1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2014 Ryan Zezeski. All rights reserved. 24 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 #include "lint.h" 29 #include <sys/feature_tests.h> 30 /* 31 * setcontext() really can return, if UC_CPU is not specified. 32 * Make the compiler shut up about it. 33 */ 34 #if defined(__NORETURN) 35 #undef __NORETURN 36 #endif 37 #define __NORETURN 38 #include "thr_uberdata.h" 39 #include "asyncio.h" 40 #include <signal.h> 41 #include <siginfo.h> 42 #include <sys/systm.h> 43 44 /* maskable signals */ 45 const sigset_t maskset = {MASKSET0, MASKSET1, MASKSET2, MASKSET3}; 46 47 /* 48 * Return true if the valid signal bits in both sets are the same. 49 */ 50 int 51 sigequalset(const sigset_t *s1, const sigset_t *s2) 52 { 53 /* 54 * We only test valid signal bits, not rubbish following MAXSIG 55 * (for speed). Algorithm: 56 * if (s1 & fillset) == (s2 & fillset) then (s1 ^ s2) & fillset == 0 57 */ 58 /* see lib/libc/inc/thr_uberdata.h for why this must be true */ 59 #if (MAXSIG > (2 * 32) && MAXSIG <= (3 * 32)) 60 return (!((s1->__sigbits[0] ^ s2->__sigbits[0]) | 61 (s1->__sigbits[1] ^ s2->__sigbits[1]) | 62 ((s1->__sigbits[2] ^ s2->__sigbits[2]) & FILLSET2))); 63 #else 64 #error "fix me: MAXSIG out of bounds" 65 #endif 66 } 67 68 /* 69 * Common code for calling the user-specified signal handler. 70 */ 71 void 72 call_user_handler(int sig, siginfo_t *sip, ucontext_t *ucp) 73 { 74 int i; 75 ulwp_t *self = curthread; 76 uberdata_t *udp = self->ul_uberdata; 77 struct sigaction uact; 78 volatile struct sigaction *sap; 79 80 /* 81 * If we are taking a signal while parked or about to be parked 82 * on __lwp_park() then remove ourself from the sleep queue so 83 * that we can grab locks. The code in mutex_lock_queue() and 84 * cond_wait_common() will detect this and deal with it when 85 * __lwp_park() returns. 86 */ 87 unsleep_self(); 88 set_parking_flag(self, 0); 89 90 if (__td_event_report(self, TD_CATCHSIG, udp)) { 91 self->ul_td_evbuf.eventnum = TD_CATCHSIG; 92 self->ul_td_evbuf.eventdata = (void *)(intptr_t)sig; 93 tdb_event(TD_CATCHSIG, udp); 94 } 95 96 /* 97 * Get a self-consistent set of flags, handler, and mask 98 * while holding the sig's sig_lock for the least possible time. 99 * We must acquire the sig's sig_lock because some thread running 100 * in sigaction() might be establishing a new signal handler. 101 * The code in sigaction() acquires the writer lock; here 102 * we acquire the readers lock to ehance concurrency in the 103 * face of heavy signal traffic, such as generated by java. 104 * 105 * Locking exceptions: 106 * No locking for a child of vfork(). 107 * If the signal is SIGPROF with an si_code of PROF_SIG, 108 * then we assume that this signal was generated by 109 * setitimer(ITIMER_REALPROF) set up by the dbx collector. 110 * If the signal is SIGEMT with an si_code of EMT_CPCOVF, 111 * then we assume that the signal was generated by 112 * a hardware performance counter overflow. 113 * In these cases, assume that we need no locking. It is the 114 * monitoring program's responsibility to ensure correctness. 115 */ 116 sap = &udp->siguaction[sig].sig_uaction; 117 if (self->ul_vfork || 118 (sip != NULL && 119 ((sig == SIGPROF && sip->si_code == PROF_SIG) || 120 (sig == SIGEMT && sip->si_code == EMT_CPCOVF)))) { 121 /* we wish this assignment could be atomic */ 122 (void) memcpy(&uact, (void *)sap, sizeof (uact)); 123 } else { 124 rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; 125 lrw_rdlock(rwlp); 126 (void) memcpy(&uact, (void *)sap, sizeof (uact)); 127 if ((sig == SIGCANCEL || sig == SIGAIOCANCEL) && 128 (sap->sa_flags & SA_RESETHAND)) 129 sap->sa_sigaction = SIG_DFL; 130 lrw_unlock(rwlp); 131 } 132 133 /* 134 * Set the proper signal mask and call the user's signal handler. 