1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/conf.h> 30 #include <sys/id_space.h> 31 #include <sys/esunddi.h> 32 #include <sys/stat.h> 33 #include <sys/mkdev.h> 34 #include <sys/stream.h> 35 #include <sys/strsubr.h> 36 #include <sys/dlpi.h> 37 #include <sys/modhash.h> 38 #include <sys/mac.h> 39 #include <sys/mac_provider.h> 40 #include <sys/mac_impl.h> 41 #include <sys/mac_client_impl.h> 42 #include <sys/mac_client_priv.h> 43 #include <sys/mac_soft_ring.h> 44 #include <sys/mac_stat.h> 45 #include <sys/dld.h> 46 #include <sys/modctl.h> 47 #include <sys/fs/dv_node.h> 48 #include <sys/thread.h> 49 #include <sys/proc.h> 50 #include <sys/callb.h> 51 #include <sys/cpuvar.h> 52 #include <sys/atomic.h> 53 #include <sys/sdt.h> 54 #include <sys/mac_flow.h> 55 #include <sys/ddi_intr_impl.h> 56 #include <sys/disp.h> 57 #include <sys/sdt.h> 58 #include <sys/pattr.h> 59 #include <sys/strsun.h> 60 #include <sys/vlan.h> 61 62 /* 63 * MAC Provider Interface. 64 * 65 * Interface for GLDv3 compatible NIC drivers. 66 */ 67 68 static void i_mac_notify_thread(void *); 69 70 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 71 72 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 73 mac_fanout_recompute, /* MAC_NOTE_LINK */ 74 NULL, /* MAC_NOTE_UNICST */ 75 NULL, /* MAC_NOTE_TX */ 76 NULL, /* MAC_NOTE_DEVPROMISC */ 77 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 78 NULL, /* MAC_NOTE_SDU_SIZE */ 79 NULL, /* MAC_NOTE_MARGIN */ 80 NULL, /* MAC_NOTE_CAPAB_CHG */ 81 NULL /* MAC_NOTE_LOWLINK */ 82 }; 83 84 /* 85 * Driver support functions. 86 */ 87 88 /* REGISTRATION */ 89 90 mac_register_t * 91 mac_alloc(uint_t mac_version) 92 { 93 mac_register_t *mregp; 94 95 /* 96 * Make sure there isn't a version mismatch between the driver and 97 * the framework. In the future, if multiple versions are 98 * supported, this check could become more sophisticated. 99 */ 100 if (mac_version != MAC_VERSION) 101 return (NULL); 102 103 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 104 mregp->m_version = mac_version; 105 return (mregp); 106 } 107 108 void 109 mac_free(mac_register_t *mregp) 110 { 111 kmem_free(mregp, sizeof (mac_register_t)); 112 } 113 114 /* 115 * mac_register() is how drivers register new MACs with the GLDv3 116 * framework. The mregp argument is allocated by drivers using the 117 * mac_alloc() function, and can be freed using mac_free() immediately upon 118 * return from mac_register(). Upon success (0 return value), the mhp 119 * opaque pointer becomes the driver's handle to its MAC interface, and is 120 * the argument to all other mac module entry points. 121 */ 122 /* ARGSUSED */ 123 int 124 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 125 { 126 mac_impl_t *mip; 127 mactype_t *mtype; 128 int err = EINVAL; 129 struct devnames *dnp = NULL; 130 uint_t instance; 131 boolean_t style1_created = B_FALSE; 132 boolean_t style2_created = B_FALSE; 133 char *driver; 134 minor_t minor = 0; 135 136 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 137 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 138 return (EINVAL); 139 140 /* Find the required MAC-Type plugin. */ 141 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 142 return (EINVAL); 143 144 /* Create a mac_impl_t to represent this MAC. */ 145 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 146 147 /* 148 * The mac is not ready for open yet. 149 */ 150 mip->mi_state_flags |= MIS_DISABLED; 151 152 /* 153 * When a mac is registered, the m_instance field can be set to: 154 * 155 * 0: Get the mac's instance number from m_dip. 156 * This is usually used for physical device dips. 157 * 158 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 159 * For example, when an aggregation is created with the key option, 160 * "key" will be used as the instance number. 161 * 162 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 163 * This is often used when a MAC of a virtual link is registered 164 * (e.g., aggregation when "key" is not specified, or vnic). 165 * 166 * Note that the instance number is used to derive the mi_minor field 167 * of mac_impl_t, which will then be used to derive the name of kstats 168 * and the devfs nodes. The first 2 cases are needed to preserve 169 * backward compatibility. 170 */ 171 switch (mregp->m_instance) { 172 case 0: 173 instance = ddi_get_instance(mregp->m_dip); 174 break; 175 case ((uint_t)-1): 176 minor = mac_minor_hold(B_TRUE); 177 if (minor == 0) { 178 err = ENOSPC; 179 goto fail; 180 } 181 instance = minor - 1; 182 break; 183 default: 184 instance = mregp->m_instance; 185 if (instance >= MAC_MAX_MINOR) { 186 err = EINVAL; 187 goto fail; 188 } 189 break; 190 } 191 192 mip->mi_minor = (minor_t)(instance + 1); 193 mip->mi_dip = mregp->m_dip; 194 mip->mi_clients_list = NULL; 195 mip->mi_nclients = 0; 196 197 /* Set the default IEEE Port VLAN Identifier */ 198 mip->mi_pvid = 1; 199 200 /* Default bridge link learning protection values */ 201 mip->mi_llimit = 1000; 202 mip->mi_ldecay = 200; 203 204 driver = (char *)ddi_driver_name(mip->mi_dip); 205 206 /* Construct the MAC name as <drvname><instance> */ 207 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 208 driver, instance); 209 210 mip->mi_driver = mregp->m_driver; 211 212 mip->mi_type = mtype; 213 mip->mi_margin = mregp->m_margin; 214 mip->mi_info.mi_media = mtype->mt_type; 215 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 