Memory by the Slab

The Tale of Jeff Bonwick’s Slab Allocator
Ryan Zezeski // Sep 2015 // Papers We Love, NYC

TETRIS AND LIFE

ERRORS PILE UP, ACCOMPLISHMENTS DISAPPEAR

Best Fit Fastest

General Allocator?

malloc(3C) & free(3C)
Have no a priori knowledge of size or lifetime.

General Allocators

» dimalloc — Doug Lea malloc
. ptmalloc — multithreaded dimalloc (GNU libc?)
» TCmalloc — Google's Thread Caching malloc

- jemalloc — FreeBSD libc (not the kernel alloc, that's slab)

The Slab Allocator

- Created by Jeff Bonwick
. Solaris 2.4 (SunOS 5.4)

» USENIX 1994 (Same year as Speed.
Shoot the hostage!)

“The slab allocator 1s operationally similar to the

“CustoMalloc” [Grunwald93A],
“QuickFi1t” [Weinstock88], and
“Zone” [VanSciver88| allocators, all of which
maintain distinct freelists of the most commonly
requested buffer sizes. The Grunwald and Weinstock
papers each demonstrate that a customized
segregated-storage allocator—one that has a priori
knowledge of the most common allocation sizes—is
usually optimal in both space and time.”

-BoNwick94, SEc. 3.1, PAR. 6

The Slab Allocator:
An Object-Caching Kernel Memory Allocator

Jeff Bonwick
Sun Microsystems

Abstract

This paper presents a comprehensive design over-
view of the SunOS 5.4 kernel memory allocator.
This allocator is based on a set of object-caching
primitives that reduce the cost of allocating complex
objects by retaining their state between uses. These
same primitives prove equally effective for manag-
ing stateless memory (e.g. data pages and temporary
buffers) because they are space-efficient and fast.
The allocator’s object caches respond dynamically
to global memory pressure, and employ an object-
coloring scheme that improves the system’s overall
cache utilization and bus balance. The allocator
also has several statistical and debugging features
that can detect a wide range of problems throughout
the system.

Object Caching

Your memory is no longer a blob. It has a name! It has a type!

generally superior in both space and time. Finally,
Section 6 describes the allocator’s debugging
features, which can detect a wide variety of prob-
lems throughout the system.

2. Object Caching

Object caching is a technique for dealing with
objects that are frequently allocated and freed. The
idea is to preserve the invariant portion of an
object’s initial state — its constructed state —
between uses, so it does not have to be destroyed
and recreated every time the object is used. For
example, an object containing a mutex only needs
to have mutex init() applied once — the first
time the object is allocated. The object can then be

freed and reallacated manv times withant incnrrino

18 (#1)

18 (#2)

18 (#3)

18 (#4)

18 (#2)

18 (#3)

18 (#4)

free(#1)

16 (#1)

18 (#2)

18 (#3)

18 (#4)

alloc(16)

16 (#1) :

16 (#2)

16 (#3)

16 (#4)

free() + alloc(16) xjk%

External Fragmentation

18 (#1)

18 (#2)

18 (#3)

kmem_cache_alloc(obj1l8_cache) x4

L1116 (#1)!!!!

11116 (#2) 11!

11116 (#3)!!!!

11116 (#4)!!!!

18 (#4)

111118 (#1) 11111 18 (#2) 18 (#3) 18 (#4)

kmem_cache_free(obj18 cache, #1);
kmem_cache_alloc(obj16_cache);

16 (#1) LI116 (#2) v rfriile (#3)H0rrfrrile (#4) 40100

alloc(size t)
TO
cache alloc(cache t *)

cache t *#

cache create(
char *name,
size t size,
int align,

void (*ctor) (void *, size t),
void (*dtor) (void *, size t));

void
cache destroy(cache t *);

cache alloc()

if (obj in slab?)
return obj; /* ctor() not called */
else {
claim free buffer in slab;
obj = ctor(buf); /* create obj */
return obj;

cache free()

return obj to cache;

“The 1dea 1s to preserve the invariant portion of an
object’s initial state—its comstructed state—between
uses, so 1t does not have to be destroyed and
recreated every time the object 1s used.”

-BoNwiIck94, SEc. 2, PAR. 1

“Caching 1s 1mportant because the cost of
constructing an object can be significantly higher than
the cost of allocating memory for it.”

-BoNwiIck94, SEC. 2, PAR. 2

general allocators
can’t do this

they lack the API for it

The Slab

Slab List m

|«———— one or more pages from cache’s vmem source ———|

buf buf buf buf un- |kmem
used| slab
>.

one page

The Slab is the unit of
currency.

