1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/conf.h> 30 #include <sys/id_space.h> 31 #include <sys/esunddi.h> 32 #include <sys/stat.h> 33 #include <sys/mkdev.h> 34 #include <sys/stream.h> 35 #include <sys/strsubr.h> 36 #include <sys/dlpi.h> 37 #include <sys/modhash.h> 38 #include <sys/mac.h> 39 #include <sys/mac_provider.h> 40 #include <sys/mac_impl.h> 41 #include <sys/mac_client_impl.h> 42 #include <sys/mac_client_priv.h> 43 #include <sys/mac_soft_ring.h> 44 #include <sys/mac_stat.h> 45 #include <sys/dld.h> 46 #include <sys/modctl.h> 47 #include <sys/fs/dv_node.h> 48 #include <sys/thread.h> 49 #include <sys/proc.h> 50 #include <sys/callb.h> 51 #include <sys/cpuvar.h> 52 #include <sys/atomic.h> 53 #include <sys/sdt.h> 54 #include <sys/mac_flow.h> 55 #include <sys/ddi_intr_impl.h> 56 #include <sys/disp.h> 57 #include <sys/sdt.h> 58 #include <sys/pattr.h> 59 #include <sys/strsun.h> 60 #include <sys/vlan.h> 61 62 /* 63 * MAC Provider Interface. 64 * 65 * Interface for GLDv3 compatible NIC drivers. 66 */ 67 68 static void i_mac_notify_thread(void *); 69 70 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *); 71 72 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = { 73 mac_fanout_recompute, /* MAC_NOTE_LINK */ 74 NULL, /* MAC_NOTE_UNICST */ 75 NULL, /* MAC_NOTE_TX */ 76 NULL, /* MAC_NOTE_DEVPROMISC */ 77 NULL, /* MAC_NOTE_FASTPATH_FLUSH */ 78 NULL, /* MAC_NOTE_SDU_SIZE */ 79 NULL, /* MAC_NOTE_MARGIN */ 80 NULL, /* MAC_NOTE_CAPAB_CHG */ 81 NULL /* MAC_NOTE_LOWLINK */ 82 }; 83 84 /* 85 * Driver support functions. 86 */ 87 88 /* REGISTRATION */ 89 90 mac_register_t * 91 mac_alloc(uint_t mac_version) 92 { 93 mac_register_t *mregp; 94 95 /* 96 * Make sure there isn't a version mismatch between the driver and 97 * the framework. In the future, if multiple versions are 98 * supported, this check could become more sophisticated. 99 */ 100 if (mac_version != MAC_VERSION) 101 return (NULL); 102 103 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP); 104 mregp->m_version = mac_version; 105 return (mregp); 106 } 107 108 void 109 mac_free(mac_register_t *mregp) 110 { 111 kmem_free(mregp, sizeof (mac_register_t)); 112 } 113 114 /* 115 * mac_register() is how drivers register new MACs with the GLDv3 116 * framework. The mregp argument is allocated by drivers using the 117 * mac_alloc() function, and can be freed using mac_free() immediately upon 118 * return from mac_register(). Upon success (0 return value), the mhp 119 * opaque pointer becomes the driver's handle to its MAC interface, and is 120 * the argument to all other mac module entry points. 121 */ 122 /* ARGSUSED */ 123 int 124 mac_register(mac_register_t *mregp, mac_handle_t *mhp) 125 { 126 mac_impl_t *mip; 127 mactype_t *mtype; 128 int err = EINVAL; 129 struct devnames *dnp = NULL; 130 uint_t instance; 131 boolean_t style1_created = B_FALSE; 132 boolean_t style2_created = B_FALSE; 133 char *driver; 134 minor_t minor = 0; 135 136 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */ 137 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip))) 138 return (EINVAL); 139 140 /* Find the required MAC-Type plugin. */ 141 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL) 142 return (EINVAL); 143 144 /* Create a mac_impl_t to represent this MAC. */ 145 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP); 146 147 /* 148 * The mac is not ready for open yet. 149 */ 150 mip->mi_state_flags |= MIS_DISABLED; 151 152 /* 153 * When a mac is registered, the m_instance field can be set to: 154 * 155 * 0: Get the mac's instance number from m_dip. 156 * This is usually used for physical device dips. 157 * 158 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number. 159 * For example, when an aggregation is created with the key option, 160 * "key" will be used as the instance number. 161 * 162 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1]. 163 * This is often used when a MAC of a virtual link is registered 164 * (e.g., aggregation when "key" is not specified, or vnic). 165 * 166 * Note that the instance number is used to derive the mi_minor field 167 * of mac_impl_t, which will then be used to derive the name of kstats 168 * and the devfs nodes. The first 2 cases are needed to preserve 169 * backward compatibility. 170 */ 171 switch (mregp->m_instance) { 172 case 0: 173 instance = ddi_get_instance(mregp->m_dip); 174 break; 175 case ((uint_t)-1): 176 minor = mac_minor_hold(B_TRUE); 177 if (minor == 0) { 178 err = ENOSPC; 179 goto fail; 180 } 181 instance = minor - 1; 182 break; 183 default: 184 instance = mregp->m_instance; 185 if (instance >= MAC_MAX_MINOR) { 186 err = EINVAL; 187 goto fail; 188 } 189 break; 190 } 191 192 mip->mi_minor = (minor_t)(instance + 1); 193 mip->mi_dip = mregp->m_dip; 194 mip->mi_clients_list = NULL; 195 mip->mi_nclients = 0; 196 197 /* Set the default IEEE Port VLAN Identifier */ 198 mip->mi_pvid = 1; 199 200 /* Default bridge link learning protection values */ 201 mip->mi_llimit = 1000; 202 mip->mi_ldecay = 200; 203 204 driver = (char *)ddi_driver_name(mip->mi_dip); 205 206 /* Construct the MAC name as <drvname><instance> */ 207 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d", 208 driver, instance); 209 210 mip->mi_driver = mregp->m_driver; 211 212 mip->mi_type = mtype; 213 mip->mi_margin = mregp->m_margin; 214 mip->mi_info.mi_media = mtype->mt_type; 215 mip->mi_info.mi_nativemedia = mtype->mt_nativetype; 216 if (mregp->m_max_sdu <= mregp->m_min_sdu) 