1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright 2017 RackTop Systems. 26 */ 27 28 /* 29 * - General Introduction: 30 * 31 * This file contains the implementation of the MAC client kernel 32 * API and related code. The MAC client API allows a kernel module 33 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 34 * It allows a MAC client to associate itself with a MAC address, 35 * VLANs, callback functions for data traffic and for promiscuous mode. 36 * The MAC client API is also used to specify the properties associated 37 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 38 * These properties are further used to determine the hardware resources 39 * to allocate to the various MAC clients. 40 * 41 * - Primary MAC clients: 42 * 43 * The MAC client API refers to "primary MAC clients". A primary MAC 44 * client is a client which "owns" the primary MAC address of 45 * the underlying MAC instance. The primary MAC address is called out 46 * since it is associated with specific semantics: the primary MAC 47 * address is the MAC address which is assigned to the IP interface 48 * when it is plumbed, and the primary MAC address is assigned 49 * to VLAN data-links. The primary address of a MAC instance can 50 * also change dynamically from under the MAC client, for example 51 * as a result of a change of state of a link aggregation. In that 52 * case the MAC layer automatically updates all data-structures which 53 * refer to the current value of the primary MAC address. Typical 54 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 55 * MAC client is the vnic driver. 56 * 57 * - Virtual Switching: 58 * 59 * The MAC layer implements a virtual switch between the MAC clients 60 * (primary and non-primary) defined on top of the same underlying 61 * NIC (physical, link aggregation, etc). The virtual switch is 62 * VLAN-aware, i.e. it allows multiple MAC clients to be member 63 * of one or more VLANs, and the virtual switch will distribute 64 * multicast tagged packets only to the member of the corresponding 65 * VLANs. 66 * 67 * - Upper vs Lower MAC: 68 * 69 * Creating a VNIC on top of a MAC instance effectively causes 70 * two MAC instances to be layered on top of each other, one for 71 * the VNIC(s), one for the underlying MAC instance (physical NIC, 72 * link aggregation, etc). In the code below we refer to the 73 * underlying NIC as the "lower MAC", and we refer to VNICs as 74 * the "upper MAC". 75 * 76 * - Pass-through for VNICs: 77 * 78 * When VNICs are created on top of an underlying MAC, this causes 79 * a layering of two MAC instances. Since the lower MAC already 80 * does the switching and demultiplexing to its MAC clients, the 81 * upper MAC would simply have to pass packets to the layer below 82 * or above it, which would introduce overhead. In order to avoid 83 * this overhead, the MAC layer implements a pass-through mechanism 84 * for VNICs. When a VNIC opens the lower MAC instance, it saves 85 * the MAC client handle it optains from the MAC layer. When a MAC 86 * client opens a VNIC (upper MAC), the MAC layer detects that 87 * the MAC being opened is a VNIC, and gets the MAC client handle 88 * that the VNIC driver obtained from the lower MAC. This exchange 89 * is done through a private capability between the MAC layer 90 * and the VNIC driver. The upper MAC then returns that handle 91 * directly to its MAC client. Any operation done by the upper 92 * MAC client is now done on the lower MAC client handle, which 93 * allows the VNIC driver to be completely bypassed for the 94 * performance sensitive data-path. 95 * 96 * - Secondary MACs for VNICs: 97 * 98 * VNICs support multiple upper mac clients to enable support for 99 * multiple MAC addresses on the VNIC. When the VNIC is created the 100 * initial mac client is the primary upper mac. Any additional mac 101 * clients are secondary macs. These are kept in sync with the primary 102 * (for things such as the rx function and resource control settings) 103 * using the same private capability interface between the MAC layer 104 * and the VNIC layer. 105 * 106 */ 107 108 #include <sys/types.h> 109 #include <sys/conf.h> 110 #include <sys/id_space.h> 111 #include <sys/esunddi.h> 112 #include <sys/stat.h> 113 #include <sys/mkdev.h> 114 #include <sys/stream.h> 115 #include <sys/strsun.h> 116 #include <sys/strsubr.h> 117 #include <sys/dlpi.h> 118 #include <sys/modhash.h> 119 #include <sys/mac_impl.h> 120 #include <sys/mac_client_impl.h> 121 #include <sys/mac_soft_ring.h> 122 #include <sys/mac_stat.h> 123 #include <sys/dls.h> 124 #include <sys/dld.h> 125 #include <sys/modctl.h> 126 #include <sys/fs/dv_node.h> 127 #include <sys/thread.h> 128 #include <sys/proc.h> 129 #include <sys/callb.h> 130 #include <sys/cpuvar.h> 131 #include <sys/atomic.h> 132 #include <sys/sdt.h> 133 #include <sys/mac_flow.h> 134 #include <sys/ddi_intr_impl.h> 135 #include <sys/disp.h> 136 #include <sys/sdt.h> 137 #include <sys/vnic.h> 138 #include <sys/vnic_impl.h> 139 #include <sys/vlan.h> 140 #include <inet/ip.h> 141 #include <inet/ip6.h> 142 #include <sys/exacct.h> 143 #include <sys/exacct_impl.h> 144 #include <inet/nd.h> 145 #include <sys/ethernet.h> 146 147 kmem_cache_t *mac_client_impl_cache; 148 kmem_cache_t *mac_promisc_impl_cache; 149 150 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 151 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 152 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 153 mac_unicast_impl_t *); 154 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 155 flow_entry_t *); 156 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 157 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 158 static void mac_virtual_link_update(mac_impl_t *); 159 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t, 160 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *); 161 static void mac_client_datapath_teardown(mac_client_handle_t, 162 mac_unicast_impl_t *, flow_entry_t *); 163 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *); 164 165 /* ARGSUSED */ 166 static int 167 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 168 { 169 int i; 170 mac_client_impl_t *mcip = buf; 171 172 bzero(buf, MAC_CLIENT_IMPL_SIZE); 173 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 174 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 175 176 ASSERT(mac_tx_percpu_cnt >= 0); 177 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 178 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 179 MUTEX_DRIVER, NULL); 180 } 181 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 182 183 return (0); 184 } 185 186 /* ARGSUSED */ 187 static void 188 i_mac_client_impl_dtor(void *buf, void *arg) 189 { 190 int i; 191 mac_client_impl_t *mcip = buf; 192 193 ASSERT(mcip->mci_promisc_list == NULL); 194 ASSERT(mcip->mci_unicast_list == NULL); 195 ASSERT(mcip->mci_state_flags == 0); 196 ASSERT(mcip->mci_tx_flag == 0); 197 198 mutex_destroy(&mcip->mci_tx_cb_lock); 199 200 ASSERT(mac_tx_percpu_cnt >= 0); 201 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 202 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 203 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 204 } 205 cv_destroy(&mcip->mci_tx_cv); 206 } 207 208 /* ARGSUSED */ 209 static int 210 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 211 { 212 mac_promisc_impl_t *mpip = buf; 213 214 bzero(buf, sizeof (mac_promisc_impl_t)); 215 mpip->mpi_mci_link.mcb_objp = buf; 216 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 217 mpip->mpi_mi_link.mcb_objp = buf; 218 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 219 return (0); 220 } 221 222 /* ARGSUSED */ 223 static void 224 i_mac_promisc_impl_dtor(void *buf, void *arg) 225 { 226 mac_promisc_impl_t *mpip = buf; 227 228 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 229 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 230 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 231 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 232 233 mpip->mpi_mci_link.mcb_objp = NULL; 234 mpip->mpi_mci_link.mcb_objsize = 0; 235 mpip->mpi_mi_link.mcb_objp = NULL; 236 mpip->mpi_mi_link.mcb_objsize = 0; 237 238 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 239 mpip->mpi_mci_link.mcb_objsize = 0; 240 } 241 242 void 243 mac_client_init(void) 244 { 245 ASSERT(mac_tx_percpu_cnt >= 0); 246 247 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 248 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 249 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 250 ASSERT(mac_client_impl_cache != NULL); 251 252 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 253 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 254 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 255 ASSERT(mac_promisc_impl_cache != NULL); 256 } 257 258 void 259 mac_client_fini(void) 260 { 261 kmem_cache_destroy(mac_client_impl_cache); 262 kmem_cache_destroy(mac_promisc_impl_cache); 263 } 264 265 /* 266 * Return the lower MAC client handle from the VNIC driver for the 267 * specified VNIC MAC instance. 268 */ 269 mac_client_impl_t * 270 mac_vnic_lower(mac_impl_t *mip) 271 { 272 mac_capab_vnic_t cap; 273 mac_client_impl_t *mcip; 274 275 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 276 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 277 278 return (mcip); 279 } 280 281 /* 282 * Update the secondary macs 283 */ 284 void 285 mac_vnic_secondary_update(mac_impl_t *mip) 286 { 287 mac_capab_vnic_t cap; 288 289 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 290 cap.mcv_mac_secondary_update(cap.mcv_arg); 291 } 292 293 /* 294 * Return the MAC client handle of the primary MAC client for the 295 * specified MAC instance, or NULL otherwise. 296 */ 297 mac_client_impl_t * 298 mac_primary_client_handle(mac_impl_t *mip) 299 { 300 mac_client_impl_t *mcip; 301 302 if (mip->mi_state_flags & MIS_IS_VNIC) 303 return (mac_vnic_lower(mip)); 304 305 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 306 307 for (mcip = mip->mi_clients_list; mcip != NULL; 308 mcip = mcip->mci_client_next) { 309 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 310 return (mcip); 311 } 312 return (NULL); 313 } 314 315 /* 316 * Open a MAC specified by its MAC name. 317 */ 318 int 319 mac_open(const char *macname, mac_handle_t *mhp) 320 { 321 mac_impl_t *mip; 322 int err; 323 324 /* 325 * Look up its entry in the global hash table. 326 */ 327 if ((err = mac_hold(macname, &mip)) != 0) 328 return (err); 329 330 /* 331 * Hold the dip associated to the MAC to prevent it from being 332 * detached. For a softmac, its underlying dip is held by the 333 * mi_open() callback. 334 * 335 * This is done to be more tolerant with some defective drivers, 336 * which incorrectly handle mac_unregister() failure in their 337 * xxx_detach() routine. For example, some drivers ignore the 338 * failure of mac_unregister() and free all resources that 339 * that are needed for data transmition. 340 */ 341 e_ddi_hold_devi(mip->mi_dip); 342 343 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 344 *mhp = (mac_handle_t)mip; 345 return (0); 346 } 347 348 /* 349 * The mac perimeter is used in both mac_open and mac_close by the 350 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 351 */ 352 i_mac_perim_enter(mip); 353 mip->mi_oref++; 354 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 355 *mhp = (mac_handle_t)mip; 356 i_mac_perim_exit(mip); 357 return (0); 358 } 359 mip->mi_oref--; 360 ddi_release_devi(mip->mi_dip); 361 mac_rele(mip); 362 i_mac_perim_exit(mip); 363 return (err); 364 } 365 366 /* 367 * Open a MAC specified by its linkid. 368 */ 369 int 370 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 371 { 372 dls_dl_handle_t dlh; 373 int err; 374 375 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 376 return (err); 377 378 dls_devnet_prop_task_wait(dlh); 379 380 err = mac_open(dls_devnet_mac(dlh), mhp); 381 382 dls_devnet_rele_tmp(dlh); 383 return (err); 384 } 385 386 /* 387 * Open a MAC specified by its link name. 388 */ 389 int 390 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 391 { 392 datalink_id_t linkid; 393 int err; 394 395 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 396 return (err); 397 return (mac_open_by_linkid(linkid, mhp)); 398 } 399 400 /* 401 * Close the specified MAC. 402 */ 403 void 404 mac_close(mac_handle_t mh) 405 { 406 mac_impl_t *mip = (mac_impl_t *)mh; 407 408 i_mac_perim_enter(mip); 409 /* 410 * The mac perimeter is used in both mac_open and mac_close by the 411 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 412 */ 413 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 414 ASSERT(mip->mi_oref != 0); 415 if (--mip->mi_oref == 0) { 416 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 417 mip->mi_close(mip->mi_driver); 418 } 419 } 420 i_mac_perim_exit(mip); 421 ddi_release_devi(mip->mi_dip); 422 mac_rele(mip); 423 } 424 425 /* 426 * Misc utility functions to retrieve various information about a MAC 427 * instance or a MAC client. 428 */ 429 430 const mac_info_t * 431 mac_info(mac_handle_t mh) 432 { 433 return (&((mac_impl_t *)mh)->mi_info); 434 } 435 436 dev_info_t * 437 mac_devinfo_get(mac_handle_t mh) 438 { 439 return (((mac_impl_t *)mh)->mi_dip); 440 } 441 442 void * 443 mac_driver(mac_handle_t mh) 444 { 445 return (((mac_impl_t *)mh)->mi_driver); 446 } 447 448 const char * 449 mac_name(mac_handle_t mh) 450 { 451 return (((mac_impl_t *)mh)->mi_name); 452 } 453 454 int 455 mac_type(mac_handle_t mh) 456 { 457 return (((mac_impl_t *)mh)->mi_type->mt_type); 458 } 459 460 int 461 mac_nativetype(mac_handle_t mh) 462 { 463 return (((mac_impl_t *)mh)->mi_type->mt_nativetype); 464 } 465 466 char * 467 mac_client_name(mac_client_handle_t mch) 468 { 469 return (((mac_client_impl_t *)mch)->mci_name); 470 } 471 472 minor_t 473 mac_minor(mac_handle_t mh) 474 { 475 return (((mac_impl_t *)mh)->mi_minor); 476 } 477 478 /* 479 * Return the VID associated with a MAC client. This function should 480 * be called for clients which are associated with only one VID. 481 */ 482 uint16_t 483 mac_client_vid(mac_client_handle_t mch) 484 { 485 uint16_t vid = VLAN_ID_NONE; 486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 487 flow_desc_t flow_desc; 488 489 if (mcip->mci_nflents == 0) 490 return (vid); 491 492 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 493 494 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 495 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 496 vid = flow_desc.fd_vid; 497 498 return (vid); 499 } 500 501 /* 502 * Return whether the specified MAC client corresponds to a VLAN VNIC. 503 */ 504 boolean_t 505 mac_client_is_vlan_vnic(mac_client_handle_t mch) 506 { 507 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 508 509 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) && 510 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0)); 511 } 512 513 /* 514 * Return the link speed associated with the specified MAC client. 515 * 516 * The link speed of a MAC client is equal to the smallest value of 517 * 1) the current link speed of the underlying NIC, or 518 * 2) the bandwidth limit set for the MAC client. 519 * 520 * Note that the bandwidth limit can be higher than the speed 521 * of the underlying NIC. This is allowed to avoid spurious 522 * administration action failures or artifically lowering the 523 * bandwidth limit of a link that may have temporarily lowered 524 * its link speed due to hardware problem or administrator action. 525 */ 526 static uint64_t 527 mac_client_ifspeed(mac_client_impl_t *mcip) 528 { 529 mac_impl_t *mip = mcip->mci_mip; 530 uint64_t nic_speed; 531 532 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 533 534 if (nic_speed == 0) { 535 return (0); 536 } else { 537 uint64_t policy_limit = (uint64_t)-1; 538 539 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 540 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 541 542 return (MIN(policy_limit, nic_speed)); 543 } 544 } 545 546 /* 547 * Return the link state of the specified client. If here are more 548 * than one clients of the underying mac_impl_t, the link state 549 * will always be UP regardless of the link state of the underlying 550 * mac_impl_t. This is needed to allow the MAC clients to continue 551 * to communicate with each other even when the physical link of 552 * their mac_impl_t is down. 553 */ 554 static uint64_t 555 mac_client_link_state(mac_client_impl_t *mcip) 556 { 557 mac_impl_t *mip = mcip->mci_mip; 558 uint16_t vid; 559 mac_client_impl_t *mci_list; 560 mac_unicast_impl_t *mui_list, *oth_mui_list; 561 562 /* 563 * Returns LINK_STATE_UP if there are other MAC clients defined on 564 * mac_impl_t which share same VLAN ID as that of mcip. Note that 565 * if 'mcip' has more than one VID's then we match ANY one of the 566 * VID's with other MAC client's VID's and return LINK_STATE_UP. 567 */ 568 rw_enter(&mcip->mci_rw_lock, RW_READER); 569 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 570 mui_list = mui_list->mui_next) { 571 vid = mui_list->mui_vid; 572 for (mci_list = mip->mi_clients_list; mci_list != NULL; 573 mci_list = mci_list->mci_client_next) { 574 if (mci_list == mcip) 575 continue; 576 for (oth_mui_list = mci_list->mci_unicast_list; 577 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 578 mui_next) { 579 if (vid == oth_mui_list->mui_vid) { 580 rw_exit(&mcip->mci_rw_lock); 581 return (LINK_STATE_UP); 582 } 583 } 584 } 585 } 586 rw_exit(&mcip->mci_rw_lock); 587 588 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 589 } 590 591 /* 592 * These statistics are consumed by dladm show-link -s <vnic>, 593 * dladm show-vnic -s and netstat. With the introduction of dlstat, 594 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while 595 * netstat will consume from kstats introduced for dlstat. This code 596 * will be removed at that time. 597 */ 598 599 /* 600 * Return the statistics of a MAC client. These statistics are different 601 * then the statistics of the underlying MAC which are returned by 602 * mac_stat_get(). 603 * 604 * Note that for things based on the tx and rx stats, mac will end up clobbering 605 * those stats when the underlying set of rings in the srs changes. As such, we 606 * need to source not only the current set, but also the historical set when 607 * returning to the client, lest our counters appear to go backwards. 608 */ 609 uint64_t 610 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 611 { 612 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 613 mac_impl_t *mip = mcip->mci_mip; 614 flow_entry_t *flent = mcip->mci_flent; 615 mac_soft_ring_set_t *mac_srs; 616 mac_rx_stats_t *mac_rx_stat, *old_rx_stat; 617 mac_tx_stats_t *mac_tx_stat, *old_tx_stat; 618 int i; 619 uint64_t val = 0; 620 621 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 622 mac_tx_stat = &mac_srs->srs_tx.st_stat; 623 old_rx_stat = &mcip->mci_misc_stat.mms_defunctrxlanestats; 624 old_tx_stat = &mcip->mci_misc_stat.mms_defuncttxlanestats; 625 626 switch (stat) { 627 case MAC_STAT_LINK_STATE: 628 val = mac_client_link_state(mcip); 629 break; 630 case MAC_STAT_LINK_UP: 631 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 632 break; 633 case MAC_STAT_PROMISC: 634 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 635 break; 636 case MAC_STAT_LOWLINK_STATE: 637 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE); 638 break; 639 case MAC_STAT_IFSPEED: 640 val = mac_client_ifspeed(mcip); 641 break; 642 case MAC_STAT_MULTIRCV: 643 val = mcip->mci_misc_stat.mms_multircv; 644 break; 645 case MAC_STAT_BRDCSTRCV: 646 val = mcip->mci_misc_stat.mms_brdcstrcv; 647 break; 648 case MAC_STAT_MULTIXMT: 649 val = mcip->mci_misc_stat.mms_multixmt; 650 break; 651 case MAC_STAT_BRDCSTXMT: 652 val = mcip->mci_misc_stat.mms_brdcstxmt; 653 break; 654 case MAC_STAT_OBYTES: 655 val = mac_tx_stat->mts_obytes; 656 val += old_tx_stat->mts_obytes; 657 break; 658 case MAC_STAT_OPACKETS: 659 val = mac_tx_stat->mts_opackets; 660 val += old_tx_stat->mts_opackets; 661 break; 662 case MAC_STAT_OERRORS: 663 val = mac_tx_stat->mts_oerrors; 664 val += old_tx_stat->mts_oerrors; 665 break; 666 case MAC_STAT_IPACKETS: 667 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 668 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 669 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 670 val += mac_rx_stat->mrs_intrcnt + 671 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 672 } 673 val += old_rx_stat->mrs_intrcnt + old_rx_stat->mrs_pollcnt + 674 old_rx_stat->mrs_lclcnt; 675 break; 676 case MAC_STAT_RBYTES: 677 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 678 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 679 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 680 val += mac_rx_stat->mrs_intrbytes + 681 mac_rx_stat->mrs_pollbytes + 682 mac_rx_stat->mrs_lclbytes; 683 } 684 val += old_rx_stat->mrs_intrbytes + old_rx_stat->mrs_pollbytes + 685 old_rx_stat->mrs_lclbytes; 686 break; 687 case MAC_STAT_IERRORS: 688 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 689 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 690 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 691 val += mac_rx_stat->mrs_ierrors; 692 } 693 val += old_rx_stat->mrs_ierrors; 694 break; 695 default: 696 val = mac_driver_stat_default(mip, stat); 697 break; 698 } 699 700 return (val); 701 } 702 703 /* 704 * Return the statistics of the specified MAC instance. 