1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2018 Joyent, Inc.
25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26 */
27
28 #include <sys/types.h>
29 #include <sys/conf.h>
30 #include <sys/id_space.h>
31 #include <sys/esunddi.h>
32 #include <sys/stat.h>
33 #include <sys/mkdev.h>
34 #include <sys/stream.h>
35 #include <sys/strsubr.h>
36 #include <sys/dlpi.h>
37 #include <sys/modhash.h>
38 #include <sys/mac.h>
39 #include <sys/mac_provider.h>
40 #include <sys/mac_impl.h>
41 #include <sys/mac_client_impl.h>
42 #include <sys/mac_client_priv.h>
43 #include <sys/mac_soft_ring.h>
44 #include <sys/mac_stat.h>
45 #include <sys/dld.h>
46 #include <sys/modctl.h>
47 #include <sys/fs/dv_node.h>
48 #include <sys/thread.h>
49 #include <sys/proc.h>
50 #include <sys/callb.h>
51 #include <sys/cpuvar.h>
52 #include <sys/atomic.h>
53 #include <sys/sdt.h>
54 #include <sys/mac_flow.h>
55 #include <sys/ddi_intr_impl.h>
56 #include <sys/disp.h>
57 #include <sys/sdt.h>
58 #include <sys/pattr.h>
59 #include <sys/strsun.h>
60 #include <sys/vlan.h>
61
62 /*
63 * MAC Provider Interface.
64 *
65 * Interface for GLDv3 compatible NIC drivers.
66 */
67
68 static void i_mac_notify_thread(void *);
69
70 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
71
72 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
73 mac_fanout_recompute, /* MAC_NOTE_LINK */
74 NULL, /* MAC_NOTE_UNICST */
75 NULL, /* MAC_NOTE_TX */
76 NULL, /* MAC_NOTE_DEVPROMISC */
77 NULL, /* MAC_NOTE_FASTPATH_FLUSH */
78 NULL, /* MAC_NOTE_SDU_SIZE */
79 NULL, /* MAC_NOTE_MARGIN */
80 NULL, /* MAC_NOTE_CAPAB_CHG */
81 NULL /* MAC_NOTE_LOWLINK */
82 };
83
84 /*
85 * Driver support functions.
86 */
87
88 /* REGISTRATION */
89
90 mac_register_t *
91 mac_alloc(uint_t mac_version)
92 {
93 mac_register_t *mregp;
94
95 /*
96 * Make sure there isn't a version mismatch between the driver and
97 * the framework. In the future, if multiple versions are
98 * supported, this check could become more sophisticated.
99 */
100 if (mac_version != MAC_VERSION)
101 return (NULL);
102
103 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
104 mregp->m_version = mac_version;
105 return (mregp);
106 }
107
108 void
109 mac_free(mac_register_t *mregp)
110 {
111 kmem_free(mregp, sizeof (mac_register_t));
112 }
113
114 /*
115 * mac_register() is how drivers register new MACs with the GLDv3
116 * framework. The mregp argument is allocated by drivers using the
117 * mac_alloc() function, and can be freed using mac_free() immediately upon
118 * return from mac_register(). Upon success (0 return value), the mhp
119 * opaque pointer becomes the driver's handle to its MAC interface, and is
120 * the argument to all other mac module entry points.
121 */
122 /* ARGSUSED */
123 int
124 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
125 {
126 mac_impl_t *mip;
127 mactype_t *mtype;
128 int err = EINVAL;
129 struct devnames *dnp = NULL;
130 uint_t instance;
131 boolean_t style1_created = B_FALSE;
132 boolean_t style2_created = B_FALSE;
133 char *driver;
134 minor_t minor = 0;
135
136 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
137 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
138 return (EINVAL);
139
140 /* Find the required MAC-Type plugin. */
141 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
142 return (EINVAL);
143
144 /* Create a mac_impl_t to represent this MAC. */
145 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
146
147 /*
148 * The mac is not ready for open yet.
149 */
150 mip->mi_state_flags |= MIS_DISABLED;
151
152 /*
153 * When a mac is registered, the m_instance field can be set to:
154 *
155 * 0: Get the mac's instance number from m_dip.
156 * This is usually used for physical device dips.
157 *
158 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
159 * For example, when an aggregation is created with the key option,
160 * "key" will be used as the instance number.
161 *
162 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
163 * This is often used when a MAC of a virtual link is registered
164 * (e.g., aggregation when "key" is not specified, or vnic).
165 *
166 * Note that the instance number is used to derive the mi_minor field
167 * of mac_impl_t, which will then be used to derive the name of kstats
168 * and the devfs nodes. The first 2 cases are needed to preserve
169 * backward compatibility.
170 */
171 switch (mregp->m_instance) {
172 case 0:
173 instance = ddi_get_instance(mregp->m_dip);
174 break;
175 case ((uint_t)-1):
176 minor = mac_minor_hold(B_TRUE);
177 if (minor == 0) {
178 err = ENOSPC;
179 goto fail;
180 }
181 instance = minor - 1;
182 break;
183 default:
184 instance = mregp->m_instance;
185 if (instance >= MAC_MAX_MINOR) {
186 err = EINVAL;
187 goto fail;
188 }
189 break;
190 }
191
192 mip->mi_minor = (minor_t)(instance + 1);
193 mip->mi_dip = mregp->m_dip;
194 mip->mi_clients_list = NULL;
195 mip->mi_nclients = 0;
196
197 /* Set the default IEEE Port VLAN Identifier */
198 mip->mi_pvid = 1;
199
200 /* Default bridge link learning protection values */
201 mip->mi_llimit = 1000;
202 mip->mi_ldecay = 200;
203
204 driver = (char *)ddi_driver_name(mip->mi_dip);
205
206 /* Construct the MAC name as <drvname><instance> */
207 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
208 driver, instance);
209
210 mip->mi_driver = mregp->m_driver;
211
212 mip->mi_type = mtype;
213 mip->mi_margin = mregp->m_margin;
214 mip->mi_info.mi_media = mtype->mt_type;
215 mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
216 if (mregp->m_max_sdu <= mregp->m_min_sdu)
217 goto fail;
218 if (mregp->m_multicast_sdu == 0)
219 mregp->m_multicast_sdu = mregp->m_max_sdu;
220 if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
221 mregp->m_multicast_sdu > mregp->m_max_sdu)
222 goto fail;
223 mip->mi_sdu_min = mregp->m_min_sdu;
224 mip->mi_sdu_max = mregp->m_max_sdu;
225 mip->mi_sdu_multicast = mregp->m_multicast_sdu;
226 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
227 /*
228 * If the media supports a broadcast address, cache a pointer to it
229 * in the mac_info_t so that upper layers can use it.
