hdr_info;
4043
4044 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
4045 return (B_FALSE);
4046 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
4047 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
4048 }
4049
4050 /*
4051 * Send a copy of an mblk chain to the MAC clients of the specified MAC.
4052 * "sender" points to the sender MAC client for outbound packets, and
4053 * is set to NULL for inbound packets.
4054 */
4055 void
4056 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
4057 mac_client_impl_t *sender)
4058 {
4059 mac_promisc_impl_t *mpip;
4060 mac_cb_t *mcb;
4061 mblk_t *mp;
4062 boolean_t is_mcast, is_sender;
4063
4064 MAC_PROMISC_WALKER_INC(mip);
4065 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4066 is_mcast = mac_is_mcast(mip, mp);
4067 /* send packet to interested callbacks */
4068 for (mcb = mip->mi_promisc_list; mcb != NULL;
4069 mcb = mcb->mcb_nextp) {
4070 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4071 is_sender = (mpip->mpi_mcip == sender);
4072
4073 if (is_sender && mpip->mpi_no_tx_loop)
4074 /*
4075 * The sender doesn't want to receive
4076 * copies of the packets it sends.
4077 */
4078 continue;
4079
4080 /* this client doesn't need any packets (bridge) */
4081 if (mpip->mpi_fn == NULL)
4082 continue;
4083
4084 /*
4085 * For an ethernet MAC, don't displatch a multicast
4086 * packet to a non-PROMISC_ALL callbacks unless the VID
4087 * of the packet matches the VID of the client.
4088 */
4089 if (is_mcast &&
4090 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
4091 !mac_client_check_flow_vid(mpip->mpi_mcip,
4092 mac_ether_vid(mp)))
4093 continue;
4094
4095 if (is_sender ||
4096 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
4097 is_mcast)
4098 mac_promisc_dispatch_one(mpip, mp, is_sender);
4099 }
4100 }
4101 MAC_PROMISC_WALKER_DCR(mip);
4102 }
4103
4104 void
4105 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
4106 {
4107 mac_impl_t *mip = mcip->mci_mip;
4108 mac_promisc_impl_t *mpip;
4109 boolean_t is_mcast;
4110 mblk_t *mp;
4111 mac_cb_t *mcb;
4112
4113 /*
4114 * The unicast packets for the MAC client still
4115 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
4116 * promiscuous callbacks. The broadcast and multicast
4117 * packets were delivered from mac_rx().
4118 */
4119 MAC_PROMISC_WALKER_INC(mip);
4120 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4121 is_mcast = mac_is_mcast(mip, mp);
4122 for (mcb = mcip->mci_promisc_list; mcb != NULL;
4123 mcb = mcb->mcb_nextp) {
4124 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4125 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
4126 !is_mcast) {
4127 mac_promisc_dispatch_one(mpip, mp, B_FALSE);
4128 }
4129 }
4130 }
4131 MAC_PROMISC_WALKER_DCR(mip);
4132 }
4133
4134 /*
4135 * Return the margin value currently assigned to the specified MAC instance.
4136 */
4137 void
4138 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
4139 {
4140 mac_impl_t *mip = (mac_impl_t *)mh;
4141
4142 rw_enter(&(mip->mi_rw_lock), RW_READER);
4143 *marginp = mip->mi_margin;
4144 rw_exit(&(mip->mi_rw_lock));
4145 }
4146
4147 /*
4148 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
4149 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
4150 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
4151 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
4152 * cannot disappear while we are accessing it.
4153 */
4154 typedef struct i_mac_info_state_s {
4155 const char *mi_name;
4156 mac_info_t *mi_infop;
4157 } i_mac_info_state_t;
4158
4159 /*ARGSUSED*/
4160 static uint_t
4161 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4162 {
4163 i_mac_info_state_t *statep = arg;
4164 mac_impl_t *mip = (mac_impl_t *)val;
4165
4166 if (mip->mi_state_flags & MIS_DISABLED)
4167 return (MH_WALK_CONTINUE);
4168
4169 if (strcmp(statep->mi_name,
4170 ddi_driver_name(mip->mi_dip)) != 0)
4171 return (MH_WALK_CONTINUE);
4172
4173 statep->mi_infop = &mip->mi_info;
4174 return (MH_WALK_TERMINATE);
4175 }
4176
4177 boolean_t
4178 mac_info_get(const char *name, mac_info_t *minfop)
4179 {
4180 i_mac_info_state_t state;
4181
4182 rw_enter(&i_mac_impl_lock, RW_READER);
4183 state.mi_name = name;
4184 state.mi_infop = NULL;
4185 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
4186 if (state.mi_infop == NULL) {
4187 rw_exit(&i_mac_impl_lock);
4188 return (B_FALSE);
4189 }
4190 *minfop = *state.mi_infop;
4191 rw_exit(&i_mac_impl_lock);
4192 return (B_TRUE);
4193 }
4194
4195 /*
4196 * To get the capabilities that MAC layer cares about, such as rings, factory
4197 * mac address, vnic or not, it should directly invoke this function. If the
4198 * link is part of a bridge, then the only "capability" it has is the inability
4199 * to do zero copy.
4200 */
4201 boolean_t
4202 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4203 {
4204 mac_impl_t *mip = (mac_impl_t *)mh;
4205
4206 if (mip->mi_bridge_link != NULL)
4207 return (cap == MAC_CAPAB_NO_ZCOPY);
4208 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
4209 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
4210 else
4211 return (B_FALSE);
4212 }
4213
4214 /*
4215 * Capability query function. If number of active mac clients is greater than
4216 * 1, only limited capabilities can be advertised to the caller no matter the
4217 * driver has certain capability or not. Else, we query the driver to get the
4218 * capability.