705 */ 706 uint64_t 707 mac_stat_get(mac_handle_t mh, uint_t stat) 708 { 709 mac_impl_t *mip = (mac_impl_t *)mh; 710 uint64_t val; 711 int ret; 712 713 /* 714 * The range of stat determines where it is maintained. Stat 715 * values from 0 up to (but not including) MAC_STAT_MIN are 716 * mainteined by the mac module itself. Everything else is 717 * maintained by the driver. 718 * 719 * If the mac_impl_t being queried corresponds to a VNIC, 720 * the stats need to be queried from the lower MAC client 721 * corresponding to the VNIC. (The mac_link_update() 722 * invoked by the driver to the lower MAC causes the *lower 723 * MAC* to update its mi_linkstate, and send a notification 724 * to its MAC clients. Due to the VNIC passthrough, 725 * these notifications are sent to the upper MAC clients 726 * of the VNIC directly, and the upper mac_impl_t of the VNIC 727 * does not have a valid mi_linkstate. 728 */ 729 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 730 /* these stats are maintained by the mac module itself */ 731 switch (stat) { 732 case MAC_STAT_LINK_STATE: 733 return (mip->mi_linkstate); 734 case MAC_STAT_LINK_UP: 735 return (mip->mi_linkstate == LINK_STATE_UP); 736 case MAC_STAT_PROMISC: 737 return (mip->mi_devpromisc != 0); 738 case MAC_STAT_LOWLINK_STATE: 739 return (mip->mi_lowlinkstate); 740 default: 741 ASSERT(B_FALSE); 742 } 743 } 744 745 /* 746 * Call the driver to get the given statistic. 747 */ 748 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 749 if (ret != 0) { 750 /* 751 * The driver doesn't support this statistic. Get the 752 * statistic's default value. 753 */ 754 val = mac_driver_stat_default(mip, stat); 755 } 756 return (val); 757 } 758 759 /* 760 * Query hardware rx ring corresponding to the pseudo ring. 761 */ 762 uint64_t 763 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 764 { 765 return (mac_rx_ring_stat_get(handle, stat)); 766 } 767 768 /* 769 * Query hardware tx ring corresponding to the pseudo ring. 770 */ 771 uint64_t 772 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 773 { 774 return (mac_tx_ring_stat_get(handle, stat)); 775 } 776 777 /* 778 * Utility function which returns the VID associated with a flow entry. 779 */ 780 uint16_t 781 i_mac_flow_vid(flow_entry_t *flent) 782 { 783 flow_desc_t flow_desc; 784 785 mac_flow_get_desc(flent, &flow_desc); 786 787 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 788 return (flow_desc.fd_vid); 789 return (VLAN_ID_NONE); 790 } 791 792 /* 793 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 794 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 795 * length. 796 */ 797 boolean_t 798 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 799 { 800 mac_impl_t *mip = (mac_impl_t *)mh; 801 802 /* 803 * Verify the address. No lock is needed since mi_type and plugin 804 * details don't change after mac_register(). 805 */ 806 if ((len != mip->mi_type->mt_addr_length) || 807 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 808 mip->mi_pdata)) != 0) { 809 return (B_FALSE); 810 } else { 811 return (B_TRUE); 812 } 813 } 814 815 void 816 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 817 { 818 mac_impl_t *mip = (mac_impl_t *)mh; 819 820 if (min_sdu != NULL) 821 *min_sdu = mip->mi_sdu_min; 822 if (max_sdu != NULL) 823 *max_sdu = mip->mi_sdu_max; 824 } 825 826 void 827 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu, 828 uint_t *multicast_sdu) 829 { 830 mac_impl_t *mip = (mac_impl_t *)mh; 831 832 if (min_sdu != NULL) 833 *min_sdu = mip->mi_sdu_min; 834 if (max_sdu != NULL) 835 *max_sdu = mip->mi_sdu_max; 836 if (multicast_sdu != NULL) 837 *multicast_sdu = mip->mi_sdu_multicast; 838 } 839 840 /* 841 * Update the MAC unicast address of the specified client's flows. Currently 842 * only one unicast MAC unicast address is allowed per client. 843 */ 844 static void 845 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 846 { 847 mac_impl_t *mip = mcip->mci_mip; 848 flow_entry_t *flent = mcip->mci_flent; 849 mac_address_t *map = mcip->mci_unicast; 850 flow_desc_t flow_desc; 851 852 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 853 ASSERT(flent != NULL); 854 855 mac_flow_get_desc(flent, &flow_desc); 856 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 857 858 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 859 mac_flow_set_desc(flent, &flow_desc); 860 861 /* 862 * The v6 local and SLAAC addrs (used by mac protection) need to be 863 * regenerated because our mac address has changed. 864 */ 865 mac_protect_update_mac_token(mcip); 866 867 /* 868 * When there are multiple VLANs sharing the same MAC address, 869 * each gets its own MAC client, except when running on sun4v 870 * vsw. In that case the mci_flent_list is used to place 871 * multiple VLAN flows on one MAC client. If we ever get rid 872 * of vsw then this code can go, but until then we need to 873 * update all flow entries. 874 */ 875 for (flent = mcip->mci_flent_list; flent != NULL; 876 flent = flent->fe_client_next) { 877 mac_flow_get_desc(flent, &flow_desc); 878 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 879 flent->fe_type & FLOW_VNIC_MAC)) 880 continue; 881 882 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 883 mac_flow_set_desc(flent, &flow_desc); 884 } 885 } 886 887 /* 888 * Update all clients that share the same unicast address. 889 */ 890 void 891 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 892 { 893 mac_client_impl_t *mcip; 894 895 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 896 897 /* 898 * Find all clients that share the same unicast MAC address and update 899 * them appropriately. 900 */ 901 for (mcip = mip->mi_clients_list; mcip != NULL; 902 mcip = mcip->mci_client_next) { 903 /* 904 * Ignore clients that don't share this MAC address. 905 */ 906 if (map != mcip->mci_unicast) 907 continue; 908 909 /* 910 * Update those clients with same old unicast MAC address. 911 */ 912 mac_unicast_update_client_flow(mcip); 913 } 914 } 915 916 /* 917 * Update the unicast MAC address of the specified VNIC MAC client. 918 * 919 * Check whether the operation is valid. Any of following cases should fail: 920 * 921 * 1. It's a VLAN type of VNIC. 922 * 2. The new value is current "primary" MAC address. 923 * 3. The current MAC address is shared with other clients. 924 * 4. The new MAC address has been used. This case will be valid when 925 * client migration is fully supported. 926 */ 927 int 928 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 929 { 930 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 931 mac_impl_t *mip = mcip->mci_mip; 932 mac_address_t *map = mcip->mci_unicast; 933 int err; 934 935 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 936 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 937 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 938 939 i_mac_perim_enter(mip); 940 941 /* 942 * If this is a VLAN type of VNIC, it's using "primary" MAC address 943 * of the underlying interface. Must fail here. Refer to case 1 above. 944 */ 945 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 946 i_mac_perim_exit(mip); 947 return (ENOTSUP); 948 } 949 950 /* 951 * If the new address is the "primary" one, must fail. Refer to 952 * case 2 above. 953 */ 954 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 955 i_mac_perim_exit(mip); 956 return (EACCES); 957 } 958 959 /* 960 * If the address is shared by multiple clients, must fail. Refer 961 * to case 3 above. 962 */ 963 if (mac_check_macaddr_shared(map)) { 964 i_mac_perim_exit(mip); 965 return (EBUSY); 966 } 967 968 /* 969 * If the new address has been used, must fail for now. Refer to 970 * case 4 above. 971 */ 972 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 973 i_mac_perim_exit(mip); 974 return (ENOTSUP); 975 } 976 977 /* 978 * Update the MAC address. 979 */ 980 err = mac_update_macaddr(map, (uint8_t *)addr); 981 982 if (err != 0) { 983 i_mac_perim_exit(mip); 984 return (err); 985 } 986 987 /* 988 * Update all flows of this MAC client. 989 */ 990 mac_unicast_update_client_flow(mcip); 991 992 i_mac_perim_exit(mip); 993 return (0); 994 } 995 996 /* 997 * Program the new primary unicast address of the specified MAC. 998 * 999 * Function mac_update_macaddr() takes care different types of underlying 1000 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 1001 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 1002 * which will take care of updating the MAC address of the corresponding 1003 * MAC client. 1004 * 1005 * This is the only interface that allow the client to update the "primary" 1006 * MAC address of the underlying MAC. The new value must have not been 1007 * used by other clients. 1008 */ 1009 int 1010 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 1011 { 1012 mac_impl_t *mip = (mac_impl_t *)mh; 1013 mac_address_t *map; 1014 int err; 1015 1016 /* verify the address validity */ 1017 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 1018 return (EINVAL); 1019 1020 i_mac_perim_enter(mip); 1021 1022 /* 1023 * If the new value is the same as the current primary address value, 1024 * there's nothing to do. 1025 */ 1026 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 1027 i_mac_perim_exit(mip); 1028 return (0); 1029 } 1030 1031 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 1032 i_mac_perim_exit(mip); 1033 return (EBUSY); 1034 } 1035 1036 map = mac_find_macaddr(mip, mip->mi_addr); 1037 ASSERT(map != NULL); 1038 1039 /* 1040 * Update the MAC address. 1041 */ 1042 if (mip->mi_state_flags & MIS_IS_AGGR) { 1043 mac_capab_aggr_t aggr_cap; 1044 1045 /* 1046 * If the MAC is an aggregation, other than the unicast 1047 * addresses programming, aggr must be informed about this 1048 * primary unicst address change to change its MAC address 1049 * policy to be user-specified. 1050 */ 1051 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 1052 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 1053 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 1054 if (err == 0) 1055 bcopy(addr, map->ma_addr, map->ma_len); 1056 } else { 1057 err = mac_update_macaddr(map, (uint8_t *)addr); 1058 } 1059 1060 if (err != 0) { 1061 i_mac_perim_exit(mip); 1062 return (err); 1063 } 1064 1065 mac_unicast_update_clients(mip, map); 1066 1067 /* 1068 * Save the new primary MAC address in mac_impl_t. 1069 */ 1070 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 1071 1072 i_mac_perim_exit(mip); 1073 1074 if (err == 0) 1075 i_mac_notify(mip, MAC_NOTE_UNICST); 1076 1077 return (err); 1078 } 1079 1080 /* 1081 * Return the current primary MAC address of the specified MAC. 1082 */ 1083 void 1084 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 1085 { 1086 mac_impl_t *mip = (mac_impl_t *)mh; 1087 1088 rw_enter(&mip->mi_rw_lock, RW_READER); 1089 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 1090 rw_exit(&mip->mi_rw_lock); 1091 } 1092 1093 /* 1094 * Return the secondary MAC address for the specified handle 1095 */ 1096 void 1097 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr) 1098 { 1099 mac_client_impl_t *mcip = (mac_client_impl_t *)mh; 1100 1101 ASSERT(mcip->mci_unicast != NULL); 1102 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len); 1103 } 1104 1105 /* 1106 * Return information about the use of the primary MAC address of the 1107 * specified MAC instance: 1108 * 1109 * - if client_name is non-NULL, it must point to a string of at 1110 * least MAXNAMELEN bytes, and will be set to the name of the MAC 1111 * client which uses the primary MAC address. 1112 * 1113 * - if in_use is non-NULL, used to return whether the primary MAC 1114 * address is currently in use. 1115 */ 1116 void 1117 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 1118 { 1119 mac_impl_t *mip = (mac_impl_t *)mh; 1120 mac_client_impl_t *cur_client; 1121 1122 if (in_use != NULL) 1123 *in_use = B_FALSE; 1124 if (client_name != NULL) 1125 bzero(client_name, MAXNAMELEN); 1126 1127 /* 1128 * The mi_rw_lock is used to protect threads that don't hold the 1129 * mac perimeter to get a consistent view of the mi_clients_list. 1130 * Threads that modify the list must hold both the mac perimeter and 1131 * mi_rw_lock(RW_WRITER) 1132 */ 1133 rw_enter(&mip->mi_rw_lock, RW_READER); 1134 for (cur_client = mip->mi_clients_list; cur_client != NULL; 1135 cur_client = cur_client->mci_client_next) { 1136 if (mac_is_primary_client(cur_client) || 1137 (mip->mi_state_flags & MIS_IS_VNIC)) { 1138 rw_exit(&mip->mi_rw_lock); 1139 if (in_use != NULL) 1140 *in_use = B_TRUE; 1141 if (client_name != NULL) { 1142 bcopy(cur_client->mci_name, client_name, 1143 MAXNAMELEN); 1144 } 1145 return; 1146 } 1147 } 1148 rw_exit(&mip->mi_rw_lock); 1149 } 1150 1151 /* 1152 * Return the current destination MAC address of the specified MAC. 1153 */ 1154 boolean_t 1155 mac_dst_get(mac_handle_t mh, uint8_t *addr) 1156 { 1157 mac_impl_t *mip = (mac_impl_t *)mh; 1158 1159 rw_enter(&mip->mi_rw_lock, RW_READER); 1160 if (mip->mi_dstaddr_set) 1161 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length); 1162 rw_exit(&mip->mi_rw_lock); 1163 return (mip->mi_dstaddr_set); 1164 } 1165 1166 /* 1167 * Add the specified MAC client to the list of clients which opened 1168 * the specified MAC. 1169 */ 1170 static void 1171 mac_client_add(mac_client_impl_t *mcip) 1172 { 1173 mac_impl_t *mip = mcip->mci_mip; 1174 1175 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1176 1177 /* add VNIC to the front of the list */ 1178 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1179 mcip->mci_client_next = mip->mi_clients_list; 1180 mip->mi_clients_list = mcip; 1181 mip->mi_nclients++; 1182 rw_exit(&mip->mi_rw_lock); 1183 } 1184 1185 /* 1186 * Remove the specified MAC client from the list of clients which opened 1187 * the specified MAC. 1188 */ 1189 static void 1190 mac_client_remove(mac_client_impl_t *mcip) 1191 { 1192 mac_impl_t *mip = mcip->mci_mip; 1193 mac_client_impl_t **prev, *cclient; 1194 1195 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1196 1197 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1198 prev = &mip->mi_clients_list; 1199 cclient = *prev; 1200 while (cclient != NULL && cclient != mcip) { 1201 prev = &cclient->mci_client_next; 1202 cclient = *prev; 1203 } 1204 ASSERT(cclient != NULL); 1205 *prev = cclient->mci_client_next; 1206 mip->mi_nclients--; 1207 rw_exit(&mip->mi_rw_lock); 1208 } 1209 1210 static mac_unicast_impl_t * 1211 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1212 { 1213 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1214 1215 while ((muip != NULL) && (muip->mui_vid != vid)) 1216 muip = muip->mui_next; 1217 1218 return (muip); 1219 } 1220 1221 /* 1222 * Return whether the specified (MAC address, VID) tuple is already used by 1223 * one of the MAC clients associated with the specified MAC. 1224 */ 1225 static boolean_t 1226 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1227 { 1228 mac_client_impl_t *client; 1229 mac_address_t *map; 1230 1231 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1232 1233 for (client = mip->mi_clients_list; client != NULL; 1234 client = client->mci_client_next) { 1235 1236 /* 1237 * Ignore clients that don't have unicast address. 1238 */ 1239 if (client->mci_unicast_list == NULL) 1240 continue; 1241 1242 map = client->mci_unicast; 1243 1244 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1245 (mac_client_find_vid(client, vid) != NULL)) { 1246 return (B_TRUE); 1247 } 1248 } 1249 1250 return (B_FALSE); 1251 } 1252 1253 /* 1254 * Generate a random MAC address. The MAC address prefix is 1255 * stored in the array pointed to by mac_addr, and its length, in bytes, 1256 * is specified by prefix_len. The least significant bits 1257 * after prefix_len bytes are generated, and stored after the prefix 1258 * in the mac_addr array. 1259 */ 1260 int 1261 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1262 uint8_t *mac_addr, mac_diag_t *diag) 1263 { 1264 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1265 mac_impl_t *mip = mcip->mci_mip; 1266 size_t addr_len = mip->mi_type->mt_addr_length; 1267 1268 if (prefix_len >= addr_len) { 1269 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1270 return (EINVAL); 1271 } 1272 1273 /* check the prefix value */ 1274 if (prefix_len > 0) { 1275 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1276 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1277 addr_len)) { 1278 *diag = MAC_DIAG_MACPREFIX_INVALID; 1279 return (EINVAL); 1280 } 1281 } 1282 1283 /* generate the MAC address */ 1284 if (prefix_len < addr_len) { 1285 (void) random_get_pseudo_bytes(mac_addr + 1286 prefix_len, addr_len - prefix_len); 1287 } 1288 1289 *diag = 0; 1290 return (0); 1291 } 1292 1293 /* 1294 * Set the priority range for this MAC client. This will be used to 1295 * determine the absolute priority for the threads created for this 1296 * MAC client using the specified "low", "medium" and "high" level. 1297 * This will also be used for any subflows on this MAC client. 1298 */ 1299 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1300 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1301 MAXCLSYSPRI, (pri)); \ 1302 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1303 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1304 } 1305 1306 /* 1307 * MAC client open entry point. Return a new MAC client handle. Each 1308 * MAC client is associated with a name, specified through the 'name' 1309 * argument. 1310 */ 1311 int 1312 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1313 uint16_t flags) 1314 { 1315 mac_impl_t *mip = (mac_impl_t *)mh; 1316 mac_client_impl_t *mcip; 1317 int err = 0; 1318 boolean_t share_desired; 1319 flow_entry_t *flent = NULL; 1320 1321 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0; 1322 *mchp = NULL; 1323 1324 i_mac_perim_enter(mip); 1325 1326 if (mip->mi_state_flags & MIS_IS_VNIC) { 1327 /* 1328 * The underlying MAC is a VNIC. Return the MAC client 1329 * handle of the lower MAC which was obtained by 1330 * the VNIC driver when it did its mac_client_open(). 1331 */ 1332 1333 mcip = mac_vnic_lower(mip); 1334 1335 /* 1336 * Note that multiple mac clients share the same mcip in 1337 * this case. 1338 */ 1339 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1340 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1341 1342 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1343 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1344 1345 mip->mi_clients_list = mcip; 1346 i_mac_perim_exit(mip); 1347 *mchp = (mac_client_handle_t)mcip; 1348 1349 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *, 1350 mcip->mci_mip, mac_client_impl_t *, mcip); 1351 1352 return (err); 1353 } 1354 1355 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1356 1357 mcip->mci_mip = mip; 1358 mcip->mci_upper_mip = NULL; 1359 mcip->mci_rx_fn = mac_pkt_drop; 1360 mcip->mci_rx_arg = NULL; 1361 mcip->mci_rx_p_fn = NULL; 1362 mcip->mci_rx_p_arg = NULL; 1363 mcip->mci_p_unicast_list = NULL; 1364 mcip->mci_direct_rx_fn = NULL; 1365 mcip->mci_direct_rx_arg = NULL; 1366 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 1367 1368 mcip->mci_unicast_list = NULL; 1369 1370 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1371 mcip->mci_state_flags |= MCIS_IS_VNIC; 1372 1373 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1374 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1375 1376 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1377 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1378 1379 if (mip->mi_state_flags & MIS_IS_AGGR) 1380 mcip->mci_state_flags |= MCIS_IS_AGGR_CLIENT; 1381 1382 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1383 datalink_id_t linkid; 1384 1385 ASSERT(name == NULL); 1386 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1387 &linkid)) != 0) { 1388 goto done; 1389 } 1390 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1391 NULL, NULL)) != 0) { 1392 /* 1393 * Use mac name if dlmgmtd is not available. 1394 */ 1395 if (err == EBADF) { 1396 (void) strlcpy(mcip->mci_name, mip->mi_name, 1397 sizeof (mcip->mci_name)); 1398 err = 0; 1399 } else { 1400 goto done; 1401 } 1402 } 1403 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1404 } else { 1405 ASSERT(name != NULL); 1406 if (strlen(name) > MAXNAMELEN) { 1407 err = EINVAL; 1408 goto done; 1409 } 1410 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1411 } 1412 1413 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1414 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1415 1416 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR) 1417 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR; 1418 1419 mac_protect_init(mcip); 1420 1421 /* the subflow table will be created dynamically */ 1422 mcip->mci_subflow_tab = NULL; 1423 1424 mcip->mci_misc_stat.mms_multircv = 0; 1425 mcip->mci_misc_stat.mms_brdcstrcv = 0; 1426 mcip->mci_misc_stat.mms_multixmt = 0; 1427 mcip->mci_misc_stat.mms_brdcstxmt = 0; 1428 1429 /* Create an initial flow */ 1430 1431 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1432 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1433 FLOW_PRIMARY_MAC, &flent); 1434 if (err != 0) 1435 goto done; 1436 mcip->mci_flent = flent; 1437 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1438 flent->fe_mcip = mcip; 1439 1440 /* 1441 * Place initial creation reference on the flow. This reference 1442 * is released in the corresponding delete action viz. 1443 * mac_unicast_remove after waiting for all transient refs to 1444 * to go away. The wait happens in mac_flow_wait. 1445 */ 1446 FLOW_REFHOLD(flent); 1447 1448 /* 1449 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1450 * will have the right value for mac_rx_srs_setup(). 