1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2018 Joyent, Inc.
25 * Copyright 2017 RackTop Systems.
26 */
27
28 /*
29 * - General Introduction:
30 *
31 * This file contains the implementation of the MAC client kernel
32 * API and related code. The MAC client API allows a kernel module
33 * to gain access to a MAC instance (physical NIC, link aggregation, etc).
34 * It allows a MAC client to associate itself with a MAC address,
35 * VLANs, callback functions for data traffic and for promiscuous mode.
36 * The MAC client API is also used to specify the properties associated
37 * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
38 * These properties are further used to determine the hardware resources
39 * to allocate to the various MAC clients.
40 *
41 * - Primary MAC clients:
42 *
43 * The MAC client API refers to "primary MAC clients". A primary MAC
44 * client is a client which "owns" the primary MAC address of
45 * the underlying MAC instance. The primary MAC address is called out
46 * since it is associated with specific semantics: the primary MAC
47 * address is the MAC address which is assigned to the IP interface
48 * when it is plumbed, and the primary MAC address is assigned
49 * to VLAN data-links. The primary address of a MAC instance can
50 * also change dynamically from under the MAC client, for example
51 * as a result of a change of state of a link aggregation. In that
52 * case the MAC layer automatically updates all data-structures which
53 * refer to the current value of the primary MAC address. Typical
54 * primary MAC clients are dls, aggr, and xnb. A typical non-primary
55 * MAC client is the vnic driver.
56 *
57 * - Virtual Switching:
58 *
59 * The MAC layer implements a virtual switch between the MAC clients
60 * (primary and non-primary) defined on top of the same underlying
61 * NIC (physical, link aggregation, etc). The virtual switch is
62 * VLAN-aware, i.e. it allows multiple MAC clients to be member
63 * of one or more VLANs, and the virtual switch will distribute
64 * multicast tagged packets only to the member of the corresponding
65 * VLANs.
66 *
67 * - Upper vs Lower MAC:
68 *
69 * Creating a VNIC on top of a MAC instance effectively causes
70 * two MAC instances to be layered on top of each other, one for
71 * the VNIC(s), one for the underlying MAC instance (physical NIC,
72 * link aggregation, etc). In the code below we refer to the
73 * underlying NIC as the "lower MAC", and we refer to VNICs as
74 * the "upper MAC".
75 *
76 * - Pass-through for VNICs:
77 *
78 * When VNICs are created on top of an underlying MAC, this causes
79 * a layering of two MAC instances. Since the lower MAC already
80 * does the switching and demultiplexing to its MAC clients, the
81 * upper MAC would simply have to pass packets to the layer below
82 * or above it, which would introduce overhead. In order to avoid
83 * this overhead, the MAC layer implements a pass-through mechanism
84 * for VNICs. When a VNIC opens the lower MAC instance, it saves
85 * the MAC client handle it optains from the MAC layer. When a MAC
86 * client opens a VNIC (upper MAC), the MAC layer detects that
87 * the MAC being opened is a VNIC, and gets the MAC client handle
88 * that the VNIC driver obtained from the lower MAC. This exchange
89 * is done through a private capability between the MAC layer
90 * and the VNIC driver. The upper MAC then returns that handle
91 * directly to its MAC client. Any operation done by the upper
92 * MAC client is now done on the lower MAC client handle, which
93 * allows the VNIC driver to be completely bypassed for the
94 * performance sensitive data-path.
95 *
96 * - Secondary MACs for VNICs:
97 *
98 * VNICs support multiple upper mac clients to enable support for
99 * multiple MAC addresses on the VNIC. When the VNIC is created the
100 * initial mac client is the primary upper mac. Any additional mac
101 * clients are secondary macs. These are kept in sync with the primary
102 * (for things such as the rx function and resource control settings)
103 * using the same private capability interface between the MAC layer
104 * and the VNIC layer.
105 *
106 */
107
108 #include <sys/types.h>
109 #include <sys/conf.h>
110 #include <sys/id_space.h>
111 #include <sys/esunddi.h>
112 #include <sys/stat.h>
113 #include <sys/mkdev.h>
114 #include <sys/stream.h>
115 #include <sys/strsun.h>
116 #include <sys/strsubr.h>
117 #include <sys/dlpi.h>
118 #include <sys/modhash.h>
119 #include <sys/mac_impl.h>
120 #include <sys/mac_client_impl.h>
121 #include <sys/mac_soft_ring.h>
122 #include <sys/mac_stat.h>
123 #include <sys/dls.h>
124 #include <sys/dld.h>
125 #include <sys/modctl.h>
126 #include <sys/fs/dv_node.h>
127 #include <sys/thread.h>
128 #include <sys/proc.h>
129 #include <sys/callb.h>
130 #include <sys/cpuvar.h>
131 #include <sys/atomic.h>
132 #include <sys/sdt.h>
133 #include <sys/mac_flow.h>
134 #include <sys/ddi_intr_impl.h>
135 #include <sys/disp.h>
136 #include <sys/sdt.h>
137 #include <sys/vnic.h>
138 #include <sys/vnic_impl.h>
139 #include <sys/vlan.h>
140 #include <inet/ip.h>
141 #include <inet/ip6.h>
142 #include <sys/exacct.h>
143 #include <sys/exacct_impl.h>
144 #include <inet/nd.h>
145 #include <sys/ethernet.h>
146
147 kmem_cache_t *mac_client_impl_cache;
148 kmem_cache_t *mac_promisc_impl_cache;
149
150 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
151 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
152 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
153 mac_unicast_impl_t *);
154 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
155 flow_entry_t *);
156 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
157 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
158 static void mac_virtual_link_update(mac_impl_t *);
159 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t,
160 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *);
161 static void mac_client_datapath_teardown(mac_client_handle_t,
162 mac_unicast_impl_t *, flow_entry_t *);
163 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *);
164
165 /* ARGSUSED */
166 static int
167 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
168 {
169 int i;
170 mac_client_impl_t *mcip = buf;
171
172 bzero(buf, MAC_CLIENT_IMPL_SIZE);
173 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
174 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
175
176 ASSERT(mac_tx_percpu_cnt >= 0);
177 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
178 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
179 MUTEX_DRIVER, NULL);
180 }
181 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
182
183 return (0);
184 }
185
186 /* ARGSUSED */
187 static void
188 i_mac_client_impl_dtor(void *buf, void *arg)
189 {
190 int i;
191 mac_client_impl_t *mcip = buf;
192
193 ASSERT(mcip->mci_promisc_list == NULL);
194 ASSERT(mcip->mci_unicast_list == NULL);
195 ASSERT(mcip->mci_state_flags == 0);
196 ASSERT(mcip->mci_tx_flag == 0);
197
198 mutex_destroy(&mcip->mci_tx_cb_lock);
199
200 ASSERT(mac_tx_percpu_cnt >= 0);
201 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
202 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
203 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
204 }
205 cv_destroy(&mcip->mci_tx_cv);
206 }
207
208 /* ARGSUSED */
209 static int
210 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
211 {
212 mac_promisc_impl_t *mpip = buf;
213
214 bzero(buf, sizeof (mac_promisc_impl_t));
215 mpip->mpi_mci_link.mcb_objp = buf;
216 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
217 mpip->mpi_mi_link.mcb_objp = buf;
218 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
219 return (0);
220 }
221
222 /* ARGSUSED */
223 static void
224 i_mac_promisc_impl_dtor(void *buf, void *arg)
225 {
226 mac_promisc_impl_t *mpip = buf;
227
228 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
229 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
230 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
231 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
232
233 mpip->mpi_mci_link.mcb_objp = NULL;
234 mpip->mpi_mci_link.mcb_objsize = 0;
235 mpip->mpi_mi_link.mcb_objp = NULL;
236 mpip->mpi_mi_link.mcb_objsize = 0;
237
238 ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
239 mpip->mpi_mci_link.mcb_objsize = 0;
240 }
241
242 void
243 mac_client_init(void)
244 {
245 ASSERT(mac_tx_percpu_cnt >= 0);
246
247 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
248 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
249 i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
250 ASSERT(mac_client_impl_cache != NULL);
251
252 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
253 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
254 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
255 ASSERT(mac_promisc_impl_cache != NULL);
256 }
257
258 void
259 mac_client_fini(void)
260 {
261 kmem_cache_destroy(mac_client_impl_cache);
262 kmem_cache_destroy(mac_promisc_impl_cache);
263 }
264
265 /*
266 * Return the lower MAC client handle from the VNIC driver for the
267 * specified VNIC MAC instance.
268 */
269 mac_client_impl_t *
270 mac_vnic_lower(mac_impl_t *mip)
271 {
272 mac_capab_vnic_t cap;
273 mac_client_impl_t *mcip;
274
275 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
276 mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
277
278 return (mcip);
279 }
280
281 /*
282 * Update the secondary macs
283 */
284 void
285 mac_vnic_secondary_update(mac_impl_t *mip)
286 {
287 mac_capab_vnic_t cap;
288
289 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
290 cap.mcv_mac_secondary_update(cap.mcv_arg);
291 }
292
293 /*
294 * Return the MAC client handle of the primary MAC client for the
295 * specified MAC instance, or NULL otherwise.
296 */
297 mac_client_impl_t *
298 mac_primary_client_handle(mac_impl_t *mip)
299 {
300 mac_client_impl_t *mcip;
301
302 if (mip->mi_state_flags & MIS_IS_VNIC)
303 return (mac_vnic_lower(mip));
304
305 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
306
307 for (mcip = mip->mi_clients_list; mcip != NULL;
308 mcip = mcip->mci_client_next) {
309 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
310 return (mcip);
311 }
312 return (NULL);
313 }
314
315 /*
316 * Open a MAC specified by its MAC name.
317 */
318 int
319 mac_open(const char *macname, mac_handle_t *mhp)
320 {
321 mac_impl_t *mip;
322 int err;
323
324 /*
325 * Look up its entry in the global hash table.
326 */
327 if ((err = mac_hold(macname, &mip)) != 0)
328 return (err);
329
330 /*
331 * Hold the dip associated to the MAC to prevent it from being
332 * detached. For a softmac, its underlying dip is held by the
333 * mi_open() callback.
334 *
335 * This is done to be more tolerant with some defective drivers,
336 * which incorrectly handle mac_unregister() failure in their
337 * xxx_detach() routine. For example, some drivers ignore the
338 * failure of mac_unregister() and free all resources that
339 * that are needed for data transmition.
340 */
341 e_ddi_hold_devi(mip->mi_dip);
342
343 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
344 *mhp = (mac_handle_t)mip;
345 return (0);
346 }
347
348 /*
349 * The mac perimeter is used in both mac_open and mac_close by the
350 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
351 */
352 i_mac_perim_enter(mip);
353 mip->mi_oref++;
354 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
355 *mhp = (mac_handle_t)mip;
356 i_mac_perim_exit(mip);
357 return (0);
358 }
359 mip->mi_oref--;
360 ddi_release_devi(mip->mi_dip);
361 mac_rele(mip);
362 i_mac_perim_exit(mip);
363 return (err);
364 }
365
366 /*
367 * Open a MAC specified by its linkid.
368 */
369 int
370 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
371 {
372 dls_dl_handle_t dlh;
373 int err;
374
375 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
376 return (err);
377
378 dls_devnet_prop_task_wait(dlh);
379
380 err = mac_open(dls_devnet_mac(dlh), mhp);
381
382 dls_devnet_rele_tmp(dlh);
383 return (err);
384 }
385
386 /*
387 * Open a MAC specified by its link name.
388 */
389 int
390 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
391 {
392 datalink_id_t linkid;
393 int err;
394
395 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
396 return (err);
397 return (mac_open_by_linkid(linkid, mhp));
398 }
399
400 /*
401 * Close the specified MAC.
402 */
403 void
404 mac_close(mac_handle_t mh)
405 {
406 mac_impl_t *mip = (mac_impl_t *)mh;
407
408 i_mac_perim_enter(mip);
409 /*
410 * The mac perimeter is used in both mac_open and mac_close by the
411 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
412 */
413 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
414 ASSERT(mip->mi_oref != 0);
415 if (--mip->mi_oref == 0) {
416 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
417 mip->mi_close(mip->mi_driver);
418 }
419 }
420 i_mac_perim_exit(mip);
421 ddi_release_devi(mip->mi_dip);
422 mac_rele(mip);
423 }
424
425 /*
426 * Misc utility functions to retrieve various information about a MAC
427 * instance or a MAC client.
428 */
429
430 const mac_info_t *
431 mac_info(mac_handle_t mh)
432 {
433 return (&((mac_impl_t *)mh)->mi_info);
434 }
435
436 dev_info_t *
437 mac_devinfo_get(mac_handle_t mh)
438 {
439 return (((mac_impl_t *)mh)->mi_dip);
440 }
441
442 void *
443 mac_driver(mac_handle_t mh)
444 {
445 return (((mac_impl_t *)mh)->mi_driver);
446 }
447
448 const char *
449 mac_name(mac_handle_t mh)
450 {
451 return (((mac_impl_t *)mh)->mi_name);
452 }
453
454 int
455 mac_type(mac_handle_t mh)
456 {
457 return (((mac_impl_t *)mh)->mi_type->mt_type);
458 }
459
460 int
461 mac_nativetype(mac_handle_t mh)
462 {
463 return (((mac_impl_t *)mh)->mi_type->mt_nativetype);
464 }
465
466 char *
467 mac_client_name(mac_client_handle_t mch)
468 {
469 return (((mac_client_impl_t *)mch)->mci_name);
470 }
471
472 minor_t
473 mac_minor(mac_handle_t mh)
474 {
475 return (((mac_impl_t *)mh)->mi_minor);
476 }
477
478 /*
479 * Return the VID associated with a MAC client. This function should
480 * be called for clients which are associated with only one VID.
481 */
482 uint16_t
483 mac_client_vid(mac_client_handle_t mch)
484 {
485 uint16_t vid = VLAN_ID_NONE;
486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
487 flow_desc_t flow_desc;
488
489 if (mcip->mci_nflents == 0)
490 return (vid);
491
492 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
493
494 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
495 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
496 vid = flow_desc.fd_vid;
497
498 return (vid);
499 }
500
501 /*
502 * Return whether the specified MAC client corresponds to a VLAN VNIC.
503 */
504 boolean_t
505 mac_client_is_vlan_vnic(mac_client_handle_t mch)
506 {
507 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
508
509 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
510 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
511 }
512
513 /*
514 * Return the link speed associated with the specified MAC client.
515 *
516 * The link speed of a MAC client is equal to the smallest value of
517 * 1) the current link speed of the underlying NIC, or
518 * 2) the bandwidth limit set for the MAC client.
519 *
520 * Note that the bandwidth limit can be higher than the speed
521 * of the underlying NIC. This is allowed to avoid spurious
522 * administration action failures or artifically lowering the
523 * bandwidth limit of a link that may have temporarily lowered
524 * its link speed due to hardware problem or administrator action.
525 */
526 static uint64_t
527 mac_client_ifspeed(mac_client_impl_t *mcip)
528 {
529 mac_impl_t *mip = mcip->mci_mip;
530 uint64_t nic_speed;
531
532 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
533
534 if (nic_speed == 0) {
535 return (0);
536 } else {
537 uint64_t policy_limit = (uint64_t)-1;
538
539 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
540 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
541
542 return (MIN(policy_limit, nic_speed));
543 }
544 }
545
546 /*
547 * Return the link state of the specified client. If here are more
548 * than one clients of the underying mac_impl_t, the link state
549 * will always be UP regardless of the link state of the underlying
550 * mac_impl_t. This is needed to allow the MAC clients to continue
551 * to communicate with each other even when the physical link of
552 * their mac_impl_t is down.
553 */
554 static uint64_t
555 mac_client_link_state(mac_client_impl_t *mcip)
556 {
557 mac_impl_t *mip = mcip->mci_mip;
558 uint16_t vid;
559 mac_client_impl_t *mci_list;
560 mac_unicast_impl_t *mui_list, *oth_mui_list;
561
562 /*
563 * Returns LINK_STATE_UP if there are other MAC clients defined on
564 * mac_impl_t which share same VLAN ID as that of mcip. Note that
565 * if 'mcip' has more than one VID's then we match ANY one of the
566 * VID's with other MAC client's VID's and return LINK_STATE_UP.
567 */
568 rw_enter(&mcip->mci_rw_lock, RW_READER);
569 for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
570 mui_list = mui_list->mui_next) {
571 vid = mui_list->mui_vid;
572 for (mci_list = mip->mi_clients_list; mci_list != NULL;
573 mci_list = mci_list->mci_client_next) {
574 if (mci_list == mcip)
575 continue;
576 for (oth_mui_list = mci_list->mci_unicast_list;
577 oth_mui_list != NULL; oth_mui_list = oth_mui_list->
578 mui_next) {
579 if (vid == oth_mui_list->mui_vid) {
580 rw_exit(&mcip->mci_rw_lock);
581 return (LINK_STATE_UP);
582 }
583 }
584 }
585 }
586 rw_exit(&mcip->mci_rw_lock);
587
588 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
589 }
590
591 /*
592 * These statistics are consumed by dladm show-link -s <vnic>,
593 * dladm show-vnic -s and netstat. With the introduction of dlstat,
594 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while
595 * netstat will consume from kstats introduced for dlstat. This code
596 * will be removed at that time.
597 */
598
599 /*
600 * Return the statistics of a MAC client. These statistics are different
601 * then the statistics of the underlying MAC which are returned by
602 * mac_stat_get().
603 *
604 * Note that for things based on the tx and rx stats, mac will end up clobbering
605 * those stats when the underlying set of rings in the srs changes. As such, we
606 * need to source not only the current set, but also the historical set when
607 * returning to the client, lest our counters appear to go backwards.
608 */
609 uint64_t
610 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
611 {
612 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
613 mac_impl_t *mip = mcip->mci_mip;
614 flow_entry_t *flent = mcip->mci_flent;
615 mac_soft_ring_set_t *mac_srs;
616 mac_rx_stats_t *mac_rx_stat, *old_rx_stat;
617 mac_tx_stats_t *mac_tx_stat, *old_tx_stat;
618 int i;
619 uint64_t val = 0;
620
621 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
622 mac_tx_stat = &mac_srs->srs_tx.st_stat;
623 old_rx_stat = &mcip->mci_misc_stat.mms_defunctrxlanestats;
624 old_tx_stat = &mcip->mci_misc_stat.mms_defuncttxlanestats;
625
626 switch (stat) {
627 case MAC_STAT_LINK_STATE:
628 val = mac_client_link_state(mcip);
629 break;
630 case MAC_STAT_LINK_UP:
631 val = (mac_client_link_state(mcip) == LINK_STATE_UP);
632 break;
633 case MAC_STAT_PROMISC:
634 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
635 break;
636 case MAC_STAT_LOWLINK_STATE:
637 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE);
638 break;
639 case MAC_STAT_IFSPEED:
640 val = mac_client_ifspeed(mcip);
641 break;
642 case MAC_STAT_MULTIRCV:
643 val = mcip->mci_misc_stat.mms_multircv;
644 break;
645 case MAC_STAT_BRDCSTRCV:
646 val = mcip->mci_misc_stat.mms_brdcstrcv;
647 break;
648 case MAC_STAT_MULTIXMT:
649 val = mcip->mci_misc_stat.mms_multixmt;
650 break;
651 case MAC_STAT_BRDCSTXMT:
652 val = mcip->mci_misc_stat.mms_brdcstxmt;
653 break;
654 case MAC_STAT_OBYTES:
655 val = mac_tx_stat->mts_obytes;
656 val += old_tx_stat->mts_obytes;
657 break;
658 case MAC_STAT_OPACKETS:
659 val = mac_tx_stat->mts_opackets;
660 val += old_tx_stat->mts_opackets;
661 break;
662 case MAC_STAT_OERRORS:
663 val = mac_tx_stat->mts_oerrors;
664 val += old_tx_stat->mts_oerrors;
665 break;
666 case MAC_STAT_IPACKETS:
667 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
668 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
669 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
670 val += mac_rx_stat->mrs_intrcnt +
671 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
672 }
673 val += old_rx_stat->mrs_intrcnt + old_rx_stat->mrs_pollcnt +
674 old_rx_stat->mrs_lclcnt;
675 break;
676 case MAC_STAT_RBYTES:
677 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
678 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
679 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
680 val += mac_rx_stat->mrs_intrbytes +
681 mac_rx_stat->mrs_pollbytes +
682 mac_rx_stat->mrs_lclbytes;
683 }
684 val += old_rx_stat->mrs_intrbytes + old_rx_stat->mrs_pollbytes +
685 old_rx_stat->mrs_lclbytes;
686 break;
687 case MAC_STAT_IERRORS:
688 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
689 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
690 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
691 val += mac_rx_stat->mrs_ierrors;
692 }
693 val += old_rx_stat->mrs_ierrors;
694 break;
695 default:
696 val = mac_driver_stat_default(mip, stat);
697 break;
698 }
699
700 return (val);
701 }
702
703 /*
704 * Return the statistics of the specified MAC instance.
705 */
706 uint64_t
707 mac_stat_get(mac_handle_t mh, uint_t stat)
708 {
709 mac_impl_t *mip = (mac_impl_t *)mh;
710 uint64_t val;
711 int ret;
712
713 /*
714 * The range of stat determines where it is maintained. Stat
715 * values from 0 up to (but not including) MAC_STAT_MIN are
716 * mainteined by the mac module itself. Everything else is
717 * maintained by the driver.