4219 */
4220 boolean_t
4221 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4222 {
4223 mac_impl_t *mip = (mac_impl_t *)mh;
4224
4225 /*
4226 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
4227 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
4228 */
4229 if (mip->mi_nactiveclients > 1) {
4230 switch (cap) {
4231 case MAC_CAPAB_NO_ZCOPY:
4232 return (B_TRUE);
4233 case MAC_CAPAB_LEGACY:
4234 case MAC_CAPAB_HCKSUM:
4235 case MAC_CAPAB_NO_NATIVEVLAN:
4236 break;
4237 default:
4238 return (B_FALSE);
4239 }
4240 }
4241
4242 /* else get capab from driver */
4243 return (i_mac_capab_get(mh, cap, cap_data));
4244 }
4245
4246 boolean_t
4247 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
4248 {
4249 mac_impl_t *mip = (mac_impl_t *)mh;
4250
4251 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
4252 mip->mi_pdata));
4253 }
4254
4255 mblk_t *
4256 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
4257 size_t extra_len)
4258 {
4259 mac_impl_t *mip = (mac_impl_t *)mh;
4260 const uint8_t *hdr_daddr;
4261
4262 /*
4263 * If the MAC is point-to-point with a fixed destination address, then
4264 * we must always use that destination in the MAC header.
4265 */
4266 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr);
4267 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap,
4268 mip->mi_pdata, payload, extra_len));
4269 }
4270
4271 int
4272 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4273 {
4274 mac_impl_t *mip = (mac_impl_t *)mh;
4275
4276 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
4277 mhip));
4278 }
4279
4280 int
4281 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4282 {
4283 mac_impl_t *mip = (mac_impl_t *)mh;
4284 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER);
4285 int err = 0;
4286
4287 /*
4288 * Packets should always be at least 16 bit aligned.
4289 */
4290 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t)));
4291
4292 if ((err = mac_header_info(mh, mp, mhip)) != 0)
4293 return (err);
4294
4295 /*
4296 * If this is a VLAN-tagged Ethernet packet, then the SAP in the
4297 * mac_header_info_t as returned by mac_header_info() is
4298 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header.
4299 */
4300 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) {
4301 struct ether_vlan_header *evhp;
4302 uint16_t sap;
4303 mblk_t *tmp = NULL;
4304 size_t size;
4305
4306 size = sizeof (struct ether_vlan_header);
4307 if (MBLKL(mp) < size) {
4308 /*
4309 * Pullup the message in order to get the MAC header
4310 * infomation. Note that this is a read-only function,
4311 * we keep the input packet intact.
4312 */
4313 if ((tmp = msgpullup(mp, size)) == NULL)
4314 return (EINVAL);
4315
4316 mp = tmp;
4317 }
4318 evhp = (struct ether_vlan_header *)mp->b_rptr;
4319 sap = ntohs(evhp->ether_type);
4320 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap);
4321 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header);
4322 mhip->mhi_tci = ntohs(evhp->ether_tci);
4323 mhip->mhi_istagged = B_TRUE;
4324 freemsg(tmp);
4325
4326 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI)
4327 return (EINVAL);
4328 } else {
4329 mhip->mhi_istagged = B_FALSE;
4330 mhip->mhi_tci = 0;
4331 }
4332
4333 return (0);
4334 }
4335
4336 mblk_t *
4337 mac_header_cook(mac_handle_t mh, mblk_t *mp)
4338 {
4339 mac_impl_t *mip = (mac_impl_t *)mh;
4340
4341 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
4342 if (DB_REF(mp) > 1) {
4343 mblk_t *newmp = copymsg(mp);
4344 if (newmp == NULL)
4345 return (NULL);
4346 freemsg(mp);
4347 mp = newmp;
4348 }
4349 return (mip->mi_type->mt_ops.mtops_header_cook(mp,
4350 mip->mi_pdata));
4351 }
4352 return (mp);
4353 }
4354
4355 mblk_t *
4356 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
4357 {
4358 mac_impl_t *mip = (mac_impl_t *)mh;
4359
4360 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
4361 if (DB_REF(mp) > 1) {
4362 mblk_t *newmp = copymsg(mp);
4363 if (newmp == NULL)
4364 return (NULL);
4365 freemsg(mp);
4366 mp = newmp;
4367 }
4368 return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
4369 mip->mi_pdata));
4370 }
4371 return (mp);
4372 }
4373
4374 uint_t
4375 mac_addr_len(mac_handle_t mh)
4376 {
4377 mac_impl_t *mip = (mac_impl_t *)mh;
4378
4379 return (mip->mi_type->mt_addr_length);
4380 }
4381
4382 /* True if a MAC is a VNIC */
4383 boolean_t
4384 mac_is_vnic(mac_handle_t mh)
4385 {
4386 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
4387 }
4388
4389 mac_handle_t
4390 mac_get_lower_mac_handle(mac_handle_t mh)
4391 {
4392 mac_impl_t *mip = (mac_impl_t *)mh;
4393
4394 ASSERT(mac_is_vnic(mh));
4395 return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
4396 }
4397
4398 boolean_t
4399 mac_is_vnic_primary(mac_handle_t mh)
4400 {
4401 mac_impl_t *mip = (mac_impl_t *)mh;
4402
4403 ASSERT(mac_is_vnic(mh));
4404 return (((vnic_t *)mip->mi_driver)->vn_addr_type ==
4405 VNIC_MAC_ADDR_TYPE_PRIMARY);
4406 }
4407
4408 void
4409 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
4410 boolean_t is_user_flow)
4411 {
4412 if (nmrp != NULL && cmrp != NULL) {
4413 if (nmrp->mrp_mask & MRP_PRIORITY) {
4414 if (nmrp->mrp_priority == MPL_RESET) {
4415 cmrp->mrp_mask &= ~MRP_PRIORITY;
4416 if (is_user_flow) {
4417 cmrp->mrp_priority =
4418 MPL_SUBFLOW_DEFAULT;
4419 } else {
4420 cmrp->mrp_priority = MPL_LINK_DEFAULT;
4421 }
4422 } else {
4423 cmrp->mrp_mask |= MRP_PRIORITY;
4424 cmrp->mrp_priority = nmrp->mrp_priority;
4425 }
4426 }
4427 if (nmrp->mrp_mask & MRP_MAXBW) {
4428 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) {
4429 cmrp->mrp_mask &= ~MRP_MAXBW;
4430 cmrp->mrp_maxbw = 0;
4431 } else {
4432 cmrp->mrp_mask |= MRP_MAXBW;
4433 cmrp->mrp_maxbw = nmrp->mrp_maxbw;
4434 }
4435 }
4436 if (nmrp->mrp_mask & MRP_CPUS)
4437 MAC_COPY_CPUS(nmrp, cmrp);
4438
4439 if (nmrp->mrp_mask & MRP_POOL) {
4440 if (strlen(nmrp->mrp_pool) == 0) {
4441 cmrp->mrp_mask &= ~MRP_POOL;
4442 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool));
4443 } else {
4444 cmrp->mrp_mask |= MRP_POOL;
4445 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool,
4446 sizeof (cmrp->mrp_pool));
4447 }
4448
4449 }
4450
4451 if (nmrp->mrp_mask & MRP_PROTECT)
4452 mac_protect_update(nmrp, cmrp);
4453
4454 /*
4455 * Update the rings specified.