1451 */ 1452 mac_client_add(mcip); 1453 1454 mcip->mci_share = 0; 1455 if (share_desired) 1456 i_mac_share_alloc(mcip); 1457 1458 /* 1459 * We will do mimimal datapath setup to allow a MAC client to 1460 * transmit or receive non-unicast packets without waiting 1461 * for mac_unicast_add. 1462 */ 1463 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1464 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE, 1465 NULL, NULL, B_TRUE, NULL)) != 0) { 1466 goto done; 1467 } 1468 } 1469 1470 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1471 mcip->mci_mip, mac_client_impl_t *, mcip); 1472 1473 *mchp = (mac_client_handle_t)mcip; 1474 i_mac_perim_exit(mip); 1475 return (0); 1476 1477 done: 1478 i_mac_perim_exit(mip); 1479 mcip->mci_state_flags = 0; 1480 mcip->mci_tx_flag = 0; 1481 kmem_cache_free(mac_client_impl_cache, mcip); 1482 return (err); 1483 } 1484 1485 /* 1486 * Close the specified MAC client handle. 1487 */ 1488 void 1489 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1490 { 1491 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1492 mac_impl_t *mip = mcip->mci_mip; 1493 flow_entry_t *flent; 1494 1495 i_mac_perim_enter(mip); 1496 1497 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1498 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1499 1500 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1501 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1502 /* 1503 * This is an upper VNIC client initiated operation. 1504 * The lower MAC client will be closed by the VNIC driver 1505 * when the VNIC is deleted. 1506 */ 1507 1508 i_mac_perim_exit(mip); 1509 return; 1510 } 1511 1512 /* If we have only setup up minimal datapth setup, tear it down */ 1513 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1514 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL, 1515 mcip->mci_flent); 1516 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR; 1517 } 1518 1519 /* 1520 * Remove the flent associated with the MAC client 1521 */ 1522 flent = mcip->mci_flent; 1523 mcip->mci_flent = NULL; 1524 FLOW_FINAL_REFRELE(flent); 1525 1526 /* 1527 * MAC clients must remove the unicast addresses and promisc callbacks 1528 * they added before issuing a mac_client_close(). 1529 */ 1530 ASSERT(mcip->mci_unicast_list == NULL); 1531 ASSERT(mcip->mci_promisc_list == NULL); 1532 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1533 1534 i_mac_share_free(mcip); 1535 mac_protect_fini(mcip); 1536 mac_client_remove(mcip); 1537 1538 i_mac_perim_exit(mip); 1539 mcip->mci_subflow_tab = NULL; 1540 mcip->mci_state_flags = 0; 1541 mcip->mci_tx_flag = 0; 1542 kmem_cache_free(mac_client_impl_cache, mch); 1543 } 1544 1545 /* 1546 * Set the Rx bypass receive callback and return B_TRUE. Return 1547 * B_FALSE if it's not possible to enable bypass. 1548 */ 1549 boolean_t 1550 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1551 { 1552 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1553 mac_impl_t *mip = mcip->mci_mip; 1554 1555 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1556 1557 /* 1558 * If the client has more than one VLAN then process packets 1559 * through DLS. This should happen only when sun4v vsw is on 1560 * the scene. 1561 */ 1562 if (mcip->mci_nvids > 1) 1563 return (B_FALSE); 1564 1565 /* 1566 * These are not accessed directly in the data path, and hence 1567 * don't need any protection 1568 */ 1569 mcip->mci_direct_rx_fn = rx_fn; 1570 mcip->mci_direct_rx_arg = arg1; 1571 return (B_TRUE); 1572 } 1573 1574 /* 1575 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled. 1576 */ 1577 void 1578 mac_rx_bypass_enable(mac_client_handle_t mch) 1579 { 1580 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE; 1581 } 1582 1583 void 1584 mac_rx_bypass_disable(mac_client_handle_t mch) 1585 { 1586 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE; 1587 } 1588 1589 /* 1590 * Set the receive callback for the specified MAC client. There can be 1591 * at most one such callback per MAC client. 1592 */ 1593 void 1594 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1595 { 1596 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1597 mac_impl_t *mip = mcip->mci_mip; 1598 mac_impl_t *umip = mcip->mci_upper_mip; 1599 1600 /* 1601 * Instead of adding an extra set of locks and refcnts in 1602 * the datapath at the mac client boundary, we temporarily quiesce 1603 * the SRS and related entities. We then change the receive function 1604 * without interference from any receive data thread and then reenable 1605 * the data flow subsequently. 1606 */ 1607 i_mac_perim_enter(mip); 1608 mac_rx_client_quiesce(mch); 1609 1610 mcip->mci_rx_fn = rx_fn; 1611 mcip->mci_rx_arg = arg; 1612 mac_rx_client_restart(mch); 1613 i_mac_perim_exit(mip); 1614 1615 /* 1616 * If we're changing the Rx function on the primary MAC of a VNIC, 1617 * make sure any secondary addresses on the VNIC are updated as well. 1618 */ 1619 if (umip != NULL) { 1620 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 1621 mac_vnic_secondary_update(umip); 1622 } 1623 } 1624 1625 /* 1626 * Reset the receive callback for the specified MAC client. 1627 */ 1628 void 1629 mac_rx_clear(mac_client_handle_t mch) 1630 { 1631 mac_rx_set(mch, mac_pkt_drop, NULL); 1632 } 1633 1634 void 1635 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch) 1636 { 1637 mac_client_impl_t *smcip = (mac_client_impl_t *)smch; 1638 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch; 1639 flow_entry_t *flent = dmcip->mci_flent; 1640 1641 /* This should only be called to setup secondary macs */ 1642 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1643 1644 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg); 1645 dmcip->mci_promisc_list = smcip->mci_promisc_list; 1646 1647 /* 1648 * Duplicate the primary mac resources to the secondary. 1649 * Since we already validated the resource controls when setting 1650 * them on the primary, we can ignore errors here. 1651 */ 1652 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip)); 1653 } 1654 1655 /* 1656 * Called when removing a secondary MAC. Currently only clears the promisc_list 1657 * since we share the primary mac's promisc_list. 1658 */ 1659 void 1660 mac_secondary_cleanup(mac_client_handle_t mch) 1661 { 1662 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1663 flow_entry_t *flent = mcip->mci_flent; 1664 1665 /* This should only be called for secondary macs */ 1666 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1667 mcip->mci_promisc_list = NULL; 1668 } 1669 1670 /* 1671 * Walk the MAC client subflow table and updates their priority values. 1672 */ 1673 static int 1674 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1675 { 1676 mac_flow_update_priority(arg, flent); 1677 return (0); 1678 } 1679 1680 void 1681 mac_update_subflow_priority(mac_client_impl_t *mcip) 1682 { 1683 (void) mac_flow_walk(mcip->mci_subflow_tab, 1684 mac_update_subflow_priority_cb, mcip); 1685 } 1686 1687 /* 1688 * Modify the TX or RX ring properties. We could either just move around 1689 * rings, i.e add/remove rings given to a client. Or this might cause the 1690 * client to move from hardware based to software or the other way around. 1691 * If we want to reset this property, then we clear the mask, additionally 1692 * if the client was given a non-default group we remove all rings except 1693 * for 1 and give it back to the default group. 1694 */ 1695 int 1696 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp, 1697 mac_resource_props_t *tmrp) 1698 { 1699 mac_impl_t *mip = mcip->mci_mip; 1700 flow_entry_t *flent = mcip->mci_flent; 1701 uint8_t *mac_addr; 1702 int err = 0; 1703 mac_group_t *defgrp; 1704 mac_group_t *group; 1705 mac_group_t *ngrp; 1706 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip); 1707 uint_t ringcnt; 1708 boolean_t unspec; 1709 1710 if (mcip->mci_share != 0) 1711 return (EINVAL); 1712 1713 if (mrp->mrp_mask & MRP_RX_RINGS) { 1714 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 1715 group = flent->fe_rx_ring_group; 1716 defgrp = MAC_DEFAULT_RX_GROUP(mip); 1717 mac_addr = flent->fe_flow_desc.fd_dst_mac; 1718 1719 /* 1720 * No resulting change. If we are resetting on a client on 1721 * which there was no rx rings property. For dynamic group 1722 * if we are setting the same number of rings already set. 1723 * For static group if we are requesting a group again. 1724 */ 1725 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1726 if (!(tmrp->mrp_mask & MRP_RX_RINGS)) 1727 return (0); 1728 } else { 1729 if (unspec) { 1730 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 1731 return (0); 1732 } else if (mip->mi_rx_group_type == 1733 MAC_GROUP_TYPE_DYNAMIC) { 1734 if ((tmrp->mrp_mask & MRP_RX_RINGS) && 1735 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) && 1736 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) { 1737 return (0); 1738 } 1739 } 1740 } 1741 /* Resetting the prop */ 1742 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1743 /* 1744 * We will just keep one ring and give others back if 1745 * we are not the primary. For the primary we give 1746 * all the rings in the default group except the 1747 * default ring. If it is a static group, then 1748 * we don't do anything, but clear the MRP_RX_RINGS 1749 * flag. 1750 */ 1751 if (group != defgrp) { 1752 if (mip->mi_rx_group_type == 1753 MAC_GROUP_TYPE_DYNAMIC) { 1754 /* 1755 * This group has reserved rings 1756 * that need to be released now, 1757 * so does the group. 1758 */ 1759 MAC_RX_RING_RELEASED(mip, 1760 group->mrg_cur_count); 1761 MAC_RX_GRP_RELEASED(mip); 1762 if ((flent->fe_type & 1763 FLOW_PRIMARY_MAC) != 0) { 1764 if (mip->mi_nactiveclients == 1765 1) { 1766 (void) 1767 mac_rx_switch_group( 1768 mcip, group, 1769 defgrp); 1770 return (0); 1771 } else { 1772 cmrp->mrp_nrxrings = 1773 group-> 1774 mrg_cur_count + 1775 defgrp-> 1776 mrg_cur_count - 1; 1777 } 1778 } else { 1779 cmrp->mrp_nrxrings = 1; 1780 } 1781 (void) mac_group_ring_modify(mcip, 1782 group, defgrp); 1783 } else { 1784 /* 1785 * If this is a static group, we 1786 * need to release the group. The 1787 * client will remain in the same 1788 * group till some other client 1789 * needs this group. 1790 */ 1791 MAC_RX_GRP_RELEASED(mip); 1792 } 1793 /* Let check if we can give this an excl group */ 1794 } else if (group == defgrp) { 1795 /* 1796 * If multiple clients share an 1797 * address then they must stay on the 1798 * default group. 1799 */ 1800 if (mac_check_macaddr_shared(mcip->mci_unicast)) 1801 return (0); 1802 1803 ngrp = mac_reserve_rx_group(mcip, mac_addr, 1804 B_TRUE); 1805 /* Couldn't give it a group, that's fine */ 1806 if (ngrp == NULL) 1807 return (0); 1808 /* Switch to H/W */ 1809 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 1810 0) { 1811 mac_stop_group(ngrp); 1812 return (0); 1813 } 1814 } 1815 /* 1816 * If the client is in the default group, we will 1817 * just clear the MRP_RX_RINGS and leave it as 1818 * it rather than look for an exclusive group 1819 * for it. 1820 */ 1821 return (0); 1822 } 1823 1824 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) { 1825 /* 1826 * We are requesting Rx rings. Try to reserve 1827 * a non-default group. 1828 * 1829 * If multiple clients share an address then 1830 * they must stay on the default group. 1831 */ 1832 if (mac_check_macaddr_shared(mcip->mci_unicast)) 1833 return (EINVAL); 1834 1835 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 1836 if (ngrp == NULL) 1837 return (ENOSPC); 1838 1839 /* Switch to H/W */ 1840 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 1841 mac_release_rx_group(mcip, ngrp); 1842 return (ENOSPC); 1843 } 1844 MAC_RX_GRP_RESERVED(mip); 1845 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1846 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1847 } else if (group != defgrp && !unspec && 1848 mrp->mrp_nrxrings == 0) { 1849 /* Switch to S/W */ 1850 ringcnt = group->mrg_cur_count; 1851 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 1852 return (ENOSPC); 1853 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1854 MAC_RX_GRP_RELEASED(mip); 1855 if (mip->mi_rx_group_type == 1856 MAC_GROUP_TYPE_DYNAMIC) { 1857 MAC_RX_RING_RELEASED(mip, ringcnt); 1858 } 1859 } 1860 } else if (group != defgrp && mip->mi_rx_group_type == 1861 MAC_GROUP_TYPE_DYNAMIC) { 1862 ringcnt = group->mrg_cur_count; 1863 err = mac_group_ring_modify(mcip, group, defgrp); 1864 if (err != 0) 1865 return (err); 1866 /* 1867 * Update the accounting. If this group 1868 * already had explicitly reserved rings, 1869 * we need to update the rings based on 1870 * the new ring count. If this group 1871 * had not explicitly reserved rings, 1872 * then we just reserve the rings asked for 1873 * and reserve the group. 1874 */ 1875 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1876 if (ringcnt > group->mrg_cur_count) { 1877 MAC_RX_RING_RELEASED(mip, 1878 ringcnt - group->mrg_cur_count); 1879 } else { 1880 MAC_RX_RING_RESERVED(mip, 1881 group->mrg_cur_count - ringcnt); 1882 } 1883 } else { 1884 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count); 1885 MAC_RX_GRP_RESERVED(mip); 1886 } 1887 } 1888 } 1889 if (mrp->mrp_mask & MRP_TX_RINGS) { 1890 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 1891 group = flent->fe_tx_ring_group; 1892 defgrp = MAC_DEFAULT_TX_GROUP(mip); 1893 1894 /* 1895 * For static groups we only allow rings=0 or resetting the 1896 * rings property. 1897 */ 1898 if (mrp->mrp_ntxrings > 0 && 1899 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 1900 return (ENOTSUP); 1901 } 1902 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1903 if (!(tmrp->mrp_mask & MRP_TX_RINGS)) 1904 return (0); 1905 } else { 1906 if (unspec) { 1907 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 1908 return (0); 1909 } else if (mip->mi_tx_group_type == 1910 MAC_GROUP_TYPE_DYNAMIC) { 1911 if ((tmrp->mrp_mask & MRP_TX_RINGS) && 1912 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) && 1913 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) { 1914 return (0); 1915 } 1916 } 1917 } 1918 /* Resetting the prop */ 1919 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1920 if (group != defgrp) { 1921 if (mip->mi_tx_group_type == 1922 MAC_GROUP_TYPE_DYNAMIC) { 1923 ringcnt = group->mrg_cur_count; 1924 if ((flent->fe_type & 1925 FLOW_PRIMARY_MAC) != 0) { 1926 mac_tx_client_quiesce( 1927 (mac_client_handle_t) 1928 mcip); 1929 mac_tx_switch_group(mcip, 1930 group, defgrp); 1931 mac_tx_client_restart( 1932 (mac_client_handle_t) 1933 mcip); 1934 MAC_TX_GRP_RELEASED(mip); 1935 MAC_TX_RING_RELEASED(mip, 1936 ringcnt); 1937 return (0); 1938 } 1939 cmrp->mrp_ntxrings = 1; 1940 (void) mac_group_ring_modify(mcip, 1941 group, defgrp); 1942 /* 1943 * This group has reserved rings 1944 * that need to be released now. 1945 */ 1946 MAC_TX_RING_RELEASED(mip, ringcnt); 1947 } 1948 /* 1949 * If this is a static group, we 1950 * need to release the group. The 1951 * client will remain in the same 1952 * group till some other client 1953 * needs this group. 1954 */ 1955 MAC_TX_GRP_RELEASED(mip); 1956 } else if (group == defgrp && 1957 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) { 1958 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1959 if (ngrp == NULL) 1960 return (0); 1961 mac_tx_client_quiesce( 1962 (mac_client_handle_t)mcip); 1963 mac_tx_switch_group(mcip, defgrp, ngrp); 1964 mac_tx_client_restart( 1965 (mac_client_handle_t)mcip); 1966 } 1967 /* 1968 * If the client is in the default group, we will 1969 * just clear the MRP_TX_RINGS and leave it as 1970 * it rather than look for an exclusive group 1971 * for it. 1972 */ 1973 return (0); 1974 } 1975 1976 /* Switch to H/W */ 1977 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) { 1978 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1979 if (ngrp == NULL) 1980 return (ENOSPC); 1981 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1982 mac_tx_switch_group(mcip, defgrp, ngrp); 1983 mac_tx_client_restart((mac_client_handle_t)mcip); 1984 MAC_TX_GRP_RESERVED(mip); 1985 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1986 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1987 /* Switch to S/W */ 1988 } else if (group != defgrp && !unspec && 1989 mrp->mrp_ntxrings == 0) { 1990 /* Switch to S/W */ 1991 ringcnt = group->mrg_cur_count; 1992 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1993 mac_tx_switch_group(mcip, group, defgrp); 1994 mac_tx_client_restart((mac_client_handle_t)mcip); 1995 if (tmrp->mrp_mask & MRP_TX_RINGS) { 1996 MAC_TX_GRP_RELEASED(mip); 1997 if (mip->mi_tx_group_type == 1998 MAC_GROUP_TYPE_DYNAMIC) { 1999 MAC_TX_RING_RELEASED(mip, ringcnt); 2000 } 2001 } 2002 } else if (group != defgrp && mip->mi_tx_group_type == 2003 MAC_GROUP_TYPE_DYNAMIC) { 2004 ringcnt = group->mrg_cur_count; 2005 err = mac_group_ring_modify(mcip, group, defgrp); 2006 if (err != 0) 2007 return (err); 2008 /* 2009 * Update the accounting. If this group 2010 * already had explicitly reserved rings, 2011 * we need to update the rings based on 2012 * the new ring count. If this group 2013 * had not explicitly reserved rings, 2014 * then we just reserve the rings asked for 2015 * and reserve the group. 2016 */ 2017 if (tmrp->mrp_mask & MRP_TX_RINGS) { 2018 if (ringcnt > group->mrg_cur_count) { 2019 MAC_TX_RING_RELEASED(mip, 2020 ringcnt - group->mrg_cur_count); 2021 } else { 2022 MAC_TX_RING_RESERVED(mip, 2023 group->mrg_cur_count - ringcnt); 2024 } 2025 } else { 2026 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count); 2027 MAC_TX_GRP_RESERVED(mip); 2028 } 2029 } 2030 } 2031 return (0); 2032 } 2033 2034 /* 2035 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 2036 * to initialize the cpu and resource control structure in the 2037 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 2038 * properties before the flow entry for the unicast address was created). 2039 */ 2040 static int 2041 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2042 { 2043 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2044 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2045 mac_impl_t *umip = mcip->mci_upper_mip; 2046 int err = 0; 2047 flow_entry_t *flent = mcip->mci_flent; 2048 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip); 2049 2050 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2051 2052 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 2053 mcip->mci_upper_mip : mip, mrp); 2054 if (err != 0) 2055 return (err); 2056 2057 /* 2058 * Copy over the existing properties since mac_update_resources 2059 * will modify the client's mrp. Currently, the saved property 2060 * is used to determine the difference between existing and 2061 * modified rings property. 2062 */ 2063 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 2064 bcopy(nmrp, omrp, sizeof (*omrp)); 2065 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2066 if (MCIP_DATAPATH_SETUP(mcip)) { 2067 /* 2068 * We support rings only for primary client when there are 2069 * multiple clients sharing the same MAC address (e.g. VLAN). 2070 */ 2071 if (mrp->mrp_mask & MRP_RX_RINGS || 2072 mrp->mrp_mask & MRP_TX_RINGS) { 2073 2074 if ((err = mac_client_set_rings_prop(mcip, mrp, 2075 omrp)) != 0) { 2076 if (omrp->mrp_mask & MRP_RX_RINGS) { 2077 nmrp->mrp_mask |= MRP_RX_RINGS; 2078 nmrp->mrp_nrxrings = omrp->mrp_nrxrings; 2079 } else { 2080 nmrp->mrp_mask &= ~MRP_RX_RINGS; 2081 nmrp->mrp_nrxrings = 0; 2082 } 2083 if (omrp->mrp_mask & MRP_TX_RINGS) { 2084 nmrp->mrp_mask |= MRP_TX_RINGS; 2085 nmrp->mrp_ntxrings = omrp->mrp_ntxrings; 2086 } else { 2087 nmrp->mrp_mask &= ~MRP_TX_RINGS; 2088 nmrp->mrp_ntxrings = 0; 2089 } 2090 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC) 2091 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 2092 else 2093 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 2094 2095 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC) 2096 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 2097 else 2098 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 2099 kmem_free(omrp, sizeof (*omrp)); 2100 return (err); 2101 } 2102 2103 /* 2104 * If we modified the rings property of the primary 2105 * we need to update the property fields of its 2106 * VLANs as they inherit the primary's properites. 2107 */ 2108 if (mac_is_primary_client(mcip)) { 2109 mac_set_prim_vlan_rings(mip, 2110 MCIP_RESOURCE_PROPS(mcip)); 2111 } 2112 } 2113 /* 2114 * We have to set this prior to calling mac_flow_modify. 2115 */ 2116 if (mrp->mrp_mask & MRP_PRIORITY) { 2117 if (mrp->mrp_priority == MPL_RESET) { 2118 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2119 MPL_LINK_DEFAULT); 2120 } else { 2121 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2122 mrp->mrp_priority); 2123 } 2124 } 2125 2126 mac_flow_modify(mip->mi_flow_tab, flent, mrp); 2127 if (mrp->mrp_mask & MRP_PRIORITY) 2128 mac_update_subflow_priority(mcip); 2129 2130 /* Apply these resource settings to any secondary macs */ 2131 if (umip != NULL) { 2132 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 2133 mac_vnic_secondary_update(umip); 2134 } 2135 } 2136 kmem_free(omrp, sizeof (*omrp)); 2137 return (0); 2138 } 2139 2140 static int 2141 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 2142 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 2143 flow_entry_t **flent, mac_resource_props_t *mrp) 2144 { 2145 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2146 flow_desc_t flow_desc; 2147 char flowname[MAXFLOWNAMELEN]; 2148 int err; 2149 uint_t flent_flags; 2150 2151 /* 2152 * First unicast address being added, create a new flow 2153 * for that MAC client. 