230 */
231 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
232
233 mip->mi_v12n_level = mregp->m_v12n;
234
235 /*
236 * Copy the unicast source address into the mac_info_t, but only if
237 * the MAC-Type defines a non-zero address length. We need to
238 * handle MAC-Types that have an address length of 0
239 * (point-to-point protocol MACs for example).
240 */
241 if (mip->mi_type->mt_addr_length > 0) {
242 if (mregp->m_src_addr == NULL)
243 goto fail;
244 mip->mi_info.mi_unicst_addr =
245 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
246 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
247 mip->mi_type->mt_addr_length);
248
249 /*
250 * Copy the fixed 'factory' MAC address from the immutable
251 * info. This is taken to be the MAC address currently in
252 * use.
253 */
254 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
255 mip->mi_type->mt_addr_length);
256
257 /*
258 * At this point, we should set up the classification
259 * rules etc but we delay it till mac_open() so that
260 * the resource discovery has taken place and we
261 * know someone wants to use the device. Otherwise
262 * memory gets allocated for Rx ring structures even
263 * during probe.
264 */
265
266 /* Copy the destination address if one is provided. */
267 if (mregp->m_dst_addr != NULL) {
268 bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
269 mip->mi_type->mt_addr_length);
270 mip->mi_dstaddr_set = B_TRUE;
271 }
272 } else if (mregp->m_src_addr != NULL) {
273 goto fail;
274 }
275
276 /*
277 * The format of the m_pdata is specific to the plugin. It is
278 * passed in as an argument to all of the plugin callbacks. The
279 * driver can update this information by calling
280 * mac_pdata_update().
281 */
282 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
283 /*
284 * Verify if the supplied plugin data is valid. Note that
285 * even if the caller passed in a NULL pointer as plugin data,
286 * we still need to verify if that's valid as the plugin may
287 * require plugin data to function.
288 */
289 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
290 mregp->m_pdata_size)) {
291 goto fail;
292 }
293 if (mregp->m_pdata != NULL) {
294 mip->mi_pdata =
295 kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
296 bcopy(mregp->m_pdata, mip->mi_pdata,
297 mregp->m_pdata_size);
298 mip->mi_pdata_size = mregp->m_pdata_size;
299 }
300 } else if (mregp->m_pdata != NULL) {
301 /*
302 * The caller supplied non-NULL plugin data, but the plugin
303 * does not recognize plugin data.
304 */
305 err = EINVAL;
306 goto fail;
307 }
308
309 /*
310 * Register the private properties.
311 */
312 mac_register_priv_prop(mip, mregp->m_priv_props);
313
314 /*
315 * Stash the driver callbacks into the mac_impl_t, but first sanity
316 * check to make sure all mandatory callbacks are set.
317 */
318 if (mregp->m_callbacks->mc_getstat == NULL ||
319 mregp->m_callbacks->mc_start == NULL ||
320 mregp->m_callbacks->mc_stop == NULL ||
321 mregp->m_callbacks->mc_setpromisc == NULL ||
322 mregp->m_callbacks->mc_multicst == NULL) {
323 goto fail;
324 }
325 mip->mi_callbacks = mregp->m_callbacks;
326
327 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
328 &mip->mi_capab_legacy)) {
329 mip->mi_state_flags |= MIS_LEGACY;
330 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
331 } else {
332 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
333 mip->mi_minor);
334 }
335
336 /*
337 * Allocate a notification thread. thread_create blocks for memory
338 * if needed, it never fails.
339 */
340 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
341 mip, 0, &p0, TS_RUN, minclsyspri);
342
343 /*
344 * Initialize the capabilities
345 */
346
347 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
348 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
349
350 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
351 mip->mi_state_flags |= MIS_IS_VNIC;
352
353 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
354 mip->mi_state_flags |= MIS_IS_AGGR;
355
356 mac_addr_factory_init(mip);
357
358 mac_transceiver_init(mip);
359
360 mac_led_init(mip);
361
362 /*
363 * Enforce the virtrualization level registered.
364 */
365 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
366 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
367 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
368 goto fail;
369
370 /*
371 * The driver needs to register at least rx rings for this
372 * virtualization level.
373 */
374 if (mip->mi_rx_groups == NULL)
375 goto fail;
376 }
377
378 /*
379 * The driver must set mc_unicst entry point to NULL when it advertises
380 * CAP_RINGS for rx groups.
381 */
382 if (mip->mi_rx_groups != NULL) {
383 if (mregp->m_callbacks->mc_unicst != NULL)
384 goto fail;
385 } else {
386 if (mregp->m_callbacks->mc_unicst == NULL)
387 goto fail;
388 }
389
390 /*
391 * Initialize MAC addresses. Must be called after mac_init_rings().