4456 */
4457 if (nmrp->mrp_mask & MRP_RX_RINGS) {
4458 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4459 cmrp->mrp_mask &= ~MRP_RX_RINGS;
4460 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4461 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4462 cmrp->mrp_nrxrings = 0;
4463 } else {
4464 cmrp->mrp_mask |= MRP_RX_RINGS;
4465 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings;
4466 }
4467 }
4468 if (nmrp->mrp_mask & MRP_TX_RINGS) {
4469 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4470 cmrp->mrp_mask &= ~MRP_TX_RINGS;
4471 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4472 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4473 cmrp->mrp_ntxrings = 0;
4474 } else {
4475 cmrp->mrp_mask |= MRP_TX_RINGS;
4476 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings;
4477 }
4478 }
4479 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4480 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4481 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4482 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4483
4484 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4485 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4486 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4487 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4488 }
4489 }
4490
4491 /*
4492 * i_mac_set_resources:
4493 *
4494 * This routine associates properties with the primary MAC client of
4495 * the specified MAC instance.
4496 * - Cache the properties in mac_impl_t
4497 * - Apply the properties to the primary MAC client if exists
4498 */
4499 int
4500 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4501 {
4502 mac_impl_t *mip = (mac_impl_t *)mh;
4503 mac_client_impl_t *mcip;
4504 int err = 0;
4505 uint32_t resmask, newresmask;
4506 mac_resource_props_t *tmrp, *umrp;
4507
4508 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4509
4510 err = mac_validate_props(mip, mrp);
4511 if (err != 0)
4512 return (err);
4513
4514 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP);
4515 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp));
4516 resmask = umrp->mrp_mask;
4517 mac_update_resources(mrp, umrp, B_FALSE);
4518 newresmask = umrp->mrp_mask;
4519
4520 if (resmask == 0 && newresmask != 0) {
4521 /*
4522 * Bandwidth, priority, cpu or pool link properties configured,
4523 * must disable fastpath.
4524 */
4525 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) {
4526 kmem_free(umrp, sizeof (*umrp));
4527 return (err);
4528 }
4529 }
4530
4531 /*
4532 * Since bind_cpu may be modified by mac_client_set_resources()
4533 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
4534 * This allows us to cache only user edits in mip.
4535 */
4536 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP);
4537 bcopy(mrp, tmrp, sizeof (*tmrp));
4538 mcip = mac_primary_client_handle(mip);
4539 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
4540 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp);
4541 } else if ((mrp->mrp_mask & MRP_RX_RINGS ||
4542 mrp->mrp_mask & MRP_TX_RINGS)) {
4543 mac_client_impl_t *vmcip;
4544
4545 /*
4546 * If the primary is not up, we need to check if there
4547 * are any VLANs on this primary. If there are then
4548 * we need to set this property on the VLANs since
4549 * VLANs follow the primary they are based on. Just
4550 * look for the first VLAN and change its properties,
4551 * all the other VLANs should be in the same group.
4552 */
4553 for (vmcip = mip->mi_clients_list; vmcip != NULL;
4554 vmcip = vmcip->mci_client_next) {
4555 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) &&
4556 mac_client_vid((mac_client_handle_t)vmcip) !=
4557 VLAN_ID_NONE) {
4558 break;
4559 }
4560 }
4561 if (vmcip != NULL) {
4562 mac_resource_props_t *omrp;
4563 mac_resource_props_t *vmrp;
4564
4565 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
4566 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp));
4567 /*
4568 * We dont' call mac_update_resources since we
4569 * want to take only the ring properties and
4570 * not all the properties that may have changed.
4571 */
4572 vmrp = MCIP_RESOURCE_PROPS(vmcip);
4573 if (mrp->mrp_mask & MRP_RX_RINGS) {
4574 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4575 vmrp->mrp_mask &= ~MRP_RX_RINGS;
4576 if (vmrp->mrp_mask &
4577 MRP_RXRINGS_UNSPEC) {
4578 vmrp->mrp_mask &=
4579 ~MRP_RXRINGS_UNSPEC;
4580 }
4581 vmrp->mrp_nrxrings = 0;
4582 } else {
4583 vmrp->mrp_mask |= MRP_RX_RINGS;
4584 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
4585 }
4586 }
4587 if (mrp->mrp_mask & MRP_TX_RINGS) {
4588 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4589 vmrp->mrp_mask &= ~MRP_TX_RINGS;
4590 if (vmrp->mrp_mask &
4591 MRP_TXRINGS_UNSPEC) {
4592 vmrp->mrp_mask &=
4593 ~MRP_TXRINGS_UNSPEC;
4594 }
4595 vmrp->mrp_ntxrings = 0;
4596 } else {
4597 vmrp->mrp_mask |= MRP_TX_RINGS;
4598 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
4599 }
4600 }
4601 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4602 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4603
4604 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4605 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4606
4607 if ((err = mac_client_set_rings_prop(vmcip, mrp,
4608 omrp)) != 0) {
4609 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip),
4610 sizeof (*omrp));
4611 } else {
4612 mac_set_prim_vlan_rings(mip, vmrp);
4613 }
4614 kmem_free(omrp, sizeof (*omrp));
4615 }
4616 }
4617
4618 /* Only update the values if mac_client_set_resources succeeded */
4619 if (err == 0) {
4620 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp));
4621 /*
4622 * If bandwidth, priority or cpu link properties cleared,
4623 * renable fastpath.