135 * (We overrode the user-requested signal mask with maskset 136 * so we currently have all blockable signals blocked.) 137 * 138 * We would like to ASSERT() that the signal is not a member of the 139 * signal mask at the previous level (ucp->uc_sigmask) or the specified 140 * signal mask for sigsuspend() or pollsys() (self->ul_tmpmask) but 141 * /proc can override this via PCSSIG, so we don't bother. 142 * 143 * We would also like to ASSERT() that the signal mask at the previous 144 * level equals self->ul_sigmask (maskset for sigsuspend() / pollsys()), 145 * but /proc can change the thread's signal mask via PCSHOLD, so we 146 * don't bother with that either. 147 */ 148 ASSERT(ucp->uc_flags & UC_SIGMASK); 149 if (self->ul_sigsuspend) { 150 ucp->uc_sigmask = self->ul_sigmask; 151 self->ul_sigsuspend = 0; 152 /* the sigsuspend() or pollsys() signal mask */ 153 sigorset(&uact.sa_mask, &self->ul_tmpmask); 154 } else { 155 /* the signal mask at the previous level */ 156 sigorset(&uact.sa_mask, &ucp->uc_sigmask); 157 } 158 if (!(uact.sa_flags & SA_NODEFER)) /* add current signal */ 159 (void) sigaddset(&uact.sa_mask, sig); 160 161 /* 162 * Enforce the proper order for realtime signals. Lower signals 163 * have higher priority and multiple instances of the same signal 164 * must arrive in FIFO order (NODEFER does not apply). 165 * 166 * See section 2.4.2 of POSIX. 167 */ 168 if ((sig >= SIGRTMIN) && (sig <= SIGRTMAX)) { 169 for (i = sig; i <= SIGRTMAX; i++) { 170 (void) sigaddset(&uact.sa_mask, i); 171 } 172 } 173 174 self->ul_sigmask = uact.sa_mask; 175 self->ul_siglink = ucp; 176 (void) __lwp_sigmask(SIG_SETMASK, &uact.sa_mask); 177 178 /* 179 * If this thread has been sent SIGCANCEL from the kernel 180 * or from pthread_cancel(), it is being asked to exit. 181 * The kernel may send SIGCANCEL without a siginfo struct. 182 * If the SIGCANCEL is process-directed (from kill() or 183 * sigqueue()), treat it as an ordinary signal. 184 */ 185 if (sig == SIGCANCEL) { 186 if (sip == NULL || SI_FROMKERNEL(sip) || 187 sip->si_code == SI_LWP) { 188 do_sigcancel(); 189 goto out; 190 } 191 /* SIGCANCEL is ignored by default */ 192 if (uact.sa_sigaction == SIG_DFL || 193 uact.sa_sigaction == SIG_IGN) 194 goto out; 195 } 196 197 /* 198 * If this thread has been sent SIGAIOCANCEL (SIGLWP) and 199 * we are an aio worker thread, cancel the aio request. 200 */ 201 if (sig == SIGAIOCANCEL) { 202 aio_worker_t *aiowp = pthread_getspecific(_aio_key); 203 204 if (sip != NULL && sip->si_code == SI_LWP && aiowp != NULL) 205 siglongjmp(aiowp->work_jmp_buf, 1); 206 /* SIGLWP is ignored by default */ 207 if (uact.sa_sigaction == SIG_DFL || 208 uact.sa_sigaction == SIG_IGN) 209 goto out; 210 } 211 212 if (!(uact.sa_flags & SA_SIGINFO)) 213 sip = NULL; 214 __sighndlr(sig, sip, ucp, uact.sa_sigaction); 215 216 #if defined(sparc) || defined(__sparc) 217 /* 218 * If this is a floating point exception and the queue 219 * is non-empty, pop the top entry from the queue. This 220 * is to maintain expected behavior. 