392 */
393 mac_init_macaddr(mip);
394
395 mip->mi_share_capab.ms_snum = 0;
396 if (mip->mi_v12n_level & MAC_VIRT_HIO) {
397 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
398 &mip->mi_share_capab);
399 }
400
401 /*
402 * Initialize the kstats for this device.
403 */
404 mac_driver_stat_create(mip);
405
406 /* Zero out any properties. */
407 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
408
409 if (mip->mi_minor <= MAC_MAX_MINOR) {
410 /* Create a style-2 DLPI device */
411 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
412 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
413 goto fail;
414 style2_created = B_TRUE;
415
416 /* Create a style-1 DLPI device */
417 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
418 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
419 goto fail;
420 style1_created = B_TRUE;
421 }
422
423 mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
424
425 rw_enter(&i_mac_impl_lock, RW_WRITER);
426 if (mod_hash_insert(i_mac_impl_hash,
427 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
428 rw_exit(&i_mac_impl_lock);
429 err = EEXIST;
430 goto fail;
431 }
432
433 DTRACE_PROBE2(mac__register, struct devnames *, dnp,
434 (mac_impl_t *), mip);
435
436 /*
437 * Mark the MAC to be ready for open.
438 */
439 mip->mi_state_flags &= ~MIS_DISABLED;
440 rw_exit(&i_mac_impl_lock);
441
442 atomic_inc_32(&i_mac_impl_count);
443
444 cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
445 *mhp = (mac_handle_t)mip;
446 return (0);
447
448 fail:
449 if (style1_created)
450 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
451
452 if (style2_created)
453 ddi_remove_minor_node(mip->mi_dip, driver);
454
455 mac_addr_factory_fini(mip);
456
457 /* Clean up registered MAC addresses */
458 mac_fini_macaddr(mip);
459
460 /* Clean up registered rings */
461 mac_free_rings(mip, MAC_RING_TYPE_RX);
462 mac_free_rings(mip, MAC_RING_TYPE_TX);
463
464 /* Clean up notification thread */
465 if (mip->mi_notify_thread != NULL)
466 i_mac_notify_exit(mip);
467
468 if (mip->mi_info.mi_unicst_addr != NULL) {
469 kmem_free(mip->mi_info.mi_unicst_addr,
470 mip->mi_type->mt_addr_length);
471 mip->mi_info.mi_unicst_addr = NULL;
472 }
473
474 mac_driver_stat_delete(mip);
475
476 if (mip->mi_type != NULL) {
477 atomic_dec_32(&mip->mi_type->mt_ref);
478 mip->mi_type = NULL;
479 }
480
481 if (mip->mi_pdata != NULL) {
482 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
483 mip->mi_pdata = NULL;
484 mip->mi_pdata_size = 0;
485 }
486
487 if (minor != 0) {
488 ASSERT(minor > MAC_MAX_MINOR);
489 mac_minor_rele(minor);
490 }
491
492 mip->mi_state_flags = 0;
493 mac_unregister_priv_prop(mip);
494
495 /*
496 * Clear the state before destroying the mac_impl_t
497 */
498 mip->mi_state_flags = 0;
499
500 kmem_cache_free(i_mac_impl_cachep, mip);
501 return (err);
502 }
503
504 /*
505 * Unregister from the GLDv3 framework
506 */
507 int
508 mac_unregister(mac_handle_t mh)
509 {
510 int err;
511 mac_impl_t *mip = (mac_impl_t *)mh;
512 mod_hash_val_t val;
513 mac_margin_req_t *mmr, *nextmmr;
514
515 /* Fail the unregister if there are any open references to this mac. */
516 if ((err = mac_disable_nowait(mh)) != 0)
517 return (err);
518
519 /*
520 * Clean up notification thread and wait for it to exit.
521 */
522 i_mac_notify_exit(mip);
523
524 /*
525 * Prior to acquiring the MAC perimeter, remove the MAC instance from
526 * the internal hash table. Such removal means table-walkers that
527 * acquire the perimeter will not do so on behalf of what we are
528 * unregistering, which prevents a deadlock.
529 */
530 rw_enter(&i_mac_impl_lock, RW_WRITER);
531 (void) mod_hash_remove(i_mac_impl_hash,
532 (mod_hash_key_t)mip->mi_name, &val);
533 rw_exit(&i_mac_impl_lock);
534 ASSERT(mip == (mac_impl_t *)val);
535
536 i_mac_perim_enter(mip);
537
538 /*
539 * There is still resource properties configured over this mac.
540 */
541 if (mip->mi_resource_props.mrp_mask != 0)
542 mac_fastpath_enable((mac_handle_t)mip);
543
544 if (mip->mi_minor < MAC_MAX_MINOR + 1) {
545 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
546 ddi_remove_minor_node(mip->mi_dip,
547 (char *)ddi_driver_name(mip->mi_dip));
548 }
549
550 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
551 MIS_EXCLUSIVE));
552
553 mac_driver_stat_delete(mip);
554
555 ASSERT(i_mac_impl_count > 0);
556 atomic_dec_32(&i_mac_impl_count);
557
558 if (mip->mi_pdata != NULL)
559 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
560 mip->mi_pdata = NULL;
561 mip->mi_pdata_size = 0;
562
563 /*
564 * Free the list of margin request.
565 */
566 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
567 nextmmr = mmr->mmr_nextp;
568 kmem_free(mmr, sizeof (mac_margin_req_t));
569 }
570 mip->mi_mmrp = NULL;
571
572 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
573 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
574 mip->mi_info.mi_unicst_addr = NULL;
575
576 atomic_dec_32(&mip->mi_type->mt_ref);
577 mip->mi_type = NULL;
578
579 /*
580 * Free the primary MAC address.