4624 */
4625 if (resmask != 0 && newresmask == 0)
4626 mac_fastpath_enable((mac_handle_t)mip);
4627 } else if (resmask == 0 && newresmask != 0) {
4628 mac_fastpath_enable((mac_handle_t)mip);
4629 }
4630 kmem_free(tmrp, sizeof (*tmrp));
4631 kmem_free(umrp, sizeof (*umrp));
4632 return (err);
4633 }
4634
4635 int
4636 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4637 {
4638 int err;
4639
4640 i_mac_perim_enter((mac_impl_t *)mh);
4641 err = i_mac_set_resources(mh, mrp);
4642 i_mac_perim_exit((mac_impl_t *)mh);
4643 return (err);
4644 }
4645
4646 /*
4647 * Get the properties cached for the specified MAC instance.
4648 */
4649 void
4650 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4651 {
4652 mac_impl_t *mip = (mac_impl_t *)mh;
4653 mac_client_impl_t *mcip;
4654
4655 mcip = mac_primary_client_handle(mip);
4656 if (mcip != NULL) {
4657 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
4658 return;
4659 }
4660 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
4661 }
4662
4663 /*
4664 * Get the effective properties from the primary client of the
4665 * specified MAC instance.
4666 */
4667 void
4668 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4669 {
4670 mac_impl_t *mip = (mac_impl_t *)mh;
4671 mac_client_impl_t *mcip;
4672
4673 mcip = mac_primary_client_handle(mip);
4674 if (mcip != NULL) {
4675 mac_client_get_effective_resources((mac_client_handle_t)mcip,
4676 mrp);
4677 return;
4678 }
4679 bzero(mrp, sizeof (mac_resource_props_t));
4680 }
4681
4682 int
4683 mac_set_pvid(mac_handle_t mh, uint16_t pvid)
4684 {
4685 mac_impl_t *mip = (mac_impl_t *)mh;
4686 mac_client_impl_t *mcip;
4687 mac_unicast_impl_t *muip;
4688
4689 i_mac_perim_enter(mip);
4690 if (pvid != 0) {
4691 for (mcip = mip->mi_clients_list; mcip != NULL;
4692 mcip = mcip->mci_client_next) {
4693 for (muip = mcip->mci_unicast_list; muip != NULL;
4694 muip = muip->mui_next) {
4695 if (muip->mui_vid == pvid) {
4696 i_mac_perim_exit(mip);
4697 return (EBUSY);
4698 }
4699 }
4700 }
4701 }
4702 mip->mi_pvid = pvid;
4703 i_mac_perim_exit(mip);
4704 return (0);
4705 }
4706
4707 uint16_t
4708 mac_get_pvid(mac_handle_t mh)
4709 {
4710 mac_impl_t *mip = (mac_impl_t *)mh;
4711
4712 return (mip->mi_pvid);
4713 }
4714
4715 uint32_t
4716 mac_get_llimit(mac_handle_t mh)
4717 {
4718 mac_impl_t *mip = (mac_impl_t *)mh;
4719
4720 return (mip->mi_llimit);
4721 }
4722
4723 uint32_t
4724 mac_get_ldecay(mac_handle_t mh)
4725 {
4726 mac_impl_t *mip = (mac_impl_t *)mh;
4727
4728 return (mip->mi_ldecay);
4729 }
4730
4731 /*
4732 * Rename a mac client, its flow, and the kstat.
4733 */
4734 int
4735 mac_rename_primary(mac_handle_t mh, const char *new_name)
4736 {
4737 mac_impl_t *mip = (mac_impl_t *)mh;
4738 mac_client_impl_t *cur_clnt = NULL;
4739 flow_entry_t *fep;
4740
4741 i_mac_perim_enter(mip);
4742
4743 /*
4744 * VNICs: we need to change the sys flow name and
4745 * the associated flow kstat.
4746 */
4747 if (mip->mi_state_flags & MIS_IS_VNIC) {
4748 mac_client_impl_t *mcip = mac_vnic_lower(mip);
4749 ASSERT(new_name != NULL);
4750 mac_rename_flow_names(mcip, new_name);
4751 mac_stat_rename(mcip);
4752 goto done;
4753 }
4754 /*
4755 * This mac may itself be an aggr link, or it may have some client
4756 * which is an aggr port. For both cases, we need to change the
4757 * aggr port's mac client name, its flow name and the associated flow
4758 * kstat.
4759 */
4760 if (mip->mi_state_flags & MIS_IS_AGGR) {
4761 mac_capab_aggr_t aggr_cap;
4762 mac_rename_fn_t rename_fn;
4763 boolean_t ret;
4764
4765 ASSERT(new_name != NULL);
4766 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
4767 (void *)(&aggr_cap));
4768 ASSERT(ret == B_TRUE);
4769 rename_fn = aggr_cap.mca_rename_fn;
4770 rename_fn(new_name, mip->mi_driver);
4771 /*
4772 * The aggr's client name and kstat flow name will be
4773 * updated below, i.e. via mac_rename_flow_names.
4774 */
4775 }
4776
4777 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
4778 cur_clnt = cur_clnt->mci_client_next) {
4779 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
4780 if (new_name != NULL) {
4781 char *str_st = cur_clnt->mci_name;
4782 char *str_del = strchr(str_st, '-');
4783
4784 ASSERT(str_del != NULL);
4785 bzero(str_del + 1, MAXNAMELEN -
4786 (str_del - str_st + 1));
4787 bcopy(new_name, str_del + 1,
4788 strlen(new_name));
4789 }
4790 fep = cur_clnt->mci_flent;
4791 mac_rename_flow(fep, cur_clnt->mci_name);
4792 break;
4793 } else if (new_name != NULL &&
4794 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
4795 mac_rename_flow_names(cur_clnt, new_name);
4796 break;
4797 }
4798 }
4799
4800 /* Recreate kstats associated with aggr pseudo rings */
4801 if (mip->mi_state_flags & MIS_IS_AGGR)
4802 mac_pseudo_ring_stat_rename(mip);
4803
4804 done:
4805 i_mac_perim_exit(mip);
4806 return (0);
4807 }
4808
4809 /*
4810 * Rename the MAC client's flow names
4811 */
4812 static void
4813 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
4814 {
4815 flow_entry_t *flent;
4816 uint16_t vid;
4817 char flowname[MAXFLOWNAMELEN];
4818 mac_impl_t *mip = mcip->mci_mip;
4819
4820 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4821
4822 /*
4823 * Use mi_rw_lock to ensure that threads not in the mac perimeter
4824 * see a self-consistent value for mci_name
4825 */
4826 rw_enter(&mip->mi_rw_lock, RW_WRITER);
4827 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
4828 rw_exit(&mip->mi_rw_lock);
4829
4830 mac_rename_flow(mcip->mci_flent, new_name);
4831
4832 if (mcip->mci_nflents == 1)
4833 return;
4834
4835 /*
4836 * We have to rename all the others too, no stats to destroy for
4837 * these.