221 */ 222 if (sig == SIGFPE && ucp->uc_mcontext.fpregs.fpu_qcnt) { 223 fpregset_t *fp = &ucp->uc_mcontext.fpregs; 224 225 if (--fp->fpu_qcnt > 0) { 226 unsigned char i; 227 struct fq *fqp; 228 229 fqp = fp->fpu_q; 230 for (i = 0; i < fp->fpu_qcnt; i++) 231 fqp[i] = fqp[i+1]; 232 } 233 } 234 #endif /* sparc */ 235 236 out: 237 (void) setcontext(ucp); 238 thr_panic("call_user_handler(): setcontext() returned"); 239 } 240 241 /* 242 * take_deferred_signal() is called when ul_critical and ul_sigdefer become 243 * zero and a deferred signal has been recorded on the current thread. 244 * We are out of the critical region and are ready to take a signal. 245 * The kernel has all signals blocked on this lwp, but our value of 246 * ul_sigmask is the correct signal mask for the previous context. 247 * 248 * We call __sigresend() to atomically restore the signal mask and 249 * cause the signal to be sent again with the remembered siginfo. 250 * We will not return successfully from __sigresend() until the 251 * application's signal handler has been run via sigacthandler(). 252 */ 253 void 254 take_deferred_signal(int sig) 255 { 256 extern int __sigresend(int, siginfo_t *, sigset_t *); 257 ulwp_t *self = curthread; 258 siguaction_t *suap = &self->ul_uberdata->siguaction[sig]; 259 siginfo_t *sip; 260 int error; 261 262 ASSERT((self->ul_critical | self->ul_sigdefer | self->ul_cursig) == 0); 263 264 /* 265 * If the signal handler was established with SA_RESETHAND, 266 * the kernel has reset the handler to SIG_DFL, so we have 267 * to reestablish the handler now so that it will be entered 268 * again when we call __sigresend(), below. 269 * 270 * Logically, we should acquire and release the signal's 271 * sig_lock around this operation to protect the integrity 272 * of the signal action while we copy it, as is done below 273 * in _libc_sigaction(). However, we may be on a user-level 274 * sleep queue at this point and lrw_wrlock(&suap->sig_lock) 275 * might attempt to sleep on a different sleep queue and 276 * that would corrupt the entire sleep queue mechanism. 277 * 278 * If we are on a sleep queue we will remove ourself from 279 * it in call_user_handler(), called from sigacthandler(), 280 * before entering the application's signal handler. 281 * In the meantime, we must not acquire any locks. 282 */ 283 if (suap->sig_uaction.sa_flags & SA_RESETHAND) { 284 struct sigaction tact = suap->sig_uaction; 285 tact.sa_flags &= ~SA_NODEFER; 286 tact.sa_sigaction = self->ul_uberdata->sigacthandler; 287 tact.sa_mask = maskset; 288 (void) __sigaction(sig, &tact, NULL); 289 } 290 291 if (self->ul_siginfo.si_signo == 0) 292 sip = NULL; 293 else 294 sip = &self->ul_siginfo; 295 296 /* EAGAIN can happen only for a pending SIGSTOP signal */ 297 while ((error = __sigresend(sig, sip, &self->ul_sigmask)) == EAGAIN) 298 continue; 299 if (error) 300 thr_panic("take_deferred_signal(): __sigresend() failed"); 301 } 302 303 void 304 sigacthandler(int sig, siginfo_t *sip, void *uvp) 305 { 306 ucontext_t *ucp = uvp; 307 ulwp_t *self = curthread; 308 309 /* 310 * Do this in case we took a signal while in a cancelable system call. 311 * It does no harm if we were not in such a system call. 312 */ 313 self->ul_sp = 0; 314 if (sig != SIGCANCEL) 315 self->ul_cancel_async = self->ul_save_async; 316 317 /* 318 * If this thread has performed a longjmp() from a signal handler 319 * back to main level some time in the past, it has left the kernel 320 * thinking that it is still in the signal context. We repair this 321 * possible damage by setting ucp->uc_link to NULL if we know that 322 * we are actually executing at main level (self->ul_siglink == NULL). 