216 if (mregp->m_max_sdu <= mregp->m_min_sdu) 217 goto fail; 218 if (mregp->m_multicast_sdu == 0) 219 mregp->m_multicast_sdu = mregp->m_max_sdu; 220 if (mregp->m_multicast_sdu < mregp->m_min_sdu || 221 mregp->m_multicast_sdu > mregp->m_max_sdu) 222 goto fail; 223 mip->mi_sdu_min = mregp->m_min_sdu; 224 mip->mi_sdu_max = mregp->m_max_sdu; 225 mip->mi_sdu_multicast = mregp->m_multicast_sdu; 226 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 227 /* 228 * If the media supports a broadcast address, cache a pointer to it 229 * in the mac_info_t so that upper layers can use it. 230 */ 231 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 232 233 mip->mi_v12n_level = mregp->m_v12n; 234 235 /* 236 * Copy the unicast source address into the mac_info_t, but only if 237 * the MAC-Type defines a non-zero address length. We need to 238 * handle MAC-Types that have an address length of 0 239 * (point-to-point protocol MACs for example). 240 */ 241 if (mip->mi_type->mt_addr_length > 0) { 242 if (mregp->m_src_addr == NULL) 243 goto fail; 244 mip->mi_info.mi_unicst_addr = 245 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 246 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 247 mip->mi_type->mt_addr_length); 248 249 /* 250 * Copy the fixed 'factory' MAC address from the immutable 251 * info. This is taken to be the MAC address currently in 252 * use. 253 */ 254 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 255 mip->mi_type->mt_addr_length); 256 257 /* 258 * At this point, we should set up the classification 259 * rules etc but we delay it till mac_open() so that 260 * the resource discovery has taken place and we 261 * know someone wants to use the device. Otherwise 262 * memory gets allocated for Rx ring structures even 263 * during probe. 264 */ 265 266 /* Copy the destination address if one is provided. */ 267 if (mregp->m_dst_addr != NULL) { 268 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 269 mip->mi_type->mt_addr_length); 270 mip->mi_dstaddr_set = B_TRUE; 271 } 272 } else if (mregp->m_src_addr != NULL) { 273 goto fail; 274 } 275 276 /* 277 * The format of the m_pdata is specific to the plugin. It is 278 * passed in as an argument to all of the plugin callbacks. The 279 * driver can update this information by calling 280 * mac_pdata_update(). 281 */ 282 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 283 /* 284 * Verify if the supplied plugin data is valid. Note that 285 * even if the caller passed in a NULL pointer as plugin data, 286 * we still need to verify if that's valid as the plugin may 287 * require plugin data to function. 288 */ 289 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 290 mregp->m_pdata_size)) { 291 goto fail; 292 } 293 if (mregp->m_pdata != NULL) { 294 mip->mi_pdata = 295 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 296 bcopy(mregp->m_pdata, mip->mi_pdata, 297 mregp->m_pdata_size); 298 mip->mi_pdata_size = mregp->m_pdata_size; 299 } 300 } else if (mregp->m_pdata != NULL) { 301 /* 302 * The caller supplied non-NULL plugin data, but the plugin 303 * does not recognize plugin data. 304 */ 305 err = EINVAL; 306 goto fail; 307 } 308 309 /* 310 * Register the private properties. 311 */ 312 mac_register_priv_prop(mip, mregp->m_priv_props); 313 314 /* 315 * Stash the driver callbacks into the mac_impl_t, but first sanity 316 * check to make sure all mandatory callbacks are set. 317 */ 318 if (mregp->m_callbacks->mc_getstat == NULL || 319 mregp->m_callbacks->mc_start == NULL || 320 mregp->m_callbacks->mc_stop == NULL || 321 mregp->m_callbacks->mc_setpromisc == NULL || 322 mregp->m_callbacks->mc_multicst == NULL) { 323 goto fail; 324 } 325 mip->mi_callbacks = mregp->m_callbacks; 326 327 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 328 &mip->mi_capab_legacy)) { 329 mip->mi_state_flags |= MIS_LEGACY; 330 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 331 } else { 332 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 333 mip->mi_minor); 334 } 335 336 /* 337 * Allocate a notification thread. thread_create blocks for memory 338 * if needed, it never fails. 339 */ 340 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 341 mip, 0, &p0, TS_RUN, minclsyspri); 342 343 /* 344 * Initialize the capabilities 345 */ 346 347 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 348 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 349 350 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 351 mip->mi_state_flags |= MIS_IS_VNIC; 352 353 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 354 mip->mi_state_flags |= MIS_IS_AGGR; 355 356 mac_addr_factory_init(mip); 357 358 mac_transceiver_init(mip); 359 360 mac_led_init(mip); 361 362 /* 363 * Enforce the virtrualization level registered. 364 */ 365 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 366 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 367 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 368 goto fail; 369 370 /* 371 * The driver needs to register at least rx rings for this 372 * virtualization level. 373 */ 374 if (mip->mi_rx_groups == NULL) 375 goto fail; 376 } 377 378 /* 379 * The driver must set mc_unicst entry point to NULL when it advertises 380 * CAP_RINGS for rx groups. 381 */ 382 if (mip->mi_rx_groups != NULL) { 383 if (mregp->m_callbacks->mc_unicst != NULL) 384 goto fail; 385 } else { 386 if (mregp->m_callbacks->mc_unicst == NULL) 387 goto fail; 388 } 389 390 /* 391 * Initialize MAC addresses. Must be called after mac_init_rings(). 