217 goto fail; 218 if (mregp->m_multicast_sdu == 0) 219 mregp->m_multicast_sdu = mregp->m_max_sdu; 220 if (mregp->m_multicast_sdu < mregp->m_min_sdu || 221 mregp->m_multicast_sdu > mregp->m_max_sdu) 222 goto fail; 223 mip->mi_sdu_min = mregp->m_min_sdu; 224 mip->mi_sdu_max = mregp->m_max_sdu; 225 mip->mi_sdu_multicast = mregp->m_multicast_sdu; 226 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length; 227 /* 228 * If the media supports a broadcast address, cache a pointer to it 229 * in the mac_info_t so that upper layers can use it. 230 */ 231 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr; 232 233 mip->mi_v12n_level = mregp->m_v12n; 234 235 /* 236 * Copy the unicast source address into the mac_info_t, but only if 237 * the MAC-Type defines a non-zero address length. We need to 238 * handle MAC-Types that have an address length of 0 239 * (point-to-point protocol MACs for example). 240 */ 241 if (mip->mi_type->mt_addr_length > 0) { 242 if (mregp->m_src_addr == NULL) 243 goto fail; 244 mip->mi_info.mi_unicst_addr = 245 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP); 246 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr, 247 mip->mi_type->mt_addr_length); 248 249 /* 250 * Copy the fixed 'factory' MAC address from the immutable 251 * info. This is taken to be the MAC address currently in 252 * use. 253 */ 254 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr, 255 mip->mi_type->mt_addr_length); 256 257 /* 258 * At this point, we should set up the classification 259 * rules etc but we delay it till mac_open() so that 260 * the resource discovery has taken place and we 261 * know someone wants to use the device. Otherwise 262 * memory gets allocated for Rx ring structures even 263 * during probe. 264 */ 265 266 /* Copy the destination address if one is provided. */ 267 if (mregp->m_dst_addr != NULL) { 268 bcopy(mregp->m_dst_addr, mip->mi_dstaddr, 269 mip->mi_type->mt_addr_length); 270 mip->mi_dstaddr_set = B_TRUE; 271 } 272 } else if (mregp->m_src_addr != NULL) { 273 goto fail; 274 } 275 276 /* 277 * The format of the m_pdata is specific to the plugin. It is 278 * passed in as an argument to all of the plugin callbacks. The 279 * driver can update this information by calling 280 * mac_pdata_update(). 281 */ 282 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) { 283 /* 284 * Verify if the supplied plugin data is valid. Note that 285 * even if the caller passed in a NULL pointer as plugin data, 286 * we still need to verify if that's valid as the plugin may 287 * require plugin data to function. 288 */ 289 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata, 290 mregp->m_pdata_size)) { 291 goto fail; 292 } 293 if (mregp->m_pdata != NULL) { 294 mip->mi_pdata = 295 kmem_alloc(mregp->m_pdata_size, KM_SLEEP); 296 bcopy(mregp->m_pdata, mip->mi_pdata, 297 mregp->m_pdata_size); 298 mip->mi_pdata_size = mregp->m_pdata_size; 299 } 300 } else if (mregp->m_pdata != NULL) { 301 /* 302 * The caller supplied non-NULL plugin data, but the plugin 303 * does not recognize plugin data. 304 */ 305 err = EINVAL; 306 goto fail; 307 } 308 309 /* 310 * Register the private properties. 311 */ 312 mac_register_priv_prop(mip, mregp->m_priv_props); 313 314 /* 315 * Stash the driver callbacks into the mac_impl_t, but first sanity 316 * check to make sure all mandatory callbacks are set. 317 */ 318 if (mregp->m_callbacks->mc_getstat == NULL || 319 mregp->m_callbacks->mc_start == NULL || 320 mregp->m_callbacks->mc_stop == NULL || 321 mregp->m_callbacks->mc_setpromisc == NULL || 322 mregp->m_callbacks->mc_multicst == NULL) { 323 goto fail; 324 } 325 mip->mi_callbacks = mregp->m_callbacks; 326 327 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY, 328 &mip->mi_capab_legacy)) { 329 mip->mi_state_flags |= MIS_LEGACY; 330 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev; 331 } else { 332 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip), 333 mip->mi_minor); 334 } 335 336 /* 337 * Allocate a notification thread. thread_create blocks for memory 338 * if needed, it never fails. 339 */ 340 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread, 341 mip, 0, &p0, TS_RUN, minclsyspri); 342 343 /* 344 * Initialize the capabilities 345 */ 346 347 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t)); 348 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t)); 349 350 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL)) 351 mip->mi_state_flags |= MIS_IS_VNIC; 352 353 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL)) 354 mip->mi_state_flags |= MIS_IS_AGGR; 355 356 mac_addr_factory_init(mip); 357 358 mac_transceiver_init(mip); 359 360 mac_led_init(mip); 361 362 /* 363 * Enforce the virtrualization level registered. 364 */ 365 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) { 366 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 || 367 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0) 368 goto fail; 369 370 /* 371 * The driver needs to register at least rx rings for this 372 * virtualization level. 373 */ 374 if (mip->mi_rx_groups == NULL) 375 goto fail; 376 } 377 378 /* 379 * The driver must set mc_unicst entry point to NULL when it advertises 380 * CAP_RINGS for rx groups. 381 */ 382 if (mip->mi_rx_groups != NULL) { 383 if (mregp->m_callbacks->mc_unicst != NULL) 384 goto fail; 385 } else { 386 if (mregp->m_callbacks->mc_unicst == NULL) 387 goto fail; 388 } 389 390 /* 391 * Initialize MAC addresses. Must be called after mac_init_rings(). 