4838 */
4839 for (flent = mcip->mci_flent_list; flent != NULL;
4840 flent = flent->fe_client_next) {
4841 if (flent != mcip->mci_flent) {
4842 vid = i_mac_flow_vid(flent);
4843 (void) sprintf(flowname, "%s%u", new_name, vid);
4844 mac_flow_set_name(flent, flowname);
4845 }
4846 }
4847 }
4848
4849
4850 /*
4851 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
4852 * defined for the specified MAC client.
4853 */
4854 static void
4855 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4856 {
4857 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4858 /*
4859 * The promisc Rx data path walks the mci_flent_list. Protect by
4860 * using mi_rw_lock
4861 */
4862 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4863
4864 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4865
4866 /* Add it to the head */
4867 flent->fe_client_next = mcip->mci_flent_list;
4868 mcip->mci_flent_list = flent;
4869 mcip->mci_nflents++;
4870
4871 /*
4872 * Keep track of the number of non-zero VIDs addresses per MAC
4873 * client to avoid figuring it out in the data-path.
4874 */
4875 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4876 mcip->mci_nvids++;
4877
4878 rw_exit(&mcip->mci_rw_lock);
4879 }
4880
4881 /*
4882 * Remove a flow entry from the MAC client's list.
4883 */
4884 static void
4885 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4886 {
4887 flow_entry_t *fe = mcip->mci_flent_list;
4888 flow_entry_t *prev_fe = NULL;
4889
4890 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4891 /*
4892 * The promisc Rx data path walks the mci_flent_list. Protect by
4893 * using mci_rw_lock
4894 */
4895 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4896 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4897
4898 while ((fe != NULL) && (fe != flent)) {
4899 prev_fe = fe;
4900 fe = fe->fe_client_next;
4901 }
4902
4903 ASSERT(fe != NULL);
4904 if (prev_fe == NULL) {
4905 /* Deleting the first node */
4906 mcip->mci_flent_list = fe->fe_client_next;
4907 } else {
4908 prev_fe->fe_client_next = fe->fe_client_next;
4909 }
4910 mcip->mci_nflents--;
4911
4912 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4913 mcip->mci_nvids--;
4914
4915 rw_exit(&mcip->mci_rw_lock);
4916 }
4917
4918 /*
4919 * Check if the given VID belongs to this MAC client.
4920 */
4921 boolean_t
4922 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
4923 {
4924 flow_entry_t *flent;
4925 uint16_t mci_vid;
4926 uint32_t cache = mcip->mci_vidcache;
4927
4928 /*
4929 * In hopes of not having to touch the mci_rw_lock, check to see if
4930 * this vid matches our cached result.
4931 */
4932 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid)
4933 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE);
4934
4935 /* The mci_flent_list is protected by mci_rw_lock */
4936 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4937 for (flent = mcip->mci_flent_list; flent != NULL;
4938 flent = flent->fe_client_next) {
4939 mci_vid = i_mac_flow_vid(flent);
4940 if (vid == mci_vid) {
4941 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE);
4942 rw_exit(&mcip->mci_rw_lock);
4943 return (B_TRUE);
4944 }
4945 }
4946
4947 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE);
4948 rw_exit(&mcip->mci_rw_lock);
4949 return (B_FALSE);
4950 }
4951
4952 /*
4953 * Get the flow entry for the specified <MAC addr, VID> tuple.
4954 */
4955 static flow_entry_t *
4956 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
4957 {
4958 mac_address_t *map = mcip->mci_unicast;
4959 flow_entry_t *flent;
4960 uint16_t vid;
4961 flow_desc_t flow_desc;
4962
4963 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4964
4965 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
4966 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
4967 return (NULL);
4968
4969 for (flent = mcip->mci_flent_list; flent != NULL;
4970 flent = flent->fe_client_next) {
4971 vid = i_mac_flow_vid(flent);
4972 if (vid == muip->mui_vid) {
4973 return (flent);
4974 }
4975 }
4976
4977 return (NULL);
4978 }
4979
4980 /*
4981 * Since mci_flent has the SRSs, when we want to remove it, we replace
4982 * the flow_desc_t in mci_flent with that of an existing flent and then
4983 * remove that flent instead of mci_flent.
4984 */
4985 static flow_entry_t *
4986 mac_client_swap_mciflent(mac_client_impl_t *mcip)
4987 {
4988 flow_entry_t *flent = mcip->mci_flent;
4989 flow_tab_t *ft = flent->fe_flow_tab;
4990 flow_entry_t *flent1;
4991 flow_desc_t fl_desc;
4992 char fl_name[MAXFLOWNAMELEN];
4993 int err;
4994
4995 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4996 ASSERT(mcip->mci_nflents > 1);
4997
4998 /* get the next flent following the primary flent */
4999 flent1 = mcip->mci_flent_list->fe_client_next;
5000 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
5001
5002 /*
5003 * Remove the flent from the flow table before updating the
5004 * flow descriptor as the hash depends on the flow descriptor.
5005 * This also helps incoming packet classification avoid having
5006 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
5007 * flow table is done under the fe_lock so that log or stat functions
5008 * see a self-consistent fe_flow_desc. The name and desc are specific
5009 * to a flow, the rest are shared by all the clients, including
5010 * resource control etc.