323 * See the code for setjmp()/longjmp() for more details. 324 */ 325 if (self->ul_siglink == NULL) 326 ucp->uc_link = NULL; 327 328 /* 329 * If we are not in a critical region and are 330 * not deferring signals, take the signal now. 331 */ 332 if ((self->ul_critical + self->ul_sigdefer) == 0) { 333 call_user_handler(sig, sip, ucp); 334 /* 335 * On the surface, the following call seems redundant 336 * because call_user_handler() cannot return. However, 337 * we don't want to return from here because the compiler 338 * might recycle our frame. We want to keep it on the 339 * stack to assist debuggers such as pstack in identifying 340 * signal frames. The call to thr_panic() serves to prevent 341 * tail-call optimisation here. 342 */ 343 thr_panic("sigacthandler(): call_user_handler() returned"); 344 } 345 346 /* 347 * We are in a critical region or we are deferring signals. When 348 * we emerge from the region we will call take_deferred_signal(). 349 */ 350 ASSERT(self->ul_cursig == 0); 351 self->ul_cursig = (char)sig; 352 if (sip != NULL) 353 (void) memcpy(&self->ul_siginfo, 354 sip, sizeof (siginfo_t)); 355 else 356 self->ul_siginfo.si_signo = 0; 357 358 /* 359 * Make sure that if we return to a call to __lwp_park() 360 * or ___lwp_cond_wait() that it returns right away 361 * (giving us a spurious wakeup but not a deadlock). 362 */ 363 set_parking_flag(self, 0); 364 365 /* 366 * Return to the previous context with all signals blocked. 367 * We will restore the signal mask in take_deferred_signal(). 368 * Note that we are calling the system call trap here, not 369 * the setcontext() wrapper. We don't want to change the 370 * thread's ul_sigmask by this operation. 371 */ 372 ucp->uc_sigmask = maskset; 373 (void) __setcontext(ucp); 374 thr_panic("sigacthandler(): __setcontext() returned"); 375 } 376 377 #pragma weak _sigaction = sigaction 378 int 379 sigaction(int sig, const struct sigaction *nact, struct sigaction *oact) 380 { 381 ulwp_t *self = curthread; 382 uberdata_t *udp = self->ul_uberdata; 383 struct sigaction oaction; 384 struct sigaction tact; 385 struct sigaction *tactp = NULL; 386 int rv; 387 388 if (sig <= 0 || sig >= NSIG) { 389 errno = EINVAL; 390 return (-1); 391 } 392 393 if (!self->ul_vfork) 394 lrw_wrlock(&udp->siguaction[sig].sig_lock); 395 396 oaction = udp->siguaction[sig].sig_uaction; 397 398 if (nact != NULL) { 399 tact = *nact; /* make a copy so we can modify it */ 400 tactp = &tact; 401 delete_reserved_signals(&tact.sa_mask); 402 403 #if !defined(_LP64) 404 tact.sa_resv[0] = tact.sa_resv[1] = 0; /* cleanliness */ 405 #endif 406 /* 407 * To be compatible with the behavior of SunOS 4.x: 408 * If the new signal handler is SIG_IGN or SIG_DFL, do 409 * not change the signal's entry in the siguaction array. 410 * This allows a child of vfork(2) to set signal handlers 411 * to SIG_IGN or SIG_DFL without affecting the parent. 412 * 413 * This also covers a race condition with some thread 414 * setting the signal action to SIG_DFL or SIG_IGN 415 * when the thread has also received and deferred 416 * that signal. When the thread takes the deferred 417 * signal, even though it has set the action to SIG_DFL 418 * or SIG_IGN, it will execute the old signal handler 419 * anyway. This is an inherent signaling race condition 420 * and is not a bug. 421 * 422 * A child of vfork() is not allowed to change signal 423 * handlers to anything other than SIG_DFL or SIG_IGN. 424 */ 425 if (self->ul_vfork) { 426 if (tact.sa_sigaction != SIG_IGN) 427 tact.sa_sigaction = SIG_DFL; 428 } else if (sig == SIGCANCEL || sig == SIGAIOCANCEL) { 429 /* 430 * Always catch these signals. 