392 */ 393 mac_init_macaddr(mip); 394 395 mip->mi_share_capab.ms_snum = 0; 396 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 397 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 398 &mip->mi_share_capab); 399 } 400 401 /* 402 * Initialize the kstats for this device. 403 */ 404 mac_driver_stat_create(mip); 405 406 /* Zero out any properties. */ 407 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 408 409 if (mip->mi_minor <= MAC_MAX_MINOR) { 410 /* Create a style-2 DLPI device */ 411 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 412 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 413 goto fail; 414 style2_created = B_TRUE; 415 416 /* Create a style-1 DLPI device */ 417 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 418 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 419 goto fail; 420 style1_created = B_TRUE; 421 } 422 423 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 424 425 rw_enter(&i_mac_impl_lock, RW_WRITER); 426 if (mod_hash_insert(i_mac_impl_hash, 427 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 428 rw_exit(&i_mac_impl_lock); 429 err = EEXIST; 430 goto fail; 431 } 432 433 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 434 (mac_impl_t *), mip); 435 436 /* 437 * Mark the MAC to be ready for open. 438 */ 439 mip->mi_state_flags &= ~MIS_DISABLED; 440 rw_exit(&i_mac_impl_lock); 441 442 atomic_inc_32(&i_mac_impl_count); 443 444 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 445 *mhp = (mac_handle_t)mip; 446 return (0); 447 448 fail: 449 if (style1_created) 450 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 451 452 if (style2_created) 453 ddi_remove_minor_node(mip->mi_dip, driver); 454 455 mac_addr_factory_fini(mip); 456 457 /* Clean up registered MAC addresses */ 458 mac_fini_macaddr(mip); 459 460 /* Clean up registered rings */ 461 mac_free_rings(mip, MAC_RING_TYPE_RX); 462 mac_free_rings(mip, MAC_RING_TYPE_TX); 463 464 /* Clean up notification thread */ 465 if (mip->mi_notify_thread != NULL) 466 i_mac_notify_exit(mip); 467 468 if (mip->mi_info.mi_unicst_addr != NULL) { 469 kmem_free(mip->mi_info.mi_unicst_addr, 470 mip->mi_type->mt_addr_length); 471 mip->mi_info.mi_unicst_addr = NULL; 472 } 473 474 mac_driver_stat_delete(mip); 475 476 if (mip->mi_type != NULL) { 477 atomic_dec_32(&mip->mi_type->mt_ref); 478 mip->mi_type = NULL; 479 } 480 481 if (mip->mi_pdata != NULL) { 482 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 483 mip->mi_pdata = NULL; 484 mip->mi_pdata_size = 0; 485 } 486 487 if (minor != 0) { 488 ASSERT(minor > MAC_MAX_MINOR); 489 mac_minor_rele(minor); 490 } 491 492 mip->mi_state_flags = 0; 493 mac_unregister_priv_prop(mip); 494 495 /* 496 * Clear the state before destroying the mac_impl_t 497 */ 498 mip->mi_state_flags = 0; 499 500 kmem_cache_free(i_mac_impl_cachep, mip); 501 return (err); 502 } 503 504 /* 505 * Unregister from the GLDv3 framework 506 */ 507 int 508 mac_unregister(mac_handle_t mh) 509 { 510 int err; 511 mac_impl_t *mip = (mac_impl_t *)mh; 512 mod_hash_val_t val; 513 mac_margin_req_t *mmr, *nextmmr; 514 515 /* Fail the unregister if there are any open references to this mac. */ 516 if ((err = mac_disable_nowait(mh)) != 0) 517 return (err); 518 519 /* 520 * Clean up notification thread and wait for it to exit. 521 */ 522 i_mac_notify_exit(mip); 523 524 /* 525 * Prior to acquiring the MAC perimeter, remove the MAC instance from 526 * the internal hash table. Such removal means table-walkers that 527 * acquire the perimeter will not do so on behalf of what we are 528 * unregistering, which prevents a deadlock. 529 */ 530 rw_enter(&i_mac_impl_lock, RW_WRITER); 531 (void) mod_hash_remove(i_mac_impl_hash, 532 (mod_hash_key_t)mip->mi_name, &val); 533 rw_exit(&i_mac_impl_lock); 534 ASSERT(mip == (mac_impl_t *)val); 535 536 i_mac_perim_enter(mip); 537 538 /* 539 * There is still resource properties configured over this mac. 540 */ 541 if (mip->mi_resource_props.mrp_mask != 0) 542 mac_fastpath_enable((mac_handle_t)mip); 543 544 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 545 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 546 ddi_remove_minor_node(mip->mi_dip, 547 (char *)ddi_driver_name(mip->mi_dip)); 548 } 549 550 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 551 MIS_EXCLUSIVE)); 552 553 mac_driver_stat_delete(mip); 554 555 ASSERT(i_mac_impl_count > 0); 556 atomic_dec_32(&i_mac_impl_count); 557 558 if (mip->mi_pdata != NULL) 559 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 560 mip->mi_pdata = NULL; 561 mip->mi_pdata_size = 0; 562 563 /* 564 * Free the list of margin request. 565 */ 566 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 567 nextmmr = mmr->mmr_nextp; 568 kmem_free(mmr, sizeof (mac_margin_req_t)); 569 } 570 mip->mi_mmrp = NULL; 571 572 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 573 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 574 mip->mi_info.mi_unicst_addr = NULL; 575 576 atomic_dec_32(&mip->mi_type->mt_ref); 577 mip->mi_type = NULL; 578 579 /* 580 * Free the primary MAC address. 