1. Reclaim is frivial

“Thus a simple reference count replaces the complex
trees, bitmaps, and coalescing algorithms found in most
other allocators.”

-BoNwick94, SEc. 3.2, PAR. 3

2. Alloc and free are fast

“All we have to do 1s move an object to or from a freelist
and update a reference count.”

-BoNwick94, SEc. 3.2, PAR. 4

3. Severe external
fragmentation unlikely

“A segregated-storage allocator cannot suffer this fate,
since the only way to populate its 8-byte freelist is to
actually allocate and free 8-byte buffers.”

-BoNwick94, SEc. 3.2, PAR. 5

4. Internal fragmentation
iS minimal

“Each buffer is exactly the right size (namely, the
cache’s object size), so the only wasted space is the
unused portion at the end of the slab...if a slab contains
n bufters, then the internal fragmentation is at most 1/#;
thus the allocator can actually control the amount of
internal fragmentation by controlling slab size...The
SunOS 5.4 implementation limits internal fragmentation
to 12.5% (1/8).”

-BoNwick94, SEc. 3.2, PAR. 5

Slab Accomplishments

« Reduction of 3,000 LoC

- Simpler and More Understandable Design

« Much faster

» Less fragmentation: 46% to 14% (Solaris 2.4)

. Cache Friendly (very important in modern CPUs)

+ Multi-core Friendly (2001 Additions)

* An implementation of the Slab Allocator as described in outline in;
* UNIX Internals: The New Frontiers by Uresh Vahalia

* Pub: Prentice Hall ISBN 0-13-101908-2

* or with a little more detail in;

* The Slab Allocator: An Object-Caching Kernel Memory Allocator
* Jeff Bonwick (Sun Microsystems).

* Presented at: USENIX Summer 1994 Technical Conference

Linux 4.2

http://Ixr.free-electrons.com/source/mm/slab.c?v=4.2# 14

http://lxr.free-electrons.com/source/mm/slab.c?v=4.2#L14

w
o

w
=

w |W
w N

w
S

w
(8]

w
(o)}

w
~

w
o0}

w
O

159
o

¥ % % % % X % X % X X *

B
=

1N
N

*
N

158
w

o
N
N

%

*

18
(S

*

N
(o))

*

158
~]

159
o0}

uma_core.c Implementation of the Universal Memory allocator
This allocator is intended to replace the multitude of similar object caches
in the standard FreeBSD kernel. The intent is to be flexible as well as
effecient. A primary design goal is to return unused memory to the rest of
the system. This will make the system as a whole more flexible due to the
ability to move memory to subsystems which most need it instead of leaving
pools of reserved memory unused.
The basic ideas stem from similar slab/zone based allocators whose algorithms
are well known.
TODO:

- Improve memory usage for large allocations

- Investigate cache size adjustments

*/

http://fxr.watson.org/fxr/source/vm/uma_core.c?
v=FREEBSD10#[30

http://fxr.watson.org/fxr/source/vm/uma_core.c?v=FREEBSD10#L30

https://github.com/memcached/memcached/blob/master/slabs.c

https://github.com/memcached/memcached/blob/master/slabs.c

Dynamic Storage Allocation:
A Survey and Critical Review * **

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles™*

Department of Computer Sciences
University of l'exas at Austin
Austin, Texas, 78751, USA

(wilson|markj|neely@cs.utexas.edu)

Abstract. Dynamic memory allocation 1 Introduction

has been a fundamental part of most com-

puter systems since roughly 1960, and mem- In this survey, we will discuss the design and evalua-
ory allocation is widely considered to be ei- tion of conventional dynamic memory allocators. By

ther a solved problem or an insoluble one. In

_ _ _ “conventional,” we mean allocators used for general
this survey, we describe a variety of memory « 5 _ , ,

yidhe , e . purpose “heap” storage, where the a program can re-
allocator designs and point out issues rele- . .

: : : : quest a block of memory to store a program object,
vant to their design and evaluation. We then , , ; .
_ : C) L and free that block at any time. A heap, in this sense,
chronologically survey most of the litera- v

ture on allocators between 1961 and 1995 1s a pool of memory available for the allocation and

(Scores of papers are discussed, in varying deallocation of arbitrary-sized blocks of memory in ar-

detail, and over 150 references are given.) bitrary order.* An allocated block is typically used to

The Moby Dick of allocator papers

Published in 1995, one year after Bonwick’s Slab Allocator.
But...not once is Bonwick or Slab mentioned.