581 */
582 mac_fini_macaddr(mip);
583
584 /*
585 * free all rings
586 */
587 mac_free_rings(mip, MAC_RING_TYPE_RX);
588 mac_free_rings(mip, MAC_RING_TYPE_TX);
589
590 mac_addr_factory_fini(mip);
591
592 bzero(mip->mi_addr, MAXMACADDRLEN);
593 bzero(mip->mi_dstaddr, MAXMACADDRLEN);
594 mip->mi_dstaddr_set = B_FALSE;
595
596 /* and the flows */
597 mac_flow_tab_destroy(mip->mi_flow_tab);
598 mip->mi_flow_tab = NULL;
599
600 if (mip->mi_minor > MAC_MAX_MINOR)
601 mac_minor_rele(mip->mi_minor);
602
603 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
604
605 /*
606 * Reset the perim related fields to default values before
607 * kmem_cache_free
608 */
609 i_mac_perim_exit(mip);
610 mip->mi_state_flags = 0;
611
612 mac_unregister_priv_prop(mip);
613
614 ASSERT(mip->mi_bridge_link == NULL);
615 kmem_cache_free(i_mac_impl_cachep, mip);
616
617 return (0);
618 }
619
620 /* DATA RECEPTION */
621
622 /*
623 * This function is invoked for packets received by the MAC driver in
624 * interrupt context. The ring generation number provided by the driver
625 * is matched with the ring generation number held in MAC. If they do not
626 * match, received packets are considered stale packets coming from an older
627 * assignment of the ring. Drop them.
628 */
629 void
630 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
631 uint64_t mr_gen_num)
632 {
633 mac_ring_t *mr = (mac_ring_t *)mrh;
634
635 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
636 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
637 mr->mr_gen_num, uint64_t, mr_gen_num);
638 freemsgchain(mp_chain);
639 return;
640 }
641 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
642 }
643
644 /*
645 * This function is invoked for each packet received by the underlying driver.
646 */
647 void
648 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
649 {
650 mac_impl_t *mip = (mac_impl_t *)mh;
651
652 /*
653 * Check if the link is part of a bridge. If not, then we don't need
654 * to take the lock to remain consistent. Make this common case
655 * lock-free and tail-call optimized.
656 */
657 if (mip->mi_bridge_link == NULL) {
658 mac_rx_common(mh, mrh, mp_chain);
659 } else {
660 /*
661 * Once we take a reference on the bridge link, the bridge
662 * module itself can't unload, so the callback pointers are
663 * stable.
664 */
665 mutex_enter(&mip->mi_bridge_lock);
666 if ((mh = mip->mi_bridge_link) != NULL)
667 mac_bridge_ref_cb(mh, B_TRUE);
668 mutex_exit(&mip->mi_bridge_lock);
669 if (mh == NULL) {
670 mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
671 } else {
672 mac_bridge_rx_cb(mh, mrh, mp_chain);
673 mac_bridge_ref_cb(mh, B_FALSE);
674 }
675 }
676 }
677
678 /*
679 * Special case function: this allows snooping of packets transmitted and
680 * received by TRILL. By design, they go directly into the TRILL module.
681 */
682 void
683 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
684 {
685 mac_impl_t *mip = (mac_impl_t *)mh;
686
687 if (mip->mi_promisc_list != NULL)
688 mac_promisc_dispatch(mip, mp, NULL);
689 }
690
691 /*
692 * This is the upward reentry point for packets arriving from the bridging
693 * module and from mac_rx for links not part of a bridge.
694 */
695 void
696 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
697 {
698 mac_impl_t *mip = (mac_impl_t *)mh;
699 mac_ring_t *mr = (mac_ring_t *)mrh;
700 mac_soft_ring_set_t *mac_srs;
701 mblk_t *bp = mp_chain;
702
703 /*
704 * If there are any promiscuous mode callbacks defined for
705 * this MAC, pass them a copy if appropriate.
706 */
707 if (mip->mi_promisc_list != NULL)
708 mac_promisc_dispatch(mip, mp_chain, NULL);
709
710 if (mr != NULL) {
711 /*
712 * If the SRS teardown has started, just return. The 'mr'
713 * continues to be valid until the driver unregisters the MAC.
714 * Hardware classified packets will not make their way up
715 * beyond this point once the teardown has started. The driver
716 * is never passed a pointer to a flow entry or SRS or any
717 * structure that can be freed much before mac_unregister.
718 */
719 mutex_enter(&mr->mr_lock);
720 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
721 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
722 mutex_exit(&mr->mr_lock);
723 freemsgchain(mp_chain);
724 return;
725 }
726
727 /*
728 * The ring is in passthru mode; pass the chain up to
729 * the pseudo ring.
730 */
731 if (mr->mr_classify_type == MAC_PASSTHRU_CLASSIFIER) {
732 MR_REFHOLD_LOCKED(mr);
733 mutex_exit(&mr->mr_lock);
734 mr->mr_pt_fn(mr->mr_pt_arg1, mr->mr_pt_arg2, mp_chain,
735 B_FALSE);
736 MR_REFRELE(mr);
737 return;
738 }
739
740 /*
741 * The passthru callback should only be set when in
742 * MAC_PASSTHRU_CLASSIFIER mode.
743 */
744 ASSERT3P(mr->mr_pt_fn, ==, NULL);
745
746 /*
747 * We check if an SRS is controlling this ring.
748 * If so, we can directly call the srs_lower_proc
749 * routine otherwise we need to go through mac_rx_classify
750 * to reach the right place.
751 */
752 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
753 MR_REFHOLD_LOCKED(mr);
754 mutex_exit(&mr->mr_lock);
755 ASSERT3P(mr->mr_srs, !=, NULL);
756 mac_srs = mr->mr_srs;
757
758 /*
759 * This is the fast path. All packets received
760 * on this ring are hardware classified and
761 * share the same MAC header info.