581 */ 582 mac_fini_macaddr(mip); 583 584 /* 585 * free all rings 586 */ 587 mac_free_rings(mip, MAC_RING_TYPE_RX); 588 mac_free_rings(mip, MAC_RING_TYPE_TX); 589 590 mac_addr_factory_fini(mip); 591 592 bzero(mip->mi_addr, MAXMACADDRLEN); 593 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 594 mip->mi_dstaddr_set = B_FALSE; 595 596 /* and the flows */ 597 mac_flow_tab_destroy(mip->mi_flow_tab); 598 mip->mi_flow_tab = NULL; 599 600 if (mip->mi_minor > MAC_MAX_MINOR) 601 mac_minor_rele(mip->mi_minor); 602 603 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 604 605 /* 606 * Reset the perim related fields to default values before 607 * kmem_cache_free 608 */ 609 i_mac_perim_exit(mip); 610 mip->mi_state_flags = 0; 611 612 mac_unregister_priv_prop(mip); 613 614 ASSERT(mip->mi_bridge_link == NULL); 615 kmem_cache_free(i_mac_impl_cachep, mip); 616 617 return (0); 618 } 619 620 /* DATA RECEPTION */ 621 622 /* 623 * This function is invoked for packets received by the MAC driver in 624 * interrupt context. The ring generation number provided by the driver 625 * is matched with the ring generation number held in MAC. If they do not 626 * match, received packets are considered stale packets coming from an older 627 * assignment of the ring. Drop them. 628 */ 629 void 630 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 631 uint64_t mr_gen_num) 632 { 633 mac_ring_t *mr = (mac_ring_t *)mrh; 634 635 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 636 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 637 mr->mr_gen_num, uint64_t, mr_gen_num); 638 freemsgchain(mp_chain); 639 return; 640 } 641 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 642 } 643 644 /* 645 * This function is invoked for each packet received by the underlying driver. 646 */ 647 void 648 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 649 { 650 mac_impl_t *mip = (mac_impl_t *)mh; 651 652 /* 653 * Check if the link is part of a bridge. If not, then we don't need 654 * to take the lock to remain consistent. Make this common case 655 * lock-free and tail-call optimized. 656 */ 657 if (mip->mi_bridge_link == NULL) { 658 mac_rx_common(mh, mrh, mp_chain); 659 } else { 660 /* 661 * Once we take a reference on the bridge link, the bridge 662 * module itself can't unload, so the callback pointers are 663 * stable. 664 */ 665 mutex_enter(&mip->mi_bridge_lock); 666 if ((mh = mip->mi_bridge_link) != NULL) 667 mac_bridge_ref_cb(mh, B_TRUE); 668 mutex_exit(&mip->mi_bridge_lock); 669 if (mh == NULL) { 670 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 671 } else { 672 mac_bridge_rx_cb(mh, mrh, mp_chain); 673 mac_bridge_ref_cb(mh, B_FALSE); 674 } 675 } 676 } 677 678 /* 679 * Special case function: this allows snooping of packets transmitted and 680 * received by TRILL. By design, they go directly into the TRILL module. 681 */ 682 void 683 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 684 { 685 mac_impl_t *mip = (mac_impl_t *)mh; 686 687 if (mip->mi_promisc_list != NULL) 688 mac_promisc_dispatch(mip, mp, NULL); 689 } 690 691 /* 692 * This is the upward reentry point for packets arriving from the bridging 693 * module and from mac_rx for links not part of a bridge. 694 */ 695 void 696 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 697 { 698 mac_impl_t *mip = (mac_impl_t *)mh; 699 mac_ring_t *mr = (mac_ring_t *)mrh; 700 mac_soft_ring_set_t *mac_srs; 701 mblk_t *bp = mp_chain; 702 boolean_t hw_classified = B_FALSE; 703 704 /* 705 * If there are any promiscuous mode callbacks defined for 706 * this MAC, pass them a copy if appropriate. 707 */ 708 if (mip->mi_promisc_list != NULL) 709 mac_promisc_dispatch(mip, mp_chain, NULL); 710 711 if (mr != NULL) { 712 /* 713 * If the SRS teardown has started, just return. The 'mr' 714 * continues to be valid until the driver unregisters the mac. 715 * Hardware classified packets will not make their way up 716 * beyond this point once the teardown has started. The driver 717 * is never passed a pointer to a flow entry or SRS or any 718 * structure that can be freed much before mac_unregister. 719 */ 720 mutex_enter(&mr->mr_lock); 721 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 722 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 723 mutex_exit(&mr->mr_lock); 724 freemsgchain(mp_chain); 725 return; 726 } 727 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 728 hw_classified = B_TRUE; 729 MR_REFHOLD_LOCKED(mr); 730 } 731 mutex_exit(&mr->mr_lock); 732 733 /* 734 * We check if an SRS is controlling this ring. 735 * If so, we can directly call the srs_lower_proc 736 * routine otherwise we need to go through mac_rx_classify 737 * to reach the right place. 738 */ 739 if (hw_classified) { 740 mac_srs = mr->mr_srs; 741 /* 742 * This is supposed to be the fast path. 743 * All packets received though here were steered by 744 * the hardware classifier, and share the same 745 * MAC header info. 746 */ 747 mac_srs->srs_rx.sr_lower_proc(mh, 748 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 749 MR_REFRELE(mr); 750 return; 751 } 752 /* We'll fall through to software classification */ 753 } else { 754 flow_entry_t *flent; 755 int err; 756 757 rw_enter(&mip->mi_rw_lock, RW_READER); 758 if (mip->mi_single_active_client != NULL) { 759 flent = mip->mi_single_active_client->mci_flent_list; 760 FLOW_TRY_REFHOLD(flent, err); 761 rw_exit(&mip->mi_rw_lock); 762 if (err == 0) { 763 (flent->fe_cb_fn)(flent->fe_cb_arg1, 764 flent->fe_cb_arg2, mp_chain, B_FALSE); 765 FLOW_REFRELE(flent); 766 return; 767 } 768 } else { 769 rw_exit(&mip->mi_rw_lock); 770 } 771 } 772 773 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 774 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 775 return; 776 } 777 778 freemsgchain(bp); 779 } 780 781 /* DATA TRANSMISSION */ 782 783 /* 784 * A driver's notification to resume transmission, in case of a provider 785 * without TX rings. 