2154 */ 2155 bzero(&flow_desc, sizeof (flow_desc)); 2156 2157 ASSERT(mac_addr != NULL || 2158 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)); 2159 if (mac_addr != NULL) { 2160 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 2161 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 2162 } 2163 flow_desc.fd_mask = FLOW_LINK_DST; 2164 if (vid != 0) { 2165 flow_desc.fd_vid = vid; 2166 flow_desc.fd_mask |= FLOW_LINK_VID; 2167 } 2168 2169 /* 2170 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 2171 * and FLOW_VNIC. Even though they're a hack inherited 2172 * from the SRS code, we'll keep them for now. They're currently 2173 * consumed by mac_datapath_setup() to create the SRS. 2174 * That code should be eventually moved out of 2175 * mac_datapath_setup() and moved to a mac_srs_create() 2176 * function of some sort to keep things clean. 2177 * 2178 * Also, there's no reason why the SRS for the primary MAC 2179 * client should be different than any other MAC client. Until 2180 * this is cleaned-up, we support only one MAC unicast address 2181 * per client. 2182 * 2183 * We set FLOW_PRIMARY_MAC for the primary MAC address, 2184 * FLOW_VNIC for everything else. 2185 */ 2186 if (is_primary) 2187 flent_flags = FLOW_PRIMARY_MAC; 2188 else 2189 flent_flags = FLOW_VNIC_MAC; 2190 2191 /* 2192 * For the first flow we use the MAC client's name - mci_name, for 2193 * subsequent ones we just create a name with the VID. This is 2194 * so that we can add these flows to the same flow table. This is 2195 * fine as the flow name (except for the one with the MAC client's 2196 * name) is not visible. When the first flow is removed, we just replace 2197 * its fdesc with another from the list, so we will still retain the 2198 * flent with the MAC client's flow name. 2199 */ 2200 if (first_flow) { 2201 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 2202 } else { 2203 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 2204 flent_flags = FLOW_NO_STATS; 2205 } 2206 2207 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 2208 flent_flags, flent)) != 0) 2209 return (err); 2210 2211 mac_misc_stat_create(*flent); 2212 FLOW_MARK(*flent, FE_INCIPIENT); 2213 (*flent)->fe_mcip = mcip; 2214 2215 /* 2216 * Place initial creation reference on the flow. This reference 2217 * is released in the corresponding delete action viz. 2218 * mac_unicast_remove after waiting for all transient refs to 2219 * to go away. The wait happens in mac_flow_wait. 2220 * We have already held the reference in mac_client_open(). 2221 */ 2222 if (!first_flow) 2223 FLOW_REFHOLD(*flent); 2224 return (0); 2225 } 2226 2227 /* Refresh the multicast grouping for this VID. */ 2228 int 2229 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 2230 { 2231 flow_entry_t *flent = arg; 2232 mac_client_impl_t *mcip = flent->fe_mcip; 2233 uint16_t vid; 2234 flow_desc_t flow_desc; 2235 2236 mac_flow_get_desc(flent, &flow_desc); 2237 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 2238 flow_desc.fd_vid : VLAN_ID_NONE; 2239 2240 /* 2241 * We don't call mac_multicast_add()/mac_multicast_remove() as 2242 * we want to add/remove for this specific vid. 2243 */ 2244 if (add) { 2245 return (mac_bcast_add(mcip, addrp, vid, 2246 MAC_ADDRTYPE_MULTICAST)); 2247 } else { 2248 mac_bcast_delete(mcip, addrp, vid); 2249 return (0); 2250 } 2251 } 2252 2253 static void 2254 mac_update_single_active_client(mac_impl_t *mip) 2255 { 2256 mac_client_impl_t *client = NULL; 2257 2258 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2259 2260 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2261 if (mip->mi_nactiveclients == 1) { 2262 /* 2263 * Find the one active MAC client from the list of MAC 2264 * clients. The active MAC client has at least one 2265 * unicast address. 2266 */ 2267 for (client = mip->mi_clients_list; client != NULL; 2268 client = client->mci_client_next) { 2269 if (client->mci_unicast_list != NULL) 2270 break; 2271 } 2272 ASSERT(client != NULL); 2273 } 2274 2275 /* 2276 * mi_single_active_client is protected by the MAC impl's read/writer 2277 * lock, which allows mac_rx() to check the value of that pointer 2278 * as a reader. 2279 */ 2280 mip->mi_single_active_client = client; 2281 rw_exit(&mip->mi_rw_lock); 2282 } 2283 2284 /* 2285 * Set up the data path. Called from i_mac_unicast_add after having 2286 * done all the validations including making sure this is an active 2287 * client (i.e that is ready to process packets.) 2288 */ 2289 static int 2290 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid, 2291 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary, 2292 mac_unicast_impl_t *muip) 2293 { 2294 mac_impl_t *mip = mcip->mci_mip; 2295 boolean_t mac_started = B_FALSE; 2296 boolean_t bcast_added = B_FALSE; 2297 boolean_t nactiveclients_added = B_FALSE; 2298 flow_entry_t *flent; 2299 int err = 0; 2300 boolean_t no_unicast; 2301 2302 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2303 2304 if ((err = mac_start((mac_handle_t)mip)) != 0) 2305 goto bail; 2306 2307 mac_started = B_TRUE; 2308 2309 /* add the MAC client to the broadcast address group by default */ 2310 if (mip->mi_type->mt_brdcst_addr != NULL) { 2311 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 2312 MAC_ADDRTYPE_BROADCAST); 2313 if (err != 0) 2314 goto bail; 2315 bcast_added = B_TRUE; 2316 } 2317 2318 /* 2319 * If this is the first unicast address addition for this 2320 * client, reuse the pre-allocated larval flow entry associated with 2321 * the MAC client. 2322 */ 2323 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL; 2324 2325 /* We are configuring the unicast flow now */ 2326 if (!MCIP_DATAPATH_SETUP(mcip)) { 2327 2328 if (mrp != NULL) { 2329 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2330 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority : 2331 MPL_LINK_DEFAULT); 2332 } 2333 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2334 isprimary, B_TRUE, &flent, mrp)) != 0) 2335 goto bail; 2336 2337 mip->mi_nactiveclients++; 2338 nactiveclients_added = B_TRUE; 2339 2340 /* 2341 * This will allocate the RX ring group if possible for the 2342 * flow and program the software classifier as needed. 2343 */ 2344 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 2345 goto bail; 2346 2347 if (no_unicast) 2348 goto done_setup; 2349 /* 2350 * The unicast MAC address must have been added successfully. 2351 */ 2352 ASSERT(mcip->mci_unicast != NULL); 2353 2354 /* 2355 * Push down the sub-flows that were defined on this link 2356 * hitherto. The flows are added to the active flow table 2357 * and SRS, softrings etc. are created as needed. 2358 */ 2359 mac_link_init_flows((mac_client_handle_t)mcip); 2360 } else { 2361 mac_address_t *map = mcip->mci_unicast; 2362 2363 ASSERT(!no_unicast); 2364 /* 2365 * A unicast flow already exists for that MAC client 2366 * so this flow must be the same MAC address but with 2367 * a different VID. It has been checked by 2368 * mac_addr_in_use(). 2369 * 2370 * We will use the SRS etc. from the initial 2371 * mci_flent. We don't need to create a kstat for 2372 * this, as except for the fdesc, everything will be 2373 * used from the first flent. 2374 * 2375 * The only time we should see multiple flents on the 2376 * same MAC client is on the sun4v vsw. If we removed 2377 * that code we should be able to remove the entire 2378 * notion of multiple flents on a MAC client (this 2379 * doesn't affect sub/user flows because they have 2380 * their own list unrelated to mci_flent_list). 2381 */ 2382 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 2383 err = EINVAL; 2384 goto bail; 2385 } 2386 2387 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2388 isprimary, B_FALSE, &flent, NULL)) != 0) { 2389 goto bail; 2390 } 2391 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 2392 FLOW_FINAL_REFRELE(flent); 2393 goto bail; 2394 } 2395 2396 /* update the multicast group for this vid */ 2397 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2398 (void *)flent, B_TRUE); 2399 2400 } 2401 2402 /* populate the shared MAC address */ 2403 muip->mui_map = mcip->mci_unicast; 2404 2405 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 2406 muip->mui_next = mcip->mci_unicast_list; 2407 mcip->mci_unicast_list = muip; 2408 rw_exit(&mcip->mci_rw_lock); 2409 2410 done_setup: 2411 /* 2412 * First add the flent to the flow list of this mcip. Then set 2413 * the mip's mi_single_active_client if needed. The Rx path assumes 2414 * that mip->mi_single_active_client will always have an associated 2415 * flent. 2416 */ 2417 mac_client_add_to_flow_list(mcip, flent); 2418 if (nactiveclients_added) 2419 mac_update_single_active_client(mip); 2420 /* 2421 * Trigger a renegotiation of the capabilities when the number of 2422 * active clients changes from 1 to 2, since some of the capabilities 2423 * might have to be disabled. Also send a MAC_NOTE_LINK notification 2424 * to all the MAC clients whenever physical link is DOWN. 2425 */ 2426 if (mip->mi_nactiveclients == 2) { 2427 mac_capab_update((mac_handle_t)mip); 2428 mac_virtual_link_update(mip); 2429 } 2430 /* 2431 * Now that the setup is complete, clear the INCIPIENT flag. 2432 * The flag was set to avoid incoming packets seeing inconsistent 2433 * structures while the setup was in progress. Clear the mci_tx_flag 2434 * by calling mac_tx_client_block. It is possible that 2435 * mac_unicast_remove was called prior to this mac_unicast_add which 2436 * could have set the MCI_TX_QUIESCE flag. 2437 */ 2438 if (flent->fe_rx_ring_group != NULL) 2439 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 2440 FLOW_UNMARK(flent, FE_INCIPIENT); 2441 2442 /* 2443 * If this is an aggr port client, don't enable the flow's 2444 * datapath at this stage. Otherwise, bcast traffic could 2445 * arrive while the aggr port is in the process of 2446 * initializing. Instead, the flow's datapath is started later 2447 * when mac_client_set_flow_cb() is called. 2448 */ 2449 if ((mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) 2450 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 2451 2452 mac_tx_client_unblock(mcip); 2453 return (0); 2454 bail: 2455 if (bcast_added) 2456 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 2457 2458 if (nactiveclients_added) 2459 mip->mi_nactiveclients--; 2460 2461 if (mac_started) 2462 mac_stop((mac_handle_t)mip); 2463 2464 return (err); 2465 } 2466 2467 /* 2468 * Return the passive primary MAC client, if present. The passive client is 2469 * a stand-by client that has the same unicast address as another that is 2470 * currenly active. Once the active client goes away, the passive client 2471 * becomes active. 2472 */ 2473 static mac_client_impl_t * 2474 mac_get_passive_primary_client(mac_impl_t *mip) 2475 { 2476 mac_client_impl_t *mcip; 2477 2478 for (mcip = mip->mi_clients_list; mcip != NULL; 2479 mcip = mcip->mci_client_next) { 2480 if (mac_is_primary_client(mcip) && 2481 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2482 return (mcip); 2483 } 2484 } 2485 return (NULL); 2486 } 2487 2488 /* 2489 * Add a new unicast address to the MAC client. 2490 * 2491 * The MAC address can be specified either by value, or the MAC client 2492 * can specify that it wants to use the primary MAC address of the 2493 * underlying MAC. See the introductory comments at the beginning 2494 * of this file for more more information on primary MAC addresses. 2495 * 2496 * Note also the tuple (MAC address, VID) must be unique 2497 * for the MAC clients defined on top of the same underlying MAC 2498 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 2499 * 2500 * In no case can a client use the PVID for the MAC, if the MAC has one set. 2501 */ 2502 int 2503 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2504 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2505 { 2506 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2507 mac_impl_t *mip = mcip->mci_mip; 2508 int err; 2509 uint_t mac_len = mip->mi_type->mt_addr_length; 2510 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 2511 boolean_t fastpath_disabled = B_FALSE; 2512 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 2513 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 2514 mac_resource_props_t *mrp; 2515 boolean_t passive_client = B_FALSE; 2516 mac_unicast_impl_t *muip; 2517 boolean_t is_vnic_primary = 2518 (flags & MAC_UNICAST_VNIC_PRIMARY); 2519 2520 /* 2521 * When the VID is non-zero the underlying MAC cannot be a 2522 * VNIC. I.e., dladm create-vlan cannot take a VNIC as 2523 * argument, only the primary MAC client. 2524 */ 2525 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != VLAN_ID_NONE))); 2526 2527 /* 2528 * Can't unicast add if the client asked only for minimal datapath 2529 * setup. 2530 */ 2531 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) 2532 return (ENOTSUP); 2533 2534 /* 2535 * Check for an attempted use of the current Port VLAN ID, if enabled. 2536 * No client may use it. 2537 */ 2538 if (mip->mi_pvid != VLAN_ID_NONE && vid == mip->mi_pvid) 2539 return (EBUSY); 2540 2541 /* 2542 * Check whether it's the primary client and flag it. 2543 */ 2544 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 2545 vid == VLAN_ID_NONE) 2546 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 2547 2548 /* 2549 * is_vnic_primary is true when we come here as a VLAN VNIC 2550 * which uses the primary MAC client's address but with a non-zero 2551 * VID. In this case the MAC address is not specified by an upper 2552 * MAC client. 2553 */ 2554 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 2555 !is_vnic_primary) { 2556 /* 2557 * The address is being set by the upper MAC client 2558 * of a VNIC. The MAC address was already set by the 2559 * VNIC driver during VNIC creation. 2560 * 2561 * Note: a VNIC has only one MAC address. We return 2562 * the MAC unicast address handle of the lower MAC client 2563 * corresponding to the VNIC. We allocate a new entry 2564 * which is flagged appropriately, so that mac_unicast_remove() 2565 * doesn't attempt to free the original entry that 2566 * was allocated by the VNIC driver. 2567 */ 2568 ASSERT(mcip->mci_unicast != NULL); 2569 2570 /* Check for VLAN flags, if present */ 2571 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2572 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2573 2574 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2575 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2576 2577 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2578 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2579 2580 /* 2581 * Ensure that the primary unicast address of the VNIC 2582 * is added only once unless we have the 2583 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not 2584 * a passive MAC client). 2585 */ 2586 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) { 2587 if ((mcip->mci_flags & 2588 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2589 (mcip->mci_flags & 2590 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2591 return (EBUSY); 2592 } 2593 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2594 passive_client = B_TRUE; 2595 } 2596 2597 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2598 2599 /* 2600 * Create a handle for vid 0. 2601 */ 2602 ASSERT(vid == VLAN_ID_NONE); 2603 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2604 muip->mui_vid = vid; 2605 *mah = (mac_unicast_handle_t)muip; 2606 /* 2607 * This will be used by the caller to defer setting the 2608 * rx functions. 2609 */ 2610 if (passive_client) 2611 return (EAGAIN); 2612 return (0); 2613 } 2614 2615 /* primary MAC clients cannot be opened on top of anchor VNICs */ 2616 if ((is_vnic_primary || is_primary) && 2617 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 2618 return (ENXIO); 2619 } 2620 2621 /* 2622 * If this is a VNIC/VLAN, disable softmac fast-path. This is 2623 * only relevant to legacy devices which use softmac to 2624 * interface with GLDv3. 2625 */ 2626 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2627 err = mac_fastpath_disable((mac_handle_t)mip); 2628 if (err != 0) 2629 return (err); 2630 fastpath_disabled = B_TRUE; 2631 } 2632 2633 /* 2634 * Return EBUSY if: 2635 * - there is an exclusively active mac client exists. 2636 * - this is an exclusive active mac client but 2637 * a. there is already active mac clients exist, or 2638 * b. fastpath streams are already plumbed on this legacy device 2639 * - the mac creator has disallowed active mac clients. 2640 */ 2641 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) { 2642 if (fastpath_disabled) 2643 mac_fastpath_enable((mac_handle_t)mip); 2644 return (EBUSY); 2645 } 2646 2647 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2648 ASSERT(!fastpath_disabled); 2649 if (mip->mi_nactiveclients != 0) 2650 return (EBUSY); 2651 2652 if ((mip->mi_state_flags & MIS_LEGACY) && 2653 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) { 2654 return (EBUSY); 2655 } 2656 mip->mi_state_flags |= MIS_EXCLUSIVE; 2657 } 2658 2659 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 2660 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC | 2661 MCIS_IS_AGGR_PORT))) { 2662 /* 2663 * Apply the property cached in the mac_impl_t to the primary 2664 * mac client. If the mac client is a VNIC or an aggregation 2665 * port, its property should be set in the mcip when the 2666 * VNIC/aggr was created. 2667 */ 2668 mac_get_resources((mac_handle_t)mip, mrp); 2669 (void) mac_client_set_resources(mch, mrp); 2670 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2671 /* 2672 * This is a VLAN client sharing the address of the 2673 * primary MAC client; i.e., one created via dladm 2674 * create-vlan. We don't support specifying ring 2675 * properties for this type of client as it inherits 2676 * these from the primary MAC client. 2677 */ 2678 if (is_vnic_primary) { 2679 mac_resource_props_t *vmrp; 2680 2681 vmrp = MCIP_RESOURCE_PROPS(mcip); 2682 if (vmrp->mrp_mask & MRP_RX_RINGS || 2683 vmrp->mrp_mask & MRP_TX_RINGS) { 2684 if (fastpath_disabled) 2685 mac_fastpath_enable((mac_handle_t)mip); 2686 kmem_free(mrp, sizeof (*mrp)); 2687 return (ENOTSUP); 2688 } 2689 /* 2690 * Additionally we also need to inherit any 2691 * rings property from the MAC. 2692 */ 2693 mac_get_resources((mac_handle_t)mip, mrp); 2694 if (mrp->mrp_mask & MRP_RX_RINGS) { 2695 vmrp->mrp_mask |= MRP_RX_RINGS; 2696 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 2697 } 2698 if (mrp->mrp_mask & MRP_TX_RINGS) { 2699 vmrp->mrp_mask |= MRP_TX_RINGS; 2700 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 2701 } 2702 } 2703 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp)); 2704 } 2705 2706 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2707 muip->mui_vid = vid; 2708 2709 if (is_primary || is_vnic_primary) { 2710 mac_addr = mip->mi_addr; 2711 } else { 2712 2713 /* 2714 * Verify the validity of the specified MAC addresses value. 2715 */ 2716 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 2717 *diag = MAC_DIAG_MACADDR_INVALID; 2718 err = EINVAL; 2719 goto bail_out; 2720 } 2721 2722 /* 2723 * Make sure that the specified MAC address is different 2724 * than the unicast MAC address of the underlying NIC. 2725 */ 2726 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 2727 *diag = MAC_DIAG_MACADDR_NIC; 2728 err = EINVAL; 2729 goto bail_out; 2730 } 2731 } 2732 2733 /* 2734 * Set the flags here so that if this is a passive client, we 2735 * can return and set it when we call mac_client_datapath_setup 2736 * when this becomes the active client. If we defer to using these 2737 * flags to mac_client_datapath_setup, then for a passive client, 2738 * we'd have to store the flags somewhere (probably fe_flags) 2739 * and then use it. 2740 */ 2741 if (!MCIP_DATAPATH_SETUP(mcip)) { 2742 if (is_unicast_hw) { 2743 /* 2744 * The client requires a hardware MAC address slot 2745 * for that unicast address. Since we support only 2746 * one unicast MAC address per client, flag the 2747 * MAC client itself. 2748 */ 2749 mcip->mci_state_flags |= MCIS_UNICAST_HW; 2750 } 2751 2752 /* Check for VLAN flags, if present */ 2753 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2754 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2755 2756 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2757 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2758 2759 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2760 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2761 } else { 2762 /* 2763 * Assert that the specified flags are consistent with the 2764 * flags specified by previous calls to mac_unicast_add(). 