718 *
719 * If the mac_impl_t being queried corresponds to a VNIC,
720 * the stats need to be queried from the lower MAC client
721 * corresponding to the VNIC. (The mac_link_update()
722 * invoked by the driver to the lower MAC causes the *lower
723 * MAC* to update its mi_linkstate, and send a notification
724 * to its MAC clients. Due to the VNIC passthrough,
725 * these notifications are sent to the upper MAC clients
726 * of the VNIC directly, and the upper mac_impl_t of the VNIC
727 * does not have a valid mi_linkstate.
728 */
729 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
730 /* these stats are maintained by the mac module itself */
731 switch (stat) {
732 case MAC_STAT_LINK_STATE:
733 return (mip->mi_linkstate);
734 case MAC_STAT_LINK_UP:
735 return (mip->mi_linkstate == LINK_STATE_UP);
736 case MAC_STAT_PROMISC:
737 return (mip->mi_devpromisc != 0);
738 case MAC_STAT_LOWLINK_STATE:
739 return (mip->mi_lowlinkstate);
740 default:
741 ASSERT(B_FALSE);
742 }
743 }
744
745 /*
746 * Call the driver to get the given statistic.
747 */
748 ret = mip->mi_getstat(mip->mi_driver, stat, &val);
749 if (ret != 0) {
750 /*
751 * The driver doesn't support this statistic. Get the
752 * statistic's default value.
753 */
754 val = mac_driver_stat_default(mip, stat);
755 }
756 return (val);
757 }
758
759 /*
760 * Query hardware rx ring corresponding to the pseudo ring.
761 */
762 uint64_t
763 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
764 {
765 return (mac_rx_ring_stat_get(handle, stat));
766 }
767
768 /*
769 * Query hardware tx ring corresponding to the pseudo ring.
770 */
771 uint64_t
772 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
773 {
774 return (mac_tx_ring_stat_get(handle, stat));
775 }
776
777 /*
778 * Utility function which returns the VID associated with a flow entry.
779 */
780 uint16_t
781 i_mac_flow_vid(flow_entry_t *flent)
782 {
783 flow_desc_t flow_desc;
784
785 mac_flow_get_desc(flent, &flow_desc);
786
787 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
788 return (flow_desc.fd_vid);
789 return (VLAN_ID_NONE);
790 }
791
792 /*
793 * Verify the validity of the specified unicast MAC address. Returns B_TRUE
794 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
795 * length.
796 */
797 boolean_t
798 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
799 {
800 mac_impl_t *mip = (mac_impl_t *)mh;
801
802 /*
803 * Verify the address. No lock is needed since mi_type and plugin
804 * details don't change after mac_register().
805 */
806 if ((len != mip->mi_type->mt_addr_length) ||
807 (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
808 mip->mi_pdata)) != 0) {
809 return (B_FALSE);
810 } else {
811 return (B_TRUE);
812 }
813 }
814
815 void
816 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
817 {
818 mac_impl_t *mip = (mac_impl_t *)mh;
819
820 if (min_sdu != NULL)
821 *min_sdu = mip->mi_sdu_min;
822 if (max_sdu != NULL)
823 *max_sdu = mip->mi_sdu_max;
824 }
825
826 void
827 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu,
828 uint_t *multicast_sdu)
829 {
830 mac_impl_t *mip = (mac_impl_t *)mh;
831
832 if (min_sdu != NULL)
833 *min_sdu = mip->mi_sdu_min;
834 if (max_sdu != NULL)
835 *max_sdu = mip->mi_sdu_max;
836 if (multicast_sdu != NULL)
837 *multicast_sdu = mip->mi_sdu_multicast;
838 }
839
840 /*
841 * Update the MAC unicast address of the specified client's flows. Currently
842 * only one unicast MAC unicast address is allowed per client.
843 */
844 static void
845 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
846 {
847 mac_impl_t *mip = mcip->mci_mip;
848 flow_entry_t *flent = mcip->mci_flent;
849 mac_address_t *map = mcip->mci_unicast;
850 flow_desc_t flow_desc;
851
852 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
853 ASSERT(flent != NULL);
854
855 mac_flow_get_desc(flent, &flow_desc);
856 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
857
858 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
859 mac_flow_set_desc(flent, &flow_desc);
860
861 /*
862 * The v6 local and SLAAC addrs (used by mac protection) need to be
863 * regenerated because our mac address has changed.
864 */
865 mac_protect_update_mac_token(mcip);
866
867 /*
868 * When there are multiple VLANs sharing the same MAC address,
869 * each gets its own MAC client, except when running on sun4v
870 * vsw. In that case the mci_flent_list is used to place
871 * multiple VLAN flows on one MAC client. If we ever get rid
872 * of vsw then this code can go, but until then we need to
873 * update all flow entries.
874 */
875 for (flent = mcip->mci_flent_list; flent != NULL;
876 flent = flent->fe_client_next) {
877 mac_flow_get_desc(flent, &flow_desc);
878 if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
879 flent->fe_type & FLOW_VNIC_MAC))
880 continue;
881
882 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
883 mac_flow_set_desc(flent, &flow_desc);
884 }
885 }
886
887 /*
888 * Update all clients that share the same unicast address.
889 */
890 void
891 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
892 {
893 mac_client_impl_t *mcip;
894
895 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
896
897 /*
898 * Find all clients that share the same unicast MAC address and update
899 * them appropriately.
900 */
901 for (mcip = mip->mi_clients_list; mcip != NULL;
902 mcip = mcip->mci_client_next) {
903 /*
904 * Ignore clients that don't share this MAC address.
905 */
906 if (map != mcip->mci_unicast)
907 continue;
908
909 /*
910 * Update those clients with same old unicast MAC address.
911 */
912 mac_unicast_update_client_flow(mcip);
913 }
914 }
915
916 /*
917 * Update the unicast MAC address of the specified VNIC MAC client.
918 *
919 * Check whether the operation is valid. Any of following cases should fail:
920 *
921 * 1. It's a VLAN type of VNIC.
922 * 2. The new value is current "primary" MAC address.
923 * 3. The current MAC address is shared with other clients.
924 * 4. The new MAC address has been used. This case will be valid when
925 * client migration is fully supported.
926 */
927 int
928 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
929 {
930 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
931 mac_impl_t *mip = mcip->mci_mip;
932 mac_address_t *map = mcip->mci_unicast;
933 int err;
934
935 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
936 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
937 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
938
939 i_mac_perim_enter(mip);
940
941 /*
942 * If this is a VLAN type of VNIC, it's using "primary" MAC address
943 * of the underlying interface. Must fail here. Refer to case 1 above.
944 */
945 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
946 i_mac_perim_exit(mip);
947 return (ENOTSUP);
948 }
949
950 /*
951 * If the new address is the "primary" one, must fail. Refer to
952 * case 2 above.
953 */
954 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
955 i_mac_perim_exit(mip);
956 return (EACCES);
957 }
958
959 /*
960 * If the address is shared by multiple clients, must fail. Refer
961 * to case 3 above.
962 */
963 if (mac_check_macaddr_shared(map)) {
964 i_mac_perim_exit(mip);
965 return (EBUSY);
966 }
967
968 /*
969 * If the new address has been used, must fail for now. Refer to
970 * case 4 above.
971 */
972 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
973 i_mac_perim_exit(mip);
974 return (ENOTSUP);
975 }
976
977 /*
978 * Update the MAC address.
979 */
980 err = mac_update_macaddr(map, (uint8_t *)addr);
981
982 if (err != 0) {
983 i_mac_perim_exit(mip);
984 return (err);
985 }
986
987 /*
988 * Update all flows of this MAC client.
989 */
990 mac_unicast_update_client_flow(mcip);
991
992 i_mac_perim_exit(mip);
993 return (0);
994 }
995
996 /*
997 * Program the new primary unicast address of the specified MAC.
998 *
999 * Function mac_update_macaddr() takes care different types of underlying
1000 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
1001 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
1002 * which will take care of updating the MAC address of the corresponding
1003 * MAC client.
1004 *
1005 * This is the only interface that allow the client to update the "primary"
1006 * MAC address of the underlying MAC. The new value must have not been
1007 * used by other clients.
1008 */
1009 int
1010 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
1011 {
1012 mac_impl_t *mip = (mac_impl_t *)mh;
1013 mac_address_t *map;
1014 int err;
1015
1016 /* verify the address validity */
1017 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
1018 return (EINVAL);
1019
1020 i_mac_perim_enter(mip);
1021
1022 /*
1023 * If the new value is the same as the current primary address value,
1024 * there's nothing to do.
1025 */
1026 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
1027 i_mac_perim_exit(mip);
1028 return (0);
1029 }
1030
1031 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
1032 i_mac_perim_exit(mip);
1033 return (EBUSY);
1034 }
1035
1036 map = mac_find_macaddr(mip, mip->mi_addr);
1037 ASSERT(map != NULL);
1038
1039 /*
1040 * Update the MAC address.
1041 */
1042 if (mip->mi_state_flags & MIS_IS_AGGR) {
1043 mac_capab_aggr_t aggr_cap;
1044
1045 /*
1046 * If the MAC is an aggregation, other than the unicast
1047 * addresses programming, aggr must be informed about this
1048 * primary unicst address change to change its MAC address
1049 * policy to be user-specified.
1050 */
1051 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
1052 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
1053 err = aggr_cap.mca_unicst(mip->mi_driver, addr);
1054 if (err == 0)
1055 bcopy(addr, map->ma_addr, map->ma_len);
1056 } else {
1057 err = mac_update_macaddr(map, (uint8_t *)addr);
1058 }
1059
1060 if (err != 0) {
1061 i_mac_perim_exit(mip);
1062 return (err);
1063 }
1064
1065 mac_unicast_update_clients(mip, map);
1066
1067 /*
1068 * Save the new primary MAC address in mac_impl_t.
1069 */
1070 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
1071
1072 i_mac_perim_exit(mip);
1073
1074 if (err == 0)
1075 i_mac_notify(mip, MAC_NOTE_UNICST);
1076
1077 return (err);
1078 }
1079
1080 /*
1081 * Return the current primary MAC address of the specified MAC.
1082 */
1083 void
1084 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
1085 {
1086 mac_impl_t *mip = (mac_impl_t *)mh;
1087
1088 rw_enter(&mip->mi_rw_lock, RW_READER);
1089 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
1090 rw_exit(&mip->mi_rw_lock);
1091 }
1092
1093 /*
1094 * Return the secondary MAC address for the specified handle
1095 */
1096 void
1097 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr)
1098 {
1099 mac_client_impl_t *mcip = (mac_client_impl_t *)mh;
1100
1101 ASSERT(mcip->mci_unicast != NULL);
1102 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len);
1103 }
1104
1105 /*
1106 * Return information about the use of the primary MAC address of the
1107 * specified MAC instance:
1108 *
1109 * - if client_name is non-NULL, it must point to a string of at
1110 * least MAXNAMELEN bytes, and will be set to the name of the MAC
1111 * client which uses the primary MAC address.
1112 *
1113 * - if in_use is non-NULL, used to return whether the primary MAC
1114 * address is currently in use.
1115 */
1116 void
1117 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
1118 {
1119 mac_impl_t *mip = (mac_impl_t *)mh;
1120 mac_client_impl_t *cur_client;
1121
1122 if (in_use != NULL)
1123 *in_use = B_FALSE;
1124 if (client_name != NULL)
1125 bzero(client_name, MAXNAMELEN);
1126
1127 /*
1128 * The mi_rw_lock is used to protect threads that don't hold the
1129 * mac perimeter to get a consistent view of the mi_clients_list.
1130 * Threads that modify the list must hold both the mac perimeter and
1131 * mi_rw_lock(RW_WRITER)
1132 */
1133 rw_enter(&mip->mi_rw_lock, RW_READER);
1134 for (cur_client = mip->mi_clients_list; cur_client != NULL;
1135 cur_client = cur_client->mci_client_next) {
1136 if (mac_is_primary_client(cur_client) ||
1137 (mip->mi_state_flags & MIS_IS_VNIC)) {
1138 rw_exit(&mip->mi_rw_lock);
1139 if (in_use != NULL)
1140 *in_use = B_TRUE;
1141 if (client_name != NULL) {
1142 bcopy(cur_client->mci_name, client_name,
1143 MAXNAMELEN);
1144 }
1145 return;
1146 }
1147 }
1148 rw_exit(&mip->mi_rw_lock);
1149 }
1150
1151 /*
1152 * Return the current destination MAC address of the specified MAC.
1153 */
1154 boolean_t
1155 mac_dst_get(mac_handle_t mh, uint8_t *addr)
1156 {
1157 mac_impl_t *mip = (mac_impl_t *)mh;
1158
1159 rw_enter(&mip->mi_rw_lock, RW_READER);
1160 if (mip->mi_dstaddr_set)
1161 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length);
1162 rw_exit(&mip->mi_rw_lock);
1163 return (mip->mi_dstaddr_set);
1164 }
1165
1166 /*
1167 * Add the specified MAC client to the list of clients which opened
1168 * the specified MAC.
1169 */
1170 static void
1171 mac_client_add(mac_client_impl_t *mcip)
1172 {
1173 mac_impl_t *mip = mcip->mci_mip;
1174
1175 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1176
1177 /* add VNIC to the front of the list */
1178 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1179 mcip->mci_client_next = mip->mi_clients_list;
1180 mip->mi_clients_list = mcip;
1181 mip->mi_nclients++;
1182 rw_exit(&mip->mi_rw_lock);
1183 }
1184
1185 /*
1186 * Remove the specified MAC client from the list of clients which opened
1187 * the specified MAC.
1188 */
1189 static void
1190 mac_client_remove(mac_client_impl_t *mcip)
1191 {
1192 mac_impl_t *mip = mcip->mci_mip;
1193 mac_client_impl_t **prev, *cclient;
1194
1195 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1196
1197 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1198 prev = &mip->mi_clients_list;
1199 cclient = *prev;
1200 while (cclient != NULL && cclient != mcip) {
1201 prev = &cclient->mci_client_next;
1202 cclient = *prev;
1203 }
1204 ASSERT(cclient != NULL);
1205 *prev = cclient->mci_client_next;
1206 mip->mi_nclients--;
1207 rw_exit(&mip->mi_rw_lock);
1208 }
1209
1210 static mac_unicast_impl_t *
1211 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1212 {
1213 mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1214
1215 while ((muip != NULL) && (muip->mui_vid != vid))
1216 muip = muip->mui_next;
1217
1218 return (muip);
1219 }
1220
1221 /*
1222 * Return whether the specified (MAC address, VID) tuple is already used by
1223 * one of the MAC clients associated with the specified MAC.
1224 */
1225 static boolean_t
1226 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1227 {
1228 mac_client_impl_t *client;
1229 mac_address_t *map;
1230
1231 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1232
1233 for (client = mip->mi_clients_list; client != NULL;
1234 client = client->mci_client_next) {
1235
1236 /*
1237 * Ignore clients that don't have unicast address.
1238 */
1239 if (client->mci_unicast_list == NULL)
1240 continue;
1241
1242 map = client->mci_unicast;
1243
1244 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1245 (mac_client_find_vid(client, vid) != NULL)) {
1246 return (B_TRUE);
1247 }
1248 }
1249
1250 return (B_FALSE);
1251 }
1252
1253 /*
1254 * Generate a random MAC address. The MAC address prefix is
1255 * stored in the array pointed to by mac_addr, and its length, in bytes,
1256 * is specified by prefix_len. The least significant bits
1257 * after prefix_len bytes are generated, and stored after the prefix
1258 * in the mac_addr array.
1259 */
1260 int
1261 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1262 uint8_t *mac_addr, mac_diag_t *diag)
1263 {
1264 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1265 mac_impl_t *mip = mcip->mci_mip;
1266 size_t addr_len = mip->mi_type->mt_addr_length;
1267
1268 if (prefix_len >= addr_len) {
1269 *diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1270 return (EINVAL);
1271 }
1272
1273 /* check the prefix value */
1274 if (prefix_len > 0) {
1275 bzero(mac_addr + prefix_len, addr_len - prefix_len);
1276 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1277 addr_len)) {
1278 *diag = MAC_DIAG_MACPREFIX_INVALID;
1279 return (EINVAL);
1280 }
1281 }
1282
1283 /* generate the MAC address */
1284 if (prefix_len < addr_len) {
1285 (void) random_get_pseudo_bytes(mac_addr +
1286 prefix_len, addr_len - prefix_len);
1287 }
1288
1289 *diag = 0;
1290 return (0);
1291 }
1292
1293 /*
1294 * Set the priority range for this MAC client. This will be used to
1295 * determine the absolute priority for the threads created for this
1296 * MAC client using the specified "low", "medium" and "high" level.
1297 * This will also be used for any subflows on this MAC client.
1298 */
1299 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \
1300 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \
1301 MAXCLSYSPRI, (pri)); \
1302 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \
1303 MAXCLSYSPRI, (mcip)->mci_min_pri); \
1304 }
1305
1306 /*
1307 * MAC client open entry point. Return a new MAC client handle. Each
1308 * MAC client is associated with a name, specified through the 'name'
1309 * argument.
1310 */
1311 int
1312 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1313 uint16_t flags)
1314 {
1315 mac_impl_t *mip = (mac_impl_t *)mh;
1316 mac_client_impl_t *mcip;
1317 int err = 0;
1318 boolean_t share_desired;
1319 flow_entry_t *flent = NULL;
1320
1321 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0;
1322 *mchp = NULL;
1323
1324 i_mac_perim_enter(mip);
1325
1326 if (mip->mi_state_flags & MIS_IS_VNIC) {
1327 /*
1328 * The underlying MAC is a VNIC. Return the MAC client
1329 * handle of the lower MAC which was obtained by
1330 * the VNIC driver when it did its mac_client_open().
1331 */
1332
1333 mcip = mac_vnic_lower(mip);
1334
1335 /*
1336 * Note that multiple mac clients share the same mcip in
1337 * this case.
1338 */
1339 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1340 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1341
1342 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1343 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1344
1345 mip->mi_clients_list = mcip;
1346 i_mac_perim_exit(mip);
1347 *mchp = (mac_client_handle_t)mcip;
1348
1349 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *,
1350 mcip->mci_mip, mac_client_impl_t *, mcip);
1351
1352 return (err);
1353 }
1354
1355 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1356
1357 mcip->mci_mip = mip;
1358 mcip->mci_upper_mip = NULL;
1359 mcip->mci_rx_fn = mac_pkt_drop;
1360 mcip->mci_rx_arg = NULL;
1361 mcip->mci_rx_p_fn = NULL;
1362 mcip->mci_rx_p_arg = NULL;
1363 mcip->mci_p_unicast_list = NULL;
1364 mcip->mci_direct_rx_fn = NULL;
1365 mcip->mci_direct_rx_arg = NULL;
1366 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
1367
1368 mcip->mci_unicast_list = NULL;
1369
1370 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1371 mcip->mci_state_flags |= MCIS_IS_VNIC;
1372
1373 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1374 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1375
1376 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1377 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1378
1379 if (mip->mi_state_flags & MIS_IS_AGGR)
1380 mcip->mci_state_flags |= MCIS_IS_AGGR_CLIENT;
1381
1382 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1383 datalink_id_t linkid;
1384
1385 ASSERT(name == NULL);
1386 if ((err = dls_devnet_macname2linkid(mip->mi_name,
1387 &linkid)) != 0) {
1388 goto done;
1389 }
1390 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1391 NULL, NULL)) != 0) {
1392 /*
1393 * Use mac name if dlmgmtd is not available.
1394 */
1395 if (err == EBADF) {
1396 (void) strlcpy(mcip->mci_name, mip->mi_name,
1397 sizeof (mcip->mci_name));
1398 err = 0;
1399 } else {
1400 goto done;
1401 }
1402 }
1403 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1404 } else {
1405 ASSERT(name != NULL);
1406 if (strlen(name) > MAXNAMELEN) {
1407 err = EINVAL;
1408 goto done;
1409 }
1410 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1411 }
1412
1413 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1414 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1415
1416 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR)
1417 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR;
1418
1419 mac_protect_init(mcip);
1420
1421 /* the subflow table will be created dynamically */
1422 mcip->mci_subflow_tab = NULL;
1423
1424 mcip->mci_misc_stat.mms_multircv = 0;
1425 mcip->mci_misc_stat.mms_brdcstrcv = 0;
1426 mcip->mci_misc_stat.mms_multixmt = 0;
1427 mcip->mci_misc_stat.mms_brdcstxmt = 0;
1428
1429 /* Create an initial flow */
1430
1431 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1432 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1433 FLOW_PRIMARY_MAC, &flent);
1434 if (err != 0)
1435 goto done;
1436 mcip->mci_flent = flent;
1437 FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1438 flent->fe_mcip = mcip;
1439
1440 /*
1441 * Place initial creation reference on the flow. This reference
1442 * is released in the corresponding delete action viz.
1443 * mac_unicast_remove after waiting for all transient refs to
1444 * to go away. The wait happens in mac_flow_wait.
1445 */
1446 FLOW_REFHOLD(flent);
1447
1448 /*
1449 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1450 * will have the right value for mac_rx_srs_setup().
1451 */
1452 mac_client_add(mcip);
1453
1454 mcip->mci_share = 0;
1455 if (share_desired)
1456 i_mac_share_alloc(mcip);
1457
1458 /*
1459 * We will do mimimal datapath setup to allow a MAC client to
1460 * transmit or receive non-unicast packets without waiting
1461 * for mac_unicast_add.