392 */ 393 mac_init_macaddr(mip); 394 395 mip->mi_share_capab.ms_snum = 0; 396 if (mip->mi_v12n_level & MAC_VIRT_HIO) { 397 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES, 398 &mip->mi_share_capab); 399 } 400 401 /* 402 * Initialize the kstats for this device. 403 */ 404 mac_driver_stat_create(mip); 405 406 /* Zero out any properties. */ 407 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t)); 408 409 if (mip->mi_minor <= MAC_MAX_MINOR) { 410 /* Create a style-2 DLPI device */ 411 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0, 412 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS) 413 goto fail; 414 style2_created = B_TRUE; 415 416 /* Create a style-1 DLPI device */ 417 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR, 418 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS) 419 goto fail; 420 style1_created = B_TRUE; 421 } 422 423 mac_flow_l2tab_create(mip, &mip->mi_flow_tab); 424 425 rw_enter(&i_mac_impl_lock, RW_WRITER); 426 if (mod_hash_insert(i_mac_impl_hash, 427 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) { 428 rw_exit(&i_mac_impl_lock); 429 err = EEXIST; 430 goto fail; 431 } 432 433 DTRACE_PROBE2(mac__register, struct devnames *, dnp, 434 (mac_impl_t *), mip); 435 436 /* 437 * Mark the MAC to be ready for open. 438 */ 439 mip->mi_state_flags &= ~MIS_DISABLED; 440 rw_exit(&i_mac_impl_lock); 441 442 atomic_inc_32(&i_mac_impl_count); 443 444 cmn_err(CE_NOTE, "!%s registered", mip->mi_name); 445 *mhp = (mac_handle_t)mip; 446 return (0); 447 448 fail: 449 if (style1_created) 450 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 451 452 if (style2_created) 453 ddi_remove_minor_node(mip->mi_dip, driver); 454 455 mac_addr_factory_fini(mip); 456 457 /* Clean up registered MAC addresses */ 458 mac_fini_macaddr(mip); 459 460 /* Clean up registered rings */ 461 mac_free_rings(mip, MAC_RING_TYPE_RX); 462 mac_free_rings(mip, MAC_RING_TYPE_TX); 463 464 /* Clean up notification thread */ 465 if (mip->mi_notify_thread != NULL) 466 i_mac_notify_exit(mip); 467 468 if (mip->mi_info.mi_unicst_addr != NULL) { 469 kmem_free(mip->mi_info.mi_unicst_addr, 470 mip->mi_type->mt_addr_length); 471 mip->mi_info.mi_unicst_addr = NULL; 472 } 473 474 mac_driver_stat_delete(mip); 475 476 if (mip->mi_type != NULL) { 477 atomic_dec_32(&mip->mi_type->mt_ref); 478 mip->mi_type = NULL; 479 } 480 481 if (mip->mi_pdata != NULL) { 482 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 483 mip->mi_pdata = NULL; 484 mip->mi_pdata_size = 0; 485 } 486 487 if (minor != 0) { 488 ASSERT(minor > MAC_MAX_MINOR); 489 mac_minor_rele(minor); 490 } 491 492 mip->mi_state_flags = 0; 493 mac_unregister_priv_prop(mip); 494 495 /* 496 * Clear the state before destroying the mac_impl_t 497 */ 498 mip->mi_state_flags = 0; 499 500 kmem_cache_free(i_mac_impl_cachep, mip); 501 return (err); 502 } 503 504 /* 505 * Unregister from the GLDv3 framework 506 */ 507 int 508 mac_unregister(mac_handle_t mh) 509 { 510 int err; 511 mac_impl_t *mip = (mac_impl_t *)mh; 512 mod_hash_val_t val; 513 mac_margin_req_t *mmr, *nextmmr; 514 515 /* Fail the unregister if there are any open references to this mac. */ 516 if ((err = mac_disable_nowait(mh)) != 0) 517 return (err); 518 519 /* 520 * Clean up notification thread and wait for it to exit. 521 */ 522 i_mac_notify_exit(mip); 523 524 /* 525 * Prior to acquiring the MAC perimeter, remove the MAC instance from 526 * the internal hash table. Such removal means table-walkers that 527 * acquire the perimeter will not do so on behalf of what we are 528 * unregistering, which prevents a deadlock. 529 */ 530 rw_enter(&i_mac_impl_lock, RW_WRITER); 531 (void) mod_hash_remove(i_mac_impl_hash, 532 (mod_hash_key_t)mip->mi_name, &val); 533 rw_exit(&i_mac_impl_lock); 534 ASSERT(mip == (mac_impl_t *)val); 535 536 i_mac_perim_enter(mip); 537 538 /* 539 * There is still resource properties configured over this mac. 540 */ 541 if (mip->mi_resource_props.mrp_mask != 0) 542 mac_fastpath_enable((mac_handle_t)mip); 543 544 if (mip->mi_minor < MAC_MAX_MINOR + 1) { 545 ddi_remove_minor_node(mip->mi_dip, mip->mi_name); 546 ddi_remove_minor_node(mip->mi_dip, 547 (char *)ddi_driver_name(mip->mi_dip)); 548 } 549 550 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & 551 MIS_EXCLUSIVE)); 552 553 mac_driver_stat_delete(mip); 554 555 ASSERT(i_mac_impl_count > 0); 556 atomic_dec_32(&i_mac_impl_count); 557 558 if (mip->mi_pdata != NULL) 559 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 560 mip->mi_pdata = NULL; 561 mip->mi_pdata_size = 0; 562 563 /* 564 * Free the list of margin request. 565 */ 566 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) { 567 nextmmr = mmr->mmr_nextp; 568 kmem_free(mmr, sizeof (mac_margin_req_t)); 569 } 570 mip->mi_mmrp = NULL; 571 572 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN; 573 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length); 574 mip->mi_info.mi_unicst_addr = NULL; 575 576 atomic_dec_32(&mip->mi_type->mt_ref); 577 mip->mi_type = NULL; 578 579 /* 580 * Free the primary MAC address. 