431 * We need SIGCANCEL for pthread_cancel() to work. 432 * We need SIGAIOCANCEL for aio_cancel() to work. 433 */ 434 udp->siguaction[sig].sig_uaction = tact; 435 if (tact.sa_sigaction == SIG_DFL || 436 tact.sa_sigaction == SIG_IGN) 437 tact.sa_flags = SA_SIGINFO; 438 else { 439 tact.sa_flags |= SA_SIGINFO; 440 tact.sa_flags &= 441 ~(SA_NODEFER | SA_RESETHAND | SA_RESTART); 442 } 443 tact.sa_sigaction = udp->sigacthandler; 444 tact.sa_mask = maskset; 445 } else if (tact.sa_sigaction != SIG_DFL && 446 tact.sa_sigaction != SIG_IGN) { 447 udp->siguaction[sig].sig_uaction = tact; 448 tact.sa_flags &= ~SA_NODEFER; 449 tact.sa_sigaction = udp->sigacthandler; 450 tact.sa_mask = maskset; 451 } 452 } 453 454 if ((rv = __sigaction(sig, tactp, oact)) != 0) 455 udp->siguaction[sig].sig_uaction = oaction; 456 else if (oact != NULL && 457 oact->sa_sigaction != SIG_DFL && 458 oact->sa_sigaction != SIG_IGN) 459 *oact = oaction; 460 461 /* 462 * We detect setting the disposition of SIGIO just to set the 463 * _sigio_enabled flag for the asynchronous i/o (aio) code. 464 */ 465 if (sig == SIGIO && rv == 0 && tactp != NULL) { 466 _sigio_enabled = 467 (tactp->sa_handler != SIG_DFL && 468 tactp->sa_handler != SIG_IGN); 469 } 470 471 if (!self->ul_vfork) 472 lrw_unlock(&udp->siguaction[sig].sig_lock); 473 return (rv); 474 } 475 476 /* 477 * This is a private interface for the linux brand interface. 478 */ 479 void 480 setsigacthandler(void (*nsigacthandler)(int, siginfo_t *, void *), 481 void (**osigacthandler)(int, siginfo_t *, void *)) 482 { 483 ulwp_t *self = curthread; 484 uberdata_t *udp = self->ul_uberdata; 485 486 if (osigacthandler != NULL) 487 *osigacthandler = udp->sigacthandler; 488 489 udp->sigacthandler = nsigacthandler; 490 } 491 492 /* 493 * Tell the kernel to block all signals. 494 * Use the schedctl interface, or failing that, use __lwp_sigmask(). 495 * This action can be rescinded only by making a system call that 496 * sets the signal mask: 497 * __lwp_sigmask(), __sigprocmask(), __setcontext(), 498 * __sigsuspend() or __pollsys(). 499 * In particular, this action cannot be reversed by assigning 500 * scp->sc_sigblock = 0. That would be a way to lose signals. 501 * See the definition of restore_signals(self). 502 */ 503 void 504 block_all_signals(ulwp_t *self) 505 { 506 volatile sc_shared_t *scp; 507 508 enter_critical(self); 509 if ((scp = self->ul_schedctl) != NULL || 510 (scp = setup_schedctl()) != NULL) 511 scp->sc_sigblock = 1; 512 else 513 (void) __lwp_sigmask(SIG_SETMASK, &maskset); 514 exit_critical(self); 515 } 516 517 /* 518 * setcontext() has code that forcibly restores the curthread 519 * pointer in a context passed to the setcontext(2) syscall. 520 * 521 * Certain processes may need to disable this feature, so these routines 522 * provide the mechanism to do so. 523 * 524 * (As an example, branded 32-bit x86 processes may use %gs for their own 525 * purposes, so they need to be able to specify a %gs value to be restored 526 * on return from a signal handler via the passed ucontext_t.) 527 */ 528 static int setcontext_enforcement = 1; 529 530 void 531 set_setcontext_enforcement(int on) 532 { 533 setcontext_enforcement = on; 534 } 535 536 #pragma weak _setcontext = setcontext 537 int 538 setcontext(const ucontext_t *ucp) 539 { 540 ulwp_t *self = curthread; 541 int ret; 542 ucontext_t uc; 543 544 /* 545 * Returning from the main context (uc_link == NULL) causes 546 * the thread to exit. See setcontext(2) and makecontext(3C). 