762 */
763 mac_srs->srs_rx.sr_lower_proc(mh,
764 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
765 MR_REFRELE(mr);
766 return;
767 }
768
769 mutex_exit(&mr->mr_lock);
770 /* We'll fall through to software classification */
771 } else {
772 flow_entry_t *flent;
773 int err;
774
775 rw_enter(&mip->mi_rw_lock, RW_READER);
776 if (mip->mi_single_active_client != NULL) {
777 flent = mip->mi_single_active_client->mci_flent_list;
778 FLOW_TRY_REFHOLD(flent, err);
779 rw_exit(&mip->mi_rw_lock);
780 if (err == 0) {
781 (flent->fe_cb_fn)(flent->fe_cb_arg1,
782 flent->fe_cb_arg2, mp_chain, B_FALSE);
783 FLOW_REFRELE(flent);
784 return;
785 }
786 } else {
787 rw_exit(&mip->mi_rw_lock);
788 }
789 }
790
791 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
792 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
793 return;
794 }
795
796 freemsgchain(bp);
797 }
798
799 /* DATA TRANSMISSION */
800
801 /*
802 * A driver's notification to resume transmission, in case of a provider
803 * without TX rings.
804 */
805 void
806 mac_tx_update(mac_handle_t mh)
807 {
808 mac_tx_ring_update(mh, NULL);
809 }
810
811 /*
812 * A driver's notification to resume transmission on the specified TX ring.
813 */
814 void
815 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
816 {
817 i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
818 }
819
820 /* LINK STATE */
821 /*
822 * Notify the MAC layer about a link state change
823 */
824 void
825 mac_link_update(mac_handle_t mh, link_state_t link)
826 {
827 mac_impl_t *mip = (mac_impl_t *)mh;
828
829 /*
830 * Save the link state.
831 */
832 mip->mi_lowlinkstate = link;
833
834 /*
835 * Send a MAC_NOTE_LOWLINK notification. This tells the notification
836 * thread to deliver both lower and upper notifications.
837 */
838 i_mac_notify(mip, MAC_NOTE_LOWLINK);
839 }
840
841 /*
842 * Notify the MAC layer about a link state change due to bridging.
843 */
844 void
845 mac_link_redo(mac_handle_t mh, link_state_t link)
846 {
847 mac_impl_t *mip = (mac_impl_t *)mh;
848
849 /*
850 * Save the link state.
851 */
852 mip->mi_linkstate = link;
853
854 /*
855 * Send a MAC_NOTE_LINK notification. Only upper notifications are
856 * made.
857 */
858 i_mac_notify(mip, MAC_NOTE_LINK);
859 }
860
861 /* MINOR NODE HANDLING */
862
863 /*
864 * Given a dev_t, return the instance number (PPA) associated with it.
865 * Drivers can use this in their getinfo(9e) implementation to lookup
866 * the instance number (i.e. PPA) of the device, to use as an index to
867 * their own array of soft state structures.
868 *
869 * Returns -1 on error.
870 */
871 int
872 mac_devt_to_instance(dev_t devt)
873 {
874 return (dld_devt_to_instance(devt));
875 }
876
877 /*
878 * This function returns the first minor number that is available for
879 * driver private use. All minor numbers smaller than this are
880 * reserved for GLDv3 use.
881 */
882 minor_t
883 mac_private_minor(void)
884 {
885 return (MAC_PRIVATE_MINOR);
886 }
887
888 /* OTHER CONTROL INFORMATION */
889
890 /*
891 * A driver notified us that its primary MAC address has changed.
892 */
893 void
894 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
895 {
896 mac_impl_t *mip = (mac_impl_t *)mh;
897
898 if (mip->mi_type->mt_addr_length == 0)
899 return;
900
901 i_mac_perim_enter(mip);
902
903 /*
904 * If address changes, freshen the MAC address value and update
905 * all MAC clients that share this MAC address.
906 */
907 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
908 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
909 (uint8_t *)addr);
910 }
911
912 i_mac_perim_exit(mip);
913
914 /*
915 * Send a MAC_NOTE_UNICST notification.
916 */
917 i_mac_notify(mip, MAC_NOTE_UNICST);
918 }
919
920 void
921 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
922 {
923 mac_impl_t *mip = (mac_impl_t *)mh;
924
925 if (mip->mi_type->mt_addr_length == 0)
926 return;
927
928 i_mac_perim_enter(mip);
929 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
930 i_mac_perim_exit(mip);
931 i_mac_notify(mip, MAC_NOTE_DEST);
932 }
933
934 /*
935 * MAC plugin information changed.
936 */
937 int
938 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
939 {
940 mac_impl_t *mip = (mac_impl_t *)mh;
941
942 /*
943 * Verify that the plugin supports MAC plugin data and that the
944 * supplied data is valid.
945 */
946 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
947 return (EINVAL);
948 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
949 return (EINVAL);
950
951 if (mip->mi_pdata != NULL)
952 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
953
954 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
955 bcopy(mac_pdata, mip->mi_pdata, dsize);
956 mip->mi_pdata_size = dsize;
957
958 /*
959 * Since the MAC plugin data is used to construct MAC headers that
960 * were cached in fast-path headers, we need to flush fast-path
961 * information for links associated with this mac.
962 */
963 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
964 return (0);
965 }
966
967 /*
968 * Invoked by driver as well as the framework to notify its capability change.
969 */
970 void
971 mac_capab_update(mac_handle_t mh)
972 {
973 /* Send MAC_NOTE_CAPAB_CHG notification */
974 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
975 }
976
977 /*
978 * Used by normal drivers to update the max sdu size.