“A major point of this section is that the mainstream
of allocator research over the last several decades has
focused on oversimplified (and unrealistic) models of
program behavior, and that little is actually known
about how to design allocators, or what performance

to expect.”
-WILSON95, p. 3

“Locality of reference is increasingly important, as
the difference between CPU speed and main memory
speeds has grown dramatically, with no sign of

stopping.”

-WILSON95, p. 2

“There are regularities in program behavior that
allocators exploit, a point that is often insufficiently
appreciated even by professionals who design and
implement allocators. ”

-WILSON95, p. 6

Bonwick’s Insights

- Object initialization is more expensive than allocation.
 Objects of the same type often have the same lifetime.

- Many mid-sized or larger objects receive a majority of their
access on a minority of fields.

» The beginning of a data structure is typically more active
than the end. Put important information at the end for
maximizing chance of debugging.

“Fragmentation i1s caused by isolated deaths...An
allocator that can predict which objects will die at
approximately the same time can exploit that
information to reduce fragmentation, by placing those
objects in contiguous memory.”

-WiLsoN95, p. 15

“If the application requests the same size block soon
after one is freed, the request can be satisfied by
simply popping the pre-formatted block of a free list
in a very small constant time.”

-WiLsON95, p. 23

Bonwick passes with
flying colors

SuperMalloc: A Super Fast Multithreaded
Malloc for 64-bit Machines

Bradley C. Kuszmaul

MIT CSAIL, Cambridge, MA, USA
bradley@mit.edu

Abstract

SuperMalloc is an implementation of malloc (3) orig-
inally designed for X86 Hardware Transactional Memory
(HTM). It turns out that the same design decisions also make
it fast even without HTM. For the malloc-test benchmark,
which is one of the most difficult workloads for an allocator,
with one thread SuperMalloc is about 2.1 times faster than
the best of DLmalloc, JEmalloc, Hoard, and TBBmalloc;
with 8 threads and HTM, SuperMalloc is 2.75 times faster;
and on 32 threads without HTM SuperMalloc is 3.4 times
faster. SuperMalloc generally compares favorably with the
other allocators on speed. scalability. speed variance, mem-

the critical sections run fast, and for HTM improves the odds
that the transaction will commit.

Categories and Subject Descriptors D.4.2 Operat-
ing Systems [Storage Management] Allocation/deallocation
strategies

Keywords Memory Allocation Library, malloc, Virtual
Memory

1. Introduction

C/C++ dynamic memory allocation functions (malloc (3)
and free (3)) can impact the cost of running applications.

. o .
MhAa AAant Anan alhAcer 1398 200 aAarvranal werraxrae aAllAanntinn AvAavntinnn

A general allocator designed in 2015, 21 years after Bonwick’s
Slab Allocator.

Abstract

SuperMalloc 1s an implementation of malloc (3) orig-
inally designed for X86 Hardware Transactional Memory
(HTM). It turns out that the same design decisions also make
it fast even without HTM. For the malloc-test benchmark,
which 1s one of the most difficult workloads for an allocator,
with one thread SuperMalloc 1s about 2.1 times faster than
the best of DLmalloc, JEmalloc, Hoard, and TBBmalloc;
with 8 threads and HTM, SuperMalloc 1s 2.75 times faster;
and on 32 threads without HTM SuperMalloc 1s 3.4 times
faster. SuperMalloc generally compares favorably with the
other allocators on speed, scalability, speed variance, mem-

nryv fFnntnrint and ~rnda c17a

It's a general allocator.

ADSLIACL

SuperMalloc 1s an implementation of malloc (3) orig-
inally designed for X86 Hardware Transactional Memory
(HTM). It turns out that the same design decisions also make
it fast even without HI'M. For the malloc-test benchmark,
which 1s one of the most difficult workloads for an allocator,
with one thread SuperMalloc is about 2.1 times faster than
the best of DLmalloc, JEmalloc, Hoard, and TBBmalloc;
with 8 threads and HTM, SuperMalloc is 2.75 times faster;
and on 32 threads without HTM SuperMalloc is 3.4 times
faster. SuperMalloc generally compares favorably with the
other allocators on speed, scalability, speed variance, mem-

nrv foantnrint and ~rade c17e

Faster than popular allocators.