547 */ 548 if (ucp == NULL) 549 thr_exit(NULL); 550 (void) memcpy(&uc, ucp, sizeof (uc)); 551 552 /* 553 * Restore previous signal mask and context link. 554 */ 555 if (uc.uc_flags & UC_SIGMASK) { 556 block_all_signals(self); 557 delete_reserved_signals(&uc.uc_sigmask); 558 self->ul_sigmask = uc.uc_sigmask; 559 if (self->ul_cursig) { 560 /* 561 * We have a deferred signal present. 562 * The signal mask will be set when the 563 * signal is taken in take_deferred_signal(). 564 */ 565 ASSERT(self->ul_critical + self->ul_sigdefer != 0); 566 uc.uc_flags &= ~UC_SIGMASK; 567 } 568 } 569 self->ul_siglink = uc.uc_link; 570 571 /* 572 * We don't know where this context structure has been. 573 * Preserve the curthread pointer, at least. 574 * 575 * Allow this feature to be disabled if a particular process 576 * requests it. 577 */ 578 if (setcontext_enforcement) { 579 #if defined(__sparc) 580 uc.uc_mcontext.gregs[REG_G7] = (greg_t)self; 581 #elif defined(__amd64) 582 uc.uc_mcontext.gregs[REG_FS] = (greg_t)0; /* null for fsbase */ 583 #elif defined(__i386) 584 uc.uc_mcontext.gregs[GS] = (greg_t)LWPGS_SEL; 585 #else 586 #error "none of __sparc, __amd64, __i386 defined" 587 #endif 588 } 589 590 /* 591 * Make sure that if we return to a call to __lwp_park() 592 * or ___lwp_cond_wait() that it returns right away 593 * (giving us a spurious wakeup but not a deadlock). 594 */ 595 set_parking_flag(self, 0); 596 self->ul_sp = 0; 597 ret = __setcontext(&uc); 598 599 /* 600 * It is OK for setcontext() to return if the user has not specified 601 * UC_CPU. 602 */ 603 if (uc.uc_flags & UC_CPU) 604 thr_panic("setcontext(): __setcontext() returned"); 605 return (ret); 606 } 607 608 #pragma weak _thr_sigsetmask = thr_sigsetmask 609 int 610 thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset) 611 { 612 ulwp_t *self = curthread; 613 sigset_t saveset; 614 615 if (set == NULL) { 616 enter_critical(self); 617 if (oset != NULL) 618 *oset = self->ul_sigmask; 619 exit_critical(self); 620 } else { 621 switch (how) { 622 case SIG_BLOCK: 623 case SIG_UNBLOCK: 624 case SIG_SETMASK: 625 break; 626 default: 627 return (EINVAL); 628 } 629 630 /* 631 * The assignments to self->ul_sigmask must be protected from 632 * signals. The nuances of this code are subtle. Be careful. 633 */ 634 block_all_signals(self); 635 if (oset != NULL) 636 saveset = self->ul_sigmask; 637 switch (how) { 638 case SIG_BLOCK: 639 self->ul_sigmask.__sigbits[0] |= set->__sigbits[0]; 640 self->ul_sigmask.__sigbits[1] |= set->__sigbits[1]; 641 self->ul_sigmask.__sigbits[2] |= set->__sigbits[2]; 642 self->ul_sigmask.__sigbits[3] |= set->__sigbits[3]; 643 break; 644 case SIG_UNBLOCK: 645 self->ul_sigmask.__sigbits[0] &= ~set->__sigbits[0]; 646 self->ul_sigmask.__sigbits[1] &= ~set->__sigbits[1]; 647 self->ul_sigmask.__sigbits[2] &= ~set->__sigbits[2]; 648 self->ul_sigmask.__sigbits[3] &= ~set->__sigbits[3]; 649 break; 650 case SIG_SETMASK: 651 self->ul_sigmask.__sigbits[0] = set->__sigbits[0]; 652 self->ul_sigmask.__sigbits[1] = set->__sigbits[1]; 653 self->ul_sigmask.__sigbits[2] = set->__sigbits[2]; 654 self->ul_sigmask.