979 * We need to handle the case of a smaller mi_sdu_multicast
980 * since this is called by mac_set_mtu() even for drivers that
981 * have differing unicast and multicast mtu and we don't want to
982 * increase the multicast mtu by accident in that case.
983 */
984 int
985 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
986 {
987 mac_impl_t *mip = (mac_impl_t *)mh;
988
989 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
990 return (EINVAL);
991 mip->mi_sdu_max = sdu_max;
992 if (mip->mi_sdu_multicast > mip->mi_sdu_max)
993 mip->mi_sdu_multicast = mip->mi_sdu_max;
994
995 /* Send a MAC_NOTE_SDU_SIZE notification. */
996 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
997 return (0);
998 }
999
1000 /*
1001 * Version of the above function that is used by drivers that have a different
1002 * max sdu size for multicast/broadcast vs. unicast.
1003 */
1004 int
1005 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
1006 {
1007 mac_impl_t *mip = (mac_impl_t *)mh;
1008
1009 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
1010 return (EINVAL);
1011 if (sdu_multicast == 0)
1012 sdu_multicast = sdu_max;
1013 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
1014 return (EINVAL);
1015 mip->mi_sdu_max = sdu_max;
1016 mip->mi_sdu_multicast = sdu_multicast;
1017
1018 /* Send a MAC_NOTE_SDU_SIZE notification. */
1019 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
1020 return (0);
1021 }
1022
1023 static void
1024 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
1025 {
1026 mac_client_impl_t *mcip;
1027 flow_entry_t *flent;
1028 mac_soft_ring_set_t *mac_rx_srs;
1029 mac_cpus_t *srs_cpu;
1030 int i;
1031
1032 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1033 (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1034 /* interrupt can be re-targeted */
1035 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1036 flent = mcip->mci_flent;
1037 if (ring->mr_type == MAC_RING_TYPE_RX) {
1038 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1039 mac_rx_srs = flent->fe_rx_srs[i];
1040 if (mac_rx_srs->srs_ring != ring)
1041 continue;
1042 srs_cpu = &mac_rx_srs->srs_cpu;
1043 mutex_enter(&cpu_lock);
1044 mac_rx_srs_retarget_intr(mac_rx_srs,
1045 srs_cpu->mc_rx_intr_cpu);
1046 mutex_exit(&cpu_lock);
1047 break;
1048 }
1049 } else {
1050 if (flent->fe_tx_srs != NULL) {
1051 mutex_enter(&cpu_lock);
1052 mac_tx_srs_retarget_intr(
1053 flent->fe_tx_srs);
1054 mutex_exit(&cpu_lock);
1055 }
1056 }
1057 }
1058 }
1059
1060 /*
1061 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1062 * their clients. There is a 1-1 mapping pseudo ring and the hardware
1063 * ring. ddi interrupt handles are exported from the hardware ring to
1064 * the pseudo ring. Thus when the interrupt handle changes, clients of
1065 * aggr that are using the handle need to use the new handle and
1066 * re-target their interrupts.
1067 */
1068 static void
1069 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1070 ddi_intr_handle_t ddh)
1071 {
1072 mac_ring_t *pring;
1073 mac_group_t *pgroup;
1074 mac_impl_t *pmip;
1075 char macname[MAXNAMELEN];
1076 mac_perim_handle_t p_mph;
1077 uint64_t saved_gen_num;
1078
1079 again:
1080 pring = (mac_ring_t *)ring->mr_prh;
1081 pgroup = (mac_group_t *)pring->mr_gh;
1082 pmip = (mac_impl_t *)pgroup->mrg_mh;
1083 saved_gen_num = ring->mr_gen_num;
1084 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1085 /*
1086 * We need to enter aggr's perimeter. The locking hierarchy
1087 * dictates that aggr's perimeter should be entered first
1088 * and then the port's perimeter. So drop the port's
1089 * perimeter, enter aggr's and then re-enter port's
1090 * perimeter.
1091 */
1092 i_mac_perim_exit(mip);
1093 /*
1094 * While we know pmip is the aggr's mip, there is a
1095 * possibility that aggr could have unregistered by
1096 * the time we exit port's perimeter (mip) and
1097 * enter aggr's perimeter (pmip). To avoid that
1098 * scenario, enter aggr's perimeter using its name.
1099 */
1100 if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1101 return;
1102 i_mac_perim_enter(mip);
1103 /*
1104 * Check if the ring got assigned to another aggregation before
1105 * be could enter aggr's and the port's perimeter. When a ring
1106 * gets deleted from an aggregation, it calls mac_stop_ring()
1107 * which increments the generation number. So checking
1108 * generation number will be enough.
1109 */
1110 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1111 i_mac_perim_exit(mip);
1112 mac_perim_exit(p_mph);
1113 i_mac_perim_enter(mip);
1114 goto again;
1115 }
1116
1117 /* Check if pseudo ring is still present */
1118 if (ring->mr_prh != NULL) {
1119 pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1120 pring->mr_info.mri_intr.mi_ddi_shared =
1121 ring->mr_info.mri_intr.mi_ddi_shared;
1122 if (ddh != NULL)
1123 mac_ring_intr_retarget(pgroup, pring);
1124 }
1125 i_mac_perim_exit(mip);
1126 mac_perim_exit(p_mph);
1127 }
1128 /*
1129 * API called by driver to provide new interrupt handle for TX/RX rings.
1130 * This usually happens when IRM (Interrupt Resource Manangement)
1131 * framework either gives the driver more MSI-x interrupts or takes
1132 * away MSI-x interrupts from the driver.