1462 */
1463 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1464 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE,
1465 NULL, NULL, B_TRUE, NULL)) != 0) {
1466 goto done;
1467 }
1468 }
1469
1470 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1471 mcip->mci_mip, mac_client_impl_t *, mcip);
1472
1473 *mchp = (mac_client_handle_t)mcip;
1474 i_mac_perim_exit(mip);
1475 return (0);
1476
1477 done:
1478 i_mac_perim_exit(mip);
1479 mcip->mci_state_flags = 0;
1480 mcip->mci_tx_flag = 0;
1481 kmem_cache_free(mac_client_impl_cache, mcip);
1482 return (err);
1483 }
1484
1485 /*
1486 * Close the specified MAC client handle.
1487 */
1488 void
1489 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1490 {
1491 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1492 mac_impl_t *mip = mcip->mci_mip;
1493 flow_entry_t *flent;
1494
1495 i_mac_perim_enter(mip);
1496
1497 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1498 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1499
1500 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1501 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1502 /*
1503 * This is an upper VNIC client initiated operation.
1504 * The lower MAC client will be closed by the VNIC driver
1505 * when the VNIC is deleted.
1506 */
1507
1508 i_mac_perim_exit(mip);
1509 return;
1510 }
1511
1512 /* If we have only setup up minimal datapth setup, tear it down */
1513 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1514 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL,
1515 mcip->mci_flent);
1516 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR;
1517 }
1518
1519 /*
1520 * Remove the flent associated with the MAC client
1521 */
1522 flent = mcip->mci_flent;
1523 mcip->mci_flent = NULL;
1524 FLOW_FINAL_REFRELE(flent);
1525
1526 /*
1527 * MAC clients must remove the unicast addresses and promisc callbacks
1528 * they added before issuing a mac_client_close().
1529 */
1530 ASSERT(mcip->mci_unicast_list == NULL);
1531 ASSERT(mcip->mci_promisc_list == NULL);
1532 ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1533
1534 i_mac_share_free(mcip);
1535 mac_protect_fini(mcip);
1536 mac_client_remove(mcip);
1537
1538 i_mac_perim_exit(mip);
1539 mcip->mci_subflow_tab = NULL;
1540 mcip->mci_state_flags = 0;
1541 mcip->mci_tx_flag = 0;
1542 kmem_cache_free(mac_client_impl_cache, mch);
1543 }
1544
1545 /*
1546 * Set the Rx bypass receive callback and return B_TRUE. Return
1547 * B_FALSE if it's not possible to enable bypass.
1548 */
1549 boolean_t
1550 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1551 {
1552 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1553 mac_impl_t *mip = mcip->mci_mip;
1554
1555 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1556
1557 /*
1558 * If the client has more than one VLAN then process packets
1559 * through DLS. This should happen only when sun4v vsw is on
1560 * the scene.
1561 */
1562 if (mcip->mci_nvids > 1)
1563 return (B_FALSE);
1564
1565 /*
1566 * These are not accessed directly in the data path, and hence
1567 * don't need any protection
1568 */
1569 mcip->mci_direct_rx_fn = rx_fn;
1570 mcip->mci_direct_rx_arg = arg1;
1571 return (B_TRUE);
1572 }
1573
1574 /*
1575 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled.
1576 */
1577 void
1578 mac_rx_bypass_enable(mac_client_handle_t mch)
1579 {
1580 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE;
1581 }
1582
1583 void
1584 mac_rx_bypass_disable(mac_client_handle_t mch)
1585 {
1586 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE;
1587 }
1588
1589 /*
1590 * Set the receive callback for the specified MAC client. There can be
1591 * at most one such callback per MAC client.
1592 */
1593 void
1594 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1595 {
1596 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1597 mac_impl_t *mip = mcip->mci_mip;
1598 mac_impl_t *umip = mcip->mci_upper_mip;
1599
1600 /*
1601 * Instead of adding an extra set of locks and refcnts in
1602 * the datapath at the mac client boundary, we temporarily quiesce
1603 * the SRS and related entities. We then change the receive function
1604 * without interference from any receive data thread and then reenable
1605 * the data flow subsequently.
1606 */
1607 i_mac_perim_enter(mip);
1608 mac_rx_client_quiesce(mch);
1609
1610 mcip->mci_rx_fn = rx_fn;
1611 mcip->mci_rx_arg = arg;
1612 mac_rx_client_restart(mch);
1613 i_mac_perim_exit(mip);
1614
1615 /*
1616 * If we're changing the Rx function on the primary MAC of a VNIC,
1617 * make sure any secondary addresses on the VNIC are updated as well.
1618 */
1619 if (umip != NULL) {
1620 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
1621 mac_vnic_secondary_update(umip);
1622 }
1623 }
1624
1625 /*
1626 * Reset the receive callback for the specified MAC client.
1627 */
1628 void
1629 mac_rx_clear(mac_client_handle_t mch)
1630 {
1631 mac_rx_set(mch, mac_pkt_drop, NULL);
1632 }
1633
1634 void
1635 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch)
1636 {
1637 mac_client_impl_t *smcip = (mac_client_impl_t *)smch;
1638 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch;
1639 flow_entry_t *flent = dmcip->mci_flent;
1640
1641 /* This should only be called to setup secondary macs */
1642 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1643
1644 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg);
1645 dmcip->mci_promisc_list = smcip->mci_promisc_list;
1646
1647 /*
1648 * Duplicate the primary mac resources to the secondary.
1649 * Since we already validated the resource controls when setting
1650 * them on the primary, we can ignore errors here.
1651 */
1652 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip));
1653 }
1654
1655 /*
1656 * Called when removing a secondary MAC. Currently only clears the promisc_list
1657 * since we share the primary mac's promisc_list.
1658 */
1659 void
1660 mac_secondary_cleanup(mac_client_handle_t mch)
1661 {
1662 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1663 flow_entry_t *flent = mcip->mci_flent;
1664
1665 /* This should only be called for secondary macs */
1666 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1667 mcip->mci_promisc_list = NULL;
1668 }
1669
1670 /*
1671 * Walk the MAC client subflow table and updates their priority values.
1672 */
1673 static int
1674 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1675 {
1676 mac_flow_update_priority(arg, flent);
1677 return (0);
1678 }
1679
1680 void
1681 mac_update_subflow_priority(mac_client_impl_t *mcip)
1682 {
1683 (void) mac_flow_walk(mcip->mci_subflow_tab,
1684 mac_update_subflow_priority_cb, mcip);
1685 }
1686
1687 /*
1688 * Modify the TX or RX ring properties. We could either just move around
1689 * rings, i.e add/remove rings given to a client. Or this might cause the
1690 * client to move from hardware based to software or the other way around.
1691 * If we want to reset this property, then we clear the mask, additionally
1692 * if the client was given a non-default group we remove all rings except
1693 * for 1 and give it back to the default group.
1694 */
1695 int
1696 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp,
1697 mac_resource_props_t *tmrp)
1698 {
1699 mac_impl_t *mip = mcip->mci_mip;
1700 flow_entry_t *flent = mcip->mci_flent;
1701 uint8_t *mac_addr;
1702 int err = 0;
1703 mac_group_t *defgrp;
1704 mac_group_t *group;
1705 mac_group_t *ngrp;
1706 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip);
1707 uint_t ringcnt;
1708 boolean_t unspec;
1709
1710 if (mcip->mci_share != 0)
1711 return (EINVAL);
1712
1713 if (mrp->mrp_mask & MRP_RX_RINGS) {
1714 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
1715 group = flent->fe_rx_ring_group;
1716 defgrp = MAC_DEFAULT_RX_GROUP(mip);
1717 mac_addr = flent->fe_flow_desc.fd_dst_mac;
1718
1719 /*
1720 * No resulting change. If we are resetting on a client on
1721 * which there was no rx rings property. For dynamic group
1722 * if we are setting the same number of rings already set.
1723 * For static group if we are requesting a group again.
1724 */
1725 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1726 if (!(tmrp->mrp_mask & MRP_RX_RINGS))
1727 return (0);
1728 } else {
1729 if (unspec) {
1730 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
1731 return (0);
1732 } else if (mip->mi_rx_group_type ==
1733 MAC_GROUP_TYPE_DYNAMIC) {
1734 if ((tmrp->mrp_mask & MRP_RX_RINGS) &&
1735 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) &&
1736 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) {
1737 return (0);
1738 }
1739 }
1740 }
1741 /* Resetting the prop */
1742 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1743 /*
1744 * We will just keep one ring and give others back if
1745 * we are not the primary. For the primary we give
1746 * all the rings in the default group except the
1747 * default ring. If it is a static group, then
1748 * we don't do anything, but clear the MRP_RX_RINGS
1749 * flag.
1750 */
1751 if (group != defgrp) {
1752 if (mip->mi_rx_group_type ==
1753 MAC_GROUP_TYPE_DYNAMIC) {
1754 /*
1755 * This group has reserved rings
1756 * that need to be released now,
1757 * so does the group.
1758 */
1759 MAC_RX_RING_RELEASED(mip,
1760 group->mrg_cur_count);
1761 MAC_RX_GRP_RELEASED(mip);
1762 if ((flent->fe_type &
1763 FLOW_PRIMARY_MAC) != 0) {
1764 if (mip->mi_nactiveclients ==
1765 1) {
1766 (void)
1767 mac_rx_switch_group(
1768 mcip, group,
1769 defgrp);
1770 return (0);
1771 } else {
1772 cmrp->mrp_nrxrings =
1773 group->
1774 mrg_cur_count +
1775 defgrp->
1776 mrg_cur_count - 1;
1777 }
1778 } else {
1779 cmrp->mrp_nrxrings = 1;
1780 }
1781 (void) mac_group_ring_modify(mcip,
1782 group, defgrp);
1783 } else {
1784 /*
1785 * If this is a static group, we
1786 * need to release the group. The
1787 * client will remain in the same
1788 * group till some other client
1789 * needs this group.
1790 */
1791 MAC_RX_GRP_RELEASED(mip);
1792 }
1793 /* Let check if we can give this an excl group */
1794 } else if (group == defgrp) {
1795 /*
1796 * If multiple clients share an
1797 * address then they must stay on the
1798 * default group.
1799 */
1800 if (mac_check_macaddr_shared(mcip->mci_unicast))
1801 return (0);
1802
1803 ngrp = mac_reserve_rx_group(mcip, mac_addr,
1804 B_TRUE);
1805 /* Couldn't give it a group, that's fine */
1806 if (ngrp == NULL)
1807 return (0);
1808 /* Switch to H/W */
1809 if (mac_rx_switch_group(mcip, defgrp, ngrp) !=
1810 0) {
1811 mac_stop_group(ngrp);
1812 return (0);
1813 }
1814 }
1815 /*
1816 * If the client is in the default group, we will
1817 * just clear the MRP_RX_RINGS and leave it as
1818 * it rather than look for an exclusive group
1819 * for it.
1820 */
1821 return (0);
1822 }
1823
1824 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) {
1825 /*
1826 * We are requesting Rx rings. Try to reserve
1827 * a non-default group.
1828 *
1829 * If multiple clients share an address then
1830 * they must stay on the default group.
1831 */
1832 if (mac_check_macaddr_shared(mcip->mci_unicast))
1833 return (EINVAL);
1834
1835 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
1836 if (ngrp == NULL)
1837 return (ENOSPC);
1838
1839 /* Switch to H/W */
1840 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
1841 mac_release_rx_group(mcip, ngrp);
1842 return (ENOSPC);
1843 }
1844 MAC_RX_GRP_RESERVED(mip);
1845 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1846 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1847 } else if (group != defgrp && !unspec &&
1848 mrp->mrp_nrxrings == 0) {
1849 /* Switch to S/W */
1850 ringcnt = group->mrg_cur_count;
1851 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
1852 return (ENOSPC);
1853 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1854 MAC_RX_GRP_RELEASED(mip);
1855 if (mip->mi_rx_group_type ==
1856 MAC_GROUP_TYPE_DYNAMIC) {
1857 MAC_RX_RING_RELEASED(mip, ringcnt);
1858 }
1859 }
1860 } else if (group != defgrp && mip->mi_rx_group_type ==
1861 MAC_GROUP_TYPE_DYNAMIC) {
1862 ringcnt = group->mrg_cur_count;
1863 err = mac_group_ring_modify(mcip, group, defgrp);
1864 if (err != 0)
1865 return (err);
1866 /*
1867 * Update the accounting. If this group
1868 * already had explicitly reserved rings,
1869 * we need to update the rings based on
1870 * the new ring count. If this group
1871 * had not explicitly reserved rings,
1872 * then we just reserve the rings asked for
1873 * and reserve the group.
1874 */
1875 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1876 if (ringcnt > group->mrg_cur_count) {
1877 MAC_RX_RING_RELEASED(mip,
1878 ringcnt - group->mrg_cur_count);
1879 } else {
1880 MAC_RX_RING_RESERVED(mip,
1881 group->mrg_cur_count - ringcnt);
1882 }
1883 } else {
1884 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count);
1885 MAC_RX_GRP_RESERVED(mip);
1886 }
1887 }
1888 }
1889 if (mrp->mrp_mask & MRP_TX_RINGS) {
1890 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
1891 group = flent->fe_tx_ring_group;
1892 defgrp = MAC_DEFAULT_TX_GROUP(mip);
1893
1894 /*
1895 * For static groups we only allow rings=0 or resetting the
1896 * rings property.
1897 */
1898 if (mrp->mrp_ntxrings > 0 &&
1899 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
1900 return (ENOTSUP);
1901 }
1902 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1903 if (!(tmrp->mrp_mask & MRP_TX_RINGS))
1904 return (0);
1905 } else {
1906 if (unspec) {
1907 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
1908 return (0);
1909 } else if (mip->mi_tx_group_type ==
1910 MAC_GROUP_TYPE_DYNAMIC) {
1911 if ((tmrp->mrp_mask & MRP_TX_RINGS) &&
1912 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) &&
1913 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) {
1914 return (0);
1915 }
1916 }
1917 }
1918 /* Resetting the prop */
1919 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1920 if (group != defgrp) {
1921 if (mip->mi_tx_group_type ==
1922 MAC_GROUP_TYPE_DYNAMIC) {
1923 ringcnt = group->mrg_cur_count;
1924 if ((flent->fe_type &
1925 FLOW_PRIMARY_MAC) != 0) {
1926 mac_tx_client_quiesce(
1927 (mac_client_handle_t)
1928 mcip);
1929 mac_tx_switch_group(mcip,
1930 group, defgrp);
1931 mac_tx_client_restart(
1932 (mac_client_handle_t)
1933 mcip);
1934 MAC_TX_GRP_RELEASED(mip);
1935 MAC_TX_RING_RELEASED(mip,
1936 ringcnt);
1937 return (0);
1938 }
1939 cmrp->mrp_ntxrings = 1;
1940 (void) mac_group_ring_modify(mcip,
1941 group, defgrp);
1942 /*
1943 * This group has reserved rings
1944 * that need to be released now.
1945 */
1946 MAC_TX_RING_RELEASED(mip, ringcnt);
1947 }
1948 /*
1949 * If this is a static group, we
1950 * need to release the group. The
1951 * client will remain in the same
1952 * group till some other client
1953 * needs this group.
1954 */
1955 MAC_TX_GRP_RELEASED(mip);
1956 } else if (group == defgrp &&
1957 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) {
1958 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1959 if (ngrp == NULL)
1960 return (0);
1961 mac_tx_client_quiesce(
1962 (mac_client_handle_t)mcip);
1963 mac_tx_switch_group(mcip, defgrp, ngrp);
1964 mac_tx_client_restart(
1965 (mac_client_handle_t)mcip);
1966 }
1967 /*
1968 * If the client is in the default group, we will
1969 * just clear the MRP_TX_RINGS and leave it as
1970 * it rather than look for an exclusive group
1971 * for it.
1972 */
1973 return (0);
1974 }
1975
1976 /* Switch to H/W */
1977 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) {
1978 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1979 if (ngrp == NULL)
1980 return (ENOSPC);
1981 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1982 mac_tx_switch_group(mcip, defgrp, ngrp);
1983 mac_tx_client_restart((mac_client_handle_t)mcip);
1984 MAC_TX_GRP_RESERVED(mip);
1985 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1986 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1987 /* Switch to S/W */
1988 } else if (group != defgrp && !unspec &&
1989 mrp->mrp_ntxrings == 0) {
1990 /* Switch to S/W */
1991 ringcnt = group->mrg_cur_count;
1992 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1993 mac_tx_switch_group(mcip, group, defgrp);
1994 mac_tx_client_restart((mac_client_handle_t)mcip);
1995 if (tmrp->mrp_mask & MRP_TX_RINGS) {
1996 MAC_TX_GRP_RELEASED(mip);
1997 if (mip->mi_tx_group_type ==
1998 MAC_GROUP_TYPE_DYNAMIC) {
1999 MAC_TX_RING_RELEASED(mip, ringcnt);
2000 }
2001 }
2002 } else if (group != defgrp && mip->mi_tx_group_type ==
2003 MAC_GROUP_TYPE_DYNAMIC) {
2004 ringcnt = group->mrg_cur_count;
2005 err = mac_group_ring_modify(mcip, group, defgrp);
2006 if (err != 0)
2007 return (err);
2008 /*
2009 * Update the accounting. If this group
2010 * already had explicitly reserved rings,
2011 * we need to update the rings based on
2012 * the new ring count. If this group
2013 * had not explicitly reserved rings,
2014 * then we just reserve the rings asked for
2015 * and reserve the group.
2016 */
2017 if (tmrp->mrp_mask & MRP_TX_RINGS) {
2018 if (ringcnt > group->mrg_cur_count) {
2019 MAC_TX_RING_RELEASED(mip,
2020 ringcnt - group->mrg_cur_count);
2021 } else {
2022 MAC_TX_RING_RESERVED(mip,
2023 group->mrg_cur_count - ringcnt);
2024 }
2025 } else {
2026 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count);
2027 MAC_TX_GRP_RESERVED(mip);
2028 }
2029 }
2030 }
2031 return (0);
2032 }
2033
2034 /*
2035 * When the MAC client is being brought up (i.e. we do a unicast_add) we need
2036 * to initialize the cpu and resource control structure in the
2037 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
2038 * properties before the flow entry for the unicast address was created).
2039 */
2040 static int
2041 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2042 {
2043 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2044 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2045 mac_impl_t *umip = mcip->mci_upper_mip;
2046 int err = 0;
2047 flow_entry_t *flent = mcip->mci_flent;
2048 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip);
2049
2050 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2051
2052 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
2053 mcip->mci_upper_mip : mip, mrp);
2054 if (err != 0)
2055 return (err);
2056
2057 /*
2058 * Copy over the existing properties since mac_update_resources
2059 * will modify the client's mrp. Currently, the saved property
2060 * is used to determine the difference between existing and
2061 * modified rings property.
2062 */
2063 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
2064 bcopy(nmrp, omrp, sizeof (*omrp));
2065 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2066 if (MCIP_DATAPATH_SETUP(mcip)) {
2067 /*
2068 * We support rings only for primary client when there are
2069 * multiple clients sharing the same MAC address (e.g. VLAN).
2070 */
2071 if (mrp->mrp_mask & MRP_RX_RINGS ||
2072 mrp->mrp_mask & MRP_TX_RINGS) {
2073
2074 if ((err = mac_client_set_rings_prop(mcip, mrp,
2075 omrp)) != 0) {
2076 if (omrp->mrp_mask & MRP_RX_RINGS) {
2077 nmrp->mrp_mask |= MRP_RX_RINGS;
2078 nmrp->mrp_nrxrings = omrp->mrp_nrxrings;
2079 } else {
2080 nmrp->mrp_mask &= ~MRP_RX_RINGS;
2081 nmrp->mrp_nrxrings = 0;
2082 }
2083 if (omrp->mrp_mask & MRP_TX_RINGS) {
2084 nmrp->mrp_mask |= MRP_TX_RINGS;
2085 nmrp->mrp_ntxrings = omrp->mrp_ntxrings;
2086 } else {
2087 nmrp->mrp_mask &= ~MRP_TX_RINGS;
2088 nmrp->mrp_ntxrings = 0;
2089 }
2090 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC)
2091 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
2092 else
2093 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
2094
2095 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC)
2096 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
2097 else
2098 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
2099 kmem_free(omrp, sizeof (*omrp));
2100 return (err);
2101 }
2102
2103 /*
2104 * If we modified the rings property of the primary
2105 * we need to update the property fields of its
2106 * VLANs as they inherit the primary's properites.
2107 */
2108 if (mac_is_primary_client(mcip)) {
2109 mac_set_prim_vlan_rings(mip,
2110 MCIP_RESOURCE_PROPS(mcip));
2111 }
2112 }
2113 /*
2114 * We have to set this prior to calling mac_flow_modify.
2115 */
2116 if (mrp->mrp_mask & MRP_PRIORITY) {
2117 if (mrp->mrp_priority == MPL_RESET) {
2118 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2119 MPL_LINK_DEFAULT);
2120 } else {
2121 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2122 mrp->mrp_priority);
2123 }
2124 }
2125
2126 mac_flow_modify(mip->mi_flow_tab, flent, mrp);
2127 if (mrp->mrp_mask & MRP_PRIORITY)
2128 mac_update_subflow_priority(mcip);
2129
2130 /* Apply these resource settings to any secondary macs */
2131 if (umip != NULL) {
2132 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
2133 mac_vnic_secondary_update(umip);
2134 }
2135 }
2136 kmem_free(omrp, sizeof (*omrp));
2137 return (0);
2138 }
2139
2140 static int
2141 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
2142 uint16_t vid, boolean_t is_primary, boolean_t first_flow,
2143 flow_entry_t **flent, mac_resource_props_t *mrp)
2144 {
2145 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2146 flow_desc_t flow_desc;
2147 char flowname[MAXFLOWNAMELEN];
2148 int err;
2149 uint_t flent_flags;
2150
2151 /*
2152 * First unicast address being added, create a new flow
2153 * for that MAC client.