5011 */
5012 mac_flow_remove(ft, flent, B_TRUE);
5013 mac_flow_remove(ft, flent1, B_TRUE);
5014
5015 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
5016 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
5017
5018 /* update the primary flow entry */
5019 mutex_enter(&flent->fe_lock);
5020 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
5021 sizeof (flow_desc_t));
5022 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
5023 mutex_exit(&flent->fe_lock);
5024
5025 /* update the flow entry that is to be freed */
5026 mutex_enter(&flent1->fe_lock);
5027 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
5028 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
5029 mutex_exit(&flent1->fe_lock);
5030
5031 /* now reinsert the flow entries in the table */
5032 err = mac_flow_add(ft, flent);
5033 ASSERT(err == 0);
5034
5035 err = mac_flow_add(ft, flent1);
5036 ASSERT(err == 0);
5037
5038 return (flent1);
5039 }
5040
5041 /*
5042 * Return whether there is only one flow entry associated with this
5043 * MAC client.
5044 */
5045 static boolean_t
5046 mac_client_single_rcvr(mac_client_impl_t *mcip)
5047 {
5048 return (mcip->mci_nflents == 1);
5049 }
5050
5051 int
5052 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp)
5053 {
5054 boolean_t reset;
5055 uint32_t rings_needed;
5056 uint32_t rings_avail;
5057 mac_group_type_t gtype;
5058 mac_resource_props_t *mip_mrp;
5059
5060 if (mrp == NULL)
5061 return (0);
5062
5063 if (mrp->mrp_mask & MRP_PRIORITY) {
5064 mac_priority_level_t pri = mrp->mrp_priority;
5065
5066 if (pri < MPL_LOW || pri > MPL_RESET)
5067 return (EINVAL);
5068 }
5069
5070 if (mrp->mrp_mask & MRP_MAXBW) {
5071 uint64_t maxbw = mrp->mrp_maxbw;
5072
5073 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
5074 return (EINVAL);
5075 }
5076 if (mrp->mrp_mask & MRP_CPUS) {
5077 int i, j;
5078 mac_cpu_mode_t fanout;
5079
5080 if (mrp->mrp_ncpus > ncpus)
5081 return (EINVAL);
5082
5083 for (i = 0; i < mrp->mrp_ncpus; i++) {
5084 for (j = 0; j < mrp->mrp_ncpus; j++) {
5085 if (i != j &&
5086 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
5087 return (EINVAL);
5088 }
5089 }
5090 }
5091
5092 for (i = 0; i < mrp->mrp_ncpus; i++) {
5093 cpu_t *cp;
5094 int rv;
5095
5096 mutex_enter(&cpu_lock);
5097 cp = cpu_get(mrp->mrp_cpu[i]);
5098 if (cp != NULL)
5099 rv = cpu_is_online(cp);
5100 else
5101 rv = 0;
5102 mutex_exit(&cpu_lock);
5103 if (rv == 0)
5104 return (EINVAL);
5105 }
5106
5107 fanout = mrp->mrp_fanout_mode;
5108 if (fanout < 0 || fanout > MCM_CPUS)
5109 return (EINVAL);
5110 }
5111
5112 if (mrp->mrp_mask & MRP_PROTECT) {
5113 int err = mac_protect_validate(mrp);
5114 if (err != 0)
5115 return (err);
5116 }
5117
5118 if (!(mrp->mrp_mask & MRP_RX_RINGS) &&
5119 !(mrp->mrp_mask & MRP_TX_RINGS)) {
5120 return (0);
5121 }
5122
5123 /*
5124 * mip will be null when we come from mac_flow_create or
5125 * mac_link_flow_modify. In the latter case it is a user flow,
5126 * for which we don't support rings. In the former we would
5127 * have validated the props beforehand (i_mac_unicast_add ->
5128 * mac_client_set_resources -> validate for the primary and
5129 * vnic_dev_create -> mac_client_set_resources -> validate for
5130 * a vnic.
5131 */
5132 if (mip == NULL)
5133 return (0);
5134
5135 /*
5136 * We don't support setting rings property for a VNIC that is using a
5137 * primary address (VLAN)
5138 */
5139 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
5140 mac_is_vnic_primary((mac_handle_t)mip)) {
5141 return (ENOTSUP);
5142 }
5143
5144 mip_mrp = &mip->mi_resource_props;
5145 /*
5146 * The rings property should be validated against the NICs
5147 * resources
5148 */
5149 if (mip->mi_state_flags & MIS_IS_VNIC)
5150 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip);
5151
5152 reset = mrp->mrp_mask & MRP_RINGS_RESET;
5153 /*
5154 * If groups are not supported, return error.
5155 */
5156 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) ||
5157 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) {
5158 return (EINVAL);
5159 }
5160 /*
5161 * If we are just resetting, there is no validation needed.
5162 */
5163 if (reset)
5164 return (0);
5165
5166 if (mrp->mrp_mask & MRP_RX_RINGS) {
5167 rings_needed = mrp->mrp_nrxrings;
5168 /*
5169 * We just want to check if the number of additional
5170 * rings requested is available.
5171 */
5172 if (mip_mrp->mrp_mask & MRP_RX_RINGS) {
5173 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings)
5174 /* Just check for the additional rings */
5175 rings_needed -= mip_mrp->mrp_nrxrings;
5176 else
5177 /* We are not asking for additional rings */
5178 rings_needed = 0;
5179 }
5180 rings_avail = mip->mi_rxrings_avail;
5181 gtype = mip->mi_rx_group_type;
5182 } else {
5183 rings_needed = mrp->mrp_ntxrings;
5184 /* Similarly for the TX rings */
5185 if (mip_mrp->mrp_mask & MRP_TX_RINGS) {
5186 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings)
5187 /* Just check for the additional rings */
5188 rings_needed -= mip_mrp->mrp_ntxrings;
5189 else
5190 /* We are not asking for additional rings */
5191 rings_needed = 0;
5192 }
5193 rings_avail = mip->mi_txrings_avail;
5194 gtype = mip->mi_tx_group_type;
5195 }
5196
5197 /* Error if the group is dynamic .. */
5198 if (gtype == MAC_GROUP_TYPE_DYNAMIC) {
5199 /*
5200 * .. and rings specified are more than available.
5201 */
5202 if (rings_needed > rings_avail)
5203 return (EINVAL);
5204 } else {
5205 /*
5206 * OR group is static and we have specified some rings.
5207 */
5208 if (rings_needed > 0)
5209 return (EINVAL);
5210 }
5211 return (0);
5212 }
5213
5214 /*
5215 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
5216 * underlying physical link is down. This is to allow MAC clients to
5217 * communicate with other clients.