2765 */ 2766 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 && 2767 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) || 2768 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 && 2769 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0)); 2770 2771 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 && 2772 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) || 2773 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 && 2774 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0)); 2775 2776 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 && 2777 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) || 2778 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 && 2779 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0)); 2780 2781 /* 2782 * Make sure the client is consistent about its requests 2783 * for MAC addresses. I.e. all requests from the clients 2784 * must have the MAC_UNICAST_HW flag set or clear. 2785 */ 2786 if (((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 2787 !is_unicast_hw) || 2788 ((mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 2789 is_unicast_hw)) { 2790 err = EINVAL; 2791 goto bail_out; 2792 } 2793 } 2794 /* 2795 * Make sure the MAC address is not already used by 2796 * another MAC client defined on top of the same 2797 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY 2798 * set when we allow a passive client to be present which will 2799 * be activated when the currently active client goes away - this 2800 * works only with primary addresses. 2801 */ 2802 if ((check_dups || is_primary || is_vnic_primary) && 2803 mac_addr_in_use(mip, mac_addr, vid)) { 2804 /* 2805 * Must have set the multiple primary address flag when 2806 * we did a mac_client_open AND this should be a primary 2807 * MAC client AND there should not already be a passive 2808 * primary. If all is true then we let this succeed 2809 * even if the address is a dup. 2810 */ 2811 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2812 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 || 2813 mac_get_passive_primary_client(mip) != NULL) { 2814 *diag = MAC_DIAG_MACADDR_INUSE; 2815 err = EEXIST; 2816 goto bail_out; 2817 } 2818 ASSERT((mcip->mci_flags & 2819 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0); 2820 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2821 kmem_free(mrp, sizeof (*mrp)); 2822 2823 /* 2824 * Stash the unicast address handle, we will use it when 2825 * we set up the passive client. 2826 */ 2827 mcip->mci_p_unicast_list = muip; 2828 *mah = (mac_unicast_handle_t)muip; 2829 return (0); 2830 } 2831 2832 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp, 2833 is_primary || is_vnic_primary, muip); 2834 if (err != 0) 2835 goto bail_out; 2836 2837 kmem_free(mrp, sizeof (*mrp)); 2838 *mah = (mac_unicast_handle_t)muip; 2839 return (0); 2840 2841 bail_out: 2842 if (fastpath_disabled) 2843 mac_fastpath_enable((mac_handle_t)mip); 2844 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2845 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2846 if (mip->mi_state_flags & MIS_LEGACY) { 2847 mip->mi_capab_legacy.ml_active_clear( 2848 mip->mi_driver); 2849 } 2850 } 2851 kmem_free(mrp, sizeof (*mrp)); 2852 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2853 return (err); 2854 } 2855 2856 /* 2857 * Wrapper function to mac_unicast_add when we want to have the same mac 2858 * client open for two instances, one that is currently active and another 2859 * that will become active when the current one is removed. In this case 2860 * mac_unicast_add will return EGAIN and we will save the rx function and 2861 * arg which will be used when we activate the passive client in 2862 * mac_unicast_remove. 2863 */ 2864 int 2865 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr, 2866 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag, 2867 mac_rx_t rx_fn, void *arg) 2868 { 2869 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2870 uint_t err; 2871 2872 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2873 if (err != 0 && err != EAGAIN) 2874 return (err); 2875 if (err == EAGAIN) { 2876 if (rx_fn != NULL) { 2877 mcip->mci_rx_p_fn = rx_fn; 2878 mcip->mci_rx_p_arg = arg; 2879 } 2880 return (0); 2881 } 2882 if (rx_fn != NULL) 2883 mac_rx_set(mch, rx_fn, arg); 2884 return (err); 2885 } 2886 2887 int 2888 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2889 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2890 { 2891 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 2892 uint_t err; 2893 2894 i_mac_perim_enter(mip); 2895 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2896 i_mac_perim_exit(mip); 2897 2898 return (err); 2899 } 2900 2901 static void 2902 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip, 2903 flow_entry_t *flent) 2904 { 2905 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2906 mac_impl_t *mip = mcip->mci_mip; 2907 boolean_t no_unicast; 2908 2909 /* 2910 * If we have not added a unicast address for this MAC client, just 2911 * teardown the datapath. 2912 */ 2913 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2914 2915 if (!no_unicast) { 2916 /* 2917 * We would have initialized subflows etc. only if we brought 2918 * up the primary client and set the unicast unicast address 2919 * etc. Deactivate the flows. The flow entry will be removed 2920 * from the active flow tables, and the associated SRS, 2921 * softrings etc will be deleted. But the flow entry itself 2922 * won't be destroyed, instead it will continue to be archived 2923 * off the the global flow hash list, for a possible future 2924 * activation when say IP is plumbed again. 2925 */ 2926 mac_link_release_flows(mch); 2927 } 2928 mip->mi_nactiveclients--; 2929 mac_update_single_active_client(mip); 2930 2931 /* Tear down the data path */ 2932 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2933 2934 /* 2935 * Prevent any future access to the flow entry through the mci_flent 2936 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2937 * mac_bcast_send is also under mi_rw_lock. 2938 */ 2939 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2940 flent = mcip->mci_flent; 2941 mac_client_remove_flow_from_list(mcip, flent); 2942 2943 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2944 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2945 2946 /* 2947 * This is the last unicast address being removed and there shouldn't 2948 * be any outbound data threads at this point coming down from mac 2949 * clients. We have waited for the data threads to finish before 2950 * starting dld_str_detach. Non-data threads must access TX SRS 2951 * under mi_rw_lock. 2952 */ 2953 rw_exit(&mip->mi_rw_lock); 2954 2955 /* 2956 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2957 * contain other flags, such as FE_CONDEMNED, which we need to 2958 * cleared. We don't call mac_flow_cleanup() for this unicast 2959 * flow as we have a already cleaned up SRSs etc. (via the teadown 2960 * path). We just clear the stats and reset the initial callback 2961 * function, the rest will be set when we call mac_flow_create, 2962 * if at all. 2963 */ 2964 mutex_enter(&flent->fe_lock); 2965 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2966 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2967 flent->fe_flags = FE_MC_NO_DATAPATH; 2968 flow_stat_destroy(flent); 2969 mac_misc_stat_delete(flent); 2970 2971 /* Initialize the receiver function to a safe routine */ 2972 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2973 flent->fe_cb_arg1 = NULL; 2974 flent->fe_cb_arg2 = NULL; 2975 2976 flent->fe_index = -1; 2977 mutex_exit(&flent->fe_lock); 2978 2979 if (mip->mi_type->mt_brdcst_addr != NULL) { 2980 ASSERT(muip != NULL || no_unicast); 2981 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2982 muip != NULL ? muip->mui_vid : VLAN_ID_NONE); 2983 } 2984 2985 if (mip->mi_nactiveclients == 1) { 2986 mac_capab_update((mac_handle_t)mip); 2987 mac_virtual_link_update(mip); 2988 } 2989 2990 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2991 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2992 2993 if (mip->mi_state_flags & MIS_LEGACY) 2994 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver); 2995 } 2996 2997 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2998 2999 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3000 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3001 3002 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3003 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3004 3005 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3006 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3007 3008 if (muip != NULL) 3009 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3010 mac_protect_cancel_timer(mcip); 3011 mac_protect_flush_dynamic(mcip); 3012 3013 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat)); 3014 /* 3015 * Disable fastpath if this is a VNIC or a VLAN. 3016 */ 3017 if (mcip->mci_state_flags & MCIS_IS_VNIC) 3018 mac_fastpath_enable((mac_handle_t)mip); 3019 mac_stop((mac_handle_t)mip); 3020 } 3021 3022 /* 3023 * Remove a MAC address which was previously added by mac_unicast_add(). 3024 */ 3025 int 3026 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 3027 { 3028 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3029 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 3030 mac_unicast_impl_t *pre; 3031 mac_impl_t *mip = mcip->mci_mip; 3032 flow_entry_t *flent; 3033 uint16_t mui_vid; 3034 3035 i_mac_perim_enter(mip); 3036 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 3037 /* 3038 * Call made by the upper MAC client of a VNIC. 3039 * There's nothing much to do, the unicast address will 3040 * be removed by the VNIC driver when the VNIC is deleted, 3041 * but let's ensure that all our transmit is done before 3042 * the client does a mac_client_stop lest it trigger an 3043 * assert in the driver. 3044 */ 3045 ASSERT(muip->mui_vid == VLAN_ID_NONE); 3046 3047 mac_tx_client_flush(mcip); 3048 3049 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 3050 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3051 if (mcip->mci_rx_p_fn != NULL) { 3052 mac_rx_set(mch, mcip->mci_rx_p_fn, 3053 mcip->mci_rx_p_arg); 3054 mcip->mci_rx_p_fn = NULL; 3055 mcip->mci_rx_p_arg = NULL; 3056 } 3057 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3058 i_mac_perim_exit(mip); 3059 return (0); 3060 } 3061 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 3062 3063 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3064 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3065 3066 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3067 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3068 3069 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3070 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3071 3072 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3073 i_mac_perim_exit(mip); 3074 return (0); 3075 } 3076 3077 ASSERT(muip != NULL); 3078 3079 /* 3080 * We are removing a passive client, we haven't setup the datapath 3081 * for this yet, so nothing much to do. 3082 */ 3083 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 3084 3085 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0); 3086 ASSERT(mcip->mci_p_unicast_list == muip); 3087 3088 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3089 3090 mcip->mci_p_unicast_list = NULL; 3091 mcip->mci_rx_p_fn = NULL; 3092 mcip->mci_rx_p_arg = NULL; 3093 3094 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 3095 3096 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3097 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3098 3099 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3100 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3101 3102 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3103 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3104 3105 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3106 i_mac_perim_exit(mip); 3107 return (0); 3108 } 3109 3110 /* 3111 * Remove the VID from the list of client's VIDs. 3112 */ 3113 pre = mcip->mci_unicast_list; 3114 if (muip == pre) { 3115 mcip->mci_unicast_list = muip->mui_next; 3116 } else { 3117 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 3118 pre = pre->mui_next; 3119 ASSERT(pre->mui_next == muip); 3120 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3121 pre->mui_next = muip->mui_next; 3122 rw_exit(&mcip->mci_rw_lock); 3123 } 3124 3125 if (!mac_client_single_rcvr(mcip)) { 3126 /* 3127 * This MAC client is shared by more than one unicast 3128 * addresses, so we will just remove the flent 3129 * corresponding to the address being removed. We don't invoke 3130 * mac_rx_classify_flow_rem() since the additional flow is 3131 * not associated with its own separate set of SRS and rings, 3132 * and these constructs are still needed for the remaining 3133 * flows. 3134 */ 3135 flent = mac_client_get_flow(mcip, muip); 3136 VERIFY3P(flent, !=, NULL); 3137 3138 /* 3139 * The first one is disappearing, need to make sure 3140 * we replace it with another from the list of 3141 * shared clients. 3142 */ 3143 if (flent == mcip->mci_flent) 3144 flent = mac_client_swap_mciflent(mcip); 3145 mac_client_remove_flow_from_list(mcip, flent); 3146 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 3147 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 3148 3149 /* 3150 * The multicast groups that were added by the client so 3151 * far must be removed from the brodcast domain corresponding 3152 * to the VID being removed. 3153 */ 3154 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 3155 (void *)flent, B_FALSE); 3156 3157 if (mip->mi_type->mt_brdcst_addr != NULL) { 3158 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 3159 muip->mui_vid); 3160 } 3161 3162 FLOW_FINAL_REFRELE(flent); 3163 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE)); 3164 3165 /* 3166 * Enable fastpath if this is a VNIC or a VLAN. 3167 */ 3168 if (mcip->mci_state_flags & MCIS_IS_VNIC) 3169 mac_fastpath_enable((mac_handle_t)mip); 3170 mac_stop((mac_handle_t)mip); 3171 i_mac_perim_exit(mip); 3172 return (0); 3173 } 3174 3175 mui_vid = muip->mui_vid; 3176 mac_client_datapath_teardown(mch, muip, flent); 3177 3178 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && 3179 mui_vid == VLAN_ID_NONE) { 3180 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 3181 } else { 3182 i_mac_perim_exit(mip); 3183 return (0); 3184 } 3185 3186 /* 3187 * If we are removing the primary, check if we have a passive primary 3188 * client that we need to activate now. 3189 */ 3190 mcip = mac_get_passive_primary_client(mip); 3191 if (mcip != NULL) { 3192 mac_resource_props_t *mrp; 3193 mac_unicast_impl_t *muip; 3194 3195 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3196 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3197 3198 /* 3199 * Apply the property cached in the mac_impl_t to the 3200 * primary mac client. 3201 */ 3202 mac_get_resources((mac_handle_t)mip, mrp); 3203 (void) mac_client_set_resources(mch, mrp); 3204 ASSERT(mcip->mci_p_unicast_list != NULL); 3205 muip = mcip->mci_p_unicast_list; 3206 mcip->mci_p_unicast_list = NULL; 3207 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE, 3208 mip->mi_addr, mrp, B_TRUE, muip) == 0) { 3209 if (mcip->mci_rx_p_fn != NULL) { 3210 mac_rx_set(mch, mcip->mci_rx_p_fn, 3211 mcip->mci_rx_p_arg); 3212 mcip->mci_rx_p_fn = NULL; 3213 mcip->mci_rx_p_arg = NULL; 3214 } 3215 } else { 3216 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3217 } 3218 kmem_free(mrp, sizeof (*mrp)); 3219 } 3220 i_mac_perim_exit(mip); 3221 return (0); 3222 } 3223 3224 /* 3225 * Multicast add function invoked by MAC clients. 3226 */ 3227 int 3228 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 3229 { 3230 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3231 mac_impl_t *mip = mcip->mci_mip; 3232 flow_entry_t *flent = mcip->mci_flent_list; 3233 flow_entry_t *prev_fe = NULL; 3234 uint16_t vid; 3235 int err = 0; 3236 3237 /* Verify the address is a valid multicast address */ 3238 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 3239 mip->mi_pdata)) != 0) 3240 return (err); 3241 3242 i_mac_perim_enter(mip); 3243 while (flent != NULL) { 3244 vid = i_mac_flow_vid(flent); 3245 3246 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 3247 MAC_ADDRTYPE_MULTICAST); 3248 if (err != 0) 3249 break; 3250 prev_fe = flent; 3251 flent = flent->fe_client_next; 3252 } 3253 3254 /* 3255 * If we failed adding, then undo all, rather than partial 3256 * success. 3257 */ 3258 if (flent != NULL && prev_fe != NULL) { 3259 flent = mcip->mci_flent_list; 3260 while (flent != prev_fe->fe_client_next) { 3261 vid = i_mac_flow_vid(flent); 3262 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3263 flent = flent->fe_client_next; 3264 } 3265 } 3266 i_mac_perim_exit(mip); 3267 return (err); 3268 } 3269 3270 /* 3271 * Multicast delete function invoked by MAC clients. 3272 */ 3273 void 3274 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 3275 { 3276 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3277 mac_impl_t *mip = mcip->mci_mip; 3278 flow_entry_t *flent; 3279 uint16_t vid; 3280 3281 i_mac_perim_enter(mip); 3282 for (flent = mcip->mci_flent_list; flent != NULL; 3283 flent = flent->fe_client_next) { 3284 vid = i_mac_flow_vid(flent); 3285 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3286 } 3287 i_mac_perim_exit(mip); 3288 } 3289 3290 /* 3291 * When a MAC client desires to capture packets on an interface, 3292 * it registers a promiscuous call back with mac_promisc_add(). 3293 * There are three types of promiscuous callbacks: 3294 * 3295 * * MAC_CLIENT_PROMISC_ALL 3296 * Captures all packets sent and received by the MAC client, 3297 * the physical interface, as well as all other MAC clients 3298 * defined on top of the same MAC. 3299 * 3300 * * MAC_CLIENT_PROMISC_FILTERED 3301 * Captures all packets sent and received by the MAC client, 3302 * plus all multicast traffic sent and received by the phyisical 3303 * interface and the other MAC clients. 3304 * 3305 * * MAC_CLIENT_PROMISC_MULTI 3306 * Captures all broadcast and multicast packets sent and 3307 * received by the MAC clients as well as the physical interface. 3308 * 3309 * In all cases, the underlying MAC is put in promiscuous mode. 3310 */ 3311 int 3312 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 3313 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 3314 { 3315 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3316 mac_impl_t *mip = mcip->mci_mip; 3317 mac_promisc_impl_t *mpip; 3318 mac_cb_info_t *mcbi; 3319 int rc; 3320 3321 i_mac_perim_enter(mip); 3322 3323 if ((rc = mac_start((mac_handle_t)mip)) != 0) { 3324 i_mac_perim_exit(mip); 3325 return (rc); 3326 } 3327 3328 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 3329 type == MAC_CLIENT_PROMISC_ALL && 3330 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) { 3331 /* 3332 * The function is being invoked by the upper MAC client 3333 * of a VNIC. The VNIC should only see the traffic 3334 * it is entitled to. 3335 */ 3336 type = MAC_CLIENT_PROMISC_FILTERED; 3337 } 3338 3339 3340 /* 3341 * Turn on promiscuous mode for the underlying NIC. 3342 * This is needed even for filtered callbacks which 3343 * expect to receive all multicast traffic on the wire. 3344 * 3345 * Physical promiscuous mode should not be turned on if 3346 * MAC_PROMISC_FLAGS_NO_PHYS is set. 3347 */ 3348 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 3349 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) { 3350 mac_stop((mac_handle_t)mip); 3351 i_mac_perim_exit(mip); 3352 return (rc); 3353 } 3354 } 3355 3356 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 3357 3358 mpip->mpi_type = type; 3359 mpip->mpi_fn = fn; 3360 mpip->mpi_arg = arg; 3361 mpip->mpi_mcip = mcip; 3362 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 3363 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 3364 mpip->mpi_strip_vlan_tag = 3365 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0); 3366 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0); 3367 3368 mcbi = &mip->mi_promisc_cb_info; 3369 mutex_enter(mcbi->mcbi_lockp); 3370 3371 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 3372 &mpip->mpi_mci_link); 3373 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 3374 &mpip->mpi_mi_link); 3375 3376 mutex_exit(mcbi->mcbi_lockp); 3377 3378 *mphp = (mac_promisc_handle_t)mpip; 3379 3380 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3381 mac_impl_t *umip = mcip->mci_upper_mip; 3382 3383 ASSERT(umip != NULL); 3384 mac_vnic_secondary_update(umip); 3385 } 3386 3387 i_mac_perim_exit(mip); 3388 3389 return (0); 3390 } 3391 3392 /* 3393 * Remove a multicast address previously aded through mac_promisc_add(). 3394 */ 3395 void 3396 mac_promisc_remove(mac_promisc_handle_t mph) 3397 { 3398 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 3399 mac_client_impl_t *mcip = mpip->mpi_mcip; 3400 mac_impl_t *mip = mcip->mci_mip; 3401 mac_cb_info_t *mcbi; 3402 int rv; 3403 3404 i_mac_perim_enter(mip); 3405 3406 /* 3407 * Even if the device can't be reset into normal mode, we still 3408 * need to clear the client promisc callbacks. The client may want 3409 * to close the mac end point and we can't have stale callbacks. 3410 */ 3411 if (!