786 */ 787 void 788 mac_tx_update(mac_handle_t mh) 789 { 790 mac_tx_ring_update(mh, NULL); 791 } 792 793 /* 794 * A driver's notification to resume transmission on the specified TX ring. 795 */ 796 void 797 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 798 { 799 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 800 } 801 802 /* LINK STATE */ 803 /* 804 * Notify the MAC layer about a link state change 805 */ 806 void 807 mac_link_update(mac_handle_t mh, link_state_t link) 808 { 809 mac_impl_t *mip = (mac_impl_t *)mh; 810 811 /* 812 * Save the link state. 813 */ 814 mip->mi_lowlinkstate = link; 815 816 /* 817 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 818 * thread to deliver both lower and upper notifications. 819 */ 820 i_mac_notify(mip, MAC_NOTE_LOWLINK); 821 } 822 823 /* 824 * Notify the MAC layer about a link state change due to bridging. 825 */ 826 void 827 mac_link_redo(mac_handle_t mh, link_state_t link) 828 { 829 mac_impl_t *mip = (mac_impl_t *)mh; 830 831 /* 832 * Save the link state. 833 */ 834 mip->mi_linkstate = link; 835 836 /* 837 * Send a MAC_NOTE_LINK notification. Only upper notifications are 838 * made. 839 */ 840 i_mac_notify(mip, MAC_NOTE_LINK); 841 } 842 843 /* MINOR NODE HANDLING */ 844 845 /* 846 * Given a dev_t, return the instance number (PPA) associated with it. 847 * Drivers can use this in their getinfo(9e) implementation to lookup 848 * the instance number (i.e. PPA) of the device, to use as an index to 849 * their own array of soft state structures. 850 * 851 * Returns -1 on error. 852 */ 853 int 854 mac_devt_to_instance(dev_t devt) 855 { 856 return (dld_devt_to_instance(devt)); 857 } 858 859 /* 860 * This function returns the first minor number that is available for 861 * driver private use. All minor numbers smaller than this are 862 * reserved for GLDv3 use. 863 */ 864 minor_t 865 mac_private_minor(void) 866 { 867 return (MAC_PRIVATE_MINOR); 868 } 869 870 /* OTHER CONTROL INFORMATION */ 871 872 /* 873 * A driver notified us that its primary MAC address has changed. 874 */ 875 void 876 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 877 { 878 mac_impl_t *mip = (mac_impl_t *)mh; 879 880 if (mip->mi_type->mt_addr_length == 0) 881 return; 882 883 i_mac_perim_enter(mip); 884 885 /* 886 * If address changes, freshen the MAC address value and update 887 * all MAC clients that share this MAC address. 888 */ 889 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 890 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 891 (uint8_t *)addr); 892 } 893 894 i_mac_perim_exit(mip); 895 896 /* 897 * Send a MAC_NOTE_UNICST notification. 898 */ 899 i_mac_notify(mip, MAC_NOTE_UNICST); 900 } 901 902 void 903 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 904 { 905 mac_impl_t *mip = (mac_impl_t *)mh; 906 907 if (mip->mi_type->mt_addr_length == 0) 908 return; 909 910 i_mac_perim_enter(mip); 911 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 912 i_mac_perim_exit(mip); 913 i_mac_notify(mip, MAC_NOTE_DEST); 914 } 915 916 /* 917 * MAC plugin information changed. 918 */ 919 int 920 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 921 { 922 mac_impl_t *mip = (mac_impl_t *)mh; 923 924 /* 925 * Verify that the plugin supports MAC plugin data and that the 926 * supplied data is valid. 927 */ 928 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 929 return (EINVAL); 930 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 931 return (EINVAL); 932 933 if (mip->mi_pdata != NULL) 934 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 935 936 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 937 bcopy(mac_pdata, mip->mi_pdata, dsize); 938 mip->mi_pdata_size = dsize; 939 940 /* 941 * Since the MAC plugin data is used to construct MAC headers that 942 * were cached in fast-path headers, we need to flush fast-path 943 * information for links associated with this mac. 944 */ 945 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 946 return (0); 947 } 948 949 /* 950 * Invoked by driver as well as the framework to notify its capability change. 951 */ 952 void 953 mac_capab_update(mac_handle_t mh) 954 { 955 /* Send MAC_NOTE_CAPAB_CHG notification */ 956 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 957 } 958 959 /* 960 * Used by normal drivers to update the max sdu size. 961 * We need to handle the case of a smaller mi_sdu_multicast 962 * since this is called by mac_set_mtu() even for drivers that 963 * have differing unicast and multicast mtu and we don't want to 964 * increase the multicast mtu by accident in that case. 965 */ 966 int 967 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 968 { 969 mac_impl_t *mip = (mac_impl_t *)mh; 970 971 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 972 return (EINVAL); 973 mip->mi_sdu_max = sdu_max; 974 if (mip->mi_sdu_multicast > mip->mi_sdu_max) 975 mip->mi_sdu_multicast = mip->mi_sdu_max; 976 977 /* Send a MAC_NOTE_SDU_SIZE notification. */ 978 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 979 return (0); 980 } 981 982 /* 983 * Version of the above function that is used by drivers that have a different 984 * max sdu size for multicast/broadcast vs. unicast. 