2154 */
2155 bzero(&flow_desc, sizeof (flow_desc));
2156
2157 ASSERT(mac_addr != NULL ||
2158 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR));
2159 if (mac_addr != NULL) {
2160 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
2161 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
2162 }
2163 flow_desc.fd_mask = FLOW_LINK_DST;
2164 if (vid != 0) {
2165 flow_desc.fd_vid = vid;
2166 flow_desc.fd_mask |= FLOW_LINK_VID;
2167 }
2168
2169 /*
2170 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
2171 * and FLOW_VNIC. Even though they're a hack inherited
2172 * from the SRS code, we'll keep them for now. They're currently
2173 * consumed by mac_datapath_setup() to create the SRS.
2174 * That code should be eventually moved out of
2175 * mac_datapath_setup() and moved to a mac_srs_create()
2176 * function of some sort to keep things clean.
2177 *
2178 * Also, there's no reason why the SRS for the primary MAC
2179 * client should be different than any other MAC client. Until
2180 * this is cleaned-up, we support only one MAC unicast address
2181 * per client.
2182 *
2183 * We set FLOW_PRIMARY_MAC for the primary MAC address,
2184 * FLOW_VNIC for everything else.
2185 */
2186 if (is_primary)
2187 flent_flags = FLOW_PRIMARY_MAC;
2188 else
2189 flent_flags = FLOW_VNIC_MAC;
2190
2191 /*
2192 * For the first flow we use the MAC client's name - mci_name, for
2193 * subsequent ones we just create a name with the VID. This is
2194 * so that we can add these flows to the same flow table. This is
2195 * fine as the flow name (except for the one with the MAC client's
2196 * name) is not visible. When the first flow is removed, we just replace
2197 * its fdesc with another from the list, so we will still retain the
2198 * flent with the MAC client's flow name.
2199 */
2200 if (first_flow) {
2201 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
2202 } else {
2203 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
2204 flent_flags = FLOW_NO_STATS;
2205 }
2206
2207 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
2208 flent_flags, flent)) != 0)
2209 return (err);
2210
2211 mac_misc_stat_create(*flent);
2212 FLOW_MARK(*flent, FE_INCIPIENT);
2213 (*flent)->fe_mcip = mcip;
2214
2215 /*
2216 * Place initial creation reference on the flow. This reference
2217 * is released in the corresponding delete action viz.
2218 * mac_unicast_remove after waiting for all transient refs to
2219 * to go away. The wait happens in mac_flow_wait.
2220 * We have already held the reference in mac_client_open().
2221 */
2222 if (!first_flow)
2223 FLOW_REFHOLD(*flent);
2224 return (0);
2225 }
2226
2227 /* Refresh the multicast grouping for this VID. */
2228 int
2229 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
2230 {
2231 flow_entry_t *flent = arg;
2232 mac_client_impl_t *mcip = flent->fe_mcip;
2233 uint16_t vid;
2234 flow_desc_t flow_desc;
2235
2236 mac_flow_get_desc(flent, &flow_desc);
2237 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
2238 flow_desc.fd_vid : VLAN_ID_NONE;
2239
2240 /*
2241 * We don't call mac_multicast_add()/mac_multicast_remove() as
2242 * we want to add/remove for this specific vid.
2243 */
2244 if (add) {
2245 return (mac_bcast_add(mcip, addrp, vid,
2246 MAC_ADDRTYPE_MULTICAST));
2247 } else {
2248 mac_bcast_delete(mcip, addrp, vid);
2249 return (0);
2250 }
2251 }
2252
2253 static void
2254 mac_update_single_active_client(mac_impl_t *mip)
2255 {
2256 mac_client_impl_t *client = NULL;
2257
2258 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2259
2260 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2261 if (mip->mi_nactiveclients == 1) {
2262 /*
2263 * Find the one active MAC client from the list of MAC
2264 * clients. The active MAC client has at least one
2265 * unicast address.
2266 */
2267 for (client = mip->mi_clients_list; client != NULL;
2268 client = client->mci_client_next) {
2269 if (client->mci_unicast_list != NULL)
2270 break;
2271 }
2272 ASSERT(client != NULL);
2273 }
2274
2275 /*
2276 * mi_single_active_client is protected by the MAC impl's read/writer
2277 * lock, which allows mac_rx() to check the value of that pointer
2278 * as a reader.
2279 */
2280 mip->mi_single_active_client = client;
2281 rw_exit(&mip->mi_rw_lock);
2282 }
2283
2284 /*
2285 * Set up the data path. Called from i_mac_unicast_add after having
2286 * done all the validations including making sure this is an active
2287 * client (i.e that is ready to process packets.)
2288 */
2289 static int
2290 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
2291 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
2292 mac_unicast_impl_t *muip)
2293 {
2294 mac_impl_t *mip = mcip->mci_mip;
2295 boolean_t mac_started = B_FALSE;
2296 boolean_t bcast_added = B_FALSE;
2297 boolean_t nactiveclients_added = B_FALSE;
2298 flow_entry_t *flent;
2299 int err = 0;
2300 boolean_t no_unicast;
2301
2302 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2303
2304 if ((err = mac_start((mac_handle_t)mip)) != 0)
2305 goto bail;
2306
2307 mac_started = B_TRUE;
2308
2309 /* add the MAC client to the broadcast address group by default */
2310 if (mip->mi_type->mt_brdcst_addr != NULL) {
2311 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
2312 MAC_ADDRTYPE_BROADCAST);
2313 if (err != 0)
2314 goto bail;
2315 bcast_added = B_TRUE;
2316 }
2317
2318 /*
2319 * If this is the first unicast address addition for this
2320 * client, reuse the pre-allocated larval flow entry associated with
2321 * the MAC client.
2322 */
2323 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
2324
2325 /* We are configuring the unicast flow now */
2326 if (!MCIP_DATAPATH_SETUP(mcip)) {
2327
2328 if (mrp != NULL) {
2329 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2330 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
2331 MPL_LINK_DEFAULT);
2332 }
2333 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2334 isprimary, B_TRUE, &flent, mrp)) != 0)
2335 goto bail;
2336
2337 mip->mi_nactiveclients++;
2338 nactiveclients_added = B_TRUE;
2339
2340 /*
2341 * This will allocate the RX ring group if possible for the
2342 * flow and program the software classifier as needed.
2343 */
2344 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
2345 goto bail;
2346
2347 if (no_unicast)
2348 goto done_setup;
2349 /*
2350 * The unicast MAC address must have been added successfully.
2351 */
2352 ASSERT(mcip->mci_unicast != NULL);
2353
2354 /*
2355 * Push down the sub-flows that were defined on this link
2356 * hitherto. The flows are added to the active flow table
2357 * and SRS, softrings etc. are created as needed.
2358 */
2359 mac_link_init_flows((mac_client_handle_t)mcip);
2360 } else {
2361 mac_address_t *map = mcip->mci_unicast;
2362
2363 ASSERT(!no_unicast);
2364 /*
2365 * A unicast flow already exists for that MAC client
2366 * so this flow must be the same MAC address but with
2367 * a different VID. It has been checked by
2368 * mac_addr_in_use().
2369 *
2370 * We will use the SRS etc. from the initial
2371 * mci_flent. We don't need to create a kstat for
2372 * this, as except for the fdesc, everything will be
2373 * used from the first flent.
2374 *
2375 * The only time we should see multiple flents on the
2376 * same MAC client is on the sun4v vsw. If we removed
2377 * that code we should be able to remove the entire
2378 * notion of multiple flents on a MAC client (this
2379 * doesn't affect sub/user flows because they have
2380 * their own list unrelated to mci_flent_list).
2381 */
2382 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
2383 err = EINVAL;
2384 goto bail;
2385 }
2386
2387 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2388 isprimary, B_FALSE, &flent, NULL)) != 0) {
2389 goto bail;
2390 }
2391 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
2392 FLOW_FINAL_REFRELE(flent);
2393 goto bail;
2394 }
2395
2396 /* update the multicast group for this vid */
2397 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2398 (void *)flent, B_TRUE);
2399
2400 }
2401
2402 /* populate the shared MAC address */
2403 muip->mui_map = mcip->mci_unicast;
2404
2405 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2406 muip->mui_next = mcip->mci_unicast_list;
2407 mcip->mci_unicast_list = muip;
2408 rw_exit(&mcip->mci_rw_lock);
2409
2410 done_setup:
2411 /*
2412 * First add the flent to the flow list of this mcip. Then set
2413 * the mip's mi_single_active_client if needed. The Rx path assumes
2414 * that mip->mi_single_active_client will always have an associated
2415 * flent.
2416 */
2417 mac_client_add_to_flow_list(mcip, flent);
2418 if (nactiveclients_added)
2419 mac_update_single_active_client(mip);
2420 /*
2421 * Trigger a renegotiation of the capabilities when the number of
2422 * active clients changes from 1 to 2, since some of the capabilities
2423 * might have to be disabled. Also send a MAC_NOTE_LINK notification
2424 * to all the MAC clients whenever physical link is DOWN.
2425 */
2426 if (mip->mi_nactiveclients == 2) {
2427 mac_capab_update((mac_handle_t)mip);
2428 mac_virtual_link_update(mip);
2429 }
2430 /*
2431 * Now that the setup is complete, clear the INCIPIENT flag.
2432 * The flag was set to avoid incoming packets seeing inconsistent
2433 * structures while the setup was in progress. Clear the mci_tx_flag
2434 * by calling mac_tx_client_block. It is possible that
2435 * mac_unicast_remove was called prior to this mac_unicast_add which
2436 * could have set the MCI_TX_QUIESCE flag.
2437 */
2438 if (flent->fe_rx_ring_group != NULL)
2439 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
2440 FLOW_UNMARK(flent, FE_INCIPIENT);
2441
2442 /*
2443 * If this is an aggr port client, don't enable the flow's
2444 * datapath at this stage. Otherwise, bcast traffic could
2445 * arrive while the aggr port is in the process of
2446 * initializing. Instead, the flow's datapath is started later
2447 * when mac_client_set_flow_cb() is called.
2448 */
2449 if ((mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0)
2450 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
2451
2452 mac_tx_client_unblock(mcip);
2453 return (0);
2454 bail:
2455 if (bcast_added)
2456 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
2457
2458 if (nactiveclients_added)
2459 mip->mi_nactiveclients--;
2460
2461 if (mac_started)
2462 mac_stop((mac_handle_t)mip);
2463
2464 return (err);
2465 }
2466
2467 /*
2468 * Return the passive primary MAC client, if present. The passive client is
2469 * a stand-by client that has the same unicast address as another that is
2470 * currenly active. Once the active client goes away, the passive client
2471 * becomes active.
2472 */
2473 static mac_client_impl_t *
2474 mac_get_passive_primary_client(mac_impl_t *mip)
2475 {
2476 mac_client_impl_t *mcip;
2477
2478 for (mcip = mip->mi_clients_list; mcip != NULL;
2479 mcip = mcip->mci_client_next) {
2480 if (mac_is_primary_client(mcip) &&
2481 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2482 return (mcip);
2483 }
2484 }
2485 return (NULL);
2486 }
2487
2488 /*
2489 * Add a new unicast address to the MAC client.
2490 *
2491 * The MAC address can be specified either by value, or the MAC client
2492 * can specify that it wants to use the primary MAC address of the
2493 * underlying MAC. See the introductory comments at the beginning
2494 * of this file for more more information on primary MAC addresses.
2495 *
2496 * Note also the tuple (MAC address, VID) must be unique
2497 * for the MAC clients defined on top of the same underlying MAC
2498 * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
2499 *
2500 * In no case can a client use the PVID for the MAC, if the MAC has one set.
2501 */
2502 int
2503 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2504 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2505 {
2506 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2507 mac_impl_t *mip = mcip->mci_mip;
2508 int err;
2509 uint_t mac_len = mip->mi_type->mt_addr_length;
2510 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
2511 boolean_t fastpath_disabled = B_FALSE;
2512 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
2513 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
2514 mac_resource_props_t *mrp;
2515 boolean_t passive_client = B_FALSE;
2516 mac_unicast_impl_t *muip;
2517 boolean_t is_vnic_primary =
2518 (flags & MAC_UNICAST_VNIC_PRIMARY);
2519
2520 /*
2521 * When the VID is non-zero the underlying MAC cannot be a
2522 * VNIC. I.e., dladm create-vlan cannot take a VNIC as
2523 * argument, only the primary MAC client.
2524 */
2525 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != VLAN_ID_NONE)));
2526
2527 /*
2528 * Can't unicast add if the client asked only for minimal datapath
2529 * setup.
2530 */
2531 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)
2532 return (ENOTSUP);
2533
2534 /*
2535 * Check for an attempted use of the current Port VLAN ID, if enabled.
2536 * No client may use it.
2537 */
2538 if (mip->mi_pvid != VLAN_ID_NONE && vid == mip->mi_pvid)
2539 return (EBUSY);
2540
2541 /*
2542 * Check whether it's the primary client and flag it.
2543 */
2544 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2545 vid == VLAN_ID_NONE)
2546 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
2547
2548 /*
2549 * is_vnic_primary is true when we come here as a VLAN VNIC
2550 * which uses the primary MAC client's address but with a non-zero
2551 * VID. In this case the MAC address is not specified by an upper
2552 * MAC client.
2553 */
2554 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2555 !is_vnic_primary) {
2556 /*
2557 * The address is being set by the upper MAC client
2558 * of a VNIC. The MAC address was already set by the
2559 * VNIC driver during VNIC creation.
2560 *
2561 * Note: a VNIC has only one MAC address. We return
2562 * the MAC unicast address handle of the lower MAC client
2563 * corresponding to the VNIC. We allocate a new entry
2564 * which is flagged appropriately, so that mac_unicast_remove()
2565 * doesn't attempt to free the original entry that
2566 * was allocated by the VNIC driver.
2567 */
2568 ASSERT(mcip->mci_unicast != NULL);
2569
2570 /* Check for VLAN flags, if present */
2571 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2572 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2573
2574 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2575 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2576
2577 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2578 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2579
2580 /*
2581 * Ensure that the primary unicast address of the VNIC
2582 * is added only once unless we have the
2583 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
2584 * a passive MAC client).
2585 */
2586 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
2587 if ((mcip->mci_flags &
2588 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2589 (mcip->mci_flags &
2590 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2591 return (EBUSY);
2592 }
2593 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2594 passive_client = B_TRUE;
2595 }
2596
2597 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2598
2599 /*
2600 * Create a handle for vid 0.
2601 */
2602 ASSERT(vid == VLAN_ID_NONE);
2603 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2604 muip->mui_vid = vid;
2605 *mah = (mac_unicast_handle_t)muip;
2606 /*
2607 * This will be used by the caller to defer setting the
2608 * rx functions.
2609 */
2610 if (passive_client)
2611 return (EAGAIN);
2612 return (0);
2613 }
2614
2615 /* primary MAC clients cannot be opened on top of anchor VNICs */
2616 if ((is_vnic_primary || is_primary) &&
2617 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
2618 return (ENXIO);
2619 }
2620
2621 /*
2622 * If this is a VNIC/VLAN, disable softmac fast-path. This is
2623 * only relevant to legacy devices which use softmac to
2624 * interface with GLDv3.
2625 */
2626 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2627 err = mac_fastpath_disable((mac_handle_t)mip);
2628 if (err != 0)
2629 return (err);
2630 fastpath_disabled = B_TRUE;
2631 }
2632
2633 /*
2634 * Return EBUSY if:
2635 * - there is an exclusively active mac client exists.
2636 * - this is an exclusive active mac client but
2637 * a. there is already active mac clients exist, or
2638 * b. fastpath streams are already plumbed on this legacy device
2639 * - the mac creator has disallowed active mac clients.
2640 */
2641 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) {
2642 if (fastpath_disabled)
2643 mac_fastpath_enable((mac_handle_t)mip);
2644 return (EBUSY);
2645 }
2646
2647 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2648 ASSERT(!fastpath_disabled);
2649 if (mip->mi_nactiveclients != 0)
2650 return (EBUSY);
2651
2652 if ((mip->mi_state_flags & MIS_LEGACY) &&
2653 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
2654 return (EBUSY);
2655 }
2656 mip->mi_state_flags |= MIS_EXCLUSIVE;
2657 }
2658
2659 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
2660 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
2661 MCIS_IS_AGGR_PORT))) {
2662 /*
2663 * Apply the property cached in the mac_impl_t to the primary
2664 * mac client. If the mac client is a VNIC or an aggregation
2665 * port, its property should be set in the mcip when the
2666 * VNIC/aggr was created.
2667 */
2668 mac_get_resources((mac_handle_t)mip, mrp);
2669 (void) mac_client_set_resources(mch, mrp);
2670 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2671 /*
2672 * This is a VLAN client sharing the address of the
2673 * primary MAC client; i.e., one created via dladm
2674 * create-vlan. We don't support specifying ring
2675 * properties for this type of client as it inherits
2676 * these from the primary MAC client.
2677 */
2678 if (is_vnic_primary) {
2679 mac_resource_props_t *vmrp;
2680
2681 vmrp = MCIP_RESOURCE_PROPS(mcip);
2682 if (vmrp->mrp_mask & MRP_RX_RINGS ||
2683 vmrp->mrp_mask & MRP_TX_RINGS) {
2684 if (fastpath_disabled)
2685 mac_fastpath_enable((mac_handle_t)mip);
2686 kmem_free(mrp, sizeof (*mrp));
2687 return (ENOTSUP);
2688 }
2689 /*
2690 * Additionally we also need to inherit any
2691 * rings property from the MAC.
2692 */
2693 mac_get_resources((mac_handle_t)mip, mrp);
2694 if (mrp->mrp_mask & MRP_RX_RINGS) {
2695 vmrp->mrp_mask |= MRP_RX_RINGS;
2696 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
2697 }
2698 if (mrp->mrp_mask & MRP_TX_RINGS) {
2699 vmrp->mrp_mask |= MRP_TX_RINGS;
2700 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
2701 }
2702 }
2703 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp));
2704 }
2705
2706 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2707 muip->mui_vid = vid;
2708
2709 if (is_primary || is_vnic_primary) {
2710 mac_addr = mip->mi_addr;
2711 } else {
2712
2713 /*
2714 * Verify the validity of the specified MAC addresses value.
2715 */
2716 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
2717 *diag = MAC_DIAG_MACADDR_INVALID;
2718 err = EINVAL;
2719 goto bail_out;
2720 }
2721
2722 /*
2723 * Make sure that the specified MAC address is different
2724 * than the unicast MAC address of the underlying NIC.
2725 */
2726 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2727 *diag = MAC_DIAG_MACADDR_NIC;
2728 err = EINVAL;
2729 goto bail_out;
2730 }
2731 }
2732
2733 /*
2734 * Set the flags here so that if this is a passive client, we
2735 * can return and set it when we call mac_client_datapath_setup
2736 * when this becomes the active client. If we defer to using these
2737 * flags to mac_client_datapath_setup, then for a passive client,
2738 * we'd have to store the flags somewhere (probably fe_flags)
2739 * and then use it.
2740 */
2741 if (!MCIP_DATAPATH_SETUP(mcip)) {
2742 if (is_unicast_hw) {
2743 /*
2744 * The client requires a hardware MAC address slot
2745 * for that unicast address. Since we support only
2746 * one unicast MAC address per client, flag the
2747 * MAC client itself.
2748 */
2749 mcip->mci_state_flags |= MCIS_UNICAST_HW;
2750 }
2751
2752 /* Check for VLAN flags, if present */
2753 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2754 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2755
2756 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2757 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2758
2759 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2760 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2761 } else {
2762 /*
2763 * Assert that the specified flags are consistent with the
2764 * flags specified by previous calls to mac_unicast_add().
2765 */
2766 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2767 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2768 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2769 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2770
2771 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2772 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2773 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2774 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2775
2776 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2777 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2778 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2779 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2780
2781 /*
2782 * Make sure the client is consistent about its requests
2783 * for MAC addresses. I.e. all requests from the clients
2784 * must have the MAC_UNICAST_HW flag set or clear.
2785 */
2786 if (((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2787 !is_unicast_hw) ||
2788 ((mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2789 is_unicast_hw)) {
2790 err = EINVAL;
2791 goto bail_out;
2792 }
2793 }
2794 /*
2795 * Make sure the MAC address is not already used by
2796 * another MAC client defined on top of the same
2797 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2798 * set when we allow a passive client to be present which will
2799 * be activated when the currently active client goes away - this
2800 * works only with primary addresses.
2801 */
2802 if ((check_dups || is_primary || is_vnic_primary) &&
2803 mac_addr_in_use(mip, mac_addr, vid)) {
2804 /*
2805 * Must have set the multiple primary address flag when
2806 * we did a mac_client_open AND this should be a primary
2807 * MAC client AND there should not already be a passive
2808 * primary. If all is true then we let this succeed
2809 * even if the address is a dup.
2810 */
2811 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2812 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2813 mac_get_passive_primary_client(mip) != NULL) {
2814 *diag = MAC_DIAG_MACADDR_INUSE;
2815 err = EEXIST;
2816 goto bail_out;
2817 }
2818 ASSERT((mcip->mci_flags &
2819 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2820 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2821 kmem_free(mrp, sizeof (*mrp));
2822
2823 /*
2824 * Stash the unicast address handle, we will use it when
2825 * we set up the passive client.