Especially as thread count grows.

always precious, virtual address space on a 64-bit machine
is relatively cheap. It allocates 2 MiB chunks which con-
tain objects all the same size. To translate chunk numbers
to chunk metadata, SuperMalloc uses a simple array (most
of which 1s uncommitted to physical memory). SuperMal-
loc takes care to avoid associativity conflicts in the cache:
most of the size classes are a prime number of cache lines,
and nonaligned huge accesses are randomly aligned within a
page. Objects are allocated from the fullest non-full page in
the appropriate size class. For each size class, SuperMalloc
employs a 10-object per-thread cache, a per-CPU cache that
holds about a level-2-cache worth of objects per size class,
and a global cache that 1s organized to allow the movement

So...basically a slab.

always precious, virtual address space on a 64-bit machine
is relatively cheap. It allocates 2 MiB chunks which con-
tain objects all the same size. To translate chunk numbers
to chunk metadata, SuperMalloc uses a simple array (most
of which 1s uncommitted to physical memory). SuperMal-
loc takes care to avoid associativity conflicts in the cache:
most of the size classes are a prime number of cache lines,
and nonaligned huge accesses are randomly aligned within a
page. Objects are allocated from the fullest non-full page in
the appropriate size class. For each size class, SuperMalloc
employs a 10-object per-thread cache, a per-CPU cache that
holds about a level-2-cache worth of objects per size class,
and a global cache that is organized to allow the movement

Li4lill UUJ\/\/LU SALL LIAW UJNLLINV JAEN » AN LVAGAIILUJANMLWWY VWIAGALLIIN. 1AW LLLAUNAD

to chunk metadata, SuperMalloc uses a simple array (most
of which 1s uncommitted to physical memory). SuperMal-
loc takes care to avoid associativity conflicts in the cache:
most of the size classes are a prime number of cache lines,
and nonaligned huge accesses are randomly aligned within a
page. Objects are allocated from the fullest non-full page in
the appropriate size class. For each size class, SuperMalloc
employs a 10-object per-thread cache, a per-CPU cache that
holds about a level-2-cache worth of objects per size class,
and a global cache that is organized to allow the movement
of many objects between a per-CPU cache and the global
cache using O(1) instructions. SuperMalloc prefetches ev-

arvthina 1t ran hafare ctartina a ~rritircral certinn whirh malac

This sounds familiar...

Figure 3: Structure of an Object Cache — The Magazine and Slab Layers

4

cache_cpu[0] cache_cpu[1] cache_cpu[2] cache_cpu[NCPU-1]
Loaded Previous Loaded Previous Loaded Previous Loaded Previous
i [3 rounds] [full] [5 rounds] [empty] [2 rounds] [empty] [4 rounds] [full]
3 | | | | | || ||]
T2
oo
oo
2
[
Sl | [[|4
= v v] v
S
3 === ===
P Full
§ Magazines
2|9
Hh —
N .
Empty
Magazines
| 14
v
E Slab List slab -
= /
[
9 bufctl bufctl bufctl
o
5 ¥
1
2
= ﬁ buffer buffer buffer i
-]
% |«——— one or more pages from cache’s vmem source ———»]

v

Vmem Arena

Slab Magazine Layer

(USENIX 2001)

Q. slab

NoO Results Found

WAT?

Seriously...really?

This is actually kind of cool.
Independent discovery of
the same ideas.

Where do we go from
here?

“’The slab allocator could also be used as a user-level
memory allocator. The back-end page supplier could
be mmap(2) or sbrk(2).”

-BoNwick94, SEc. 7.3

We ported these technologies from kernel to user context and found that the resulting
libumem outperforms the current best—of—breed user—level memory allocators. libumem also
provides a richer programming model and can be used to manage other user—level resources.

Bonwick & Adams, USENIX 2001

time for POSIX slab:
cache alloc(3C)
cache free(3C)

What have we
learned?

Thank You

ryan(@zinascii.com

mailto:ryan@zinascii.com

References

[Bonwick94] Jeff Bonwick. The Slab Allocator: An Object-Caching
Kernel Memory Allocator. USENIX Summer Technical Conference,
1994,

[Wilson95] Paul R. Wilson et al. Dynamic Storage Allocation: A
Survey and Critical Review. International Workshop on Memory
Management, 1995.

[Bonwick01] Jeff Bonwick & Jonathan Adams. Magazines and
Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary
Resources. USENIX Annual Technical Conference, 2001.

[Kuszmaul15] Bradley C. Kuszmaul. SuperMalloc: a super fast
multithreaded malloc for 64-bit machines. International Symposium on
Memory Managment, 2015.

Further Reading

[Ross67] Douglas T. Ross. The AED free storage package. CACM
Vol. 10 Issue 8, 1967.

|[Korn85]| D. G. Korn & K. P Vo. In Search of a Better Malloc. USENIX
Summer Conference, 1985.

[Lea00] Doug Lea. A Memory Allocator. 2000.

[Gorman07] Mel Gorman. Understanding The Linux Virtual Memory
Manager. 2007 .

[Stone12] Adrian Stone. The Hole That dimalloc Can't Fill. Game
Angst, 2012.