985 */ 986 int 987 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast) 988 { 989 mac_impl_t *mip = (mac_impl_t *)mh; 990 991 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 992 return (EINVAL); 993 if (sdu_multicast == 0) 994 sdu_multicast = sdu_max; 995 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min) 996 return (EINVAL); 997 mip->mi_sdu_max = sdu_max; 998 mip->mi_sdu_multicast = sdu_multicast; 999 1000 /* Send a MAC_NOTE_SDU_SIZE notification. */ 1001 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 1002 return (0); 1003 } 1004 1005 static void 1006 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 1007 { 1008 mac_client_impl_t *mcip; 1009 flow_entry_t *flent; 1010 mac_soft_ring_set_t *mac_rx_srs; 1011 mac_cpus_t *srs_cpu; 1012 int i; 1013 1014 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 1015 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 1016 /* interrupt can be re-targeted */ 1017 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 1018 flent = mcip->mci_flent; 1019 if (ring->mr_type == MAC_RING_TYPE_RX) { 1020 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1021 mac_rx_srs = flent->fe_rx_srs[i]; 1022 if (mac_rx_srs->srs_ring != ring) 1023 continue; 1024 srs_cpu = &mac_rx_srs->srs_cpu; 1025 mutex_enter(&cpu_lock); 1026 mac_rx_srs_retarget_intr(mac_rx_srs, 1027 srs_cpu->mc_rx_intr_cpu); 1028 mutex_exit(&cpu_lock); 1029 break; 1030 } 1031 } else { 1032 if (flent->fe_tx_srs != NULL) { 1033 mutex_enter(&cpu_lock); 1034 mac_tx_srs_retarget_intr( 1035 flent->fe_tx_srs); 1036 mutex_exit(&cpu_lock); 1037 } 1038 } 1039 } 1040 } 1041 1042 /* 1043 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 1044 * their clients. There is a 1-1 mapping pseudo ring and the hardware 1045 * ring. ddi interrupt handles are exported from the hardware ring to 1046 * the pseudo ring. Thus when the interrupt handle changes, clients of 1047 * aggr that are using the handle need to use the new handle and 1048 * re-target their interrupts. 1049 */ 1050 static void 1051 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 1052 ddi_intr_handle_t ddh) 1053 { 1054 mac_ring_t *pring; 1055 mac_group_t *pgroup; 1056 mac_impl_t *pmip; 1057 char macname[MAXNAMELEN]; 1058 mac_perim_handle_t p_mph; 1059 uint64_t saved_gen_num; 1060 1061 again: 1062 pring = (mac_ring_t *)ring->mr_prh; 1063 pgroup = (mac_group_t *)pring->mr_gh; 1064 pmip = (mac_impl_t *)pgroup->mrg_mh; 1065 saved_gen_num = ring->mr_gen_num; 1066 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1067 /* 1068 * We need to enter aggr's perimeter. The locking hierarchy 1069 * dictates that aggr's perimeter should be entered first 1070 * and then the port's perimeter. So drop the port's 1071 * perimeter, enter aggr's and then re-enter port's 1072 * perimeter. 1073 */ 1074 i_mac_perim_exit(mip); 1075 /* 1076 * While we know pmip is the aggr's mip, there is a 1077 * possibility that aggr could have unregistered by 1078 * the time we exit port's perimeter (mip) and 1079 * enter aggr's perimeter (pmip). To avoid that 1080 * scenario, enter aggr's perimeter using its name. 1081 */ 1082 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1083 return; 1084 i_mac_perim_enter(mip); 1085 /* 1086 * Check if the ring got assigned to another aggregation before 1087 * be could enter aggr's and the port's perimeter. When a ring 1088 * gets deleted from an aggregation, it calls mac_stop_ring() 1089 * which increments the generation number. So checking 1090 * generation number will be enough. 1091 */ 1092 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1093 i_mac_perim_exit(mip); 1094 mac_perim_exit(p_mph); 1095 i_mac_perim_enter(mip); 1096 goto again; 1097 } 1098 1099 /* Check if pseudo ring is still present */ 1100 if (ring->mr_prh != NULL) { 1101 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1102 pring->mr_info.mri_intr.mi_ddi_shared = 1103 ring->mr_info.mri_intr.mi_ddi_shared; 1104 if (ddh != NULL) 1105 mac_ring_intr_retarget(pgroup, pring); 1106 } 1107 i_mac_perim_exit(mip); 1108 mac_perim_exit(p_mph); 1109 } 1110 /* 1111 * API called by driver to provide new interrupt handle for TX/RX rings. 1112 * This usually happens when IRM (Interrupt Resource Manangement) 1113 * framework either gives the driver more MSI-x interrupts or takes 1114 * away MSI-x interrupts from the driver. 1115 */ 1116 void 1117 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1118 { 1119 mac_ring_t *ring = (mac_ring_t *)mrh; 1120 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1121 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1122 1123 i_mac_perim_enter(mip); 1124 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1125 if (ddh == NULL) { 1126 /* Interrupts being reset */ 1127 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1128 if (ring->mr_prh != NULL) { 1129 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1130 return; 1131 } 1132 } else { 1133 /* New interrupt handle */ 1134 mac_compare_ddi_handle(mip->mi_rx_groups, 1135 mip->mi_rx_group_count, ring); 1136 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1137 mac_compare_ddi_handle(mip->mi_tx_groups, 1138 mip->mi_tx_group_count, ring); 1139 } 1140 if (ring->mr_prh != NULL) { 1141 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1142 return; 1143 } else { 1144 mac_ring_intr_retarget(group, ring); 1145 } 1146 } 1147 i_mac_perim_exit(mip); 1148 } 1149 1150 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1151 1152 /* 1153 * Updates the mac_impl structure with the current state of the link 1154 */ 1155 static void 1156 i_mac_log_link_state(mac_impl_t *mip) 1157 { 1158 /* 1159 * If no change, then it is not interesting. 