581 */ 582 mac_fini_macaddr(mip); 583 584 /* 585 * free all rings 586 */ 587 mac_free_rings(mip, MAC_RING_TYPE_RX); 588 mac_free_rings(mip, MAC_RING_TYPE_TX); 589 590 mac_addr_factory_fini(mip); 591 592 bzero(mip->mi_addr, MAXMACADDRLEN); 593 bzero(mip->mi_dstaddr, MAXMACADDRLEN); 594 mip->mi_dstaddr_set = B_FALSE; 595 596 /* and the flows */ 597 mac_flow_tab_destroy(mip->mi_flow_tab); 598 mip->mi_flow_tab = NULL; 599 600 if (mip->mi_minor > MAC_MAX_MINOR) 601 mac_minor_rele(mip->mi_minor); 602 603 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name); 604 605 /* 606 * Reset the perim related fields to default values before 607 * kmem_cache_free 608 */ 609 i_mac_perim_exit(mip); 610 mip->mi_state_flags = 0; 611 612 mac_unregister_priv_prop(mip); 613 614 ASSERT(mip->mi_bridge_link == NULL); 615 kmem_cache_free(i_mac_impl_cachep, mip); 616 617 return (0); 618 } 619 620 /* DATA RECEPTION */ 621 622 /* 623 * This function is invoked for packets received by the MAC driver in 624 * interrupt context. The ring generation number provided by the driver 625 * is matched with the ring generation number held in MAC. If they do not 626 * match, received packets are considered stale packets coming from an older 627 * assignment of the ring. Drop them. 628 */ 629 void 630 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, 631 uint64_t mr_gen_num) 632 { 633 mac_ring_t *mr = (mac_ring_t *)mrh; 634 635 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) { 636 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t, 637 mr->mr_gen_num, uint64_t, mr_gen_num); 638 freemsgchain(mp_chain); 639 return; 640 } 641 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain); 642 } 643 644 /* 645 * This function is invoked for each packet received by the underlying driver. 646 */ 647 void 648 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 649 { 650 mac_impl_t *mip = (mac_impl_t *)mh; 651 652 /* 653 * Check if the link is part of a bridge. If not, then we don't need 654 * to take the lock to remain consistent. Make this common case 655 * lock-free and tail-call optimized. 656 */ 657 if (mip->mi_bridge_link == NULL) { 658 mac_rx_common(mh, mrh, mp_chain); 659 } else { 660 /* 661 * Once we take a reference on the bridge link, the bridge 662 * module itself can't unload, so the callback pointers are 663 * stable. 664 */ 665 mutex_enter(&mip->mi_bridge_lock); 666 if ((mh = mip->mi_bridge_link) != NULL) 667 mac_bridge_ref_cb(mh, B_TRUE); 668 mutex_exit(&mip->mi_bridge_lock); 669 if (mh == NULL) { 670 mac_rx_common((mac_handle_t)mip, mrh, mp_chain); 671 } else { 672 mac_bridge_rx_cb(mh, mrh, mp_chain); 673 mac_bridge_ref_cb(mh, B_FALSE); 674 } 675 } 676 } 677 678 /* 679 * Special case function: this allows snooping of packets transmitted and 680 * received by TRILL. By design, they go directly into the TRILL module. 681 */ 682 void 683 mac_trill_snoop(mac_handle_t mh, mblk_t *mp) 684 { 685 mac_impl_t *mip = (mac_impl_t *)mh; 686 687 if (mip->mi_promisc_list != NULL) 688 mac_promisc_dispatch(mip, mp, NULL); 689 } 690 691 /* 692 * This is the upward reentry point for packets arriving from the bridging 693 * module and from mac_rx for links not part of a bridge. 694 */ 695 void 696 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 697 { 698 mac_impl_t *mip = (mac_impl_t *)mh; 699 mac_ring_t *mr = (mac_ring_t *)mrh; 700 mac_soft_ring_set_t *mac_srs; 701 mblk_t *bp = mp_chain; 702 703 /* 704 * If there are any promiscuous mode callbacks defined for 705 * this MAC, pass them a copy if appropriate. 706 */ 707 if (mip->mi_promisc_list != NULL) 708 mac_promisc_dispatch(mip, mp_chain, NULL); 709 710 if (mr != NULL) { 711 /* 712 * If the SRS teardown has started, just return. The 'mr' 713 * continues to be valid until the driver unregisters the MAC. 714 * Hardware classified packets will not make their way up 715 * beyond this point once the teardown has started. The driver 716 * is never passed a pointer to a flow entry or SRS or any 717 * structure that can be freed much before mac_unregister. 718 */ 719 mutex_enter(&mr->mr_lock); 720 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag & 721 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) { 722 mutex_exit(&mr->mr_lock); 723 freemsgchain(mp_chain); 724 return; 725 } 726 727 /* 728 * The ring is in passthru mode; pass the chain up to 729 * the pseudo ring. 730 */ 731 if (mr->mr_classify_type == MAC_PASSTHRU_CLASSIFIER) { 732 MR_REFHOLD_LOCKED(mr); 733 mutex_exit(&mr->mr_lock); 734 mr->mr_pt_fn(mr->mr_pt_arg1, mr->mr_pt_arg2, mp_chain, 735 B_FALSE); 736 MR_REFRELE(mr); 737 return; 738 } 739 740 /* 741 * The passthru callback should only be set when in 742 * MAC_PASSTHRU_CLASSIFIER mode. 743 */ 744 ASSERT3P(mr->mr_pt_fn, ==, NULL); 745 746 /* 747 * We check if an SRS is controlling this ring. 748 * If so, we can directly call the srs_lower_proc 749 * routine otherwise we need to go through mac_rx_classify 750 * to reach the right place. 751 */ 752 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) { 753 MR_REFHOLD_LOCKED(mr); 754 mutex_exit(&mr->mr_lock); 755 ASSERT3P(mr->mr_srs, !=, NULL); 756 mac_srs = mr->mr_srs; 757 758 /* 759 * This is the fast path. All packets received 760 * on this ring are hardware classified and 761 * share the same MAC header info. 762 */ 763 mac_srs->srs_rx.sr_lower_proc(mh, 764 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE); 765 MR_REFRELE(mr); 766 return; 767 } 768 769 mutex_exit(&mr->mr_lock); 770 /* We'll fall through to software classification */ 771 } else { 772 flow_entry_t *flent; 773 int err; 774 775 rw_enter(&mip->mi_rw_lock, RW_READER); 776 if (mip->mi_single_active_client != NULL) { 777 flent = mip->mi_single_active_client->mci_flent_list; 778 FLOW_TRY_REFHOLD(flent, err); 779 rw_exit(&mip->mi_rw_lock); 780 if (err == 0) { 781 (flent->fe_cb_fn)(flent->fe_cb_arg1, 782 flent->fe_cb_arg2, mp_chain, B_FALSE); 783 FLOW_REFRELE(flent); 784 return; 785 } 786 } else { 787 rw_exit(&mip->mi_rw_lock); 788 } 789 } 790 791 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) { 792 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL) 793 return; 794 } 795 796 freemsgchain(bp); 797 } 798 799 /* DATA TRANSMISSION */ 800 801 /* 802 * A driver's notification to resume transmission, in case of a provider 803 * without TX rings. 