2826 */
2827 mcip->mci_p_unicast_list = muip;
2828 *mah = (mac_unicast_handle_t)muip;
2829 return (0);
2830 }
2831
2832 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp,
2833 is_primary || is_vnic_primary, muip);
2834 if (err != 0)
2835 goto bail_out;
2836
2837 kmem_free(mrp, sizeof (*mrp));
2838 *mah = (mac_unicast_handle_t)muip;
2839 return (0);
2840
2841 bail_out:
2842 if (fastpath_disabled)
2843 mac_fastpath_enable((mac_handle_t)mip);
2844 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2845 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2846 if (mip->mi_state_flags & MIS_LEGACY) {
2847 mip->mi_capab_legacy.ml_active_clear(
2848 mip->mi_driver);
2849 }
2850 }
2851 kmem_free(mrp, sizeof (*mrp));
2852 kmem_free(muip, sizeof (mac_unicast_impl_t));
2853 return (err);
2854 }
2855
2856 /*
2857 * Wrapper function to mac_unicast_add when we want to have the same mac
2858 * client open for two instances, one that is currently active and another
2859 * that will become active when the current one is removed. In this case
2860 * mac_unicast_add will return EGAIN and we will save the rx function and
2861 * arg which will be used when we activate the passive client in
2862 * mac_unicast_remove.
2863 */
2864 int
2865 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2866 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag,
2867 mac_rx_t rx_fn, void *arg)
2868 {
2869 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2870 uint_t err;
2871
2872 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2873 if (err != 0 && err != EAGAIN)
2874 return (err);
2875 if (err == EAGAIN) {
2876 if (rx_fn != NULL) {
2877 mcip->mci_rx_p_fn = rx_fn;
2878 mcip->mci_rx_p_arg = arg;
2879 }
2880 return (0);
2881 }
2882 if (rx_fn != NULL)
2883 mac_rx_set(mch, rx_fn, arg);
2884 return (err);
2885 }
2886
2887 int
2888 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2889 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2890 {
2891 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2892 uint_t err;
2893
2894 i_mac_perim_enter(mip);
2895 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2896 i_mac_perim_exit(mip);
2897
2898 return (err);
2899 }
2900
2901 static void
2902 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2903 flow_entry_t *flent)
2904 {
2905 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2906 mac_impl_t *mip = mcip->mci_mip;
2907 boolean_t no_unicast;
2908
2909 /*
2910 * If we have not added a unicast address for this MAC client, just
2911 * teardown the datapath.
2912 */
2913 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2914
2915 if (!no_unicast) {
2916 /*
2917 * We would have initialized subflows etc. only if we brought
2918 * up the primary client and set the unicast unicast address
2919 * etc. Deactivate the flows. The flow entry will be removed
2920 * from the active flow tables, and the associated SRS,
2921 * softrings etc will be deleted. But the flow entry itself
2922 * won't be destroyed, instead it will continue to be archived
2923 * off the the global flow hash list, for a possible future
2924 * activation when say IP is plumbed again.
2925 */
2926 mac_link_release_flows(mch);
2927 }
2928 mip->mi_nactiveclients--;
2929 mac_update_single_active_client(mip);
2930
2931 /* Tear down the data path */
2932 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2933
2934 /*
2935 * Prevent any future access to the flow entry through the mci_flent
2936 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2937 * mac_bcast_send is also under mi_rw_lock.
2938 */
2939 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2940 flent = mcip->mci_flent;
2941 mac_client_remove_flow_from_list(mcip, flent);
2942
2943 if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2944 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2945
2946 /*
2947 * This is the last unicast address being removed and there shouldn't
2948 * be any outbound data threads at this point coming down from mac
2949 * clients. We have waited for the data threads to finish before
2950 * starting dld_str_detach. Non-data threads must access TX SRS
2951 * under mi_rw_lock.
2952 */
2953 rw_exit(&mip->mi_rw_lock);
2954
2955 /*
2956 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2957 * contain other flags, such as FE_CONDEMNED, which we need to
2958 * cleared. We don't call mac_flow_cleanup() for this unicast
2959 * flow as we have a already cleaned up SRSs etc. (via the teadown
2960 * path). We just clear the stats and reset the initial callback
2961 * function, the rest will be set when we call mac_flow_create,
2962 * if at all.
2963 */
2964 mutex_enter(&flent->fe_lock);
2965 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2966 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2967 flent->fe_flags = FE_MC_NO_DATAPATH;
2968 flow_stat_destroy(flent);
2969 mac_misc_stat_delete(flent);
2970
2971 /* Initialize the receiver function to a safe routine */
2972 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2973 flent->fe_cb_arg1 = NULL;
2974 flent->fe_cb_arg2 = NULL;
2975
2976 flent->fe_index = -1;
2977 mutex_exit(&flent->fe_lock);
2978
2979 if (mip->mi_type->mt_brdcst_addr != NULL) {
2980 ASSERT(muip != NULL || no_unicast);
2981 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2982 muip != NULL ? muip->mui_vid : VLAN_ID_NONE);
2983 }
2984
2985 if (mip->mi_nactiveclients == 1) {
2986 mac_capab_update((mac_handle_t)mip);
2987 mac_virtual_link_update(mip);
2988 }
2989
2990 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2991 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2992
2993 if (mip->mi_state_flags & MIS_LEGACY)
2994 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2995 }
2996
2997 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2998
2999 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3000 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3001
3002 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3003 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3004
3005 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3006 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3007
3008 if (muip != NULL)
3009 kmem_free(muip, sizeof (mac_unicast_impl_t));
3010 mac_protect_cancel_timer(mcip);
3011 mac_protect_flush_dynamic(mcip);
3012
3013 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat));
3014 /*
3015 * Disable fastpath if this is a VNIC or a VLAN.
3016 */
3017 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3018 mac_fastpath_enable((mac_handle_t)mip);
3019 mac_stop((mac_handle_t)mip);
3020 }
3021
3022 /*
3023 * Remove a MAC address which was previously added by mac_unicast_add().
3024 */
3025 int
3026 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
3027 {
3028 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3029 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
3030 mac_unicast_impl_t *pre;
3031 mac_impl_t *mip = mcip->mci_mip;
3032 flow_entry_t *flent;
3033 uint16_t mui_vid;
3034
3035 i_mac_perim_enter(mip);
3036 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
3037 /*
3038 * Call made by the upper MAC client of a VNIC.
3039 * There's nothing much to do, the unicast address will
3040 * be removed by the VNIC driver when the VNIC is deleted,
3041 * but let's ensure that all our transmit is done before
3042 * the client does a mac_client_stop lest it trigger an
3043 * assert in the driver.
3044 */
3045 ASSERT(muip->mui_vid == VLAN_ID_NONE);
3046
3047 mac_tx_client_flush(mcip);
3048
3049 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3050 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3051 if (mcip->mci_rx_p_fn != NULL) {
3052 mac_rx_set(mch, mcip->mci_rx_p_fn,
3053 mcip->mci_rx_p_arg);
3054 mcip->mci_rx_p_fn = NULL;
3055 mcip->mci_rx_p_arg = NULL;
3056 }
3057 kmem_free(muip, sizeof (mac_unicast_impl_t));
3058 i_mac_perim_exit(mip);
3059 return (0);
3060 }
3061 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
3062
3063 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3064 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3065
3066 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3067 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3068
3069 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3070 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3071
3072 kmem_free(muip, sizeof (mac_unicast_impl_t));
3073 i_mac_perim_exit(mip);
3074 return (0);
3075 }
3076
3077 ASSERT(muip != NULL);
3078
3079 /*
3080 * We are removing a passive client, we haven't setup the datapath
3081 * for this yet, so nothing much to do.
3082 */
3083 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3084
3085 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
3086 ASSERT(mcip->mci_p_unicast_list == muip);
3087
3088 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3089
3090 mcip->mci_p_unicast_list = NULL;
3091 mcip->mci_rx_p_fn = NULL;
3092 mcip->mci_rx_p_arg = NULL;
3093
3094 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
3095
3096 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3097 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3098
3099 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3100 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3101
3102 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3103 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3104
3105 kmem_free(muip, sizeof (mac_unicast_impl_t));
3106 i_mac_perim_exit(mip);
3107 return (0);
3108 }
3109
3110 /*
3111 * Remove the VID from the list of client's VIDs.
3112 */
3113 pre = mcip->mci_unicast_list;
3114 if (muip == pre) {
3115 mcip->mci_unicast_list = muip->mui_next;
3116 } else {
3117 while ((pre->mui_next != NULL) && (pre->mui_next != muip))
3118 pre = pre->mui_next;
3119 ASSERT(pre->mui_next == muip);
3120 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3121 pre->mui_next = muip->mui_next;
3122 rw_exit(&mcip->mci_rw_lock);
3123 }
3124
3125 if (!mac_client_single_rcvr(mcip)) {
3126 /*
3127 * This MAC client is shared by more than one unicast
3128 * addresses, so we will just remove the flent
3129 * corresponding to the address being removed. We don't invoke
3130 * mac_rx_classify_flow_rem() since the additional flow is
3131 * not associated with its own separate set of SRS and rings,
3132 * and these constructs are still needed for the remaining
3133 * flows.
3134 */
3135 flent = mac_client_get_flow(mcip, muip);
3136 VERIFY3P(flent, !=, NULL);
3137
3138 /*
3139 * The first one is disappearing, need to make sure
3140 * we replace it with another from the list of
3141 * shared clients.
3142 */
3143 if (flent == mcip->mci_flent)
3144 flent = mac_client_swap_mciflent(mcip);
3145 mac_client_remove_flow_from_list(mcip, flent);
3146 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
3147 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
3148
3149 /*
3150 * The multicast groups that were added by the client so
3151 * far must be removed from the brodcast domain corresponding
3152 * to the VID being removed.
3153 */
3154 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
3155 (void *)flent, B_FALSE);
3156
3157 if (mip->mi_type->mt_brdcst_addr != NULL) {
3158 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
3159 muip->mui_vid);
3160 }
3161
3162 FLOW_FINAL_REFRELE(flent);
3163 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
3164
3165 /*
3166 * Enable fastpath if this is a VNIC or a VLAN.
3167 */
3168 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3169 mac_fastpath_enable((mac_handle_t)mip);
3170 mac_stop((mac_handle_t)mip);
3171 i_mac_perim_exit(mip);
3172 return (0);
3173 }
3174
3175 mui_vid = muip->mui_vid;
3176 mac_client_datapath_teardown(mch, muip, flent);
3177
3178 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) &&
3179 mui_vid == VLAN_ID_NONE) {
3180 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
3181 } else {
3182 i_mac_perim_exit(mip);
3183 return (0);
3184 }
3185
3186 /*
3187 * If we are removing the primary, check if we have a passive primary
3188 * client that we need to activate now.
3189 */
3190 mcip = mac_get_passive_primary_client(mip);
3191 if (mcip != NULL) {
3192 mac_resource_props_t *mrp;
3193 mac_unicast_impl_t *muip;
3194
3195 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3196 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3197
3198 /*
3199 * Apply the property cached in the mac_impl_t to the
3200 * primary mac client.
3201 */
3202 mac_get_resources((mac_handle_t)mip, mrp);
3203 (void) mac_client_set_resources(mch, mrp);
3204 ASSERT(mcip->mci_p_unicast_list != NULL);
3205 muip = mcip->mci_p_unicast_list;
3206 mcip->mci_p_unicast_list = NULL;
3207 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
3208 mip->mi_addr, mrp, B_TRUE, muip) == 0) {
3209 if (mcip->mci_rx_p_fn != NULL) {
3210 mac_rx_set(mch, mcip->mci_rx_p_fn,
3211 mcip->mci_rx_p_arg);
3212 mcip->mci_rx_p_fn = NULL;
3213 mcip->mci_rx_p_arg = NULL;
3214 }
3215 } else {
3216 kmem_free(muip, sizeof (mac_unicast_impl_t));
3217 }
3218 kmem_free(mrp, sizeof (*mrp));
3219 }
3220 i_mac_perim_exit(mip);
3221 return (0);
3222 }
3223
3224 /*
3225 * Multicast add function invoked by MAC clients.
3226 */
3227 int
3228 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
3229 {
3230 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3231 mac_impl_t *mip = mcip->mci_mip;
3232 flow_entry_t *flent = mcip->mci_flent_list;
3233 flow_entry_t *prev_fe = NULL;
3234 uint16_t vid;
3235 int err = 0;
3236
3237 /* Verify the address is a valid multicast address */
3238 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
3239 mip->mi_pdata)) != 0)
3240 return (err);
3241
3242 i_mac_perim_enter(mip);
3243 while (flent != NULL) {
3244 vid = i_mac_flow_vid(flent);
3245
3246 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
3247 MAC_ADDRTYPE_MULTICAST);
3248 if (err != 0)
3249 break;
3250 prev_fe = flent;
3251 flent = flent->fe_client_next;
3252 }
3253
3254 /*
3255 * If we failed adding, then undo all, rather than partial
3256 * success.
3257 */
3258 if (flent != NULL && prev_fe != NULL) {
3259 flent = mcip->mci_flent_list;
3260 while (flent != prev_fe->fe_client_next) {
3261 vid = i_mac_flow_vid(flent);
3262 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3263 flent = flent->fe_client_next;
3264 }
3265 }
3266 i_mac_perim_exit(mip);
3267 return (err);
3268 }
3269
3270 /*
3271 * Multicast delete function invoked by MAC clients.
3272 */
3273 void
3274 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
3275 {
3276 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3277 mac_impl_t *mip = mcip->mci_mip;
3278 flow_entry_t *flent;
3279 uint16_t vid;
3280
3281 i_mac_perim_enter(mip);
3282 for (flent = mcip->mci_flent_list; flent != NULL;
3283 flent = flent->fe_client_next) {
3284 vid = i_mac_flow_vid(flent);
3285 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3286 }
3287 i_mac_perim_exit(mip);
3288 }
3289
3290 /*
3291 * When a MAC client desires to capture packets on an interface,
3292 * it registers a promiscuous call back with mac_promisc_add().
3293 * There are three types of promiscuous callbacks:
3294 *
3295 * * MAC_CLIENT_PROMISC_ALL
3296 * Captures all packets sent and received by the MAC client,
3297 * the physical interface, as well as all other MAC clients
3298 * defined on top of the same MAC.
3299 *
3300 * * MAC_CLIENT_PROMISC_FILTERED
3301 * Captures all packets sent and received by the MAC client,
3302 * plus all multicast traffic sent and received by the phyisical
3303 * interface and the other MAC clients.
3304 *
3305 * * MAC_CLIENT_PROMISC_MULTI
3306 * Captures all broadcast and multicast packets sent and
3307 * received by the MAC clients as well as the physical interface.
3308 *
3309 * In all cases, the underlying MAC is put in promiscuous mode.
3310 */
3311 int
3312 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
3313 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
3314 {
3315 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3316 mac_impl_t *mip = mcip->mci_mip;
3317 mac_promisc_impl_t *mpip;
3318 mac_cb_info_t *mcbi;
3319 int rc;
3320
3321 i_mac_perim_enter(mip);
3322
3323 if ((rc = mac_start((mac_handle_t)mip)) != 0) {
3324 i_mac_perim_exit(mip);
3325 return (rc);
3326 }
3327
3328 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
3329 type == MAC_CLIENT_PROMISC_ALL &&
3330 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) {
3331 /*
3332 * The function is being invoked by the upper MAC client
3333 * of a VNIC. The VNIC should only see the traffic
3334 * it is entitled to.
3335 */
3336 type = MAC_CLIENT_PROMISC_FILTERED;
3337 }
3338
3339
3340 /*
3341 * Turn on promiscuous mode for the underlying NIC.
3342 * This is needed even for filtered callbacks which
3343 * expect to receive all multicast traffic on the wire.
3344 *
3345 * Physical promiscuous mode should not be turned on if
3346 * MAC_PROMISC_FLAGS_NO_PHYS is set.
3347 */
3348 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
3349 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
3350 mac_stop((mac_handle_t)mip);
3351 i_mac_perim_exit(mip);
3352 return (rc);
3353 }
3354 }
3355
3356 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
3357
3358 mpip->mpi_type = type;
3359 mpip->mpi_fn = fn;
3360 mpip->mpi_arg = arg;
3361 mpip->mpi_mcip = mcip;
3362 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
3363 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
3364 mpip->mpi_strip_vlan_tag =
3365 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
3366 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0);
3367
3368 mcbi = &mip->mi_promisc_cb_info;
3369 mutex_enter(mcbi->mcbi_lockp);
3370
3371 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
3372 &mpip->mpi_mci_link);
3373 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
3374 &mpip->mpi_mi_link);
3375
3376 mutex_exit(mcbi->mcbi_lockp);
3377
3378 *mphp = (mac_promisc_handle_t)mpip;
3379
3380 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3381 mac_impl_t *umip = mcip->mci_upper_mip;
3382
3383 ASSERT(umip != NULL);
3384 mac_vnic_secondary_update(umip);
3385 }
3386
3387 i_mac_perim_exit(mip);
3388
3389 return (0);
3390 }
3391
3392 /*
3393 * Remove a multicast address previously aded through mac_promisc_add().
3394 */
3395 void
3396 mac_promisc_remove(mac_promisc_handle_t mph)
3397 {
3398 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
3399 mac_client_impl_t *mcip = mpip->mpi_mcip;
3400 mac_impl_t *mip = mcip->mci_mip;
3401 mac_cb_info_t *mcbi;
3402 int rv;
3403
3404 i_mac_perim_enter(mip);
3405
3406 /*
3407 * Even if the device can't be reset into normal mode, we still
3408 * need to clear the client promisc callbacks. The client may want
3409 * to close the mac end point and we can't have stale callbacks.
3410 */
3411 if (!(mpip->mpi_no_phys)) {
3412 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
3413 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
3414 " mode because of error 0x%x", mip->mi_name, rv);
3415 }
3416 }
3417 mcbi = &mip->mi_promisc_cb_info;
3418 mutex_enter(mcbi->mcbi_lockp);
3419 if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
3420 &mpip->mpi_mi_link)) {
3421 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
3422 &mcip->mci_promisc_list, &mpip->mpi_mci_link));
3423 kmem_cache_free(mac_promisc_impl_cache, mpip);
3424 } else {
3425 mac_callback_remove_wait(&mip->mi_promisc_cb_info);
3426 }
3427
3428 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3429 mac_impl_t *umip = mcip->mci_upper_mip;
3430
3431 ASSERT(umip != NULL);
3432 mac_vnic_secondary_update(umip);
3433 }
3434
3435 mutex_exit(mcbi->mcbi_lockp);
3436 mac_stop((mac_handle_t)mip);
3437
3438 i_mac_perim_exit(mip);
3439 }
3440
3441 /*
3442 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
3443 * that a control operation wants to quiesce the Tx data flow in which case
3444 * we return an error. Holding any of the per cpu locks ensures that the
3445 * mci_tx_flag won't change.
3446 *
3447 * 'CPU' must be accessed just once and used to compute the index into the
3448 * percpu array, and that index must be used for the entire duration of the
3449 * packet send operation. Note that the thread may be preempted and run on
3450 * another cpu any time and so we can't use 'CPU' more than once for the
3451 * operation.
3452 */
3453 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \
3454 { \
3455 (error) = 0; \
3456 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
3457 mutex_enter(&(mytx)->pcpu_tx_lock); \
3458 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \
3459 (mytx)->pcpu_tx_refcnt++; \
3460 } else { \
3461 (error) = -1; \
3462 } \
3463 mutex_exit(&(mytx)->pcpu_tx_lock); \
3464 }
3465
3466 /*
3467 * Release the reference. If needed, signal any control operation waiting
3468 * for Tx quiescence. The wait and signal are always done using the
3469 * mci_tx_pcpu[0]'s lock
3470 */
3471 #define MAC_TX_RELE(mcip, mytx) { \
3472 mutex_enter(&(mytx)->pcpu_tx_lock); \
3473 if (--(mytx)->pcpu_tx_refcnt == 0 && \
3474 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \
3475 mutex_exit(&(mytx)->pcpu_tx_lock); \
3476 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3477 cv_signal(&(mcip)->mci_tx_cv); \
3478 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3479 } else { \
3480 mutex_exit(&(mytx)->pcpu_tx_lock); \
3481 } \
3482 }
3483
3484 /*
3485 * Send function invoked by MAC clients.
3486 */
3487 mac_tx_cookie_t
3488 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
3489 uint16_t flag, mblk_t **ret_mp)
3490 {
3491 mac_tx_cookie_t cookie = 0;
3492 int error;
3493 mac_tx_percpu_t *mytx;
3494 mac_soft_ring_set_t *srs;
3495 flow_entry_t *flent;
3496 boolean_t is_subflow = B_FALSE;
3497 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3498 mac_impl_t *mip = mcip->mci_mip;
3499 mac_srs_tx_t *srs_tx;
3500
3501 /*
3502 * Check whether the active Tx threads count is bumped already.
3503 */
3504 if (!(flag & MAC_TX_NO_HOLD)) {
3505 MAC_TX_TRY_HOLD(mcip, mytx, error);
3506 if (error != 0) {
3507 freemsgchain(mp_chain);
3508 return (0);
3509 }
3510 }
3511
3512 /*
3513 * If mac protection is enabled, only the permissible packets will be
3514 * returned by mac_protect_check().