1133 */
1134 void
1135 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1136 {
1137 mac_ring_t *ring = (mac_ring_t *)mrh;
1138 mac_group_t *group = (mac_group_t *)ring->mr_gh;
1139 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1140
1141 i_mac_perim_enter(mip);
1142 ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1143 if (ddh == NULL) {
1144 /* Interrupts being reset */
1145 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1146 if (ring->mr_prh != NULL) {
1147 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1148 return;
1149 }
1150 } else {
1151 /* New interrupt handle */
1152 mac_compare_ddi_handle(mip->mi_rx_groups,
1153 mip->mi_rx_group_count, ring);
1154 if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1155 mac_compare_ddi_handle(mip->mi_tx_groups,
1156 mip->mi_tx_group_count, ring);
1157 }
1158 if (ring->mr_prh != NULL) {
1159 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1160 return;
1161 } else {
1162 mac_ring_intr_retarget(group, ring);
1163 }
1164 }
1165 i_mac_perim_exit(mip);
1166 }
1167
1168 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1169
1170 /*
1171 * Updates the mac_impl structure with the current state of the link
1172 */
1173 static void
1174 i_mac_log_link_state(mac_impl_t *mip)
1175 {
1176 /*
1177 * If no change, then it is not interesting.
1178 */
1179 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1180 return;
1181
1182 switch (mip->mi_lowlinkstate) {
1183 case LINK_STATE_UP:
1184 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1185 char det[200];
1186
1187 mip->mi_type->mt_ops.mtops_link_details(det,
1188 sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1189
1190 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1191 } else {
1192 cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1193 }
1194 break;
1195
1196 case LINK_STATE_DOWN:
1197 /*
1198 * Only transitions from UP to DOWN are interesting
1199 */
1200 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1201 cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1202 break;
1203
1204 case LINK_STATE_UNKNOWN:
1205 /*
1206 * This case is normally not interesting.
1207 */
1208 break;
1209 }
1210 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1211 }
1212
1213 /*
1214 * Main routine for the callbacks notifications thread
1215 */
1216 static void
1217 i_mac_notify_thread(void *arg)
1218 {
1219 mac_impl_t *mip = arg;
1220 callb_cpr_t cprinfo;
1221 mac_cb_t *mcb;
1222 mac_cb_info_t *mcbi;
1223 mac_notify_cb_t *mncb;
1224
1225 mcbi = &mip->mi_notify_cb_info;
1226 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1227 "i_mac_notify_thread");
1228
1229 mutex_enter(mcbi->mcbi_lockp);
1230
1231 for (;;) {
1232 uint32_t bits;
1233 uint32_t type;
1234
1235 bits = mip->mi_notify_bits;
1236 if (bits == 0) {
1237 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1238 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1239 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1240 continue;
1241 }
1242 mip->mi_notify_bits = 0;
1243 if ((bits & (1 << MAC_NNOTE)) != 0) {
1244 /* request to quit */
1245 ASSERT(mip->mi_state_flags & MIS_DISABLED);
1246 break;
1247 }
1248
1249 mutex_exit(mcbi->mcbi_lockp);
1250
1251 /*
1252 * Log link changes on the actual link, but then do reports on
1253 * synthetic state (if part of a bridge).
1254 */
1255 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1256 link_state_t newstate;
1257 mac_handle_t mh;
1258
1259 i_mac_log_link_state(mip);
1260 newstate = mip->mi_lowlinkstate;
1261 if (mip->mi_bridge_link != NULL) {
1262 mutex_enter(&mip->mi_bridge_lock);
1263 if ((mh = mip->mi_bridge_link) != NULL) {
1264 newstate = mac_bridge_ls_cb(mh,
1265 newstate);
1266 }
1267 mutex_exit(&mip->mi_bridge_lock);
1268 }
1269 if (newstate != mip->mi_linkstate) {
1270 mip->mi_linkstate = newstate;
1271 bits |= 1 << MAC_NOTE_LINK;
1272 }
1273 }
1274
1275 /*
1276 * Do notification callbacks for each notification type.
1277 */
1278 for (type = 0; type < MAC_NNOTE; type++) {
1279 if ((bits & (1 << type)) == 0) {
1280 continue;
1281 }
1282
1283 if (mac_notify_cb_list[type] != NULL)
1284 (*mac_notify_cb_list[type])(mip);
1285
1286 /*
1287 * Walk the list of notifications.
1288 */
1289 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1290 for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1291 mcb = mcb->mcb_nextp) {
1292 mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1293 mncb->mncb_fn(mncb->mncb_arg, type);
1294 }
1295 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1296 &mip->mi_notify_cb_list);
1297 }
1298
1299 mutex_enter(mcbi->mcbi_lockp);
1300 }
1301
1302 mip->mi_state_flags |= MIS_NOTIFY_DONE;
1303 cv_broadcast(&mcbi->mcbi_cv);
1304
1305 /* CALLB_CPR_EXIT drops the lock */
1306 CALLB_CPR_EXIT(&cprinfo);
1307 thread_exit();
1308 }
1309
1310 /*
1311 * Signal the i_mac_notify_thread asking it to quit.
1312 * Then wait till it is done.
1313 */
1314 void
1315 i_mac_notify_exit(mac_impl_t *mip)
1316 {
1317 mac_cb_info_t *mcbi;
1318
1319 mcbi = &mip->mi_notify_cb_info;
1320
1321 mutex_enter(mcbi->mcbi_lockp);
1322 mip->mi_notify_bits = (1 << MAC_NNOTE);
1323 cv_broadcast(&mcbi->mcbi_cv);
1324
1325
1326 while ((mip->mi_notify_thread != NULL) &&
1327 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1328 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1329 }
1330
1331 /* Necessary clean up before doing kmem_cache_free */
1332 mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1333 mip->mi_notify_bits = 0;
1334 mip->mi_notify_thread = NULL;
1335 mutex_exit(mcbi->mcbi_lockp);
1336 }
1337
1338 /*
1339 * Entry point invoked by drivers to dynamically add a ring to an
1340 * existing group.