804 */ 805 void 806 mac_tx_update(mac_handle_t mh) 807 { 808 mac_tx_ring_update(mh, NULL); 809 } 810 811 /* 812 * A driver's notification to resume transmission on the specified TX ring. 813 */ 814 void 815 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh) 816 { 817 i_mac_tx_srs_notify((mac_impl_t *)mh, rh); 818 } 819 820 /* LINK STATE */ 821 /* 822 * Notify the MAC layer about a link state change 823 */ 824 void 825 mac_link_update(mac_handle_t mh, link_state_t link) 826 { 827 mac_impl_t *mip = (mac_impl_t *)mh; 828 829 /* 830 * Save the link state. 831 */ 832 mip->mi_lowlinkstate = link; 833 834 /* 835 * Send a MAC_NOTE_LOWLINK notification. This tells the notification 836 * thread to deliver both lower and upper notifications. 837 */ 838 i_mac_notify(mip, MAC_NOTE_LOWLINK); 839 } 840 841 /* 842 * Notify the MAC layer about a link state change due to bridging. 843 */ 844 void 845 mac_link_redo(mac_handle_t mh, link_state_t link) 846 { 847 mac_impl_t *mip = (mac_impl_t *)mh; 848 849 /* 850 * Save the link state. 851 */ 852 mip->mi_linkstate = link; 853 854 /* 855 * Send a MAC_NOTE_LINK notification. Only upper notifications are 856 * made. 857 */ 858 i_mac_notify(mip, MAC_NOTE_LINK); 859 } 860 861 /* MINOR NODE HANDLING */ 862 863 /* 864 * Given a dev_t, return the instance number (PPA) associated with it. 865 * Drivers can use this in their getinfo(9e) implementation to lookup 866 * the instance number (i.e. PPA) of the device, to use as an index to 867 * their own array of soft state structures. 868 * 869 * Returns -1 on error. 870 */ 871 int 872 mac_devt_to_instance(dev_t devt) 873 { 874 return (dld_devt_to_instance(devt)); 875 } 876 877 /* 878 * This function returns the first minor number that is available for 879 * driver private use. All minor numbers smaller than this are 880 * reserved for GLDv3 use. 881 */ 882 minor_t 883 mac_private_minor(void) 884 { 885 return (MAC_PRIVATE_MINOR); 886 } 887 888 /* OTHER CONTROL INFORMATION */ 889 890 /* 891 * A driver notified us that its primary MAC address has changed. 892 */ 893 void 894 mac_unicst_update(mac_handle_t mh, const uint8_t *addr) 895 { 896 mac_impl_t *mip = (mac_impl_t *)mh; 897 898 if (mip->mi_type->mt_addr_length == 0) 899 return; 900 901 i_mac_perim_enter(mip); 902 903 /* 904 * If address changes, freshen the MAC address value and update 905 * all MAC clients that share this MAC address. 906 */ 907 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) { 908 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr), 909 (uint8_t *)addr); 910 } 911 912 i_mac_perim_exit(mip); 913 914 /* 915 * Send a MAC_NOTE_UNICST notification. 916 */ 917 i_mac_notify(mip, MAC_NOTE_UNICST); 918 } 919 920 void 921 mac_dst_update(mac_handle_t mh, const uint8_t *addr) 922 { 923 mac_impl_t *mip = (mac_impl_t *)mh; 924 925 if (mip->mi_type->mt_addr_length == 0) 926 return; 927 928 i_mac_perim_enter(mip); 929 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length); 930 i_mac_perim_exit(mip); 931 i_mac_notify(mip, MAC_NOTE_DEST); 932 } 933 934 /* 935 * MAC plugin information changed. 936 */ 937 int 938 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize) 939 { 940 mac_impl_t *mip = (mac_impl_t *)mh; 941 942 /* 943 * Verify that the plugin supports MAC plugin data and that the 944 * supplied data is valid. 945 */ 946 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY)) 947 return (EINVAL); 948 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize)) 949 return (EINVAL); 950 951 if (mip->mi_pdata != NULL) 952 kmem_free(mip->mi_pdata, mip->mi_pdata_size); 953 954 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP); 955 bcopy(mac_pdata, mip->mi_pdata, dsize); 956 mip->mi_pdata_size = dsize; 957 958 /* 959 * Since the MAC plugin data is used to construct MAC headers that 960 * were cached in fast-path headers, we need to flush fast-path 961 * information for links associated with this mac. 962 */ 963 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH); 964 return (0); 965 } 966 967 /* 968 * Invoked by driver as well as the framework to notify its capability change. 969 */ 970 void 971 mac_capab_update(mac_handle_t mh) 972 { 973 /* Send MAC_NOTE_CAPAB_CHG notification */ 974 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG); 975 } 976 977 /* 978 * Used by normal drivers to update the max sdu size. 979 * We need to handle the case of a smaller mi_sdu_multicast 980 * since this is called by mac_set_mtu() even for drivers that 981 * have differing unicast and multicast mtu and we don't want to 982 * increase the multicast mtu by accident in that case. 983 */ 984 int 985 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max) 986 { 987 mac_impl_t *mip = (mac_impl_t *)mh; 988 989 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 990 return (EINVAL); 991 mip->mi_sdu_max = sdu_max; 992 if (mip->mi_sdu_multicast > mip->mi_sdu_max) 993 mip->mi_sdu_multicast = mip->mi_sdu_max; 994 995 /* Send a MAC_NOTE_SDU_SIZE notification. */ 996 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 997 return (0); 998 } 999 1000 /* 1001 * Version of the above function that is used by drivers that have a different 1002 * max sdu size for multicast/broadcast vs. unicast. 