3515 */
3516 if ((mcip->mci_flent->
3517 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 &&
3518 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL)
3519 goto done;
3520
3521 if (mcip->mci_subflow_tab != NULL &&
3522 mcip->mci_subflow_tab->ft_flow_count > 0 &&
3523 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
3524 FLOW_OUTBOUND, &flent) == 0) {
3525 /*
3526 * The main assumption here is that if in the event
3527 * we get a chain, all the packets will be classified
3528 * to the same Flow/SRS. If this changes for any
3529 * reason, the following logic should change as well.
3530 * I suppose the fanout_hint also assumes this .
3531 */
3532 ASSERT(flent != NULL);
3533 is_subflow = B_TRUE;
3534 } else {
3535 flent = mcip->mci_flent;
3536 }
3537
3538 srs = flent->fe_tx_srs;
3539 /*
3540 * This is to avoid panics with PF_PACKET that can call mac_tx()
3541 * against an interface that is not capable of sending. A rewrite
3542 * of the mac datapath is required to remove this limitation.
3543 */
3544 if (srs == NULL) {
3545 freemsgchain(mp_chain);
3546 goto done;
3547 }
3548
3549 srs_tx = &srs->srs_tx;
3550 if (srs_tx->st_mode == SRS_TX_DEFAULT &&
3551 (srs->srs_state & SRS_ENQUEUED) == 0 &&
3552 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) {
3553 uint64_t obytes;
3554
3555 /*
3556 * Since dls always opens the underlying MAC, nclients equals
3557 * to 1 means that the only active client is dls itself acting
3558 * as a primary client of the MAC instance. Since dls will not
3559 * send tagged packets in that case, and dls is trusted to send
3560 * packets for its allowed VLAN(s), the VLAN tag insertion and
3561 * check is required only if nclients is greater than 1.
3562 */
3563 if (mip->mi_nclients > 1) {
3564 if (MAC_VID_CHECK_NEEDED(mcip)) {
3565 int err = 0;
3566
3567 MAC_VID_CHECK(mcip, mp_chain, err);
3568 if (err != 0) {
3569 freemsg(mp_chain);
3570 mcip->mci_misc_stat.mms_txerrors++;
3571 goto done;
3572 }
3573 }
3574 if (MAC_TAG_NEEDED(mcip)) {
3575 mp_chain = mac_add_vlan_tag(mp_chain, 0,
3576 mac_client_vid(mch));
3577 if (mp_chain == NULL) {
3578 mcip->mci_misc_stat.mms_txerrors++;
3579 goto done;
3580 }
3581 }
3582 }
3583
3584 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
3585 msgdsize(mp_chain));
3586
3587 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
3588 if (mp_chain == NULL) {
3589 cookie = 0;
3590 SRS_TX_STAT_UPDATE(srs, opackets, 1);
3591 SRS_TX_STAT_UPDATE(srs, obytes, obytes);
3592 } else {
3593 mutex_enter(&srs->srs_lock);
3594 cookie = mac_tx_srs_no_desc(srs, mp_chain,
3595 flag, ret_mp);
3596 mutex_exit(&srs->srs_lock);
3597 }
3598 } else {
3599 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
3600 }
3601
3602 done:
3603 if (is_subflow)
3604 FLOW_REFRELE(flent);
3605
3606 if (!(flag & MAC_TX_NO_HOLD))
3607 MAC_TX_RELE(mcip, mytx);
3608
3609 return (cookie);
3610 }
3611
3612 /*
3613 * mac_tx_is_blocked
3614 *
3615 * Given a cookie, it returns if the ring identified by the cookie is
3616 * flow-controlled or not. If NULL is passed in place of a cookie,
3617 * then it finds out if any of the underlying rings belonging to the
3618 * SRS is flow controlled or not and returns that status.
3619 */
3620 /* ARGSUSED */
3621 boolean_t
3622 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
3623 {
3624 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3625 mac_soft_ring_set_t *mac_srs;
3626 mac_soft_ring_t *sringp;
3627 boolean_t blocked = B_FALSE;
3628 mac_tx_percpu_t *mytx;
3629 int err;
3630 int i;
3631
3632 /*
3633 * Bump the reference count so that mac_srs won't be deleted.
3634 * If the client is currently quiesced and we failed to bump
3635 * the reference, return B_TRUE so that flow control stays
3636 * as enabled.
3637 *
3638 * Flow control will then be disabled once the client is no
3639 * longer quiesced.
3640 */
3641 MAC_TX_TRY_HOLD(mcip, mytx, err);
3642 if (err != 0)
3643 return (B_TRUE);
3644
3645 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
3646 MAC_TX_RELE(mcip, mytx);
3647 return (B_FALSE);
3648 }
3649
3650 mutex_enter(&mac_srs->srs_lock);
3651 /*
3652 * Only in the case of TX_FANOUT and TX_AGGR, the underlying
3653 * softring (s_ring_state) will have the HIWAT set. This is
3654 * the multiple Tx ring flow control case. For all other
3655 * case, SRS (srs_state) will store the condition.
3656 */
3657 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3658 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) {
3659 if (cookie != 0) {
3660 sringp = (mac_soft_ring_t *)cookie;
3661 mutex_enter(&sringp->s_ring_lock);
3662 if (sringp->s_ring_state & S_RING_TX_HIWAT)
3663 blocked = B_TRUE;
3664 mutex_exit(&sringp->s_ring_lock);
3665 } else {
3666 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3667 sringp = mac_srs->srs_tx_soft_rings[i];
3668 mutex_enter(&sringp->s_ring_lock);
3669 if (sringp->s_ring_state & S_RING_TX_HIWAT) {
3670 blocked = B_TRUE;
3671 mutex_exit(&sringp->s_ring_lock);
3672 break;
3673 }
3674 mutex_exit(&sringp->s_ring_lock);
3675 }
3676 }
3677 } else {
3678 blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
3679 }
3680 mutex_exit(&mac_srs->srs_lock);
3681 MAC_TX_RELE(mcip, mytx);
3682 return (blocked);
3683 }
3684
3685 /*
3686 * Check if the MAC client is the primary MAC client.
3687 */
3688 boolean_t
3689 mac_is_primary_client(mac_client_impl_t *mcip)
3690 {
3691 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
3692 }
3693
3694 void
3695 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
3696 {
3697 mac_impl_t *mip = (mac_impl_t *)mh;
3698 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
3699
3700 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
3701 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
3702 /*
3703 * If ndd props were registered, call them.
3704 * Note that ndd ioctls are Obsolete
3705 */
3706 mac_ndd_ioctl(mip, wq, bp);
3707 return;
3708 }
3709
3710 /*
3711 * Call the driver to handle the ioctl. The driver may not support
3712 * any ioctls, in which case we reply with a NAK on its behalf.
3713 */
3714 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
3715 mip->mi_ioctl(mip->mi_driver, wq, bp);
3716 else
3717 miocnak(wq, bp, 0, EINVAL);
3718 }
3719
3720 /*
3721 * Return the link state of the specified MAC instance.
3722 */
3723 link_state_t
3724 mac_link_get(mac_handle_t mh)
3725 {
3726 return (((mac_impl_t *)mh)->mi_linkstate);
3727 }
3728
3729 /*
3730 * Add a mac client specified notification callback. Please see the comments
3731 * above mac_callback_add() for general information about mac callback
3732 * addition/deletion in the presence of mac callback list walkers
3733 */
3734 mac_notify_handle_t
3735 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
3736 {
3737 mac_impl_t *mip = (mac_impl_t *)mh;
3738 mac_notify_cb_t *mncb;
3739 mac_cb_info_t *mcbi;
3740
3741 /*
3742 * Allocate a notify callback structure, fill in the details and
3743 * use the mac callback list manipulation functions to chain into
3744 * the list of callbacks.
3745 */
3746 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
3747 mncb->mncb_fn = notify_fn;
3748 mncb->mncb_arg = arg;
3749 mncb->mncb_mip = mip;
3750 mncb->mncb_link.mcb_objp = mncb;
3751 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
3752 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
3753
3754 mcbi = &mip->mi_notify_cb_info;
3755
3756 i_mac_perim_enter(mip);
3757 mutex_enter(mcbi->mcbi_lockp);
3758
3759 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3760 &mncb->mncb_link);
3761
3762 mutex_exit(mcbi->mcbi_lockp);
3763 i_mac_perim_exit(mip);
3764 return ((mac_notify_handle_t)mncb);
3765 }
3766
3767 void
3768 mac_notify_remove_wait(mac_handle_t mh)
3769 {
3770 mac_impl_t *mip = (mac_impl_t *)mh;
3771 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info;
3772
3773 mutex_enter(mcbi->mcbi_lockp);
3774 mac_callback_remove_wait(&mip->mi_notify_cb_info);
3775 mutex_exit(mcbi->mcbi_lockp);
3776 }
3777
3778 /*
3779 * Remove a mac client specified notification callback
3780 */
3781 int
3782 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3783 {
3784 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh;
3785 mac_impl_t *mip = mncb->mncb_mip;
3786 mac_cb_info_t *mcbi;
3787 int err = 0;
3788
3789 mcbi = &mip->mi_notify_cb_info;
3790
3791 i_mac_perim_enter(mip);
3792 mutex_enter(mcbi->mcbi_lockp);
3793
3794 ASSERT(mncb->mncb_link.mcb_objp == mncb);
3795 /*
3796 * If there aren't any list walkers, the remove would succeed
3797 * inline, else we wait for the deferred remove to complete
3798 */
3799 if (mac_callback_remove(&mip->mi_notify_cb_info,
3800 &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3801 kmem_free(mncb, sizeof (mac_notify_cb_t));
3802 } else {
3803 err = EBUSY;
3804 }
3805
3806 mutex_exit(mcbi->mcbi_lockp);
3807 i_mac_perim_exit(mip);
3808
3809 /*
3810 * If we failed to remove the notification callback and "wait" is set
3811 * to be B_TRUE, wait for the callback to finish after we exit the
3812 * mac perimeter.
3813 */
3814 if (err != 0 && wait) {
3815 mac_notify_remove_wait((mac_handle_t)mip);
3816 return (0);
3817 }
3818
3819 return (err);
3820 }
3821
3822 /*
3823 * Associate resource management callbacks with the specified MAC
3824 * clients.
3825 */
3826
3827 void
3828 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3829 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3830 mac_resource_restart_t restart, mac_resource_bind_t bind,
3831 void *arg)
3832 {
3833 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3834
3835 mcip->mci_resource_add = add;
3836 mcip->mci_resource_remove = remove;
3837 mcip->mci_resource_quiesce = quiesce;
3838 mcip->mci_resource_restart = restart;
3839 mcip->mci_resource_bind = bind;
3840 mcip->mci_resource_arg = arg;
3841 }
3842
3843 void
3844 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3845 {
3846 /* update the 'resource_add' callback */
3847 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3848 }
3849
3850 /*
3851 * Sets up the client resources and enable the polling interface over all the
3852 * SRS's and the soft rings of the client
3853 */
3854 void
3855 mac_client_poll_enable(mac_client_handle_t mch)
3856 {
3857 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3858 mac_soft_ring_set_t *mac_srs;
3859 flow_entry_t *flent;
3860 int i;
3861
3862 flent = mcip->mci_flent;
3863 ASSERT(flent != NULL);
3864
3865 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
3866 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3867 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3868 ASSERT(mac_srs->srs_mcip == mcip);
3869 mac_srs_client_poll_enable(mcip, mac_srs);
3870 }
3871 }
3872
3873 /*
3874 * Tears down the client resources and disable the polling interface over all
3875 * the SRS's and the soft rings of the client
3876 */
3877 void
3878 mac_client_poll_disable(mac_client_handle_t mch)
3879 {
3880 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3881 mac_soft_ring_set_t *mac_srs;
3882 flow_entry_t *flent;
3883 int i;
3884
3885 flent = mcip->mci_flent;
3886 ASSERT(flent != NULL);
3887
3888 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3889 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3890 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3891 ASSERT(mac_srs->srs_mcip == mcip);
3892 mac_srs_client_poll_disable(mcip, mac_srs);
3893 }
3894 }
3895
3896 /*
3897 * Associate the CPUs specified by the given property with a MAC client.
3898 */
3899 int
3900 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3901 {
3902 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3903 mac_impl_t *mip = mcip->mci_mip;
3904 int err = 0;
3905
3906 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3907
3908 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
3909 mcip->mci_upper_mip : mip, mrp)) != 0) {
3910 return (err);
3911 }
3912 if (MCIP_DATAPATH_SETUP(mcip))
3913 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3914
3915 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3916 return (0);
3917 }
3918
3919 /*
3920 * Apply the specified properties to the specified MAC client.
3921 */
3922 int
3923 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3924 {
3925 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3926 mac_impl_t *mip = mcip->mci_mip;
3927 int err = 0;
3928
3929 i_mac_perim_enter(mip);
3930
3931 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3932 err = mac_resource_ctl_set(mch, mrp);
3933 if (err != 0)
3934 goto done;
3935 }
3936
3937 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) {
3938 err = mac_cpu_set(mch, mrp);
3939 if (err != 0)
3940 goto done;
3941 }
3942
3943 if (mrp->mrp_mask & MRP_PROTECT) {
3944 err = mac_protect_set(mch, mrp);
3945 if (err != 0)
3946 goto done;
3947 }
3948
3949 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS))
3950 err = mac_resource_ctl_set(mch, mrp);
3951
3952 done:
3953 i_mac_perim_exit(mip);
3954 return (err);
3955 }
3956
3957 /*
3958 * Return the properties currently associated with the specified MAC client.
3959 */
3960 void
3961 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3962 {
3963 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3964 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3965
3966 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3967 }
3968
3969 /*
3970 * Return the effective properties currently associated with the specified
3971 * MAC client.
3972 */
3973 void
3974 mac_client_get_effective_resources(mac_client_handle_t mch,
3975 mac_resource_props_t *mrp)
3976 {
3977 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3978 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip);
3979
3980 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3981 }
3982
3983 /*
3984 * Pass a copy of the specified packet to the promiscuous callbacks
3985 * of the specified MAC.
3986 *
3987 * If sender is NULL, the function is being invoked for a packet chain
3988 * received from the wire. If sender is non-NULL, it points to
3989 * the MAC client from which the packet is being sent.
3990 *
3991 * The packets are distributed to the promiscuous callbacks as follows:
3992 *
3993 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3994 * - all broadcast and multicast packets are sent to the
3995 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3996 *
3997 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3998 * after classification by mac_rx_deliver().
3999 */
4000
4001 static void
4002 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
4003 boolean_t loopback)
4004 {
4005 mblk_t *mp_copy, *mp_next;
4006
4007 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) {
4008 mp_copy = copymsg(mp);
4009 if (mp_copy == NULL)
4010 return;
4011
4012 if (mpip->mpi_strip_vlan_tag) {
4013 mp_copy = mac_strip_vlan_tag_chain(mp_copy);
4014 if (mp_copy == NULL)
4015 return;
4016 }
4017 mp_next = NULL;
4018 } else {
4019 mp_copy = mp;
4020 mp_next = mp->b_next;
4021 }
4022 mp_copy->b_next = NULL;
4023
4024 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
4025 if (mp_copy == mp)
4026 mp->b_next = mp_next;
4027 }
4028
4029 /*
4030 * Return the VID of a packet. Zero if the packet is not tagged.
4031 */
4032 static uint16_t
4033 mac_ether_vid(mblk_t *mp)
4034 {
4035 struct ether_header *eth = (struct ether_header *)mp->b_rptr;
4036
4037 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
4038 struct ether_vlan_header *t_evhp =
4039 (struct ether_vlan_header *)mp->b_rptr;
4040 return (VLAN_ID(ntohs(t_evhp->ether_tci)));
4041 }
4042
4043 return (0);
4044 }
4045
4046 /*
4047 * Return whether the specified packet contains a multicast or broadcast
4048 * destination MAC address.
4049 */
4050 static boolean_t
4051 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
4052 {
4053 mac_header_info_t hdr_info;
4054
4055 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
4056 return (B_FALSE);
4057 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
4058 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
4059 }
4060
4061 /*
4062 * Send a copy of an mblk chain to the MAC clients of the specified MAC.
4063 * "sender" points to the sender MAC client for outbound packets, and
4064 * is set to NULL for inbound packets.
4065 */
4066 void
4067 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
4068 mac_client_impl_t *sender)
4069 {
4070 mac_promisc_impl_t *mpip;
4071 mac_cb_t *mcb;
4072 mblk_t *mp;
4073 boolean_t is_mcast, is_sender;
4074
4075 MAC_PROMISC_WALKER_INC(mip);
4076 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4077 is_mcast = mac_is_mcast(mip, mp);
4078 /* send packet to interested callbacks */
4079 for (mcb = mip->mi_promisc_list; mcb != NULL;
4080 mcb = mcb->mcb_nextp) {
4081 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4082 is_sender = (mpip->mpi_mcip == sender);
4083
4084 if (is_sender && mpip->mpi_no_tx_loop)
4085 /*
4086 * The sender doesn't want to receive
4087 * copies of the packets it sends.
4088 */
4089 continue;
4090
4091 /* this client doesn't need any packets (bridge) */
4092 if (mpip->mpi_fn == NULL)
4093 continue;
4094
4095 /*
4096 * For an ethernet MAC, don't displatch a multicast
4097 * packet to a non-PROMISC_ALL callbacks unless the VID
4098 * of the packet matches the VID of the client.
4099 */
4100 if (is_mcast &&
4101 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
4102 !mac_client_check_flow_vid(mpip->mpi_mcip,
4103 mac_ether_vid(mp)))
4104 continue;
4105
4106 if (is_sender ||
4107 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
4108 is_mcast)
4109 mac_promisc_dispatch_one(mpip, mp, is_sender);
4110 }
4111 }
4112 MAC_PROMISC_WALKER_DCR(mip);
4113 }
4114
4115 void
4116 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
4117 {
4118 mac_impl_t *mip = mcip->mci_mip;
4119 mac_promisc_impl_t *mpip;
4120 boolean_t is_mcast;
4121 mblk_t *mp;
4122 mac_cb_t *mcb;
4123
4124 /*
4125 * The unicast packets for the MAC client still
4126 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
4127 * promiscuous callbacks. The broadcast and multicast
4128 * packets were delivered from mac_rx().
4129 */
4130 MAC_PROMISC_WALKER_INC(mip);
4131 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4132 is_mcast = mac_is_mcast(mip, mp);
4133 for (mcb = mcip->mci_promisc_list; mcb != NULL;
4134 mcb = mcb->mcb_nextp) {
4135 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4136 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
4137 !is_mcast) {
4138 mac_promisc_dispatch_one(mpip, mp, B_FALSE);
4139 }
4140 }
4141 }
4142 MAC_PROMISC_WALKER_DCR(mip);
4143 }
4144
4145 /*
4146 * Return the margin value currently assigned to the specified MAC instance.
4147 */
4148 void
4149 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
4150 {
4151 mac_impl_t *mip = (mac_impl_t *)mh;
4152
4153 rw_enter(&(mip->mi_rw_lock), RW_READER);
4154 *marginp = mip->mi_margin;
4155 rw_exit(&(mip->mi_rw_lock));
4156 }
4157
4158 /*
4159 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
4160 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
4161 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
4162 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
4163 * cannot disappear while we are accessing it.
4164 */
4165 typedef struct i_mac_info_state_s {
4166 const char *mi_name;
4167 mac_info_t *mi_infop;
4168 } i_mac_info_state_t;
4169
4170 /*ARGSUSED*/
4171 static uint_t
4172 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4173 {
4174 i_mac_info_state_t *statep = arg;
4175 mac_impl_t *mip = (mac_impl_t *)val;
4176
4177 if (mip->mi_state_flags & MIS_DISABLED)
4178 return (MH_WALK_CONTINUE);
4179
4180 if (strcmp(statep->mi_name,
4181 ddi_driver_name(mip->mi_dip)) != 0)
4182 return (MH_WALK_CONTINUE);
4183
4184 statep->mi_infop = &mip->mi_info;
4185 return (MH_WALK_TERMINATE);
4186 }
4187
4188 boolean_t
4189 mac_info_get(const char *name, mac_info_t *minfop)
4190 {
4191 i_mac_info_state_t state;
4192
4193 rw_enter(&i_mac_impl_lock, RW_READER);
4194 state.mi_name = name;
4195 state.mi_infop = NULL;
4196 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
4197 if (state.mi_infop == NULL) {
4198 rw_exit(&i_mac_impl_lock);
4199 return (B_FALSE);
4200 }
4201 *minfop = *state.mi_infop;
4202 rw_exit(&i_mac_impl_lock);
4203 return (B_TRUE);
4204 }
4205
4206 /*
4207 * To get the capabilities that MAC layer cares about, such as rings, factory
4208 * mac address, vnic or not, it should directly invoke this function. If the
4209 * link is part of a bridge, then the only "capability" it has is the inability
4210 * to do zero copy.
4211 */
4212 boolean_t
4213 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4214 {
4215 mac_impl_t *mip = (mac_impl_t *)mh;
4216
4217 if (mip->mi_bridge_link != NULL)
4218 return (cap == MAC_CAPAB_NO_ZCOPY);
4219 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
4220 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
4221 else
4222 return (B_FALSE);
4223 }
4224
4225 /*
4226 * Capability query function. If number of active mac clients is greater than
4227 * 1, only limited capabilities can be advertised to the caller no matter the
4228 * driver has certain capability or not. Else, we query the driver to get the
4229 * capability.