1160 */ 1161 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1162 return; 1163 1164 switch (mip->mi_lowlinkstate) { 1165 case LINK_STATE_UP: 1166 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1167 char det[200]; 1168 1169 mip->mi_type->mt_ops.mtops_link_details(det, 1170 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1171 1172 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1173 } else { 1174 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1175 } 1176 break; 1177 1178 case LINK_STATE_DOWN: 1179 /* 1180 * Only transitions from UP to DOWN are interesting 1181 */ 1182 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1183 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1184 break; 1185 1186 case LINK_STATE_UNKNOWN: 1187 /* 1188 * This case is normally not interesting. 1189 */ 1190 break; 1191 } 1192 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1193 } 1194 1195 /* 1196 * Main routine for the callbacks notifications thread 1197 */ 1198 static void 1199 i_mac_notify_thread(void *arg) 1200 { 1201 mac_impl_t *mip = arg; 1202 callb_cpr_t cprinfo; 1203 mac_cb_t *mcb; 1204 mac_cb_info_t *mcbi; 1205 mac_notify_cb_t *mncb; 1206 1207 mcbi = &mip->mi_notify_cb_info; 1208 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1209 "i_mac_notify_thread"); 1210 1211 mutex_enter(mcbi->mcbi_lockp); 1212 1213 for (;;) { 1214 uint32_t bits; 1215 uint32_t type; 1216 1217 bits = mip->mi_notify_bits; 1218 if (bits == 0) { 1219 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1220 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1221 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1222 continue; 1223 } 1224 mip->mi_notify_bits = 0; 1225 if ((bits & (1 << MAC_NNOTE)) != 0) { 1226 /* request to quit */ 1227 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1228 break; 1229 } 1230 1231 mutex_exit(mcbi->mcbi_lockp); 1232 1233 /* 1234 * Log link changes on the actual link, but then do reports on 1235 * synthetic state (if part of a bridge). 1236 */ 1237 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1238 link_state_t newstate; 1239 mac_handle_t mh; 1240 1241 i_mac_log_link_state(mip); 1242 newstate = mip->mi_lowlinkstate; 1243 if (mip->mi_bridge_link != NULL) { 1244 mutex_enter(&mip->mi_bridge_lock); 1245 if ((mh = mip->mi_bridge_link) != NULL) { 1246 newstate = mac_bridge_ls_cb(mh, 1247 newstate); 1248 } 1249 mutex_exit(&mip->mi_bridge_lock); 1250 } 1251 if (newstate != mip->mi_linkstate) { 1252 mip->mi_linkstate = newstate; 1253 bits |= 1 << MAC_NOTE_LINK; 1254 } 1255 } 1256 1257 /* 1258 * Do notification callbacks for each notification type. 1259 */ 1260 for (type = 0; type < MAC_NNOTE; type++) { 1261 if ((bits & (1 << type)) == 0) { 1262 continue; 1263 } 1264 1265 if (mac_notify_cb_list[type] != NULL) 1266 (*mac_notify_cb_list[type])(mip); 1267 1268 /* 1269 * Walk the list of notifications. 1270 */ 1271 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1272 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1273 mcb = mcb->mcb_nextp) { 1274 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1275 mncb->mncb_fn(mncb->mncb_arg, type); 1276 } 1277 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1278 &mip->mi_notify_cb_list); 1279 } 1280 1281 mutex_enter(mcbi->mcbi_lockp); 1282 } 1283 1284 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1285 cv_broadcast(&mcbi->mcbi_cv); 1286 1287 /* CALLB_CPR_EXIT drops the lock */ 1288 CALLB_CPR_EXIT(&cprinfo); 1289 thread_exit(); 1290 } 1291 1292 /* 1293 * Signal the i_mac_notify_thread asking it to quit. 1294 * Then wait till it is done. 1295 */ 1296 void 1297 i_mac_notify_exit(mac_impl_t *mip) 1298 { 1299 mac_cb_info_t *mcbi; 1300 1301 mcbi = &mip->mi_notify_cb_info; 1302 1303 mutex_enter(mcbi->mcbi_lockp); 1304 mip->mi_notify_bits = (1 << MAC_NNOTE); 1305 cv_broadcast(&mcbi->mcbi_cv); 1306 1307 1308 while ((mip->mi_notify_thread != NULL) && 1309 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1310 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1311 } 1312 1313 /* Necessary clean up before doing kmem_cache_free */ 1314 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1315 mip->mi_notify_bits = 0; 1316 mip->mi_notify_thread = NULL; 1317 mutex_exit(mcbi->mcbi_lockp); 1318 } 1319 1320 /* 1321 * Entry point invoked by drivers to dynamically add a ring to an 1322 * existing group. 1323 */ 1324 int 1325 mac_group_add_ring(mac_group_handle_t gh, int index) 1326 { 1327 mac_group_t *group = (mac_group_t *)gh; 1328 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1329 int ret; 1330 1331 i_mac_perim_enter(mip); 1332 ret = i_mac_group_add_ring(group, NULL, index); 1333 i_mac_perim_exit(mip); 1334 return (ret); 1335 } 1336 1337 /* 1338 * Entry point invoked by drivers to dynamically remove a ring 1339 * from an existing group. The specified ring handle must no longer 1340 * be used by the driver after a call to this function. 