1003 */ 1004 int 1005 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast) 1006 { 1007 mac_impl_t *mip = (mac_impl_t *)mh; 1008 1009 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min) 1010 return (EINVAL); 1011 if (sdu_multicast == 0) 1012 sdu_multicast = sdu_max; 1013 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min) 1014 return (EINVAL); 1015 mip->mi_sdu_max = sdu_max; 1016 mip->mi_sdu_multicast = sdu_multicast; 1017 1018 /* Send a MAC_NOTE_SDU_SIZE notification. */ 1019 i_mac_notify(mip, MAC_NOTE_SDU_SIZE); 1020 return (0); 1021 } 1022 1023 static void 1024 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring) 1025 { 1026 mac_client_impl_t *mcip; 1027 flow_entry_t *flent; 1028 mac_soft_ring_set_t *mac_rx_srs; 1029 mac_cpus_t *srs_cpu; 1030 int i; 1031 1032 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) && 1033 (!ring->mr_info.mri_intr.mi_ddi_shared)) { 1034 /* interrupt can be re-targeted */ 1035 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 1036 flent = mcip->mci_flent; 1037 if (ring->mr_type == MAC_RING_TYPE_RX) { 1038 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1039 mac_rx_srs = flent->fe_rx_srs[i]; 1040 if (mac_rx_srs->srs_ring != ring) 1041 continue; 1042 srs_cpu = &mac_rx_srs->srs_cpu; 1043 mutex_enter(&cpu_lock); 1044 mac_rx_srs_retarget_intr(mac_rx_srs, 1045 srs_cpu->mc_rx_intr_cpu); 1046 mutex_exit(&cpu_lock); 1047 break; 1048 } 1049 } else { 1050 if (flent->fe_tx_srs != NULL) { 1051 mutex_enter(&cpu_lock); 1052 mac_tx_srs_retarget_intr( 1053 flent->fe_tx_srs); 1054 mutex_exit(&cpu_lock); 1055 } 1056 } 1057 } 1058 } 1059 1060 /* 1061 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to 1062 * their clients. There is a 1-1 mapping pseudo ring and the hardware 1063 * ring. ddi interrupt handles are exported from the hardware ring to 1064 * the pseudo ring. Thus when the interrupt handle changes, clients of 1065 * aggr that are using the handle need to use the new handle and 1066 * re-target their interrupts. 1067 */ 1068 static void 1069 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring, 1070 ddi_intr_handle_t ddh) 1071 { 1072 mac_ring_t *pring; 1073 mac_group_t *pgroup; 1074 mac_impl_t *pmip; 1075 char macname[MAXNAMELEN]; 1076 mac_perim_handle_t p_mph; 1077 uint64_t saved_gen_num; 1078 1079 again: 1080 pring = (mac_ring_t *)ring->mr_prh; 1081 pgroup = (mac_group_t *)pring->mr_gh; 1082 pmip = (mac_impl_t *)pgroup->mrg_mh; 1083 saved_gen_num = ring->mr_gen_num; 1084 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN); 1085 /* 1086 * We need to enter aggr's perimeter. The locking hierarchy 1087 * dictates that aggr's perimeter should be entered first 1088 * and then the port's perimeter. So drop the port's 1089 * perimeter, enter aggr's and then re-enter port's 1090 * perimeter. 1091 */ 1092 i_mac_perim_exit(mip); 1093 /* 1094 * While we know pmip is the aggr's mip, there is a 1095 * possibility that aggr could have unregistered by 1096 * the time we exit port's perimeter (mip) and 1097 * enter aggr's perimeter (pmip). To avoid that 1098 * scenario, enter aggr's perimeter using its name. 1099 */ 1100 if (mac_perim_enter_by_macname(macname, &p_mph) != 0) 1101 return; 1102 i_mac_perim_enter(mip); 1103 /* 1104 * Check if the ring got assigned to another aggregation before 1105 * be could enter aggr's and the port's perimeter. When a ring 1106 * gets deleted from an aggregation, it calls mac_stop_ring() 1107 * which increments the generation number. So checking 1108 * generation number will be enough. 1109 */ 1110 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) { 1111 i_mac_perim_exit(mip); 1112 mac_perim_exit(p_mph); 1113 i_mac_perim_enter(mip); 1114 goto again; 1115 } 1116 1117 /* Check if pseudo ring is still present */ 1118 if (ring->mr_prh != NULL) { 1119 pring->mr_info.mri_intr.mi_ddi_handle = ddh; 1120 pring->mr_info.mri_intr.mi_ddi_shared = 1121 ring->mr_info.mri_intr.mi_ddi_shared; 1122 if (ddh != NULL) 1123 mac_ring_intr_retarget(pgroup, pring); 1124 } 1125 i_mac_perim_exit(mip); 1126 mac_perim_exit(p_mph); 1127 } 1128 /* 1129 * API called by driver to provide new interrupt handle for TX/RX rings. 1130 * This usually happens when IRM (Interrupt Resource Manangement) 1131 * framework either gives the driver more MSI-x interrupts or takes 1132 * away MSI-x interrupts from the driver. 1133 */ 1134 void 1135 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh) 1136 { 1137 mac_ring_t *ring = (mac_ring_t *)mrh; 1138 mac_group_t *group = (mac_group_t *)ring->mr_gh; 1139 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1140 1141 i_mac_perim_enter(mip); 1142 ring->mr_info.mri_intr.mi_ddi_handle = ddh; 1143 if (ddh == NULL) { 1144 /* Interrupts being reset */ 1145 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE; 1146 if (ring->mr_prh != NULL) { 1147 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1148 return; 1149 } 1150 } else { 1151 /* New interrupt handle */ 1152 mac_compare_ddi_handle(mip->mi_rx_groups, 1153 mip->mi_rx_group_count, ring); 1154 if (!ring->mr_info.mri_intr.mi_ddi_shared) { 1155 mac_compare_ddi_handle(mip->mi_tx_groups, 1156 mip->mi_tx_group_count, ring); 1157 } 1158 if (ring->mr_prh != NULL) { 1159 mac_pseudo_ring_intr_retarget(mip, ring, ddh); 1160 return; 1161 } else { 1162 mac_ring_intr_retarget(group, ring); 1163 } 1164 } 1165 i_mac_perim_exit(mip); 1166 } 1167 1168 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */ 1169 1170 /* 1171 * Updates the mac_impl structure with the current state of the link 1172 */ 1173 static void 1174 i_mac_log_link_state(mac_impl_t *mip) 1175 { 1176 /* 1177 * If no change, then it is not interesting. 