1341 */
1342 int
1343 mac_group_add_ring(mac_group_handle_t gh, int index)
1344 {
1345 mac_group_t *group = (mac_group_t *)gh;
1346 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1347 int ret;
1348
1349 i_mac_perim_enter(mip);
1350 ret = i_mac_group_add_ring(group, NULL, index);
1351 i_mac_perim_exit(mip);
1352 return (ret);
1353 }
1354
1355 /*
1356 * Entry point invoked by drivers to dynamically remove a ring
1357 * from an existing group. The specified ring handle must no longer
1358 * be used by the driver after a call to this function.
1359 */
1360 void
1361 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1362 {
1363 mac_group_t *group = (mac_group_t *)gh;
1364 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1365
1366 i_mac_perim_enter(mip);
1367 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1368 i_mac_perim_exit(mip);
1369 }
1370
1371 /*
1372 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1373 * entry points.
1374 */
1375
1376 void
1377 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1378 {
1379 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1380
1381 /* nothing to do if the caller doesn't want the default value */
1382 if (pr->pr_default == NULL)
1383 return;
1384
1385 ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1386
1387 *(uint8_t *)(pr->pr_default) = val;
1388 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1389 }
1390
1391 void
1392 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1393 {
1394 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1395
1396 /* nothing to do if the caller doesn't want the default value */
1397 if (pr->pr_default == NULL)
1398 return;
1399
1400 ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1401
1402 bcopy(&val, pr->pr_default, sizeof (val));
1403
1404 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1405 }
1406
1407 void
1408 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1409 {
1410 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1411
1412 /* nothing to do if the caller doesn't want the default value */
1413 if (pr->pr_default == NULL)
1414 return;
1415
1416 ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1417
1418 bcopy(&val, pr->pr_default, sizeof (val));
1419
1420 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1421 }
1422
1423 void
1424 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1425 {
1426 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1427
1428 /* nothing to do if the caller doesn't want the default value */
1429 if (pr->pr_default == NULL)
1430 return;
1431
1432 if (strlen(str) >= pr->pr_default_size)
1433 pr->pr_errno = ENOBUFS;
1434 else
1435 (void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1436 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1437 }
1438
1439 void
1440 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1441 link_flowctrl_t val)
1442 {
1443 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1444
1445 /* nothing to do if the caller doesn't want the default value */
1446 if (pr->pr_default == NULL)
1447 return;
1448
1449 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1450
1451 bcopy(&val, pr->pr_default, sizeof (val));
1452
1453 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1454 }
1455
1456 void
1457 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1458 uint32_t max)
1459 {
1460 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1461 mac_propval_range_t *range = pr->pr_range;
1462 mac_propval_uint32_range_t *range32;
1463
1464 /* nothing to do if the caller doesn't want the range info */
1465 if (range == NULL)
1466 return;
1467
1468 if (pr->pr_range_cur_count++ == 0) {
1469 /* first range */
1470 pr->pr_flags |= MAC_PROP_INFO_RANGE;
1471 range->mpr_type = MAC_PROPVAL_UINT32;
1472 } else {
1473 /* all ranges of a property should be of the same type */
1474 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1475 if (pr->pr_range_cur_count > range->mpr_count) {
1476 pr->pr_errno = ENOSPC;
1477 return;
1478 }
1479 }
1480
1481 range32 = range->mpr_range_uint32;
1482 range32[pr->pr_range_cur_count - 1].mpur_min = min;
1483 range32[pr->pr_range_cur_count - 1].mpur_max = max;
1484 }
1485
1486 void
1487 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1488 {
1489 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1490
1491 pr->pr_perm = perm;
1492 pr->pr_flags |= MAC_PROP_INFO_PERM;
1493 }
1494
1495 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff,
1496 uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1497 {
1498 uint32_t flags;
1499
1500 ASSERT(DB_TYPE(mp) == M_DATA);
1501
1502 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1503 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1504 if (value != NULL)
1505 *value = (uint32_t)DB_CKSUM16(mp);
1506 if ((flags & HCK_PARTIALCKSUM) != 0) {
1507 if (start != NULL)
1508 *start = (uint32_t)DB_CKSUMSTART(mp);
1509 if (stuff != NULL)
1510 *stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1511 if (end != NULL)
1512 *end = (uint32_t)DB_CKSUMEND(mp);
1513 }
1514 }
1515
1516 if (flags_ptr != NULL)
1517 *flags_ptr = flags;
1518 }
1519
1520 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff,
1521 uint32_t end, uint32_t value, uint32_t flags)
1522 {
1523 ASSERT(DB_TYPE(mp) == M_DATA);
1524
1525 DB_CKSUMSTART(mp) = (intptr_t)start;
1526 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1527 DB_CKSUMEND(mp) = (intptr_t)end;
1528 DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1529 DB_CKSUM16(mp) = (uint16_t)value;
1530 }
1531
1532 void
1533 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1534 {
1535 ASSERT(DB_TYPE(mp) == M_DATA);
1536
1537 if (flags != NULL) {
1538 *flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1539 if ((*flags != 0) && (mss != NULL))
1540 *mss = (uint32_t)DB_LSOMSS(mp);
1541 }
1542 }
1543
1544 void
1545 mac_transceiver_info_set_present(mac_transceiver_info_t *infop,
1546 boolean_t present)
1547 {
1548 infop->mti_present = present;
1549 }
1550
1551 void
1552 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop,
1553 boolean_t usable)
1554 {
1555 infop->mti_usable = usable;
1556 }