(mpip->mpi_no_phys)) { 3412 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) { 3413 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous" 3414 " mode because of error 0x%x", mip->mi_name, rv); 3415 } 3416 } 3417 mcbi = &mip->mi_promisc_cb_info; 3418 mutex_enter(mcbi->mcbi_lockp); 3419 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 3420 &mpip->mpi_mi_link)) { 3421 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 3422 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 3423 kmem_cache_free(mac_promisc_impl_cache, mpip); 3424 } else { 3425 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 3426 } 3427 3428 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3429 mac_impl_t *umip = mcip->mci_upper_mip; 3430 3431 ASSERT(umip != NULL); 3432 mac_vnic_secondary_update(umip); 3433 } 3434 3435 mutex_exit(mcbi->mcbi_lockp); 3436 mac_stop((mac_handle_t)mip); 3437 3438 i_mac_perim_exit(mip); 3439 } 3440 3441 /* 3442 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 3443 * that a control operation wants to quiesce the Tx data flow in which case 3444 * we return an error. Holding any of the per cpu locks ensures that the 3445 * mci_tx_flag won't change. 3446 * 3447 * 'CPU' must be accessed just once and used to compute the index into the 3448 * percpu array, and that index must be used for the entire duration of the 3449 * packet send operation. Note that the thread may be preempted and run on 3450 * another cpu any time and so we can't use 'CPU' more than once for the 3451 * operation. 3452 */ 3453 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 3454 { \ 3455 (error) = 0; \ 3456 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 3457 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3458 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 3459 (mytx)->pcpu_tx_refcnt++; \ 3460 } else { \ 3461 (error) = -1; \ 3462 } \ 3463 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3464 } 3465 3466 /* 3467 * Release the reference. If needed, signal any control operation waiting 3468 * for Tx quiescence. The wait and signal are always done using the 3469 * mci_tx_pcpu[0]'s lock 3470 */ 3471 #define MAC_TX_RELE(mcip, mytx) { \ 3472 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3473 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 3474 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 3475 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3476 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3477 cv_signal(&(mcip)->mci_tx_cv); \ 3478 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3479 } else { \ 3480 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3481 } \ 3482 } 3483 3484 /* 3485 * Send function invoked by MAC clients. 3486 */ 3487 mac_tx_cookie_t 3488 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 3489 uint16_t flag, mblk_t **ret_mp) 3490 { 3491 mac_tx_cookie_t cookie = 0; 3492 int error; 3493 mac_tx_percpu_t *mytx; 3494 mac_soft_ring_set_t *srs; 3495 flow_entry_t *flent; 3496 boolean_t is_subflow = B_FALSE; 3497 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3498 mac_impl_t *mip = mcip->mci_mip; 3499 mac_srs_tx_t *srs_tx; 3500 3501 /* 3502 * Check whether the active Tx threads count is bumped already. 3503 */ 3504 if (!(flag & MAC_TX_NO_HOLD)) { 3505 MAC_TX_TRY_HOLD(mcip, mytx, error); 3506 if (error != 0) { 3507 freemsgchain(mp_chain); 3508 return (0); 3509 } 3510 } 3511 3512 /* 3513 * If mac protection is enabled, only the permissible packets will be 3514 * returned by mac_protect_check(). 3515 */ 3516 if ((mcip->mci_flent-> 3517 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 && 3518 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL) 3519 goto done; 3520 3521 if (mcip->mci_subflow_tab != NULL && 3522 mcip->mci_subflow_tab->ft_flow_count > 0 && 3523 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 3524 FLOW_OUTBOUND, &flent) == 0) { 3525 /* 3526 * The main assumption here is that if in the event 3527 * we get a chain, all the packets will be classified 3528 * to the same Flow/SRS. If this changes for any 3529 * reason, the following logic should change as well. 3530 * I suppose the fanout_hint also assumes this . 3531 */ 3532 ASSERT(flent != NULL); 3533 is_subflow = B_TRUE; 3534 } else { 3535 flent = mcip->mci_flent; 3536 } 3537 3538 srs = flent->fe_tx_srs; 3539 /* 3540 * This is to avoid panics with PF_PACKET that can call mac_tx() 3541 * against an interface that is not capable of sending. A rewrite 3542 * of the mac datapath is required to remove this limitation. 3543 */ 3544 if (srs == NULL) { 3545 freemsgchain(mp_chain); 3546 goto done; 3547 } 3548 3549 srs_tx = &srs->srs_tx; 3550 if (srs_tx->st_mode == SRS_TX_DEFAULT && 3551 (srs->srs_state & SRS_ENQUEUED) == 0 && 3552 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) { 3553 uint64_t obytes; 3554 3555 /* 3556 * Since dls always opens the underlying MAC, nclients equals 3557 * to 1 means that the only active client is dls itself acting 3558 * as a primary client of the MAC instance. Since dls will not 3559 * send tagged packets in that case, and dls is trusted to send 3560 * packets for its allowed VLAN(s), the VLAN tag insertion and 3561 * check is required only if nclients is greater than 1. 3562 */ 3563 if (mip->mi_nclients > 1) { 3564 if (MAC_VID_CHECK_NEEDED(mcip)) { 3565 int err = 0; 3566 3567 MAC_VID_CHECK(mcip, mp_chain, err); 3568 if (err != 0) { 3569 freemsg(mp_chain); 3570 mcip->mci_misc_stat.mms_txerrors++; 3571 goto done; 3572 } 3573 } 3574 if (MAC_TAG_NEEDED(mcip)) { 3575 mp_chain = mac_add_vlan_tag(mp_chain, 0, 3576 mac_client_vid(mch)); 3577 if (mp_chain == NULL) { 3578 mcip->mci_misc_stat.mms_txerrors++; 3579 goto done; 3580 } 3581 } 3582 } 3583 3584 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 3585 msgdsize(mp_chain)); 3586 3587 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 3588 if (mp_chain == NULL) { 3589 cookie = 0; 3590 SRS_TX_STAT_UPDATE(srs, opackets, 1); 3591 SRS_TX_STAT_UPDATE(srs, obytes, obytes); 3592 } else { 3593 mutex_enter(&srs->srs_lock); 3594 cookie = mac_tx_srs_no_desc(srs, mp_chain, 3595 flag, ret_mp); 3596 mutex_exit(&srs->srs_lock); 3597 } 3598 } else { 3599 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 3600 } 3601 3602 done: 3603 if (is_subflow) 3604 FLOW_REFRELE(flent); 3605 3606 if (!(flag & MAC_TX_NO_HOLD)) 3607 MAC_TX_RELE(mcip, mytx); 3608 3609 return (cookie); 3610 } 3611 3612 /* 3613 * mac_tx_is_blocked 3614 * 3615 * Given a cookie, it returns if the ring identified by the cookie is 3616 * flow-controlled or not. If NULL is passed in place of a cookie, 3617 * then it finds out if any of the underlying rings belonging to the 3618 * SRS is flow controlled or not and returns that status. 3619 */ 3620 /* ARGSUSED */ 3621 boolean_t 3622 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 3623 { 3624 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3625 mac_soft_ring_set_t *mac_srs; 3626 mac_soft_ring_t *sringp; 3627 boolean_t blocked = B_FALSE; 3628 mac_tx_percpu_t *mytx; 3629 int err; 3630 int i; 3631 3632 /* 3633 * Bump the reference count so that mac_srs won't be deleted. 3634 * If the client is currently quiesced and we failed to bump 3635 * the reference, return B_TRUE so that flow control stays 3636 * as enabled. 3637 * 3638 * Flow control will then be disabled once the client is no 3639 * longer quiesced. 3640 */ 3641 MAC_TX_TRY_HOLD(mcip, mytx, err); 3642 if (err != 0) 3643 return (B_TRUE); 3644 3645 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) { 3646 MAC_TX_RELE(mcip, mytx); 3647 return (B_FALSE); 3648 } 3649 3650 mutex_enter(&mac_srs->srs_lock); 3651 /* 3652 * Only in the case of TX_FANOUT and TX_AGGR, the underlying 3653 * softring (s_ring_state) will have the HIWAT set. This is 3654 * the multiple Tx ring flow control case. For all other 3655 * case, SRS (srs_state) will store the condition. 3656 */ 3657 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 3658 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) { 3659 if (cookie != 0) { 3660 sringp = (mac_soft_ring_t *)cookie; 3661 mutex_enter(&sringp->s_ring_lock); 3662 if (sringp->s_ring_state & S_RING_TX_HIWAT) 3663 blocked = B_TRUE; 3664 mutex_exit(&sringp->s_ring_lock); 3665 } else { 3666 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) { 3667 sringp = mac_srs->srs_tx_soft_rings[i]; 3668 mutex_enter(&sringp->s_ring_lock); 3669 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 3670 blocked = B_TRUE; 3671 mutex_exit(&sringp->s_ring_lock); 3672 break; 3673 } 3674 mutex_exit(&sringp->s_ring_lock); 3675 } 3676 } 3677 } else { 3678 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 3679 } 3680 mutex_exit(&mac_srs->srs_lock); 3681 MAC_TX_RELE(mcip, mytx); 3682 return (blocked); 3683 } 3684 3685 /* 3686 * Check if the MAC client is the primary MAC client. 3687 */ 3688 boolean_t 3689 mac_is_primary_client(mac_client_impl_t *mcip) 3690 { 3691 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 3692 } 3693 3694 void 3695 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 3696 { 3697 mac_impl_t *mip = (mac_impl_t *)mh; 3698 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 3699 3700 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 3701 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 3702 /* 3703 * If ndd props were registered, call them. 3704 * Note that ndd ioctls are Obsolete 3705 */ 3706 mac_ndd_ioctl(mip, wq, bp); 3707 return; 3708 } 3709 3710 /* 3711 * Call the driver to handle the ioctl. The driver may not support 3712 * any ioctls, in which case we reply with a NAK on its behalf. 3713 */ 3714 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 3715 mip->mi_ioctl(mip->mi_driver, wq, bp); 3716 else 3717 miocnak(wq, bp, 0, EINVAL); 3718 } 3719 3720 /* 3721 * Return the link state of the specified MAC instance. 3722 */ 3723 link_state_t 3724 mac_link_get(mac_handle_t mh) 3725 { 3726 return (((mac_impl_t *)mh)->mi_linkstate); 3727 } 3728 3729 /* 3730 * Add a mac client specified notification callback. Please see the comments 3731 * above mac_callback_add() for general information about mac callback 3732 * addition/deletion in the presence of mac callback list walkers 3733 */ 3734 mac_notify_handle_t 3735 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 3736 { 3737 mac_impl_t *mip = (mac_impl_t *)mh; 3738 mac_notify_cb_t *mncb; 3739 mac_cb_info_t *mcbi; 3740 3741 /* 3742 * Allocate a notify callback structure, fill in the details and 3743 * use the mac callback list manipulation functions to chain into 3744 * the list of callbacks. 3745 */ 3746 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 3747 mncb->mncb_fn = notify_fn; 3748 mncb->mncb_arg = arg; 3749 mncb->mncb_mip = mip; 3750 mncb->mncb_link.mcb_objp = mncb; 3751 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 3752 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 3753 3754 mcbi = &mip->mi_notify_cb_info; 3755 3756 i_mac_perim_enter(mip); 3757 mutex_enter(mcbi->mcbi_lockp); 3758 3759 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 3760 &mncb->mncb_link); 3761 3762 mutex_exit(mcbi->mcbi_lockp); 3763 i_mac_perim_exit(mip); 3764 return ((mac_notify_handle_t)mncb); 3765 } 3766 3767 void 3768 mac_notify_remove_wait(mac_handle_t mh) 3769 { 3770 mac_impl_t *mip = (mac_impl_t *)mh; 3771 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 3772 3773 mutex_enter(mcbi->mcbi_lockp); 3774 mac_callback_remove_wait(&mip->mi_notify_cb_info); 3775 mutex_exit(mcbi->mcbi_lockp); 3776 } 3777 3778 /* 3779 * Remove a mac client specified notification callback 3780 */ 3781 int 3782 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 3783 { 3784 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 3785 mac_impl_t *mip = mncb->mncb_mip; 3786 mac_cb_info_t *mcbi; 3787 int err = 0; 3788 3789 mcbi = &mip->mi_notify_cb_info; 3790 3791 i_mac_perim_enter(mip); 3792 mutex_enter(mcbi->mcbi_lockp); 3793 3794 ASSERT(mncb->mncb_link.mcb_objp == mncb); 3795 /* 3796 * If there aren't any list walkers, the remove would succeed 3797 * inline, else we wait for the deferred remove to complete 3798 */ 3799 if (mac_callback_remove(&mip->mi_notify_cb_info, 3800 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 3801 kmem_free(mncb, sizeof (mac_notify_cb_t)); 3802 } else { 3803 err = EBUSY; 3804 } 3805 3806 mutex_exit(mcbi->mcbi_lockp); 3807 i_mac_perim_exit(mip); 3808 3809 /* 3810 * If we failed to remove the notification callback and "wait" is set 3811 * to be B_TRUE, wait for the callback to finish after we exit the 3812 * mac perimeter. 3813 */ 3814 if (err != 0 && wait) { 3815 mac_notify_remove_wait((mac_handle_t)mip); 3816 return (0); 3817 } 3818 3819 return (err); 3820 } 3821 3822 /* 3823 * Associate resource management callbacks with the specified MAC 3824 * clients. 3825 */ 3826 3827 void 3828 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 3829 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 3830 mac_resource_restart_t restart, mac_resource_bind_t bind, 3831 void *arg) 3832 { 3833 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3834 3835 mcip->mci_resource_add = add; 3836 mcip->mci_resource_remove = remove; 3837 mcip->mci_resource_quiesce = quiesce; 3838 mcip->mci_resource_restart = restart; 3839 mcip->mci_resource_bind = bind; 3840 mcip->mci_resource_arg = arg; 3841 } 3842 3843 void 3844 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 3845 { 3846 /* update the 'resource_add' callback */ 3847 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 3848 } 3849 3850 /* 3851 * Sets up the client resources and enable the polling interface over all the 3852 * SRS's and the soft rings of the client 3853 */ 3854 void 3855 mac_client_poll_enable(mac_client_handle_t mch) 3856 { 3857 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3858 mac_soft_ring_set_t *mac_srs; 3859 flow_entry_t *flent; 3860 int i; 3861 3862 flent = mcip->mci_flent; 3863 ASSERT(flent != NULL); 3864 3865 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 3866 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3867 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3868 ASSERT(mac_srs->srs_mcip == mcip); 3869 mac_srs_client_poll_enable(mcip, mac_srs); 3870 } 3871 } 3872 3873 /* 3874 * Tears down the client resources and disable the polling interface over all 3875 * the SRS's and the soft rings of the client 3876 */ 3877 void 3878 mac_client_poll_disable(mac_client_handle_t mch) 3879 { 3880 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3881 mac_soft_ring_set_t *mac_srs; 3882 flow_entry_t *flent; 3883 int i; 3884 3885 flent = mcip->mci_flent; 3886 ASSERT(flent != NULL); 3887 3888 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 3889 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3890 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3891 ASSERT(mac_srs->srs_mcip == mcip); 3892 mac_srs_client_poll_disable(mcip, mac_srs); 3893 } 3894 } 3895 3896 /* 3897 * Associate the CPUs specified by the given property with a MAC client. 3898 */ 3899 int 3900 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 3901 { 3902 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3903 mac_impl_t *mip = mcip->mci_mip; 3904 int err = 0; 3905 3906 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3907 3908 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 3909 mcip->mci_upper_mip : mip, mrp)) != 0) { 3910 return (err); 3911 } 3912 if (MCIP_DATAPATH_SETUP(mcip)) 3913 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 3914 3915 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 3916 return (0); 3917 } 3918 3919 /* 3920 * Apply the specified properties to the specified MAC client. 3921 */ 3922 int 3923 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3924 { 3925 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3926 mac_impl_t *mip = mcip->mci_mip; 3927 int err = 0; 3928 3929 i_mac_perim_enter(mip); 3930 3931 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 3932 err = mac_resource_ctl_set(mch, mrp); 3933 if (err != 0) 3934 goto done; 3935 } 3936 3937 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) { 3938 err = mac_cpu_set(mch, mrp); 3939 if (err != 0) 3940 goto done; 3941 } 3942 3943 if (mrp->mrp_mask & MRP_PROTECT) { 3944 err = mac_protect_set(mch, mrp); 3945 if (err != 0) 3946 goto done; 3947 } 3948 3949 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS)) 3950 err = mac_resource_ctl_set(mch, mrp); 3951 3952 done: 3953 i_mac_perim_exit(mip); 3954 return (err); 3955 } 3956 3957 /* 3958 * Return the properties currently associated with the specified MAC client. 3959 */ 3960 void 3961 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3962 { 3963 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3964 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 3965 3966 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3967 } 3968 3969 /* 3970 * Return the effective properties currently associated with the specified 3971 * MAC client. 3972 */ 3973 void 3974 mac_client_get_effective_resources(mac_client_handle_t mch, 3975 mac_resource_props_t *mrp) 3976 { 3977 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3978 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip); 3979 3980 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3981 } 3982 3983 /* 3984 * Pass a copy of the specified packet to the promiscuous callbacks 3985 * of the specified MAC. 3986 * 3987 * If sender is NULL, the function is being invoked for a packet chain 3988 * received from the wire. If sender is non-NULL, it points to 3989 * the MAC client from which the packet is being sent. 3990 * 3991 * The packets are distributed to the promiscuous callbacks as follows: 3992 * 3993 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 3994 * - all broadcast and multicast packets are sent to the 3995 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 3996 * 3997 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 3998 * after classification by mac_rx_deliver(). 3999 */ 4000 4001 static void 4002 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 4003 boolean_t loopback) 4004 { 4005 mblk_t *mp_copy, *mp_next; 4006 4007 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) { 4008 mp_copy = copymsg(mp); 4009 if (mp_copy == NULL) 4010 return; 4011 4012 if (mpip->mpi_strip_vlan_tag) { 4013 mp_copy = mac_strip_vlan_tag_chain(mp_copy); 4014 if (mp_copy == NULL) 4015 return; 4016 } 4017 mp_next = NULL; 4018 } else { 4019 mp_copy = mp; 4020 mp_next = mp->b_next; 4021 } 4022 mp_copy->b_next = NULL; 4023 4024 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 4025 if (mp_copy == mp) 4026 mp->b_next = mp_next; 4027 } 4028 4029 /* 4030 * Return the VID of a packet. Zero if the packet is not tagged. 4031 */ 4032 static uint16_t 4033 mac_ether_vid(mblk_t *mp) 4034 { 4035 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 4036 4037 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 4038 struct ether_vlan_header *t_evhp = 4039 (struct ether_vlan_header *)mp->b_rptr; 4040 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 4041 } 4042 4043 return (0); 4044 } 4045 4046 /* 4047 * Return whether the specified packet contains a multicast or broadcast 4048 * destination MAC address. 4049 */ 4050 static boolean_t 4051 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 4052 { 4053 mac_header_info_t hdr_info; 4054 4055 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 4056 return (B_FALSE); 4057 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 4058 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 4059 } 4060 4061 /* 4062 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 4063 * "sender" points to the sender MAC client for outbound packets, and 4064 * is set to NULL for inbound packets. 4065 */ 4066 void 4067 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 4068 mac_client_impl_t *sender) 4069 { 4070 mac_promisc_impl_t *mpip; 4071 mac_cb_t *mcb; 4072 mblk_t *mp; 4073 boolean_t is_mcast, is_sender; 4074 4075 MAC_PROMISC_WALKER_INC(mip); 4076 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4077 is_mcast = mac_is_mcast(mip, mp); 4078 /* send packet to interested callbacks */ 4079 for (mcb = mip->mi_promisc_list; mcb != NULL; 4080 mcb = mcb->mcb_nextp) { 4081 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4082 is_sender = (mpip->mpi_mcip == sender); 4083 4084 if (is_sender && mpip->mpi_no_tx_loop) 4085 /* 4086 * The sender doesn't want to receive 4087 * copies of the packets it sends. 4088 */ 4089 continue; 4090 4091 /* this client doesn't need any packets (bridge) */ 4092 if (mpip->mpi_fn == NULL) 4093 continue; 4094 4095 /* 4096 * For an ethernet MAC, don't displatch a multicast 4097 * packet to a non-PROMISC_ALL callbacks unless the VID 4098 * of the packet matches the VID of the client. 4099 */ 4100 if (is_mcast && 4101 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 4102 !mac_client_check_flow_vid(mpip->mpi_mcip, 4103 mac_ether_vid(mp))) 4104 continue; 4105 4106 if (is_sender || 4107 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 4108 is_mcast) 4109 mac_promisc_dispatch_one(mpip, mp, is_sender); 4110 } 4111 } 4112 MAC_PROMISC_WALKER_DCR(mip); 4113 } 4114 4115 void 4116 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 4117 { 4118 mac_impl_t *mip = mcip->mci_mip; 4119 mac_promisc_impl_t *mpip; 4120 boolean_t is_mcast; 4121 mblk_t *mp; 4122 mac_cb_t *mcb; 4123 4124 /* 4125 * The unicast packets for the MAC client still 4126 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 4127 * promiscuous callbacks. The broadcast and multicast 4128 * packets were delivered from mac_rx(). 