1341 */ 1342 void 1343 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1344 { 1345 mac_group_t *group = (mac_group_t *)gh; 1346 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1347 1348 i_mac_perim_enter(mip); 1349 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1350 i_mac_perim_exit(mip); 1351 } 1352 1353 /* 1354 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1355 * entry points. 1356 */ 1357 1358 void 1359 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1360 { 1361 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1362 1363 /* nothing to do if the caller doesn't want the default value */ 1364 if (pr->pr_default == NULL) 1365 return; 1366 1367 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1368 1369 *(uint8_t *)(pr->pr_default) = val; 1370 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1371 } 1372 1373 void 1374 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1375 { 1376 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1377 1378 /* nothing to do if the caller doesn't want the default value */ 1379 if (pr->pr_default == NULL) 1380 return; 1381 1382 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1383 1384 bcopy(&val, pr->pr_default, sizeof (val)); 1385 1386 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1387 } 1388 1389 void 1390 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1391 { 1392 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1393 1394 /* nothing to do if the caller doesn't want the default value */ 1395 if (pr->pr_default == NULL) 1396 return; 1397 1398 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1399 1400 bcopy(&val, pr->pr_default, sizeof (val)); 1401 1402 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1403 } 1404 1405 void 1406 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1407 { 1408 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1409 1410 /* nothing to do if the caller doesn't want the default value */ 1411 if (pr->pr_default == NULL) 1412 return; 1413 1414 if (strlen(str) >= pr->pr_default_size) 1415 pr->pr_errno = ENOBUFS; 1416 else 1417 (void) strlcpy(pr->pr_default, str, pr->pr_default_size); 1418 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1419 } 1420 1421 void 1422 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1423 link_flowctrl_t val) 1424 { 1425 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1426 1427 /* nothing to do if the caller doesn't want the default value */ 1428 if (pr->pr_default == NULL) 1429 return; 1430 1431 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1432 1433 bcopy(&val, pr->pr_default, sizeof (val)); 1434 1435 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1436 } 1437 1438 void 1439 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1440 uint32_t max) 1441 { 1442 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1443 mac_propval_range_t *range = pr->pr_range; 1444 mac_propval_uint32_range_t *range32; 1445 1446 /* nothing to do if the caller doesn't want the range info */ 1447 if (range == NULL) 1448 return; 1449 1450 if (pr->pr_range_cur_count++ == 0) { 1451 /* first range */ 1452 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1453 range->mpr_type = MAC_PROPVAL_UINT32; 1454 } else { 1455 /* all ranges of a property should be of the same type */ 1456 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32); 1457 if (pr->pr_range_cur_count > range->mpr_count) { 1458 pr->pr_errno = ENOSPC; 1459 return; 1460 } 1461 } 1462 1463 range32 = range->mpr_range_uint32; 1464 range32[pr->pr_range_cur_count - 1].mpur_min = min; 1465 range32[pr->pr_range_cur_count - 1].mpur_max = max; 1466 } 1467 1468 void 1469 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1470 { 1471 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1472 1473 pr->pr_perm = perm; 1474 pr->pr_flags |= MAC_PROP_INFO_PERM; 1475 } 1476 1477 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff, 1478 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1479 { 1480 uint32_t flags; 1481 1482 ASSERT(DB_TYPE(mp) == M_DATA); 1483 1484 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1485 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1486 if (value != NULL) 1487 *value = (uint32_t)DB_CKSUM16(mp); 1488 if ((flags & HCK_PARTIALCKSUM) != 0) { 1489 if (start != NULL) 1490 *start = (uint32_t)DB_CKSUMSTART(mp); 1491 if (stuff != NULL) 1492 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1493 if (end != NULL) 1494 *end = (uint32_t)DB_CKSUMEND(mp); 1495 } 1496 } 1497 1498 if (flags_ptr != NULL) 1499 *flags_ptr = flags; 1500 } 1501 1502 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, 1503 uint32_t end, uint32_t value, uint32_t flags) 1504 { 1505 ASSERT(DB_TYPE(mp) == M_DATA); 1506 1507 DB_CKSUMSTART(mp) = (intptr_t)start; 1508 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1509 DB_CKSUMEND(mp) = (intptr_t)end; 1510 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1511 DB_CKSUM16(mp) = (uint16_t)value; 1512 } 1513 1514 void 1515 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1516 { 1517 ASSERT(DB_TYPE(mp) == M_DATA); 1518 1519 if (flags != NULL) { 1520 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1521 if ((*flags != 0) && (mss != NULL)) 1522 *mss = (uint32_t)DB_LSOMSS(mp); 1523 } 1524 } 1525 1526 void 1527 mac_transceiver_info_set_present(mac_transceiver_info_t *infop, 1528 boolean_t present) 1529 { 1530 infop->mti_present = present; 1531 } 1532 1533 void 1534 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop, 1535 boolean_t usable) 1536 { 1537 infop->mti_usable = usable; 1538 }