5218 */
5219 void
5220 mac_virtual_link_update(mac_impl_t *mip)
5221 {
5222 if (mip->mi_linkstate != LINK_STATE_UP)
5223 i_mac_notify(mip, MAC_NOTE_LINK);
5224 }
5225
5226 /*
5227 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
5228 * mac handle in the client.
5229 */
5230 void
5231 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh,
5232 mac_resource_props_t *mrp)
5233 {
5234 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5235 mac_impl_t *mip = (mac_impl_t *)mh;
5236
5237 mcip->mci_upper_mip = mip;
5238 /* If there are any properties, copy it over too */
5239 if (mrp != NULL) {
5240 bcopy(mrp, &mip->mi_resource_props,
5241 sizeof (mac_resource_props_t));
5242 }
5243 }
5244
5245 /*
5246 * Mark the mac as being used exclusively by the single mac client that is
5247 * doing some control operation on this mac. No further opens of this mac
5248 * will be allowed until this client calls mac_unmark_exclusive. The mac
5249 * client calling this function must already be in the mac perimeter
5250 */
5251 int
5252 mac_mark_exclusive(mac_handle_t mh)
5253 {
5254 mac_impl_t *mip = (mac_impl_t *)mh;
5255
5256 ASSERT(MAC_PERIM_HELD(mh));
5257 /*
5258 * Look up its entry in the global hash table.
5259 */
5260 rw_enter(&i_mac_impl_lock, RW_WRITER);
5261 if (mip->mi_state_flags & MIS_DISABLED) {
5262 rw_exit(&i_mac_impl_lock);
5263 return (ENOENT);
5264 }
5265
5266 /*
5267 * A reference to mac is held even if the link is not plumbed.
5268 * In i_dls_link_create() we open the MAC interface and hold the
5269 * reference. There is an additional reference for the mac_open
5270 * done in acquiring the mac perimeter
5271 */
5272 if (mip->mi_ref != 2) {
5273 rw_exit(&i_mac_impl_lock);
5274 return (EBUSY);
5275 }
5276
5277 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5278 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
5279 rw_exit(&i_mac_impl_lock);
5280 return (0);
5281 }
5282
5283 void
5284 mac_unmark_exclusive(mac_handle_t mh)
5285 {
5286 mac_impl_t *mip = (mac_impl_t *)mh;
5287
5288 ASSERT(MAC_PERIM_HELD(mh));
5289
5290 rw_enter(&i_mac_impl_lock, RW_WRITER);
5291 /* 1 for the creation and another for the perimeter */
5292 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5293 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
5294 rw_exit(&i_mac_impl_lock);
5295 }
5296
5297 /*
5298 * Set the MTU for the specified MAC.
5299 */
5300 int
5301 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
5302 {
5303 mac_impl_t *mip = (mac_impl_t *)mh;
5304 uint_t old_mtu;
5305 int rv = 0;
5306
5307 i_mac_perim_enter(mip);
5308
5309 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) {
5310 rv = ENOTSUP;
5311 goto bail;
5312 }
5313
5314 old_mtu = mip->mi_sdu_max;
5315
5316 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) {
5317 rv = EINVAL;
5318 goto bail;
5319 }
5320
5321 rw_enter(&mip->mi_rw_lock, RW_READER);
5322 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) {
5323 rv = EBUSY;
5324 rw_exit(&mip->mi_rw_lock);
5325 goto bail;
5326 }
5327 rw_exit(&mip->mi_rw_lock);
5328
5329 if (old_mtu != new_mtu) {
5330 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
5331 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
5332 if (rv != 0)
5333 goto bail;
5334 rv = mac_maxsdu_update(mh, new_mtu);
5335 ASSERT(rv == 0);
5336 }
5337
5338 bail:
5339 i_mac_perim_exit(mip);
5340
5341 if (rv == 0 && old_mtu_arg != NULL)
5342 *old_mtu_arg = old_mtu;
5343 return (rv);
5344 }
5345
5346 /*
5347 * Return the RX h/w information for the group indexed by grp_num.
5348 */
5349 void
5350 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5351 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5352 char *clnts_name)
5353 {
5354 mac_impl_t *mip = (mac_impl_t *)mh;
5355 mac_grp_client_t *mcip;
5356 uint_t i = 0, index = 0;
5357 mac_ring_t *ring;
5358
5359 /* Revisit when we implement fully dynamic group allocation */
5360 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
5361
5362 rw_enter(&mip->mi_rw_lock, RW_READER);
5363 *grp_num = mip->mi_rx_groups[grp_index].mrg_index;
5364 *type = mip->mi_rx_groups[grp_index].mrg_type;
5365 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
5366 ring = mip->mi_rx_groups[grp_index].mrg_rings;
5367 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count;
5368 index++) {
5369 rings[index] = ring->mr_index;
5370 ring = ring->mr_next;
5371 }
5372 /* Assuming the 1st is the default group */
5373 index = 0;
5374 if (grp_index == 0) {
5375 (void) strlcpy(clnts_name, "<default,mcast>,",
5376 MAXCLIENTNAMELEN);
5377 index += strlen("<default,mcast>,");
5378 }
5379 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
5380 mcip = mcip->mgc_next) {
5381 int name_len = strlen(mcip->mgc_client->mci_name);
5382
5383 /*
5384 * MAXCLIENTNAMELEN is the buffer size reserved for client
5385 * names.
5386 * XXXX Formating the client name string needs to be moved
5387 * to user land when fixing the size of dhi_clnts in
5388 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5389 * dhi_clntsin instead of MAXCLIENTNAMELEN
5390 */
5391 if (index + name_len >= MAXCLIENTNAMELEN) {
5392 index = MAXCLIENTNAMELEN;
5393 break;
5394 }
5395 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5396 name_len);
5397 index += name_len;
5398 clnts_name[index++] = ',';
5399 i++;
5400 }
5401
5402 /* Get rid of the last , */
5403 if (index > 0)
5404 clnts_name[index - 1] = '\0';
5405 *n_clnts = i;
5406 rw_exit(&mip->mi_rw_lock);
5407 }
5408
5409 /*
5410 * Return the TX h/w information for the group indexed by grp_num.