1178 */ 1179 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate) 1180 return; 1181 1182 switch (mip->mi_lowlinkstate) { 1183 case LINK_STATE_UP: 1184 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) { 1185 char det[200]; 1186 1187 mip->mi_type->mt_ops.mtops_link_details(det, 1188 sizeof (det), (mac_handle_t)mip, mip->mi_pdata); 1189 1190 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det); 1191 } else { 1192 cmn_err(CE_NOTE, "!%s link up", mip->mi_name); 1193 } 1194 break; 1195 1196 case LINK_STATE_DOWN: 1197 /* 1198 * Only transitions from UP to DOWN are interesting 1199 */ 1200 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN) 1201 cmn_err(CE_NOTE, "!%s link down", mip->mi_name); 1202 break; 1203 1204 case LINK_STATE_UNKNOWN: 1205 /* 1206 * This case is normally not interesting. 1207 */ 1208 break; 1209 } 1210 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate; 1211 } 1212 1213 /* 1214 * Main routine for the callbacks notifications thread 1215 */ 1216 static void 1217 i_mac_notify_thread(void *arg) 1218 { 1219 mac_impl_t *mip = arg; 1220 callb_cpr_t cprinfo; 1221 mac_cb_t *mcb; 1222 mac_cb_info_t *mcbi; 1223 mac_notify_cb_t *mncb; 1224 1225 mcbi = &mip->mi_notify_cb_info; 1226 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr, 1227 "i_mac_notify_thread"); 1228 1229 mutex_enter(mcbi->mcbi_lockp); 1230 1231 for (;;) { 1232 uint32_t bits; 1233 uint32_t type; 1234 1235 bits = mip->mi_notify_bits; 1236 if (bits == 0) { 1237 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1238 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1239 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp); 1240 continue; 1241 } 1242 mip->mi_notify_bits = 0; 1243 if ((bits & (1 << MAC_NNOTE)) != 0) { 1244 /* request to quit */ 1245 ASSERT(mip->mi_state_flags & MIS_DISABLED); 1246 break; 1247 } 1248 1249 mutex_exit(mcbi->mcbi_lockp); 1250 1251 /* 1252 * Log link changes on the actual link, but then do reports on 1253 * synthetic state (if part of a bridge). 1254 */ 1255 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) { 1256 link_state_t newstate; 1257 mac_handle_t mh; 1258 1259 i_mac_log_link_state(mip); 1260 newstate = mip->mi_lowlinkstate; 1261 if (mip->mi_bridge_link != NULL) { 1262 mutex_enter(&mip->mi_bridge_lock); 1263 if ((mh = mip->mi_bridge_link) != NULL) { 1264 newstate = mac_bridge_ls_cb(mh, 1265 newstate); 1266 } 1267 mutex_exit(&mip->mi_bridge_lock); 1268 } 1269 if (newstate != mip->mi_linkstate) { 1270 mip->mi_linkstate = newstate; 1271 bits |= 1 << MAC_NOTE_LINK; 1272 } 1273 } 1274 1275 /* 1276 * Do notification callbacks for each notification type. 1277 */ 1278 for (type = 0; type < MAC_NNOTE; type++) { 1279 if ((bits & (1 << type)) == 0) { 1280 continue; 1281 } 1282 1283 if (mac_notify_cb_list[type] != NULL) 1284 (*mac_notify_cb_list[type])(mip); 1285 1286 /* 1287 * Walk the list of notifications. 1288 */ 1289 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info); 1290 for (mcb = mip->mi_notify_cb_list; mcb != NULL; 1291 mcb = mcb->mcb_nextp) { 1292 mncb = (mac_notify_cb_t *)mcb->mcb_objp; 1293 mncb->mncb_fn(mncb->mncb_arg, type); 1294 } 1295 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info, 1296 &mip->mi_notify_cb_list); 1297 } 1298 1299 mutex_enter(mcbi->mcbi_lockp); 1300 } 1301 1302 mip->mi_state_flags |= MIS_NOTIFY_DONE; 1303 cv_broadcast(&mcbi->mcbi_cv); 1304 1305 /* CALLB_CPR_EXIT drops the lock */ 1306 CALLB_CPR_EXIT(&cprinfo); 1307 thread_exit(); 1308 } 1309 1310 /* 1311 * Signal the i_mac_notify_thread asking it to quit. 1312 * Then wait till it is done. 1313 */ 1314 void 1315 i_mac_notify_exit(mac_impl_t *mip) 1316 { 1317 mac_cb_info_t *mcbi; 1318 1319 mcbi = &mip->mi_notify_cb_info; 1320 1321 mutex_enter(mcbi->mcbi_lockp); 1322 mip->mi_notify_bits = (1 << MAC_NNOTE); 1323 cv_broadcast(&mcbi->mcbi_cv); 1324 1325 1326 while ((mip->mi_notify_thread != NULL) && 1327 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) { 1328 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 1329 } 1330 1331 /* Necessary clean up before doing kmem_cache_free */ 1332 mip->mi_state_flags &= ~MIS_NOTIFY_DONE; 1333 mip->mi_notify_bits = 0; 1334 mip->mi_notify_thread = NULL; 1335 mutex_exit(mcbi->mcbi_lockp); 1336 } 1337 1338 /* 1339 * Entry point invoked by drivers to dynamically add a ring to an 1340 * existing group. 1341 */ 1342 int 1343 mac_group_add_ring(mac_group_handle_t gh, int index) 1344 { 1345 mac_group_t *group = (mac_group_t *)gh; 1346 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1347 int ret; 1348 1349 i_mac_perim_enter(mip); 1350 ret = i_mac_group_add_ring(group, NULL, index); 1351 i_mac_perim_exit(mip); 1352 return (ret); 1353 } 1354 1355 /* 1356 * Entry point invoked by drivers to dynamically remove a ring 1357 * from an existing group. The specified ring handle must no longer 1358 * be used by the driver after a call to this function. 