4230 */
4231 boolean_t
4232 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4233 {
4234 mac_impl_t *mip = (mac_impl_t *)mh;
4235
4236 /*
4237 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
4238 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
4239 */
4240 if (mip->mi_nactiveclients > 1) {
4241 switch (cap) {
4242 case MAC_CAPAB_NO_ZCOPY:
4243 return (B_TRUE);
4244 case MAC_CAPAB_LEGACY:
4245 case MAC_CAPAB_HCKSUM:
4246 case MAC_CAPAB_NO_NATIVEVLAN:
4247 break;
4248 default:
4249 return (B_FALSE);
4250 }
4251 }
4252
4253 /* else get capab from driver */
4254 return (i_mac_capab_get(mh, cap, cap_data));
4255 }
4256
4257 boolean_t
4258 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
4259 {
4260 mac_impl_t *mip = (mac_impl_t *)mh;
4261
4262 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
4263 mip->mi_pdata));
4264 }
4265
4266 mblk_t *
4267 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
4268 size_t extra_len)
4269 {
4270 mac_impl_t *mip = (mac_impl_t *)mh;
4271 const uint8_t *hdr_daddr;
4272
4273 /*
4274 * If the MAC is point-to-point with a fixed destination address, then
4275 * we must always use that destination in the MAC header.
4276 */
4277 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr);
4278 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap,
4279 mip->mi_pdata, payload, extra_len));
4280 }
4281
4282 int
4283 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4284 {
4285 mac_impl_t *mip = (mac_impl_t *)mh;
4286
4287 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
4288 mhip));
4289 }
4290
4291 int
4292 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4293 {
4294 mac_impl_t *mip = (mac_impl_t *)mh;
4295 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER);
4296 int err = 0;
4297
4298 /*
4299 * Packets should always be at least 16 bit aligned.
4300 */
4301 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t)));
4302
4303 if ((err = mac_header_info(mh, mp, mhip)) != 0)
4304 return (err);
4305
4306 /*
4307 * If this is a VLAN-tagged Ethernet packet, then the SAP in the
4308 * mac_header_info_t as returned by mac_header_info() is
4309 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header.
4310 */
4311 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) {
4312 struct ether_vlan_header *evhp;
4313 uint16_t sap;
4314 mblk_t *tmp = NULL;
4315 size_t size;
4316
4317 size = sizeof (struct ether_vlan_header);
4318 if (MBLKL(mp) < size) {
4319 /*
4320 * Pullup the message in order to get the MAC header
4321 * infomation. Note that this is a read-only function,
4322 * we keep the input packet intact.
4323 */
4324 if ((tmp = msgpullup(mp, size)) == NULL)
4325 return (EINVAL);
4326
4327 mp = tmp;
4328 }
4329 evhp = (struct ether_vlan_header *)mp->b_rptr;
4330 sap = ntohs(evhp->ether_type);
4331 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap);
4332 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header);
4333 mhip->mhi_tci = ntohs(evhp->ether_tci);
4334 mhip->mhi_istagged = B_TRUE;
4335 freemsg(tmp);
4336
4337 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI)
4338 return (EINVAL);
4339 } else {
4340 mhip->mhi_istagged = B_FALSE;
4341 mhip->mhi_tci = 0;
4342 }
4343
4344 return (0);
4345 }
4346
4347 mblk_t *
4348 mac_header_cook(mac_handle_t mh, mblk_t *mp)
4349 {
4350 mac_impl_t *mip = (mac_impl_t *)mh;
4351
4352 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
4353 if (DB_REF(mp) > 1) {
4354 mblk_t *newmp = copymsg(mp);
4355 if (newmp == NULL)
4356 return (NULL);
4357 freemsg(mp);
4358 mp = newmp;
4359 }
4360 return (mip->mi_type->mt_ops.mtops_header_cook(mp,
4361 mip->mi_pdata));
4362 }
4363 return (mp);
4364 }
4365
4366 mblk_t *
4367 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
4368 {
4369 mac_impl_t *mip = (mac_impl_t *)mh;
4370
4371 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
4372 if (DB_REF(mp) > 1) {
4373 mblk_t *newmp = copymsg(mp);
4374 if (newmp == NULL)
4375 return (NULL);
4376 freemsg(mp);
4377 mp = newmp;
4378 }
4379 return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
4380 mip->mi_pdata));
4381 }
4382 return (mp);
4383 }
4384
4385 uint_t
4386 mac_addr_len(mac_handle_t mh)
4387 {
4388 mac_impl_t *mip = (mac_impl_t *)mh;
4389
4390 return (mip->mi_type->mt_addr_length);
4391 }
4392
4393 /* True if a MAC is a VNIC */
4394 boolean_t
4395 mac_is_vnic(mac_handle_t mh)
4396 {
4397 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
4398 }
4399
4400 mac_handle_t
4401 mac_get_lower_mac_handle(mac_handle_t mh)
4402 {
4403 mac_impl_t *mip = (mac_impl_t *)mh;
4404
4405 ASSERT(mac_is_vnic(mh));
4406 return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
4407 }
4408
4409 boolean_t
4410 mac_is_vnic_primary(mac_handle_t mh)
4411 {
4412 mac_impl_t *mip = (mac_impl_t *)mh;
4413
4414 ASSERT(mac_is_vnic(mh));
4415 return (((vnic_t *)mip->mi_driver)->vn_addr_type ==
4416 VNIC_MAC_ADDR_TYPE_PRIMARY);
4417 }
4418
4419 void
4420 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
4421 boolean_t is_user_flow)
4422 {
4423 if (nmrp != NULL && cmrp != NULL) {
4424 if (nmrp->mrp_mask & MRP_PRIORITY) {
4425 if (nmrp->mrp_priority == MPL_RESET) {
4426 cmrp->mrp_mask &= ~MRP_PRIORITY;
4427 if (is_user_flow) {
4428 cmrp->mrp_priority =
4429 MPL_SUBFLOW_DEFAULT;
4430 } else {
4431 cmrp->mrp_priority = MPL_LINK_DEFAULT;
4432 }
4433 } else {
4434 cmrp->mrp_mask |= MRP_PRIORITY;
4435 cmrp->mrp_priority = nmrp->mrp_priority;
4436 }
4437 }
4438 if (nmrp->mrp_mask & MRP_MAXBW) {
4439 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) {
4440 cmrp->mrp_mask &= ~MRP_MAXBW;
4441 cmrp->mrp_maxbw = 0;
4442 } else {
4443 cmrp->mrp_mask |= MRP_MAXBW;
4444 cmrp->mrp_maxbw = nmrp->mrp_maxbw;
4445 }
4446 }
4447 if (nmrp->mrp_mask & MRP_CPUS)
4448 MAC_COPY_CPUS(nmrp, cmrp);
4449
4450 if (nmrp->mrp_mask & MRP_POOL) {
4451 if (strlen(nmrp->mrp_pool) == 0) {
4452 cmrp->mrp_mask &= ~MRP_POOL;
4453 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool));
4454 } else {
4455 cmrp->mrp_mask |= MRP_POOL;
4456 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool,
4457 sizeof (cmrp->mrp_pool));
4458 }
4459
4460 }
4461
4462 if (nmrp->mrp_mask & MRP_PROTECT)
4463 mac_protect_update(nmrp, cmrp);
4464
4465 /*
4466 * Update the rings specified.
4467 */
4468 if (nmrp->mrp_mask & MRP_RX_RINGS) {
4469 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4470 cmrp->mrp_mask &= ~MRP_RX_RINGS;
4471 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4472 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4473 cmrp->mrp_nrxrings = 0;
4474 } else {
4475 cmrp->mrp_mask |= MRP_RX_RINGS;
4476 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings;
4477 }
4478 }
4479 if (nmrp->mrp_mask & MRP_TX_RINGS) {
4480 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4481 cmrp->mrp_mask &= ~MRP_TX_RINGS;
4482 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4483 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4484 cmrp->mrp_ntxrings = 0;
4485 } else {
4486 cmrp->mrp_mask |= MRP_TX_RINGS;
4487 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings;
4488 }
4489 }
4490 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4491 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4492 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4493 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4494
4495 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4496 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4497 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4498 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4499 }
4500 }
4501
4502 /*
4503 * i_mac_set_resources:
4504 *
4505 * This routine associates properties with the primary MAC client of
4506 * the specified MAC instance.
4507 * - Cache the properties in mac_impl_t
4508 * - Apply the properties to the primary MAC client if exists
4509 */
4510 int
4511 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4512 {
4513 mac_impl_t *mip = (mac_impl_t *)mh;
4514 mac_client_impl_t *mcip;
4515 int err = 0;
4516 uint32_t resmask, newresmask;
4517 mac_resource_props_t *tmrp, *umrp;
4518
4519 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4520
4521 err = mac_validate_props(mip, mrp);
4522 if (err != 0)
4523 return (err);
4524
4525 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP);
4526 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp));
4527 resmask = umrp->mrp_mask;
4528 mac_update_resources(mrp, umrp, B_FALSE);
4529 newresmask = umrp->mrp_mask;
4530
4531 if (resmask == 0 && newresmask != 0) {
4532 /*
4533 * Bandwidth, priority, cpu or pool link properties configured,
4534 * must disable fastpath.
4535 */
4536 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) {
4537 kmem_free(umrp, sizeof (*umrp));
4538 return (err);
4539 }
4540 }
4541
4542 /*
4543 * Since bind_cpu may be modified by mac_client_set_resources()
4544 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
4545 * This allows us to cache only user edits in mip.
4546 */
4547 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP);
4548 bcopy(mrp, tmrp, sizeof (*tmrp));
4549 mcip = mac_primary_client_handle(mip);
4550 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
4551 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp);
4552 } else if ((mrp->mrp_mask & MRP_RX_RINGS ||
4553 mrp->mrp_mask & MRP_TX_RINGS)) {
4554 mac_client_impl_t *vmcip;
4555
4556 /*
4557 * If the primary is not up, we need to check if there
4558 * are any VLANs on this primary. If there are then
4559 * we need to set this property on the VLANs since
4560 * VLANs follow the primary they are based on. Just
4561 * look for the first VLAN and change its properties,
4562 * all the other VLANs should be in the same group.
4563 */
4564 for (vmcip = mip->mi_clients_list; vmcip != NULL;
4565 vmcip = vmcip->mci_client_next) {
4566 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) &&
4567 mac_client_vid((mac_client_handle_t)vmcip) !=
4568 VLAN_ID_NONE) {
4569 break;
4570 }
4571 }
4572 if (vmcip != NULL) {
4573 mac_resource_props_t *omrp;
4574 mac_resource_props_t *vmrp;
4575
4576 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
4577 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp));
4578 /*
4579 * We dont' call mac_update_resources since we
4580 * want to take only the ring properties and
4581 * not all the properties that may have changed.
4582 */
4583 vmrp = MCIP_RESOURCE_PROPS(vmcip);
4584 if (mrp->mrp_mask & MRP_RX_RINGS) {
4585 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4586 vmrp->mrp_mask &= ~MRP_RX_RINGS;
4587 if (vmrp->mrp_mask &
4588 MRP_RXRINGS_UNSPEC) {
4589 vmrp->mrp_mask &=
4590 ~MRP_RXRINGS_UNSPEC;
4591 }
4592 vmrp->mrp_nrxrings = 0;
4593 } else {
4594 vmrp->mrp_mask |= MRP_RX_RINGS;
4595 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
4596 }
4597 }
4598 if (mrp->mrp_mask & MRP_TX_RINGS) {
4599 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4600 vmrp->mrp_mask &= ~MRP_TX_RINGS;
4601 if (vmrp->mrp_mask &
4602 MRP_TXRINGS_UNSPEC) {
4603 vmrp->mrp_mask &=
4604 ~MRP_TXRINGS_UNSPEC;
4605 }
4606 vmrp->mrp_ntxrings = 0;
4607 } else {
4608 vmrp->mrp_mask |= MRP_TX_RINGS;
4609 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
4610 }
4611 }
4612 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4613 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4614
4615 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4616 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4617
4618 if ((err = mac_client_set_rings_prop(vmcip, mrp,
4619 omrp)) != 0) {
4620 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip),
4621 sizeof (*omrp));
4622 } else {
4623 mac_set_prim_vlan_rings(mip, vmrp);
4624 }
4625 kmem_free(omrp, sizeof (*omrp));
4626 }
4627 }
4628
4629 /* Only update the values if mac_client_set_resources succeeded */
4630 if (err == 0) {
4631 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp));
4632 /*
4633 * If bandwidth, priority or cpu link properties cleared,
4634 * renable fastpath.
4635 */
4636 if (resmask != 0 && newresmask == 0)
4637 mac_fastpath_enable((mac_handle_t)mip);
4638 } else if (resmask == 0 && newresmask != 0) {
4639 mac_fastpath_enable((mac_handle_t)mip);
4640 }
4641 kmem_free(tmrp, sizeof (*tmrp));
4642 kmem_free(umrp, sizeof (*umrp));
4643 return (err);
4644 }
4645
4646 int
4647 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4648 {
4649 int err;
4650
4651 i_mac_perim_enter((mac_impl_t *)mh);
4652 err = i_mac_set_resources(mh, mrp);
4653 i_mac_perim_exit((mac_impl_t *)mh);
4654 return (err);
4655 }
4656
4657 /*
4658 * Get the properties cached for the specified MAC instance.
4659 */
4660 void
4661 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4662 {
4663 mac_impl_t *mip = (mac_impl_t *)mh;
4664 mac_client_impl_t *mcip;
4665
4666 mcip = mac_primary_client_handle(mip);
4667 if (mcip != NULL) {
4668 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
4669 return;
4670 }
4671 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
4672 }
4673
4674 /*
4675 * Get the effective properties from the primary client of the
4676 * specified MAC instance.
4677 */
4678 void
4679 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4680 {
4681 mac_impl_t *mip = (mac_impl_t *)mh;
4682 mac_client_impl_t *mcip;
4683
4684 mcip = mac_primary_client_handle(mip);
4685 if (mcip != NULL) {
4686 mac_client_get_effective_resources((mac_client_handle_t)mcip,
4687 mrp);
4688 return;
4689 }
4690 bzero(mrp, sizeof (mac_resource_props_t));
4691 }
4692
4693 int
4694 mac_set_pvid(mac_handle_t mh, uint16_t pvid)
4695 {
4696 mac_impl_t *mip = (mac_impl_t *)mh;
4697 mac_client_impl_t *mcip;
4698 mac_unicast_impl_t *muip;
4699
4700 i_mac_perim_enter(mip);
4701 if (pvid != 0) {
4702 for (mcip = mip->mi_clients_list; mcip != NULL;
4703 mcip = mcip->mci_client_next) {
4704 for (muip = mcip->mci_unicast_list; muip != NULL;
4705 muip = muip->mui_next) {
4706 if (muip->mui_vid == pvid) {
4707 i_mac_perim_exit(mip);
4708 return (EBUSY);
4709 }
4710 }
4711 }
4712 }
4713 mip->mi_pvid = pvid;
4714 i_mac_perim_exit(mip);
4715 return (0);
4716 }
4717
4718 uint16_t
4719 mac_get_pvid(mac_handle_t mh)
4720 {
4721 mac_impl_t *mip = (mac_impl_t *)mh;
4722
4723 return (mip->mi_pvid);
4724 }
4725
4726 uint32_t
4727 mac_get_llimit(mac_handle_t mh)
4728 {
4729 mac_impl_t *mip = (mac_impl_t *)mh;
4730
4731 return (mip->mi_llimit);
4732 }
4733
4734 uint32_t
4735 mac_get_ldecay(mac_handle_t mh)
4736 {
4737 mac_impl_t *mip = (mac_impl_t *)mh;
4738
4739 return (mip->mi_ldecay);
4740 }
4741
4742 /*
4743 * Rename a mac client, its flow, and the kstat.
4744 */
4745 int
4746 mac_rename_primary(mac_handle_t mh, const char *new_name)
4747 {
4748 mac_impl_t *mip = (mac_impl_t *)mh;
4749 mac_client_impl_t *cur_clnt = NULL;
4750 flow_entry_t *fep;
4751
4752 i_mac_perim_enter(mip);
4753
4754 /*
4755 * VNICs: we need to change the sys flow name and
4756 * the associated flow kstat.
4757 */
4758 if (mip->mi_state_flags & MIS_IS_VNIC) {
4759 mac_client_impl_t *mcip = mac_vnic_lower(mip);
4760 ASSERT(new_name != NULL);
4761 mac_rename_flow_names(mcip, new_name);
4762 mac_stat_rename(mcip);
4763 goto done;
4764 }
4765 /*
4766 * This mac may itself be an aggr link, or it may have some client
4767 * which is an aggr port. For both cases, we need to change the
4768 * aggr port's mac client name, its flow name and the associated flow
4769 * kstat.
4770 */
4771 if (mip->mi_state_flags & MIS_IS_AGGR) {
4772 mac_capab_aggr_t aggr_cap;
4773 mac_rename_fn_t rename_fn;
4774 boolean_t ret;
4775
4776 ASSERT(new_name != NULL);
4777 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
4778 (void *)(&aggr_cap));
4779 ASSERT(ret == B_TRUE);
4780 rename_fn = aggr_cap.mca_rename_fn;
4781 rename_fn(new_name, mip->mi_driver);
4782 /*
4783 * The aggr's client name and kstat flow name will be
4784 * updated below, i.e. via mac_rename_flow_names.
4785 */
4786 }
4787
4788 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
4789 cur_clnt = cur_clnt->mci_client_next) {
4790 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
4791 if (new_name != NULL) {
4792 char *str_st = cur_clnt->mci_name;
4793 char *str_del = strchr(str_st, '-');
4794
4795 ASSERT(str_del != NULL);
4796 bzero(str_del + 1, MAXNAMELEN -
4797 (str_del - str_st + 1));
4798 bcopy(new_name, str_del + 1,
4799 strlen(new_name));
4800 }
4801 fep = cur_clnt->mci_flent;
4802 mac_rename_flow(fep, cur_clnt->mci_name);
4803 break;
4804 } else if (new_name != NULL &&
4805 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
4806 mac_rename_flow_names(cur_clnt, new_name);
4807 break;
4808 }
4809 }
4810
4811 /* Recreate kstats associated with aggr pseudo rings */
4812 if (mip->mi_state_flags & MIS_IS_AGGR)
4813 mac_pseudo_ring_stat_rename(mip);
4814
4815 done:
4816 i_mac_perim_exit(mip);
4817 return (0);
4818 }
4819
4820 /*
4821 * Rename the MAC client's flow names
4822 */
4823 static void
4824 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
4825 {
4826 flow_entry_t *flent;
4827 uint16_t vid;
4828 char flowname[MAXFLOWNAMELEN];
4829 mac_impl_t *mip = mcip->mci_mip;
4830
4831 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4832
4833 /*
4834 * Use mi_rw_lock to ensure that threads not in the mac perimeter
4835 * see a self-consistent value for mci_name
4836 */
4837 rw_enter(&mip->mi_rw_lock, RW_WRITER);
4838 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
4839 rw_exit(&mip->mi_rw_lock);
4840
4841 mac_rename_flow(mcip->mci_flent, new_name);
4842
4843 if (mcip->mci_nflents == 1)
4844 return;
4845
4846 /*
4847 * We have to rename all the others too, no stats to destroy for
4848 * these.
4849 */
4850 for (flent = mcip->mci_flent_list; flent != NULL;
4851 flent = flent->fe_client_next) {
4852 if (flent != mcip->mci_flent) {
4853 vid = i_mac_flow_vid(flent);
4854 (void) sprintf(flowname, "%s%u", new_name, vid);
4855 mac_flow_set_name(flent, flowname);
4856 }
4857 }
4858 }
4859
4860
4861 /*
4862 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
4863 * defined for the specified MAC client.
4864 */
4865 static void
4866 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4867 {
4868 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4869 /*
4870 * The promisc Rx data path walks the mci_flent_list. Protect by
4871 * using mi_rw_lock
4872 */
4873 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4874
4875 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4876
4877 /* Add it to the head */
4878 flent->fe_client_next = mcip->mci_flent_list;
4879 mcip->mci_flent_list = flent;
4880 mcip->mci_nflents++;
4881
4882 /*
4883 * Keep track of the number of non-zero VIDs addresses per MAC
4884 * client to avoid figuring it out in the data-path.
4885 */
4886 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4887 mcip->mci_nvids++;
4888
4889 rw_exit(&mcip->mci_rw_lock);
4890 }
4891
4892 /*
4893 * Remove a flow entry from the MAC client's list.
4894 */
4895 static void
4896 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4897 {
4898 flow_entry_t *fe = mcip->mci_flent_list;
4899 flow_entry_t *prev_fe = NULL;
4900
4901 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4902 /*
4903 * The promisc Rx data path walks the mci_flent_list. Protect by
4904 * using mci_rw_lock
4905 */
4906 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4907 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4908
4909 while ((fe != NULL) && (fe != flent)) {
4910 prev_fe = fe;
4911 fe = fe->fe_client_next;
4912 }
4913
4914 ASSERT(fe != NULL);
4915 if (prev_fe == NULL) {
4916 /* Deleting the first node */
4917 mcip->mci_flent_list = fe->fe_client_next;
4918 } else {
4919 prev_fe->fe_client_next = fe->fe_client_next;
4920 }
4921 mcip->mci_nflents--;
4922
4923 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4924 mcip->mci_nvids--;
4925
4926 rw_exit(&mcip->mci_rw_lock);
4927 }
4928
4929 /*
4930 * Check if the given VID belongs to this MAC client.