5411 */
5412 void
5413 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5414 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5415 char *clnts_name)
5416 {
5417 mac_impl_t *mip = (mac_impl_t *)mh;
5418 mac_grp_client_t *mcip;
5419 uint_t i = 0, index = 0;
5420 mac_ring_t *ring;
5421
5422 /* Revisit when we implement fully dynamic group allocation */
5423 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count);
5424
5425 rw_enter(&mip->mi_rw_lock, RW_READER);
5426 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ?
5427 mip->mi_tx_groups[grp_index].mrg_index : grp_index;
5428 *type = mip->mi_tx_groups[grp_index].mrg_type;
5429 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count;
5430 ring = mip->mi_tx_groups[grp_index].mrg_rings;
5431 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count;
5432 index++) {
5433 rings[index] = ring->mr_index;
5434 ring = ring->mr_next;
5435 }
5436 index = 0;
5437 /* Default group has an index of -1 */
5438 if (mip->mi_tx_groups[grp_index].mrg_index < 0) {
5439 (void) strlcpy(clnts_name, "<default>,",
5440 MAXCLIENTNAMELEN);
5441 index += strlen("<default>,");
5442 }
5443 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL;
5444 mcip = mcip->mgc_next) {
5445 int name_len = strlen(mcip->mgc_client->mci_name);
5446
5447 /*
5448 * MAXCLIENTNAMELEN is the buffer size reserved for client
5449 * names.
5450 * XXXX Formating the client name string needs to be moved
5451 * to user land when fixing the size of dhi_clnts in
5452 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5453 * dhi_clntsin instead of MAXCLIENTNAMELEN
5454 */
5455 if (index + name_len >= MAXCLIENTNAMELEN) {
5456 index = MAXCLIENTNAMELEN;
5457 break;
5458 }
5459 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5460 name_len);
5461 index += name_len;
5462 clnts_name[index++] = ',';
5463 i++;
5464 }
5465
5466 /* Get rid of the last , */
5467 if (index > 0)
5468 clnts_name[index - 1] = '\0';
5469 *n_clnts = i;
5470 rw_exit(&mip->mi_rw_lock);
5471 }
5472
5473 /*
5474 * Return the group count for RX or TX.
5475 */
5476 uint_t
5477 mac_hwgrp_num(mac_handle_t mh, int type)
5478 {
5479 mac_impl_t *mip = (mac_impl_t *)mh;
5480
5481 /*
5482 * Return the Rx and Tx group count; for the Tx we need to
5483 * include the default too.
5484 */
5485 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count :
5486 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0);
5487 }
5488
5489 /*
5490 * The total number of free TX rings for this MAC.
5491 */
5492 uint_t
5493 mac_txavail_get(mac_handle_t mh)
5494 {
5495 mac_impl_t *mip = (mac_impl_t *)mh;
5496
5497 return (mip->mi_txrings_avail);
5498 }
5499
5500 /*
5501 * The total number of free RX rings for this MAC.
5502 */
5503 uint_t
5504 mac_rxavail_get(mac_handle_t mh)
5505 {
5506 mac_impl_t *mip = (mac_impl_t *)mh;
5507
5508 return (mip->mi_rxrings_avail);
5509 }
5510
5511 /*
5512 * The total number of reserved RX rings on this MAC.
5513 */
5514 uint_t
5515 mac_rxrsvd_get(mac_handle_t mh)
5516 {
5517 mac_impl_t *mip = (mac_impl_t *)mh;
5518
5519 return (mip->mi_rxrings_rsvd);
5520 }
5521
5522 /*
5523 * The total number of reserved TX rings on this MAC.
5524 */
5525 uint_t
5526 mac_txrsvd_get(mac_handle_t mh)
5527 {
5528 mac_impl_t *mip = (mac_impl_t *)mh;
5529
5530 return (mip->mi_txrings_rsvd);
5531 }
5532
5533 /*
5534 * Total number of free RX groups on this MAC.
5535 */
5536 uint_t
5537 mac_rxhwlnksavail_get(mac_handle_t mh)
5538 {
5539 mac_impl_t *mip = (mac_impl_t *)mh;
5540
5541 return (mip->mi_rxhwclnt_avail);
5542 }
5543
5544 /*
5545 * Total number of RX groups reserved on this MAC.
5546 */
5547 uint_t
5548 mac_rxhwlnksrsvd_get(mac_handle_t mh)
5549 {
5550 mac_impl_t *mip = (mac_impl_t *)mh;
5551
5552 return (mip->mi_rxhwclnt_used);
5553 }
5554
5555 /*
5556 * Total number of free TX groups on this MAC.
5557 */
5558 uint_t
5559 mac_txhwlnksavail_get(mac_handle_t mh)
5560 {
5561 mac_impl_t *mip = (mac_impl_t *)mh;
5562
5563 return (mip->mi_txhwclnt_avail);
5564 }
5565
5566 /*
5567 * Total number of TX groups reserved on this MAC.
5568 */
5569 uint_t
5570 mac_txhwlnksrsvd_get(mac_handle_t mh)
5571 {
5572 mac_impl_t *mip = (mac_impl_t *)mh;
5573
5574 return (mip->mi_txhwclnt_used);
5575 }
5576
5577 /*
5578 * Initialize the rings property for a mac client. A non-0 value for
5579 * rxring or txring specifies the number of rings required, a value
5580 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need
5581 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE
5582 * means the system can decide whether it can give any rings or not.
5583 */
5584 void
5585 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings)
5586 {
5587 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5588 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
5589
5590 if (rxrings != MAC_RXRINGS_DONTCARE) {
5591 mrp->mrp_mask |= MRP_RX_RINGS;
5592 mrp->mrp_nrxrings = rxrings;
5593 }
5594
5595 if (txrings != MAC_TXRINGS_DONTCARE) {
5596 mrp->mrp_mask |= MRP_TX_RINGS;
5597 mrp->mrp_ntxrings = txrings;
5598 }
5599 }
5600
5601 boolean_t
5602 mac_get_promisc_filtered(mac_client_handle_t mch)
5603 {
5604 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5605
5606 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED);
5607 }
5608
5609 void
5610 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable)
5611 {
5612 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5613
5614 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5615 if (enable)
5616 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED;
5617 else
5618 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED;
5619 }