1359 */ 1360 void 1361 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh) 1362 { 1363 mac_group_t *group = (mac_group_t *)gh; 1364 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 1365 1366 i_mac_perim_enter(mip); 1367 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE); 1368 i_mac_perim_exit(mip); 1369 } 1370 1371 /* 1372 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo() 1373 * entry points. 1374 */ 1375 1376 void 1377 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val) 1378 { 1379 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1380 1381 /* nothing to do if the caller doesn't want the default value */ 1382 if (pr->pr_default == NULL) 1383 return; 1384 1385 ASSERT(pr->pr_default_size >= sizeof (uint8_t)); 1386 1387 *(uint8_t *)(pr->pr_default) = val; 1388 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1389 } 1390 1391 void 1392 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val) 1393 { 1394 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1395 1396 /* nothing to do if the caller doesn't want the default value */ 1397 if (pr->pr_default == NULL) 1398 return; 1399 1400 ASSERT(pr->pr_default_size >= sizeof (uint64_t)); 1401 1402 bcopy(&val, pr->pr_default, sizeof (val)); 1403 1404 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1405 } 1406 1407 void 1408 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val) 1409 { 1410 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1411 1412 /* nothing to do if the caller doesn't want the default value */ 1413 if (pr->pr_default == NULL) 1414 return; 1415 1416 ASSERT(pr->pr_default_size >= sizeof (uint32_t)); 1417 1418 bcopy(&val, pr->pr_default, sizeof (val)); 1419 1420 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1421 } 1422 1423 void 1424 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str) 1425 { 1426 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1427 1428 /* nothing to do if the caller doesn't want the default value */ 1429 if (pr->pr_default == NULL) 1430 return; 1431 1432 if (strlen(str) >= pr->pr_default_size) 1433 pr->pr_errno = ENOBUFS; 1434 else 1435 (void) strlcpy(pr->pr_default, str, pr->pr_default_size); 1436 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1437 } 1438 1439 void 1440 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph, 1441 link_flowctrl_t val) 1442 { 1443 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1444 1445 /* nothing to do if the caller doesn't want the default value */ 1446 if (pr->pr_default == NULL) 1447 return; 1448 1449 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t)); 1450 1451 bcopy(&val, pr->pr_default, sizeof (val)); 1452 1453 pr->pr_flags |= MAC_PROP_INFO_DEFAULT; 1454 } 1455 1456 void 1457 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min, 1458 uint32_t max) 1459 { 1460 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1461 mac_propval_range_t *range = pr->pr_range; 1462 mac_propval_uint32_range_t *range32; 1463 1464 /* nothing to do if the caller doesn't want the range info */ 1465 if (range == NULL) 1466 return; 1467 1468 if (pr->pr_range_cur_count++ == 0) { 1469 /* first range */ 1470 pr->pr_flags |= MAC_PROP_INFO_RANGE; 1471 range->mpr_type = MAC_PROPVAL_UINT32; 1472 } else { 1473 /* all ranges of a property should be of the same type */ 1474 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32); 1475 if (pr->pr_range_cur_count > range->mpr_count) { 1476 pr->pr_errno = ENOSPC; 1477 return; 1478 } 1479 } 1480 1481 range32 = range->mpr_range_uint32; 1482 range32[pr->pr_range_cur_count - 1].mpur_min = min; 1483 range32[pr->pr_range_cur_count - 1].mpur_max = max; 1484 } 1485 1486 void 1487 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm) 1488 { 1489 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph; 1490 1491 pr->pr_perm = perm; 1492 pr->pr_flags |= MAC_PROP_INFO_PERM; 1493 } 1494 1495 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff, 1496 uint32_t *end, uint32_t *value, uint32_t *flags_ptr) 1497 { 1498 uint32_t flags; 1499 1500 ASSERT(DB_TYPE(mp) == M_DATA); 1501 1502 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS; 1503 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) { 1504 if (value != NULL) 1505 *value = (uint32_t)DB_CKSUM16(mp); 1506 if ((flags & HCK_PARTIALCKSUM) != 0) { 1507 if (start != NULL) 1508 *start = (uint32_t)DB_CKSUMSTART(mp); 1509 if (stuff != NULL) 1510 *stuff = (uint32_t)DB_CKSUMSTUFF(mp); 1511 if (end != NULL) 1512 *end = (uint32_t)DB_CKSUMEND(mp); 1513 } 1514 } 1515 1516 if (flags_ptr != NULL) 1517 *flags_ptr = flags; 1518 } 1519 1520 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff, 1521 uint32_t end, uint32_t value, uint32_t flags) 1522 { 1523 ASSERT(DB_TYPE(mp) == M_DATA); 1524 1525 DB_CKSUMSTART(mp) = (intptr_t)start; 1526 DB_CKSUMSTUFF(mp) = (intptr_t)stuff; 1527 DB_CKSUMEND(mp) = (intptr_t)end; 1528 DB_CKSUMFLAGS(mp) = (uint16_t)flags; 1529 DB_CKSUM16(mp) = (uint16_t)value; 1530 } 1531 1532 void 1533 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags) 1534 { 1535 ASSERT(DB_TYPE(mp) == M_DATA); 1536 1537 if (flags != NULL) { 1538 *flags = DB_CKSUMFLAGS(mp) & HW_LSO; 1539 if ((*flags != 0) && (mss != NULL)) 1540 *mss = (uint32_t)DB_LSOMSS(mp); 1541 } 1542 } 1543 1544 void 1545 mac_transceiver_info_set_present(mac_transceiver_info_t *infop, 1546 boolean_t present) 1547 { 1548 infop->mti_present = present; 1549 } 1550 1551 void 1552 mac_transceiver_info_set_usable(mac_transceiver_info_t *infop, 1553 boolean_t usable) 1554 { 1555 infop->mti_usable = usable; 1556 }