4129 */ 4130 MAC_PROMISC_WALKER_INC(mip); 4131 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4132 is_mcast = mac_is_mcast(mip, mp); 4133 for (mcb = mcip->mci_promisc_list; mcb != NULL; 4134 mcb = mcb->mcb_nextp) { 4135 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4136 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 4137 !is_mcast) { 4138 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 4139 } 4140 } 4141 } 4142 MAC_PROMISC_WALKER_DCR(mip); 4143 } 4144 4145 /* 4146 * Return the margin value currently assigned to the specified MAC instance. 4147 */ 4148 void 4149 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 4150 { 4151 mac_impl_t *mip = (mac_impl_t *)mh; 4152 4153 rw_enter(&(mip->mi_rw_lock), RW_READER); 4154 *marginp = mip->mi_margin; 4155 rw_exit(&(mip->mi_rw_lock)); 4156 } 4157 4158 /* 4159 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 4160 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 4161 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 4162 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 4163 * cannot disappear while we are accessing it. 4164 */ 4165 typedef struct i_mac_info_state_s { 4166 const char *mi_name; 4167 mac_info_t *mi_infop; 4168 } i_mac_info_state_t; 4169 4170 /*ARGSUSED*/ 4171 static uint_t 4172 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4173 { 4174 i_mac_info_state_t *statep = arg; 4175 mac_impl_t *mip = (mac_impl_t *)val; 4176 4177 if (mip->mi_state_flags & MIS_DISABLED) 4178 return (MH_WALK_CONTINUE); 4179 4180 if (strcmp(statep->mi_name, 4181 ddi_driver_name(mip->mi_dip)) != 0) 4182 return (MH_WALK_CONTINUE); 4183 4184 statep->mi_infop = &mip->mi_info; 4185 return (MH_WALK_TERMINATE); 4186 } 4187 4188 boolean_t 4189 mac_info_get(const char *name, mac_info_t *minfop) 4190 { 4191 i_mac_info_state_t state; 4192 4193 rw_enter(&i_mac_impl_lock, RW_READER); 4194 state.mi_name = name; 4195 state.mi_infop = NULL; 4196 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 4197 if (state.mi_infop == NULL) { 4198 rw_exit(&i_mac_impl_lock); 4199 return (B_FALSE); 4200 } 4201 *minfop = *state.mi_infop; 4202 rw_exit(&i_mac_impl_lock); 4203 return (B_TRUE); 4204 } 4205 4206 /* 4207 * To get the capabilities that MAC layer cares about, such as rings, factory 4208 * mac address, vnic or not, it should directly invoke this function. If the 4209 * link is part of a bridge, then the only "capability" it has is the inability 4210 * to do zero copy. 4211 */ 4212 boolean_t 4213 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4214 { 4215 mac_impl_t *mip = (mac_impl_t *)mh; 4216 4217 if (mip->mi_bridge_link != NULL) 4218 return (cap == MAC_CAPAB_NO_ZCOPY); 4219 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 4220 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 4221 else 4222 return (B_FALSE); 4223 } 4224 4225 /* 4226 * Capability query function. If number of active mac clients is greater than 4227 * 1, only limited capabilities can be advertised to the caller no matter the 4228 * driver has certain capability or not. Else, we query the driver to get the 4229 * capability. 4230 */ 4231 boolean_t 4232 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4233 { 4234 mac_impl_t *mip = (mac_impl_t *)mh; 4235 4236 /* 4237 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM, 4238 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised. 4239 */ 4240 if (mip->mi_nactiveclients > 1) { 4241 switch (cap) { 4242 case MAC_CAPAB_NO_ZCOPY: 4243 return (B_TRUE); 4244 case MAC_CAPAB_LEGACY: 4245 case MAC_CAPAB_HCKSUM: 4246 case MAC_CAPAB_NO_NATIVEVLAN: 4247 break; 4248 default: 4249 return (B_FALSE); 4250 } 4251 } 4252 4253 /* else get capab from driver */ 4254 return (i_mac_capab_get(mh, cap, cap_data)); 4255 } 4256 4257 boolean_t 4258 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 4259 { 4260 mac_impl_t *mip = (mac_impl_t *)mh; 4261 4262 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 4263 mip->mi_pdata)); 4264 } 4265 4266 mblk_t * 4267 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 4268 size_t extra_len) 4269 { 4270 mac_impl_t *mip = (mac_impl_t *)mh; 4271 const uint8_t *hdr_daddr; 4272 4273 /* 4274 * If the MAC is point-to-point with a fixed destination address, then 4275 * we must always use that destination in the MAC header. 4276 */ 4277 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr); 4278 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap, 4279 mip->mi_pdata, payload, extra_len)); 4280 } 4281 4282 int 4283 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4284 { 4285 mac_impl_t *mip = (mac_impl_t *)mh; 4286 4287 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 4288 mhip)); 4289 } 4290 4291 int 4292 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4293 { 4294 mac_impl_t *mip = (mac_impl_t *)mh; 4295 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER); 4296 int err = 0; 4297 4298 /* 4299 * Packets should always be at least 16 bit aligned. 4300 */ 4301 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t))); 4302 4303 if ((err = mac_header_info(mh, mp, mhip)) != 0) 4304 return (err); 4305 4306 /* 4307 * If this is a VLAN-tagged Ethernet packet, then the SAP in the 4308 * mac_header_info_t as returned by mac_header_info() is 4309 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header. 4310 */ 4311 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) { 4312 struct ether_vlan_header *evhp; 4313 uint16_t sap; 4314 mblk_t *tmp = NULL; 4315 size_t size; 4316 4317 size = sizeof (struct ether_vlan_header); 4318 if (MBLKL(mp) < size) { 4319 /* 4320 * Pullup the message in order to get the MAC header 4321 * infomation. Note that this is a read-only function, 4322 * we keep the input packet intact. 4323 */ 4324 if ((tmp = msgpullup(mp, size)) == NULL) 4325 return (EINVAL); 4326 4327 mp = tmp; 4328 } 4329 evhp = (struct ether_vlan_header *)mp->b_rptr; 4330 sap = ntohs(evhp->ether_type); 4331 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap); 4332 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header); 4333 mhip->mhi_tci = ntohs(evhp->ether_tci); 4334 mhip->mhi_istagged = B_TRUE; 4335 freemsg(tmp); 4336 4337 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI) 4338 return (EINVAL); 4339 } else { 4340 mhip->mhi_istagged = B_FALSE; 4341 mhip->mhi_tci = 0; 4342 } 4343 4344 return (0); 4345 } 4346 4347 mblk_t * 4348 mac_header_cook(mac_handle_t mh, mblk_t *mp) 4349 { 4350 mac_impl_t *mip = (mac_impl_t *)mh; 4351 4352 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 4353 if (DB_REF(mp) > 1) { 4354 mblk_t *newmp = copymsg(mp); 4355 if (newmp == NULL) 4356 return (NULL); 4357 freemsg(mp); 4358 mp = newmp; 4359 } 4360 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 4361 mip->mi_pdata)); 4362 } 4363 return (mp); 4364 } 4365 4366 mblk_t * 4367 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 4368 { 4369 mac_impl_t *mip = (mac_impl_t *)mh; 4370 4371 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 4372 if (DB_REF(mp) > 1) { 4373 mblk_t *newmp = copymsg(mp); 4374 if (newmp == NULL) 4375 return (NULL); 4376 freemsg(mp); 4377 mp = newmp; 4378 } 4379 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 4380 mip->mi_pdata)); 4381 } 4382 return (mp); 4383 } 4384 4385 uint_t 4386 mac_addr_len(mac_handle_t mh) 4387 { 4388 mac_impl_t *mip = (mac_impl_t *)mh; 4389 4390 return (mip->mi_type->mt_addr_length); 4391 } 4392 4393 /* True if a MAC is a VNIC */ 4394 boolean_t 4395 mac_is_vnic(mac_handle_t mh) 4396 { 4397 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 4398 } 4399 4400 mac_handle_t 4401 mac_get_lower_mac_handle(mac_handle_t mh) 4402 { 4403 mac_impl_t *mip = (mac_impl_t *)mh; 4404 4405 ASSERT(mac_is_vnic(mh)); 4406 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 4407 } 4408 4409 boolean_t 4410 mac_is_vnic_primary(mac_handle_t mh) 4411 { 4412 mac_impl_t *mip = (mac_impl_t *)mh; 4413 4414 ASSERT(mac_is_vnic(mh)); 4415 return (((vnic_t *)mip->mi_driver)->vn_addr_type == 4416 VNIC_MAC_ADDR_TYPE_PRIMARY); 4417 } 4418 4419 void 4420 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 4421 boolean_t is_user_flow) 4422 { 4423 if (nmrp != NULL && cmrp != NULL) { 4424 if (nmrp->mrp_mask & MRP_PRIORITY) { 4425 if (nmrp->mrp_priority == MPL_RESET) { 4426 cmrp->mrp_mask &= ~MRP_PRIORITY; 4427 if (is_user_flow) { 4428 cmrp->mrp_priority = 4429 MPL_SUBFLOW_DEFAULT; 4430 } else { 4431 cmrp->mrp_priority = MPL_LINK_DEFAULT; 4432 } 4433 } else { 4434 cmrp->mrp_mask |= MRP_PRIORITY; 4435 cmrp->mrp_priority = nmrp->mrp_priority; 4436 } 4437 } 4438 if (nmrp->mrp_mask & MRP_MAXBW) { 4439 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) { 4440 cmrp->mrp_mask &= ~MRP_MAXBW; 4441 cmrp->mrp_maxbw = 0; 4442 } else { 4443 cmrp->mrp_mask |= MRP_MAXBW; 4444 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 4445 } 4446 } 4447 if (nmrp->mrp_mask & MRP_CPUS) 4448 MAC_COPY_CPUS(nmrp, cmrp); 4449 4450 if (nmrp->mrp_mask & MRP_POOL) { 4451 if (strlen(nmrp->mrp_pool) == 0) { 4452 cmrp->mrp_mask &= ~MRP_POOL; 4453 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool)); 4454 } else { 4455 cmrp->mrp_mask |= MRP_POOL; 4456 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool, 4457 sizeof (cmrp->mrp_pool)); 4458 } 4459 4460 } 4461 4462 if (nmrp->mrp_mask & MRP_PROTECT) 4463 mac_protect_update(nmrp, cmrp); 4464 4465 /* 4466 * Update the rings specified. 4467 */ 4468 if (nmrp->mrp_mask & MRP_RX_RINGS) { 4469 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4470 cmrp->mrp_mask &= ~MRP_RX_RINGS; 4471 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4472 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4473 cmrp->mrp_nrxrings = 0; 4474 } else { 4475 cmrp->mrp_mask |= MRP_RX_RINGS; 4476 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings; 4477 } 4478 } 4479 if (nmrp->mrp_mask & MRP_TX_RINGS) { 4480 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4481 cmrp->mrp_mask &= ~MRP_TX_RINGS; 4482 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4483 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4484 cmrp->mrp_ntxrings = 0; 4485 } else { 4486 cmrp->mrp_mask |= MRP_TX_RINGS; 4487 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings; 4488 } 4489 } 4490 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4491 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4492 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4493 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4494 4495 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4496 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4497 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4498 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4499 } 4500 } 4501 4502 /* 4503 * i_mac_set_resources: 4504 * 4505 * This routine associates properties with the primary MAC client of 4506 * the specified MAC instance. 4507 * - Cache the properties in mac_impl_t 4508 * - Apply the properties to the primary MAC client if exists 4509 */ 4510 int 4511 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4512 { 4513 mac_impl_t *mip = (mac_impl_t *)mh; 4514 mac_client_impl_t *mcip; 4515 int err = 0; 4516 uint32_t resmask, newresmask; 4517 mac_resource_props_t *tmrp, *umrp; 4518 4519 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4520 4521 err = mac_validate_props(mip, mrp); 4522 if (err != 0) 4523 return (err); 4524 4525 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP); 4526 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp)); 4527 resmask = umrp->mrp_mask; 4528 mac_update_resources(mrp, umrp, B_FALSE); 4529 newresmask = umrp->mrp_mask; 4530 4531 if (resmask == 0 && newresmask != 0) { 4532 /* 4533 * Bandwidth, priority, cpu or pool link properties configured, 4534 * must disable fastpath. 4535 */ 4536 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) { 4537 kmem_free(umrp, sizeof (*umrp)); 4538 return (err); 4539 } 4540 } 4541 4542 /* 4543 * Since bind_cpu may be modified by mac_client_set_resources() 4544 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 4545 * This allows us to cache only user edits in mip. 4546 */ 4547 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP); 4548 bcopy(mrp, tmrp, sizeof (*tmrp)); 4549 mcip = mac_primary_client_handle(mip); 4550 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) { 4551 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp); 4552 } else if ((mrp->mrp_mask & MRP_RX_RINGS || 4553 mrp->mrp_mask & MRP_TX_RINGS)) { 4554 mac_client_impl_t *vmcip; 4555 4556 /* 4557 * If the primary is not up, we need to check if there 4558 * are any VLANs on this primary. If there are then 4559 * we need to set this property on the VLANs since 4560 * VLANs follow the primary they are based on. Just 4561 * look for the first VLAN and change its properties, 4562 * all the other VLANs should be in the same group. 4563 */ 4564 for (vmcip = mip->mi_clients_list; vmcip != NULL; 4565 vmcip = vmcip->mci_client_next) { 4566 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) && 4567 mac_client_vid((mac_client_handle_t)vmcip) != 4568 VLAN_ID_NONE) { 4569 break; 4570 } 4571 } 4572 if (vmcip != NULL) { 4573 mac_resource_props_t *omrp; 4574 mac_resource_props_t *vmrp; 4575 4576 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 4577 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp)); 4578 /* 4579 * We dont' call mac_update_resources since we 4580 * want to take only the ring properties and 4581 * not all the properties that may have changed. 4582 */ 4583 vmrp = MCIP_RESOURCE_PROPS(vmcip); 4584 if (mrp->mrp_mask & MRP_RX_RINGS) { 4585 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4586 vmrp->mrp_mask &= ~MRP_RX_RINGS; 4587 if (vmrp->mrp_mask & 4588 MRP_RXRINGS_UNSPEC) { 4589 vmrp->mrp_mask &= 4590 ~MRP_RXRINGS_UNSPEC; 4591 } 4592 vmrp->mrp_nrxrings = 0; 4593 } else { 4594 vmrp->mrp_mask |= MRP_RX_RINGS; 4595 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 4596 } 4597 } 4598 if (mrp->mrp_mask & MRP_TX_RINGS) { 4599 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4600 vmrp->mrp_mask &= ~MRP_TX_RINGS; 4601 if (vmrp->mrp_mask & 4602 MRP_TXRINGS_UNSPEC) { 4603 vmrp->mrp_mask &= 4604 ~MRP_TXRINGS_UNSPEC; 4605 } 4606 vmrp->mrp_ntxrings = 0; 4607 } else { 4608 vmrp->mrp_mask |= MRP_TX_RINGS; 4609 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 4610 } 4611 } 4612 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4613 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4614 4615 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4616 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4617 4618 if ((err = mac_client_set_rings_prop(vmcip, mrp, 4619 omrp)) != 0) { 4620 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip), 4621 sizeof (*omrp)); 4622 } else { 4623 mac_set_prim_vlan_rings(mip, vmrp); 4624 } 4625 kmem_free(omrp, sizeof (*omrp)); 4626 } 4627 } 4628 4629 /* Only update the values if mac_client_set_resources succeeded */ 4630 if (err == 0) { 4631 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp)); 4632 /* 4633 * If bandwidth, priority or cpu link properties cleared, 4634 * renable fastpath. 4635 */ 4636 if (resmask != 0 && newresmask == 0) 4637 mac_fastpath_enable((mac_handle_t)mip); 4638 } else if (resmask == 0 && newresmask != 0) { 4639 mac_fastpath_enable((mac_handle_t)mip); 4640 } 4641 kmem_free(tmrp, sizeof (*tmrp)); 4642 kmem_free(umrp, sizeof (*umrp)); 4643 return (err); 4644 } 4645 4646 int 4647 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4648 { 4649 int err; 4650 4651 i_mac_perim_enter((mac_impl_t *)mh); 4652 err = i_mac_set_resources(mh, mrp); 4653 i_mac_perim_exit((mac_impl_t *)mh); 4654 return (err); 4655 } 4656 4657 /* 4658 * Get the properties cached for the specified MAC instance. 4659 */ 4660 void 4661 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4662 { 4663 mac_impl_t *mip = (mac_impl_t *)mh; 4664 mac_client_impl_t *mcip; 4665 4666 mcip = mac_primary_client_handle(mip); 4667 if (mcip != NULL) { 4668 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 4669 return; 4670 } 4671 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 4672 } 4673 4674 /* 4675 * Get the effective properties from the primary client of the 4676 * specified MAC instance. 4677 */ 4678 void 4679 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4680 { 4681 mac_impl_t *mip = (mac_impl_t *)mh; 4682 mac_client_impl_t *mcip; 4683 4684 mcip = mac_primary_client_handle(mip); 4685 if (mcip != NULL) { 4686 mac_client_get_effective_resources((mac_client_handle_t)mcip, 4687 mrp); 4688 return; 4689 } 4690 bzero(mrp, sizeof (mac_resource_props_t)); 4691 } 4692 4693 int 4694 mac_set_pvid(mac_handle_t mh, uint16_t pvid) 4695 { 4696 mac_impl_t *mip = (mac_impl_t *)mh; 4697 mac_client_impl_t *mcip; 4698 mac_unicast_impl_t *muip; 4699 4700 i_mac_perim_enter(mip); 4701 if (pvid != 0) { 4702 for (mcip = mip->mi_clients_list; mcip != NULL; 4703 mcip = mcip->mci_client_next) { 4704 for (muip = mcip->mci_unicast_list; muip != NULL; 4705 muip = muip->mui_next) { 4706 if (muip->mui_vid == pvid) { 4707 i_mac_perim_exit(mip); 4708 return (EBUSY); 4709 } 4710 } 4711 } 4712 } 4713 mip->mi_pvid = pvid; 4714 i_mac_perim_exit(mip); 4715 return (0); 4716 } 4717 4718 uint16_t 4719 mac_get_pvid(mac_handle_t mh) 4720 { 4721 mac_impl_t *mip = (mac_impl_t *)mh; 4722 4723 return (mip->mi_pvid); 4724 } 4725 4726 uint32_t 4727 mac_get_llimit(mac_handle_t mh) 4728 { 4729 mac_impl_t *mip = (mac_impl_t *)mh; 4730 4731 return (mip->mi_llimit); 4732 } 4733 4734 uint32_t 4735 mac_get_ldecay(mac_handle_t mh) 4736 { 4737 mac_impl_t *mip = (mac_impl_t *)mh; 4738 4739 return (mip->mi_ldecay); 4740 } 4741 4742 /* 4743 * Rename a mac client, its flow, and the kstat. 4744 */ 4745 int 4746 mac_rename_primary(mac_handle_t mh, const char *new_name) 4747 { 4748 mac_impl_t *mip = (mac_impl_t *)mh; 4749 mac_client_impl_t *cur_clnt = NULL; 4750 flow_entry_t *fep; 4751 4752 i_mac_perim_enter(mip); 4753 4754 /* 4755 * VNICs: we need to change the sys flow name and 4756 * the associated flow kstat. 4757 */ 4758 if (mip->mi_state_flags & MIS_IS_VNIC) { 4759 mac_client_impl_t *mcip = mac_vnic_lower(mip); 4760 ASSERT(new_name != NULL); 4761 mac_rename_flow_names(mcip, new_name); 4762 mac_stat_rename(mcip); 4763 goto done; 4764 } 4765 /* 4766 * This mac may itself be an aggr link, or it may have some client 4767 * which is an aggr port. For both cases, we need to change the 4768 * aggr port's mac client name, its flow name and the associated flow 4769 * kstat. 4770 */ 4771 if (mip->mi_state_flags & MIS_IS_AGGR) { 4772 mac_capab_aggr_t aggr_cap; 4773 mac_rename_fn_t rename_fn; 4774 boolean_t ret; 4775 4776 ASSERT(new_name != NULL); 4777 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 4778 (void *)(&aggr_cap)); 4779 ASSERT(ret == B_TRUE); 4780 rename_fn = aggr_cap.mca_rename_fn; 4781 rename_fn(new_name, mip->mi_driver); 4782 /* 4783 * The aggr's client name and kstat flow name will be 4784 * updated below, i.e. via mac_rename_flow_names. 4785 */ 4786 } 4787 4788 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 4789 cur_clnt = cur_clnt->mci_client_next) { 4790 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 4791 if (new_name != NULL) { 4792 char *str_st = cur_clnt->mci_name; 4793 char *str_del = strchr(str_st, '-'); 4794 4795 ASSERT(str_del != NULL); 4796 bzero(str_del + 1, MAXNAMELEN - 4797 (str_del - str_st + 1)); 4798 bcopy(new_name, str_del + 1, 4799 strlen(new_name)); 4800 } 4801 fep = cur_clnt->mci_flent; 4802 mac_rename_flow(fep, cur_clnt->mci_name); 4803 break; 4804 } else if (new_name != NULL && 4805 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 4806 mac_rename_flow_names(cur_clnt, new_name); 4807 break; 4808 } 4809 } 4810 4811 /* Recreate kstats associated with aggr pseudo rings */ 4812 if (mip->mi_state_flags & MIS_IS_AGGR) 4813 mac_pseudo_ring_stat_rename(mip); 4814 4815 done: 4816 i_mac_perim_exit(mip); 4817 return (0); 4818 } 4819 4820 /* 4821 * Rename the MAC client's flow names 4822 */ 4823 static void 4824 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 4825 { 4826 flow_entry_t *flent; 4827 uint16_t vid; 4828 char flowname[MAXFLOWNAMELEN]; 4829 mac_impl_t *mip = mcip->mci_mip; 4830 4831 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4832 4833 /* 4834 * Use mi_rw_lock to ensure that threads not in the mac perimeter 4835 * see a self-consistent value for mci_name 4836 */ 4837 rw_enter(&mip->mi_rw_lock, RW_WRITER); 4838 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 4839 rw_exit(&mip->mi_rw_lock); 4840 4841 mac_rename_flow(mcip->mci_flent, new_name); 4842 4843 if (mcip->mci_nflents == 1) 4844 return; 4845 4846 /* 4847 * We have to rename all the others too, no stats to destroy for 4848 * these. 4849 */ 4850 for (flent = mcip->mci_flent_list; flent != NULL; 4851 flent = flent->fe_client_next) { 4852 if (flent != mcip->mci_flent) { 4853 vid = i_mac_flow_vid(flent); 4854 (void) sprintf(flowname, "%s%u", new_name, vid); 4855 mac_flow_set_name(flent, flowname); 4856 } 4857 } 4858 } 4859 4860 4861 /* 4862 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 4863 * defined for the specified MAC client. 