4931 */
4932 boolean_t
4933 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
4934 {
4935 flow_entry_t *flent;
4936 uint16_t mci_vid;
4937 uint32_t cache = mcip->mci_vidcache;
4938
4939 /*
4940 * In hopes of not having to touch the mci_rw_lock, check to see if
4941 * this vid matches our cached result.
4942 */
4943 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid)
4944 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE);
4945
4946 /* The mci_flent_list is protected by mci_rw_lock */
4947 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4948 for (flent = mcip->mci_flent_list; flent != NULL;
4949 flent = flent->fe_client_next) {
4950 mci_vid = i_mac_flow_vid(flent);
4951 if (vid == mci_vid) {
4952 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE);
4953 rw_exit(&mcip->mci_rw_lock);
4954 return (B_TRUE);
4955 }
4956 }
4957
4958 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE);
4959 rw_exit(&mcip->mci_rw_lock);
4960 return (B_FALSE);
4961 }
4962
4963 /*
4964 * Get the flow entry for the specified <MAC addr, VID> tuple.
4965 */
4966 static flow_entry_t *
4967 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
4968 {
4969 mac_address_t *map = mcip->mci_unicast;
4970 flow_entry_t *flent;
4971 uint16_t vid;
4972 flow_desc_t flow_desc;
4973
4974 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4975
4976 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
4977 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
4978 return (NULL);
4979
4980 for (flent = mcip->mci_flent_list; flent != NULL;
4981 flent = flent->fe_client_next) {
4982 vid = i_mac_flow_vid(flent);
4983 if (vid == muip->mui_vid) {
4984 return (flent);
4985 }
4986 }
4987
4988 return (NULL);
4989 }
4990
4991 /*
4992 * Since mci_flent has the SRSs, when we want to remove it, we replace
4993 * the flow_desc_t in mci_flent with that of an existing flent and then
4994 * remove that flent instead of mci_flent.
4995 */
4996 static flow_entry_t *
4997 mac_client_swap_mciflent(mac_client_impl_t *mcip)
4998 {
4999 flow_entry_t *flent = mcip->mci_flent;
5000 flow_tab_t *ft = flent->fe_flow_tab;
5001 flow_entry_t *flent1;
5002 flow_desc_t fl_desc;
5003 char fl_name[MAXFLOWNAMELEN];
5004 int err;
5005
5006 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5007 ASSERT(mcip->mci_nflents > 1);
5008
5009 /* get the next flent following the primary flent */
5010 flent1 = mcip->mci_flent_list->fe_client_next;
5011 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
5012
5013 /*
5014 * Remove the flent from the flow table before updating the
5015 * flow descriptor as the hash depends on the flow descriptor.
5016 * This also helps incoming packet classification avoid having
5017 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
5018 * flow table is done under the fe_lock so that log or stat functions
5019 * see a self-consistent fe_flow_desc. The name and desc are specific
5020 * to a flow, the rest are shared by all the clients, including
5021 * resource control etc.
5022 */
5023 mac_flow_remove(ft, flent, B_TRUE);
5024 mac_flow_remove(ft, flent1, B_TRUE);
5025
5026 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
5027 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
5028
5029 /* update the primary flow entry */
5030 mutex_enter(&flent->fe_lock);
5031 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
5032 sizeof (flow_desc_t));
5033 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
5034 mutex_exit(&flent->fe_lock);
5035
5036 /* update the flow entry that is to be freed */
5037 mutex_enter(&flent1->fe_lock);
5038 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
5039 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
5040 mutex_exit(&flent1->fe_lock);
5041
5042 /* now reinsert the flow entries in the table */
5043 err = mac_flow_add(ft, flent);
5044 ASSERT(err == 0);
5045
5046 err = mac_flow_add(ft, flent1);
5047 ASSERT(err == 0);
5048
5049 return (flent1);
5050 }
5051
5052 /*
5053 * Return whether there is only one flow entry associated with this
5054 * MAC client.
5055 */
5056 static boolean_t
5057 mac_client_single_rcvr(mac_client_impl_t *mcip)
5058 {
5059 return (mcip->mci_nflents == 1);
5060 }
5061
5062 int
5063 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp)
5064 {
5065 boolean_t reset;
5066 uint32_t rings_needed;
5067 uint32_t rings_avail;
5068 mac_group_type_t gtype;
5069 mac_resource_props_t *mip_mrp;
5070
5071 if (mrp == NULL)
5072 return (0);
5073
5074 if (mrp->mrp_mask & MRP_PRIORITY) {
5075 mac_priority_level_t pri = mrp->mrp_priority;
5076
5077 if (pri < MPL_LOW || pri > MPL_RESET)
5078 return (EINVAL);
5079 }
5080
5081 if (mrp->mrp_mask & MRP_MAXBW) {
5082 uint64_t maxbw = mrp->mrp_maxbw;
5083
5084 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
5085 return (EINVAL);
5086 }
5087 if (mrp->mrp_mask & MRP_CPUS) {
5088 int i, j;
5089 mac_cpu_mode_t fanout;
5090
5091 if (mrp->mrp_ncpus > ncpus)
5092 return (EINVAL);
5093
5094 for (i = 0; i < mrp->mrp_ncpus; i++) {
5095 for (j = 0; j < mrp->mrp_ncpus; j++) {
5096 if (i != j &&
5097 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
5098 return (EINVAL);
5099 }
5100 }
5101 }
5102
5103 for (i = 0; i < mrp->mrp_ncpus; i++) {
5104 cpu_t *cp;
5105 int rv;
5106
5107 mutex_enter(&cpu_lock);
5108 cp = cpu_get(mrp->mrp_cpu[i]);
5109 if (cp != NULL)
5110 rv = cpu_is_online(cp);
5111 else
5112 rv = 0;
5113 mutex_exit(&cpu_lock);
5114 if (rv == 0)
5115 return (EINVAL);
5116 }
5117
5118 fanout = mrp->mrp_fanout_mode;
5119 if (fanout < 0 || fanout > MCM_CPUS)
5120 return (EINVAL);
5121 }
5122
5123 if (mrp->mrp_mask & MRP_PROTECT) {
5124 int err = mac_protect_validate(mrp);
5125 if (err != 0)
5126 return (err);
5127 }
5128
5129 if (!(mrp->mrp_mask & MRP_RX_RINGS) &&
5130 !(mrp->mrp_mask & MRP_TX_RINGS)) {
5131 return (0);
5132 }
5133
5134 /*
5135 * mip will be null when we come from mac_flow_create or
5136 * mac_link_flow_modify. In the latter case it is a user flow,
5137 * for which we don't support rings. In the former we would
5138 * have validated the props beforehand (i_mac_unicast_add ->
5139 * mac_client_set_resources -> validate for the primary and
5140 * vnic_dev_create -> mac_client_set_resources -> validate for
5141 * a vnic.
5142 */
5143 if (mip == NULL)
5144 return (0);
5145
5146 /*
5147 * We don't support setting rings property for a VNIC that is using a
5148 * primary address (VLAN)
5149 */
5150 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
5151 mac_is_vnic_primary((mac_handle_t)mip)) {
5152 return (ENOTSUP);
5153 }
5154
5155 mip_mrp = &mip->mi_resource_props;
5156 /*
5157 * The rings property should be validated against the NICs
5158 * resources
5159 */
5160 if (mip->mi_state_flags & MIS_IS_VNIC)
5161 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip);
5162
5163 reset = mrp->mrp_mask & MRP_RINGS_RESET;
5164 /*
5165 * If groups are not supported, return error.
5166 */
5167 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) ||
5168 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) {
5169 return (EINVAL);
5170 }
5171 /*
5172 * If we are just resetting, there is no validation needed.
5173 */
5174 if (reset)
5175 return (0);
5176
5177 if (mrp->mrp_mask & MRP_RX_RINGS) {
5178 rings_needed = mrp->mrp_nrxrings;
5179 /*
5180 * We just want to check if the number of additional
5181 * rings requested is available.
5182 */
5183 if (mip_mrp->mrp_mask & MRP_RX_RINGS) {
5184 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings)
5185 /* Just check for the additional rings */
5186 rings_needed -= mip_mrp->mrp_nrxrings;
5187 else
5188 /* We are not asking for additional rings */
5189 rings_needed = 0;
5190 }
5191 rings_avail = mip->mi_rxrings_avail;
5192 gtype = mip->mi_rx_group_type;
5193 } else {
5194 rings_needed = mrp->mrp_ntxrings;
5195 /* Similarly for the TX rings */
5196 if (mip_mrp->mrp_mask & MRP_TX_RINGS) {
5197 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings)
5198 /* Just check for the additional rings */
5199 rings_needed -= mip_mrp->mrp_ntxrings;
5200 else
5201 /* We are not asking for additional rings */
5202 rings_needed = 0;
5203 }
5204 rings_avail = mip->mi_txrings_avail;
5205 gtype = mip->mi_tx_group_type;
5206 }
5207
5208 /* Error if the group is dynamic .. */
5209 if (gtype == MAC_GROUP_TYPE_DYNAMIC) {
5210 /*
5211 * .. and rings specified are more than available.
5212 */
5213 if (rings_needed > rings_avail)
5214 return (EINVAL);
5215 } else {
5216 /*
5217 * OR group is static and we have specified some rings.
5218 */
5219 if (rings_needed > 0)
5220 return (EINVAL);
5221 }
5222 return (0);
5223 }
5224
5225 /*
5226 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
5227 * underlying physical link is down. This is to allow MAC clients to
5228 * communicate with other clients.
5229 */
5230 void
5231 mac_virtual_link_update(mac_impl_t *mip)
5232 {
5233 if (mip->mi_linkstate != LINK_STATE_UP)
5234 i_mac_notify(mip, MAC_NOTE_LINK);
5235 }
5236
5237 /*
5238 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
5239 * mac handle in the client.
5240 */
5241 void
5242 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh,
5243 mac_resource_props_t *mrp)
5244 {
5245 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5246 mac_impl_t *mip = (mac_impl_t *)mh;
5247
5248 mcip->mci_upper_mip = mip;
5249 /* If there are any properties, copy it over too */
5250 if (mrp != NULL) {
5251 bcopy(mrp, &mip->mi_resource_props,
5252 sizeof (mac_resource_props_t));
5253 }
5254 }
5255
5256 /*
5257 * Mark the mac as being used exclusively by the single mac client that is
5258 * doing some control operation on this mac. No further opens of this mac
5259 * will be allowed until this client calls mac_unmark_exclusive. The mac
5260 * client calling this function must already be in the mac perimeter
5261 */
5262 int
5263 mac_mark_exclusive(mac_handle_t mh)
5264 {
5265 mac_impl_t *mip = (mac_impl_t *)mh;
5266
5267 ASSERT(MAC_PERIM_HELD(mh));
5268 /*
5269 * Look up its entry in the global hash table.
5270 */
5271 rw_enter(&i_mac_impl_lock, RW_WRITER);
5272 if (mip->mi_state_flags & MIS_DISABLED) {
5273 rw_exit(&i_mac_impl_lock);
5274 return (ENOENT);
5275 }
5276
5277 /*
5278 * A reference to mac is held even if the link is not plumbed.
5279 * In i_dls_link_create() we open the MAC interface and hold the
5280 * reference. There is an additional reference for the mac_open
5281 * done in acquiring the mac perimeter
5282 */
5283 if (mip->mi_ref != 2) {
5284 rw_exit(&i_mac_impl_lock);
5285 return (EBUSY);
5286 }
5287
5288 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5289 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
5290 rw_exit(&i_mac_impl_lock);
5291 return (0);
5292 }
5293
5294 void
5295 mac_unmark_exclusive(mac_handle_t mh)
5296 {
5297 mac_impl_t *mip = (mac_impl_t *)mh;
5298
5299 ASSERT(MAC_PERIM_HELD(mh));
5300
5301 rw_enter(&i_mac_impl_lock, RW_WRITER);
5302 /* 1 for the creation and another for the perimeter */
5303 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5304 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
5305 rw_exit(&i_mac_impl_lock);
5306 }
5307
5308 /*
5309 * Set the MTU for the specified MAC.
5310 */
5311 int
5312 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
5313 {
5314 mac_impl_t *mip = (mac_impl_t *)mh;
5315 uint_t old_mtu;
5316 int rv = 0;
5317
5318 i_mac_perim_enter(mip);
5319
5320 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) {
5321 rv = ENOTSUP;
5322 goto bail;
5323 }
5324
5325 old_mtu = mip->mi_sdu_max;
5326
5327 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) {
5328 rv = EINVAL;
5329 goto bail;
5330 }
5331
5332 rw_enter(&mip->mi_rw_lock, RW_READER);
5333 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) {
5334 rv = EBUSY;
5335 rw_exit(&mip->mi_rw_lock);
5336 goto bail;
5337 }
5338 rw_exit(&mip->mi_rw_lock);
5339
5340 if (old_mtu != new_mtu) {
5341 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
5342 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
5343 if (rv != 0)
5344 goto bail;
5345 rv = mac_maxsdu_update(mh, new_mtu);
5346 ASSERT(rv == 0);
5347 }
5348
5349 bail:
5350 i_mac_perim_exit(mip);
5351
5352 if (rv == 0 && old_mtu_arg != NULL)
5353 *old_mtu_arg = old_mtu;
5354 return (rv);
5355 }
5356
5357 /*
5358 * Return the RX h/w information for the group indexed by grp_num.
5359 */
5360 void
5361 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5362 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5363 char *clnts_name)
5364 {
5365 mac_impl_t *mip = (mac_impl_t *)mh;
5366 mac_grp_client_t *mcip;
5367 uint_t i = 0, index = 0;
5368 mac_ring_t *ring;
5369
5370 /* Revisit when we implement fully dynamic group allocation */
5371 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
5372
5373 rw_enter(&mip->mi_rw_lock, RW_READER);
5374 *grp_num = mip->mi_rx_groups[grp_index].mrg_index;
5375 *type = mip->mi_rx_groups[grp_index].mrg_type;
5376 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
5377 ring = mip->mi_rx_groups[grp_index].mrg_rings;
5378 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count;
5379 index++) {
5380 rings[index] = ring->mr_index;
5381 ring = ring->mr_next;
5382 }
5383 /* Assuming the 1st is the default group */
5384 index = 0;
5385 if (grp_index == 0) {
5386 (void) strlcpy(clnts_name, "<default,mcast>,",
5387 MAXCLIENTNAMELEN);
5388 index += strlen("<default,mcast>,");
5389 }
5390 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
5391 mcip = mcip->mgc_next) {
5392 int name_len = strlen(mcip->mgc_client->mci_name);
5393
5394 /*
5395 * MAXCLIENTNAMELEN is the buffer size reserved for client
5396 * names.
5397 * XXXX Formating the client name string needs to be moved
5398 * to user land when fixing the size of dhi_clnts in
5399 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5400 * dhi_clntsin instead of MAXCLIENTNAMELEN
5401 */
5402 if (index + name_len >= MAXCLIENTNAMELEN) {
5403 index = MAXCLIENTNAMELEN;
5404 break;
5405 }
5406 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5407 name_len);
5408 index += name_len;
5409 clnts_name[index++] = ',';
5410 i++;
5411 }
5412
5413 /* Get rid of the last , */
5414 if (index > 0)
5415 clnts_name[index - 1] = '\0';
5416 *n_clnts = i;
5417 rw_exit(&mip->mi_rw_lock);
5418 }
5419
5420 /*
5421 * Return the TX h/w information for the group indexed by grp_num.
5422 */
5423 void
5424 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5425 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5426 char *clnts_name)
5427 {
5428 mac_impl_t *mip = (mac_impl_t *)mh;
5429 mac_grp_client_t *mcip;
5430 uint_t i = 0, index = 0;
5431 mac_ring_t *ring;
5432
5433 /* Revisit when we implement fully dynamic group allocation */
5434 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count);
5435
5436 rw_enter(&mip->mi_rw_lock, RW_READER);
5437 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ?
5438 mip->mi_tx_groups[grp_index].mrg_index : grp_index;
5439 *type = mip->mi_tx_groups[grp_index].mrg_type;
5440 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count;
5441 ring = mip->mi_tx_groups[grp_index].mrg_rings;
5442 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count;
5443 index++) {
5444 rings[index] = ring->mr_index;
5445 ring = ring->mr_next;
5446 }
5447 index = 0;
5448 /* Default group has an index of -1 */
5449 if (mip->mi_tx_groups[grp_index].mrg_index < 0) {
5450 (void) strlcpy(clnts_name, "<default>,",
5451 MAXCLIENTNAMELEN);
5452 index += strlen("<default>,");
5453 }
5454 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL;
5455 mcip = mcip->mgc_next) {
5456 int name_len = strlen(mcip->mgc_client->mci_name);
5457
5458 /*
5459 * MAXCLIENTNAMELEN is the buffer size reserved for client
5460 * names.
5461 * XXXX Formating the client name string needs to be moved
5462 * to user land when fixing the size of dhi_clnts in
5463 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5464 * dhi_clntsin instead of MAXCLIENTNAMELEN
5465 */
5466 if (index + name_len >= MAXCLIENTNAMELEN) {
5467 index = MAXCLIENTNAMELEN;
5468 break;
5469 }
5470 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5471 name_len);
5472 index += name_len;
5473 clnts_name[index++] = ',';
5474 i++;
5475 }
5476
5477 /* Get rid of the last , */
5478 if (index > 0)
5479 clnts_name[index - 1] = '\0';
5480 *n_clnts = i;
5481 rw_exit(&mip->mi_rw_lock);
5482 }
5483
5484 /*
5485 * Return the group count for RX or TX.
5486 */
5487 uint_t
5488 mac_hwgrp_num(mac_handle_t mh, int type)
5489 {
5490 mac_impl_t *mip = (mac_impl_t *)mh;
5491
5492 /*
5493 * Return the Rx and Tx group count; for the Tx we need to
5494 * include the default too.
5495 */
5496 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count :
5497 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0);
5498 }
5499
5500 /*
5501 * The total number of free TX rings for this MAC.
5502 */
5503 uint_t
5504 mac_txavail_get(mac_handle_t mh)
5505 {
5506 mac_impl_t *mip = (mac_impl_t *)mh;
5507
5508 return (mip->mi_txrings_avail);
5509 }
5510
5511 /*
5512 * The total number of free RX rings for this MAC.
5513 */
5514 uint_t
5515 mac_rxavail_get(mac_handle_t mh)
5516 {
5517 mac_impl_t *mip = (mac_impl_t *)mh;
5518
5519 return (mip->mi_rxrings_avail);
5520 }
5521
5522 /*
5523 * The total number of reserved RX rings on this MAC.
5524 */
5525 uint_t
5526 mac_rxrsvd_get(mac_handle_t mh)
5527 {
5528 mac_impl_t *mip = (mac_impl_t *)mh;
5529
5530 return (mip->mi_rxrings_rsvd);
5531 }
5532
5533 /*
5534 * The total number of reserved TX rings on this MAC.
5535 */
5536 uint_t
5537 mac_txrsvd_get(mac_handle_t mh)
5538 {
5539 mac_impl_t *mip = (mac_impl_t *)mh;
5540
5541 return (mip->mi_txrings_rsvd);
5542 }
5543
5544 /*
5545 * Total number of free RX groups on this MAC.
5546 */
5547 uint_t
5548 mac_rxhwlnksavail_get(mac_handle_t mh)
5549 {
5550 mac_impl_t *mip = (mac_impl_t *)mh;
5551
5552 return (mip->mi_rxhwclnt_avail);
5553 }
5554
5555 /*
5556 * Total number of RX groups reserved on this MAC.
5557 */
5558 uint_t
5559 mac_rxhwlnksrsvd_get(mac_handle_t mh)
5560 {
5561 mac_impl_t *mip = (mac_impl_t *)mh;
5562
5563 return (mip->mi_rxhwclnt_used);
5564 }
5565
5566 /*
5567 * Total number of free TX groups on this MAC.
5568 */
5569 uint_t
5570 mac_txhwlnksavail_get(mac_handle_t mh)
5571 {
5572 mac_impl_t *mip = (mac_impl_t *)mh;
5573
5574 return (mip->mi_txhwclnt_avail);
5575 }
5576
5577 /*
5578 * Total number of TX groups reserved on this MAC.
5579 */
5580 uint_t
5581 mac_txhwlnksrsvd_get(mac_handle_t mh)
5582 {
5583 mac_impl_t *mip = (mac_impl_t *)mh;
5584
5585 return (mip->mi_txhwclnt_used);
5586 }
5587
5588 /*
5589 * Initialize the rings property for a mac client. A non-0 value for
5590 * rxring or txring specifies the number of rings required, a value
5591 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need
5592 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE
5593 * means the system can decide whether it can give any rings or not.
5594 */
5595 void
5596 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings)
5597 {
5598 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5599 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
5600
5601 if (rxrings != MAC_RXRINGS_DONTCARE) {
5602 mrp->mrp_mask |= MRP_RX_RINGS;
5603 mrp->mrp_nrxrings = rxrings;
5604 }
5605
5606 if (txrings != MAC_TXRINGS_DONTCARE) {
5607 mrp->mrp_mask |= MRP_TX_RINGS;
5608 mrp->mrp_ntxrings = txrings;
5609 }
5610 }
5611
5612 boolean_t
5613 mac_get_promisc_filtered(mac_client_handle_t mch)
5614 {
5615 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5616
5617 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED);
5618 }
5619
5620 void
5621 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable)
5622 {
5623 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5624
5625 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5626 if (enable)
5627 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED;
5628 else
5629 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED;
5630 }