__sigbits[3] = set->__sigbits[3]; 655 break; 656 } 657 delete_reserved_signals(&self->ul_sigmask); 658 if (oset != NULL) 659 *oset = saveset; 660 restore_signals(self); 661 } 662 663 return (0); 664 } 665 666 #pragma weak _pthread_sigmask = pthread_sigmask 667 int 668 pthread_sigmask(int how, const sigset_t *set, sigset_t *oset) 669 { 670 return (thr_sigsetmask(how, set, oset)); 671 } 672 673 #pragma weak _sigprocmask = sigprocmask 674 int 675 sigprocmask(int how, const sigset_t *set, sigset_t *oset) 676 { 677 int error; 678 679 /* 680 * Guard against children of vfork(). 681 */ 682 if (curthread->ul_vfork) 683 return (__sigprocmask(how, set, oset)); 684 685 if ((error = thr_sigsetmask(how, set, oset)) != 0) { 686 errno = error; 687 return (-1); 688 } 689 690 return (0); 691 } 692 693 /* 694 * Called at library initialization to set up signal handling. 695 * All we really do is initialize the sig_lock rwlocks. 696 * All signal handlers are either SIG_DFL or SIG_IGN on exec(). 697 * However, if any signal handlers were established on alternate 698 * link maps before the primary link map has been initialized, 699 * then inform the kernel of the new sigacthandler. 700 */ 701 void 702 signal_init() 703 { 704 uberdata_t *udp = curthread->ul_uberdata; 705 struct sigaction *sap; 706 struct sigaction act; 707 rwlock_t *rwlp; 708 int sig; 709 710 for (sig = 0; sig < NSIG; sig++) { 711 rwlp = &udp->siguaction[sig].sig_lock; 712 rwlp->rwlock_magic = RWL_MAGIC; 713 rwlp->mutex.mutex_flag = LOCK_INITED; 714 rwlp->mutex.mutex_magic = MUTEX_MAGIC; 715 sap = &udp->siguaction[sig].sig_uaction; 716 if (sap->sa_sigaction != SIG_DFL && 717 sap->sa_sigaction != SIG_IGN && 718 __sigaction(sig, NULL, &act) == 0 && 719 act.sa_sigaction != SIG_DFL && 720 act.sa_sigaction != SIG_IGN) { 721 act = *sap; 722 act.sa_flags &= ~SA_NODEFER; 723 act.sa_sigaction = udp->sigacthandler; 724 act.sa_mask = maskset; 725 (void) __sigaction(sig, &act, NULL); 726 } 727 } 728 } 729 730 /* 731 * Common code for cancelling self in _sigcancel() and pthread_cancel(). 732 * First record the fact that a cancellation is pending. 733 * Then, if cancellation is disabled or if we are holding unprotected 734 * libc locks, just return to defer the cancellation. 735 * Then, if we are at a cancellation point (ul_cancelable) just 736 * return and let _canceloff() do the exit. 737 * Else exit immediately if async mode is in effect. 738 */ 739 void 740 do_sigcancel(void) 741 { 742 ulwp_t *self = curthread; 743 744 ASSERT(self->ul_critical == 0); 745 ASSERT(self->ul_sigdefer == 0); 746 self->ul_cancel_pending = 1; 747 if (self->ul_cancel_async && 748 !self->ul_cancel_disabled && 749 self->ul_libc_locks == 0 && 750 !self->ul_cancelable) 751 pthread_exit(PTHREAD_CANCELED); 752 set_cancel_pending_flag(self, 0); 753 } 754 755 /* 756 * Set up the SIGCANCEL handler for threads cancellation, 757 * needed only when we have more than one thread, 758 * or the SIGAIOCANCEL handler for aio cancellation, 759 * called when aio is initialized, in __uaio_init(). 760 */ 761 void 762 setup_cancelsig(int sig) 763 { 764 uberdata_t *udp = curthread->ul_uberdata; 765 rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; 766 struct sigaction act; 767 768 ASSERT(sig == SIGCANCEL || sig == SIGAIOCANCEL); 769 lrw_rdlock(rwlp); 770 act = udp->siguaction[sig].sig_uaction; 771 lrw_unlock(rwlp); 772 if (act.sa_sigaction == SIG_DFL || 773 act.sa_sigaction == SIG_IGN) 774 act.sa_flags = SA_SIGINFO; 775 else { 776 act.sa_flags |= SA_SIGINFO; 777 act.sa_flags &= ~(SA_NODEFER | SA_RESETHAND | SA_RESTART); 778 } 779 act.sa_sigaction = udp->sigacthandler; 780 act.sa_mask = maskset; 781 (void) __sigaction(sig, &act, NULL); 782 }