4864 */ 4865 static void 4866 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4867 { 4868 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4869 /* 4870 * The promisc Rx data path walks the mci_flent_list. Protect by 4871 * using mi_rw_lock 4872 */ 4873 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4874 4875 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 4876 4877 /* Add it to the head */ 4878 flent->fe_client_next = mcip->mci_flent_list; 4879 mcip->mci_flent_list = flent; 4880 mcip->mci_nflents++; 4881 4882 /* 4883 * Keep track of the number of non-zero VIDs addresses per MAC 4884 * client to avoid figuring it out in the data-path. 4885 */ 4886 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4887 mcip->mci_nvids++; 4888 4889 rw_exit(&mcip->mci_rw_lock); 4890 } 4891 4892 /* 4893 * Remove a flow entry from the MAC client's list. 4894 */ 4895 static void 4896 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4897 { 4898 flow_entry_t *fe = mcip->mci_flent_list; 4899 flow_entry_t *prev_fe = NULL; 4900 4901 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4902 /* 4903 * The promisc Rx data path walks the mci_flent_list. Protect by 4904 * using mci_rw_lock 4905 */ 4906 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4907 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID; 4908 4909 while ((fe != NULL) && (fe != flent)) { 4910 prev_fe = fe; 4911 fe = fe->fe_client_next; 4912 } 4913 4914 ASSERT(fe != NULL); 4915 if (prev_fe == NULL) { 4916 /* Deleting the first node */ 4917 mcip->mci_flent_list = fe->fe_client_next; 4918 } else { 4919 prev_fe->fe_client_next = fe->fe_client_next; 4920 } 4921 mcip->mci_nflents--; 4922 4923 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4924 mcip->mci_nvids--; 4925 4926 rw_exit(&mcip->mci_rw_lock); 4927 } 4928 4929 /* 4930 * Check if the given VID belongs to this MAC client. 4931 */ 4932 boolean_t 4933 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 4934 { 4935 flow_entry_t *flent; 4936 uint16_t mci_vid; 4937 uint32_t cache = mcip->mci_vidcache; 4938 4939 /* 4940 * In hopes of not having to touch the mci_rw_lock, check to see if 4941 * this vid matches our cached result. 4942 */ 4943 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid) 4944 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE); 4945 4946 /* The mci_flent_list is protected by mci_rw_lock */ 4947 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4948 for (flent = mcip->mci_flent_list; flent != NULL; 4949 flent = flent->fe_client_next) { 4950 mci_vid = i_mac_flow_vid(flent); 4951 if (vid == mci_vid) { 4952 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE); 4953 rw_exit(&mcip->mci_rw_lock); 4954 return (B_TRUE); 4955 } 4956 } 4957 4958 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE); 4959 rw_exit(&mcip->mci_rw_lock); 4960 return (B_FALSE); 4961 } 4962 4963 /* 4964 * Get the flow entry for the specified <MAC addr, VID> tuple. 4965 */ 4966 static flow_entry_t * 4967 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 4968 { 4969 mac_address_t *map = mcip->mci_unicast; 4970 flow_entry_t *flent; 4971 uint16_t vid; 4972 flow_desc_t flow_desc; 4973 4974 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4975 4976 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 4977 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 4978 return (NULL); 4979 4980 for (flent = mcip->mci_flent_list; flent != NULL; 4981 flent = flent->fe_client_next) { 4982 vid = i_mac_flow_vid(flent); 4983 if (vid == muip->mui_vid) { 4984 return (flent); 4985 } 4986 } 4987 4988 return (NULL); 4989 } 4990 4991 /* 4992 * Since mci_flent has the SRSs, when we want to remove it, we replace 4993 * the flow_desc_t in mci_flent with that of an existing flent and then 4994 * remove that flent instead of mci_flent. 4995 */ 4996 static flow_entry_t * 4997 mac_client_swap_mciflent(mac_client_impl_t *mcip) 4998 { 4999 flow_entry_t *flent = mcip->mci_flent; 5000 flow_tab_t *ft = flent->fe_flow_tab; 5001 flow_entry_t *flent1; 5002 flow_desc_t fl_desc; 5003 char fl_name[MAXFLOWNAMELEN]; 5004 int err; 5005 5006 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5007 ASSERT(mcip->mci_nflents > 1); 5008 5009 /* get the next flent following the primary flent */ 5010 flent1 = mcip->mci_flent_list->fe_client_next; 5011 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 5012 5013 /* 5014 * Remove the flent from the flow table before updating the 5015 * flow descriptor as the hash depends on the flow descriptor. 5016 * This also helps incoming packet classification avoid having 5017 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 5018 * flow table is done under the fe_lock so that log or stat functions 5019 * see a self-consistent fe_flow_desc. The name and desc are specific 5020 * to a flow, the rest are shared by all the clients, including 5021 * resource control etc. 5022 */ 5023 mac_flow_remove(ft, flent, B_TRUE); 5024 mac_flow_remove(ft, flent1, B_TRUE); 5025 5026 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 5027 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 5028 5029 /* update the primary flow entry */ 5030 mutex_enter(&flent->fe_lock); 5031 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 5032 sizeof (flow_desc_t)); 5033 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 5034 mutex_exit(&flent->fe_lock); 5035 5036 /* update the flow entry that is to be freed */ 5037 mutex_enter(&flent1->fe_lock); 5038 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 5039 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 5040 mutex_exit(&flent1->fe_lock); 5041 5042 /* now reinsert the flow entries in the table */ 5043 err = mac_flow_add(ft, flent); 5044 ASSERT(err == 0); 5045 5046 err = mac_flow_add(ft, flent1); 5047 ASSERT(err == 0); 5048 5049 return (flent1); 5050 } 5051 5052 /* 5053 * Return whether there is only one flow entry associated with this 5054 * MAC client. 5055 */ 5056 static boolean_t 5057 mac_client_single_rcvr(mac_client_impl_t *mcip) 5058 { 5059 return (mcip->mci_nflents == 1); 5060 } 5061 5062 int 5063 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp) 5064 { 5065 boolean_t reset; 5066 uint32_t rings_needed; 5067 uint32_t rings_avail; 5068 mac_group_type_t gtype; 5069 mac_resource_props_t *mip_mrp; 5070 5071 if (mrp == NULL) 5072 return (0); 5073 5074 if (mrp->mrp_mask & MRP_PRIORITY) { 5075 mac_priority_level_t pri = mrp->mrp_priority; 5076 5077 if (pri < MPL_LOW || pri > MPL_RESET) 5078 return (EINVAL); 5079 } 5080 5081 if (mrp->mrp_mask & MRP_MAXBW) { 5082 uint64_t maxbw = mrp->mrp_maxbw; 5083 5084 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 5085 return (EINVAL); 5086 } 5087 if (mrp->mrp_mask & MRP_CPUS) { 5088 int i, j; 5089 mac_cpu_mode_t fanout; 5090 5091 if (mrp->mrp_ncpus > ncpus) 5092 return (EINVAL); 5093 5094 for (i = 0; i < mrp->mrp_ncpus; i++) { 5095 for (j = 0; j < mrp->mrp_ncpus; j++) { 5096 if (i != j && 5097 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) { 5098 return (EINVAL); 5099 } 5100 } 5101 } 5102 5103 for (i = 0; i < mrp->mrp_ncpus; i++) { 5104 cpu_t *cp; 5105 int rv; 5106 5107 mutex_enter(&cpu_lock); 5108 cp = cpu_get(mrp->mrp_cpu[i]); 5109 if (cp != NULL) 5110 rv = cpu_is_online(cp); 5111 else 5112 rv = 0; 5113 mutex_exit(&cpu_lock); 5114 if (rv == 0) 5115 return (EINVAL); 5116 } 5117 5118 fanout = mrp->mrp_fanout_mode; 5119 if (fanout < 0 || fanout > MCM_CPUS) 5120 return (EINVAL); 5121 } 5122 5123 if (mrp->mrp_mask & MRP_PROTECT) { 5124 int err = mac_protect_validate(mrp); 5125 if (err != 0) 5126 return (err); 5127 } 5128 5129 if (!(mrp->mrp_mask & MRP_RX_RINGS) && 5130 !(mrp->mrp_mask & MRP_TX_RINGS)) { 5131 return (0); 5132 } 5133 5134 /* 5135 * mip will be null when we come from mac_flow_create or 5136 * mac_link_flow_modify. In the latter case it is a user flow, 5137 * for which we don't support rings. In the former we would 5138 * have validated the props beforehand (i_mac_unicast_add -> 5139 * mac_client_set_resources -> validate for the primary and 5140 * vnic_dev_create -> mac_client_set_resources -> validate for 5141 * a vnic. 5142 */ 5143 if (mip == NULL) 5144 return (0); 5145 5146 /* 5147 * We don't support setting rings property for a VNIC that is using a 5148 * primary address (VLAN) 5149 */ 5150 if ((mip->mi_state_flags & MIS_IS_VNIC) && 5151 mac_is_vnic_primary((mac_handle_t)mip)) { 5152 return (ENOTSUP); 5153 } 5154 5155 mip_mrp = &mip->mi_resource_props; 5156 /* 5157 * The rings property should be validated against the NICs 5158 * resources 5159 */ 5160 if (mip->mi_state_flags & MIS_IS_VNIC) 5161 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip); 5162 5163 reset = mrp->mrp_mask & MRP_RINGS_RESET; 5164 /* 5165 * If groups are not supported, return error. 5166 */ 5167 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) || 5168 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) { 5169 return (EINVAL); 5170 } 5171 /* 5172 * If we are just resetting, there is no validation needed. 5173 */ 5174 if (reset) 5175 return (0); 5176 5177 if (mrp->mrp_mask & MRP_RX_RINGS) { 5178 rings_needed = mrp->mrp_nrxrings; 5179 /* 5180 * We just want to check if the number of additional 5181 * rings requested is available. 5182 */ 5183 if (mip_mrp->mrp_mask & MRP_RX_RINGS) { 5184 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings) 5185 /* Just check for the additional rings */ 5186 rings_needed -= mip_mrp->mrp_nrxrings; 5187 else 5188 /* We are not asking for additional rings */ 5189 rings_needed = 0; 5190 } 5191 rings_avail = mip->mi_rxrings_avail; 5192 gtype = mip->mi_rx_group_type; 5193 } else { 5194 rings_needed = mrp->mrp_ntxrings; 5195 /* Similarly for the TX rings */ 5196 if (mip_mrp->mrp_mask & MRP_TX_RINGS) { 5197 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings) 5198 /* Just check for the additional rings */ 5199 rings_needed -= mip_mrp->mrp_ntxrings; 5200 else 5201 /* We are not asking for additional rings */ 5202 rings_needed = 0; 5203 } 5204 rings_avail = mip->mi_txrings_avail; 5205 gtype = mip->mi_tx_group_type; 5206 } 5207 5208 /* Error if the group is dynamic .. */ 5209 if (gtype == MAC_GROUP_TYPE_DYNAMIC) { 5210 /* 5211 * .. and rings specified are more than available. 5212 */ 5213 if (rings_needed > rings_avail) 5214 return (EINVAL); 5215 } else { 5216 /* 5217 * OR group is static and we have specified some rings. 5218 */ 5219 if (rings_needed > 0) 5220 return (EINVAL); 5221 } 5222 return (0); 5223 } 5224 5225 /* 5226 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 5227 * underlying physical link is down. This is to allow MAC clients to 5228 * communicate with other clients. 5229 */ 5230 void 5231 mac_virtual_link_update(mac_impl_t *mip) 5232 { 5233 if (mip->mi_linkstate != LINK_STATE_UP) 5234 i_mac_notify(mip, MAC_NOTE_LINK); 5235 } 5236 5237 /* 5238 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 5239 * mac handle in the client. 5240 */ 5241 void 5242 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh, 5243 mac_resource_props_t *mrp) 5244 { 5245 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5246 mac_impl_t *mip = (mac_impl_t *)mh; 5247 5248 mcip->mci_upper_mip = mip; 5249 /* If there are any properties, copy it over too */ 5250 if (mrp != NULL) { 5251 bcopy(mrp, &mip->mi_resource_props, 5252 sizeof (mac_resource_props_t)); 5253 } 5254 } 5255 5256 /* 5257 * Mark the mac as being used exclusively by the single mac client that is 5258 * doing some control operation on this mac. No further opens of this mac 5259 * will be allowed until this client calls mac_unmark_exclusive. The mac 5260 * client calling this function must already be in the mac perimeter 5261 */ 5262 int 5263 mac_mark_exclusive(mac_handle_t mh) 5264 { 5265 mac_impl_t *mip = (mac_impl_t *)mh; 5266 5267 ASSERT(MAC_PERIM_HELD(mh)); 5268 /* 5269 * Look up its entry in the global hash table. 5270 */ 5271 rw_enter(&i_mac_impl_lock, RW_WRITER); 5272 if (mip->mi_state_flags & MIS_DISABLED) { 5273 rw_exit(&i_mac_impl_lock); 5274 return (ENOENT); 5275 } 5276 5277 /* 5278 * A reference to mac is held even if the link is not plumbed. 5279 * In i_dls_link_create() we open the MAC interface and hold the 5280 * reference. There is an additional reference for the mac_open 5281 * done in acquiring the mac perimeter 5282 */ 5283 if (mip->mi_ref != 2) { 5284 rw_exit(&i_mac_impl_lock); 5285 return (EBUSY); 5286 } 5287 5288 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5289 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 5290 rw_exit(&i_mac_impl_lock); 5291 return (0); 5292 } 5293 5294 void 5295 mac_unmark_exclusive(mac_handle_t mh) 5296 { 5297 mac_impl_t *mip = (mac_impl_t *)mh; 5298 5299 ASSERT(MAC_PERIM_HELD(mh)); 5300 5301 rw_enter(&i_mac_impl_lock, RW_WRITER); 5302 /* 1 for the creation and another for the perimeter */ 5303 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5304 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 5305 rw_exit(&i_mac_impl_lock); 5306 } 5307 5308 /* 5309 * Set the MTU for the specified MAC. 5310 */ 5311 int 5312 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 5313 { 5314 mac_impl_t *mip = (mac_impl_t *)mh; 5315 uint_t old_mtu; 5316 int rv = 0; 5317 5318 i_mac_perim_enter(mip); 5319 5320 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) { 5321 rv = ENOTSUP; 5322 goto bail; 5323 } 5324 5325 old_mtu = mip->mi_sdu_max; 5326 5327 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) { 5328 rv = EINVAL; 5329 goto bail; 5330 } 5331 5332 rw_enter(&mip->mi_rw_lock, RW_READER); 5333 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) { 5334 rv = EBUSY; 5335 rw_exit(&mip->mi_rw_lock); 5336 goto bail; 5337 } 5338 rw_exit(&mip->mi_rw_lock); 5339 5340 if (old_mtu != new_mtu) { 5341 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 5342 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 5343 if (rv != 0) 5344 goto bail; 5345 rv = mac_maxsdu_update(mh, new_mtu); 5346 ASSERT(rv == 0); 5347 } 5348 5349 bail: 5350 i_mac_perim_exit(mip); 5351 5352 if (rv == 0 && old_mtu_arg != NULL) 5353 *old_mtu_arg = old_mtu; 5354 return (rv); 5355 } 5356 5357 /* 5358 * Return the RX h/w information for the group indexed by grp_num. 5359 */ 5360 void 5361 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5362 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5363 char *clnts_name) 5364 { 5365 mac_impl_t *mip = (mac_impl_t *)mh; 5366 mac_grp_client_t *mcip; 5367 uint_t i = 0, index = 0; 5368 mac_ring_t *ring; 5369 5370 /* Revisit when we implement fully dynamic group allocation */ 5371 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 5372 5373 rw_enter(&mip->mi_rw_lock, RW_READER); 5374 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 5375 *type = mip->mi_rx_groups[grp_index].mrg_type; 5376 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 5377 ring = mip->mi_rx_groups[grp_index].mrg_rings; 5378 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count; 5379 index++) { 5380 rings[index] = ring->mr_index; 5381 ring = ring->mr_next; 5382 } 5383 /* Assuming the 1st is the default group */ 5384 index = 0; 5385 if (grp_index == 0) { 5386 (void) strlcpy(clnts_name, "<default,mcast>,", 5387 MAXCLIENTNAMELEN); 5388 index += strlen("<default,mcast>,"); 5389 } 5390 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 5391 mcip = mcip->mgc_next) { 5392 int name_len = strlen(mcip->mgc_client->mci_name); 5393 5394 /* 5395 * MAXCLIENTNAMELEN is the buffer size reserved for client 5396 * names. 5397 * XXXX Formating the client name string needs to be moved 5398 * to user land when fixing the size of dhi_clnts in 5399 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5400 * dhi_clntsin instead of MAXCLIENTNAMELEN 5401 */ 5402 if (index + name_len >= MAXCLIENTNAMELEN) { 5403 index = MAXCLIENTNAMELEN; 5404 break; 5405 } 5406 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5407 name_len); 5408 index += name_len; 5409 clnts_name[index++] = ','; 5410 i++; 5411 } 5412 5413 /* Get rid of the last , */ 5414 if (index > 0) 5415 clnts_name[index - 1] = '\0'; 5416 *n_clnts = i; 5417 rw_exit(&mip->mi_rw_lock); 5418 } 5419 5420 /* 5421 * Return the TX h/w information for the group indexed by grp_num. 5422 */ 5423 void 5424 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5425 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5426 char *clnts_name) 5427 { 5428 mac_impl_t *mip = (mac_impl_t *)mh; 5429 mac_grp_client_t *mcip; 5430 uint_t i = 0, index = 0; 5431 mac_ring_t *ring; 5432 5433 /* Revisit when we implement fully dynamic group allocation */ 5434 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count); 5435 5436 rw_enter(&mip->mi_rw_lock, RW_READER); 5437 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ? 5438 mip->mi_tx_groups[grp_index].mrg_index : grp_index; 5439 *type = mip->mi_tx_groups[grp_index].mrg_type; 5440 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count; 5441 ring = mip->mi_tx_groups[grp_index].mrg_rings; 5442 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count; 5443 index++) { 5444 rings[index] = ring->mr_index; 5445 ring = ring->mr_next; 5446 } 5447 index = 0; 5448 /* Default group has an index of -1 */ 5449 if (mip->mi_tx_groups[grp_index].mrg_index < 0) { 5450 (void) strlcpy(clnts_name, "<default>,", 5451 MAXCLIENTNAMELEN); 5452 index += strlen("<default>,"); 5453 } 5454 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL; 5455 mcip = mcip->mgc_next) { 5456 int name_len = strlen(mcip->mgc_client->mci_name); 5457 5458 /* 5459 * MAXCLIENTNAMELEN is the buffer size reserved for client 5460 * names. 5461 * XXXX Formating the client name string needs to be moved 5462 * to user land when fixing the size of dhi_clnts in 5463 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5464 * dhi_clntsin instead of MAXCLIENTNAMELEN 5465 */ 5466 if (index + name_len >= MAXCLIENTNAMELEN) { 5467 index = MAXCLIENTNAMELEN; 5468 break; 5469 } 5470 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5471 name_len); 5472 index += name_len; 5473 clnts_name[index++] = ','; 5474 i++; 5475 } 5476 5477 /* Get rid of the last , */ 5478 if (index > 0) 5479 clnts_name[index - 1] = '\0'; 5480 *n_clnts = i; 5481 rw_exit(&mip->mi_rw_lock); 5482 } 5483 5484 /* 5485 * Return the group count for RX or TX. 5486 */ 5487 uint_t 5488 mac_hwgrp_num(mac_handle_t mh, int type) 5489 { 5490 mac_impl_t *mip = (mac_impl_t *)mh; 5491 5492 /* 5493 * Return the Rx and Tx group count; for the Tx we need to 5494 * include the default too. 5495 */ 5496 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count : 5497 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0); 5498 } 5499 5500 /* 5501 * The total number of free TX rings for this MAC. 5502 */ 5503 uint_t 5504 mac_txavail_get(mac_handle_t mh) 5505 { 5506 mac_impl_t *mip = (mac_impl_t *)mh; 5507 5508 return (mip->mi_txrings_avail); 5509 } 5510 5511 /* 5512 * The total number of free RX rings for this MAC. 5513 */ 5514 uint_t 5515 mac_rxavail_get(mac_handle_t mh) 5516 { 5517 mac_impl_t *mip = (mac_impl_t *)mh; 5518 5519 return (mip->mi_rxrings_avail); 5520 } 5521 5522 /* 5523 * The total number of reserved RX rings on this MAC. 5524 */ 5525 uint_t 5526 mac_rxrsvd_get(mac_handle_t mh) 5527 { 5528 mac_impl_t *mip = (mac_impl_t *)mh; 5529 5530 return (mip->mi_rxrings_rsvd); 5531 } 5532 5533 /* 5534 * The total number of reserved TX rings on this MAC. 5535 */ 5536 uint_t 5537 mac_txrsvd_get(mac_handle_t mh) 5538 { 5539 mac_impl_t *mip = (mac_impl_t *)mh; 5540 5541 return (mip->mi_txrings_rsvd); 5542 } 5543 5544 /* 5545 * Total number of free RX groups on this MAC. 5546 */ 5547 uint_t 5548 mac_rxhwlnksavail_get(mac_handle_t mh) 5549 { 5550 mac_impl_t *mip = (mac_impl_t *)mh; 5551 5552 return (mip->mi_rxhwclnt_avail); 5553 } 5554 5555 /* 5556 * Total number of RX groups reserved on this MAC. 5557 */ 5558 uint_t 5559 mac_rxhwlnksrsvd_get(mac_handle_t mh) 5560 { 5561 mac_impl_t *mip = (mac_impl_t *)mh; 5562 5563 return (mip->mi_rxhwclnt_used); 5564 } 5565 5566 /* 5567 * Total number of free TX groups on this MAC. 5568 */ 5569 uint_t 5570 mac_txhwlnksavail_get(mac_handle_t mh) 5571 { 5572 mac_impl_t *mip = (mac_impl_t *)mh; 5573 5574 return (mip->mi_txhwclnt_avail); 5575 } 5576 5577 /* 5578 * Total number of TX groups reserved on this MAC. 5579 */ 5580 uint_t 5581 mac_txhwlnksrsvd_get(mac_handle_t mh) 5582 { 5583 mac_impl_t *mip = (mac_impl_t *)mh; 5584 5585 return (mip->mi_txhwclnt_used); 5586 } 5587 5588 /* 5589 * Initialize the rings property for a mac client. A non-0 value for 5590 * rxring or txring specifies the number of rings required, a value 5591 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need 5592 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE 5593 * means the system can decide whether it can give any rings or not. 5594 */ 5595 void 5596 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings) 5597 { 5598 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5599 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 5600 5601 if (rxrings != MAC_RXRINGS_DONTCARE) { 5602 mrp->mrp_mask |= MRP_RX_RINGS; 5603 mrp->mrp_nrxrings = rxrings; 5604 } 5605 5606 if (txrings != MAC_TXRINGS_DONTCARE) { 5607 mrp->mrp_mask |= MRP_TX_RINGS; 5608 mrp->mrp_ntxrings = txrings; 5609 } 5610 } 5611 5612 boolean_t 5613 mac_get_promisc_filtered(mac_client_handle_t mch) 5614 { 5615 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5616 5617 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED); 5618 } 5619 5620 void 5621 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable) 5622 { 5623 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5624 5625 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5626 if (enable) 5627 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED; 5628 else 5629 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED; 5630 }