
Memory by the Slab
The Tale of Jeff Bonwick’s Slab Allocator 

Ryan Zezeski // Sep 2015 // Papers We Love, NYC







Best Fit Fastest

VS





General Allocator?
malloc(3C) & free(3C) 

Have no a priori knowledge of size or lifetime.



General Allocators

• dlmalloc — Doug Lea malloc 

• ptmalloc — multithreaded dlmalloc (GNU libc?) 

• TCmalloc — Google's Thread Caching malloc 

• jemalloc — FreeBSD libc (not the kernel alloc, that's slab)



The Slab Allocator
• Created by Jeff Bonwick 

• Solaris 2.4 (SunOS 5.4) 

• USENIX 1994 (Same year as Speed. 
Shoot the hostage!)



–Bonwick94, Sec. 3.1, Par. 6

“The slab allocator is operationally similar to the 
“ C u s t o M a l l o c ” [ G r u n w a l d 9 3 A ] , 
“ Q u i c k F i t ” [ W e i n s t o c k 8 8 ] , a n d 
“Zone” [VanSciver88] allocators, all of which 
maintain distinct freelists of the most commonly 
requested buffer sizes. The Grunwald and Weinstock 
papers each demonstrate that a customized 
segregated-storage allocator—one that has a priori 
knowledge of the most common allocation sizes—is 
usually optimal in both space and time.” 



Object Caching
Your memory is no longer a blob. It has a name! It has a type!









External Fragmentation







alloc(size_t) 
TO 

 cache_alloc(cache_t *)



cache_t * 
cache_create( 
    char *name, 
    size_t size, 
    int align, 
    void (*ctor)(void *, size_t), 
    void (*dtor)(void *, size_t)); 

void 
cache_destroy(cache_t *);



cache_alloc()
if (obj in slab?) 
    return obj; /* ctor() not called */ 
else { 
    claim free buffer in slab; 
    obj = ctor(buf); /* create obj */ 
    return obj; 
}



cache_free()
return obj to cache;



–Bonwick94, Sec. 2, Par. 1

“The idea is to preserve the invariant portion of an 
object’s initial state—its constructed state—between 
uses, so it does not have to be destroyed and 
recreated every time the object is used.” 



–Bonwick94, Sec. 2, Par. 2

“Caching is important because the cost of 
constructing an object can be significantly higher than 
the cost of allocating memory for it.” 



general allocators 
can’t do this

they lack the API for it



The Slab







The Slab is the unit of 
currency.



1. Reclaim is trivial

“Thus a simple reference count replaces the complex 
trees, bitmaps, and coalescing algorithms found in most 
other allocators.”

–Bonwick94, Sec. 3.2, Par. 3



2. Alloc and free are fast

“All we have to do is move an object to or from a freelist 
and update a reference count.”

–Bonwick94, Sec. 3.2, Par. 4



3. Severe external 
fragmentation unlikely

“A segregated-storage allocator cannot suffer this fate, 
since the only way to populate its 8-byte freelist is to 
actually allocate and free 8-byte buffers.”

–Bonwick94, Sec. 3.2, Par. 5



4. Internal fragmentation 
is minimal

“Each buffer is exactly the right size (namely, the 
cache’s object size), so the only wasted space is the 
unused portion at the end of the slab…if a slab contains 
n buffers, then the internal fragmentation is at most 1/n; 
thus the allocator can actually control the amount of 
internal fragmentation by controlling slab size…The 
SunOS 5.4 implementation limits internal fragmentation 
to 12.5% (1/8).”

–Bonwick94, Sec. 3.2, Par. 5



Slab Accomplishments
• Reduction of 3,000 LoC 

• Simpler and More Understandable Design 

• Much faster 

• Less fragmentation: 46% to 14% (Solaris 2.4) 

• Cache Friendly (very important in modern CPUs) 

• Multi-core Friendly (2001 Additions)



Linux 4.2
http://lxr.free-electrons.com/source/mm/slab.c?v=4.2#L14

http://lxr.free-electrons.com/source/mm/slab.c?v=4.2#L14


FreeBSD 10
http://fxr.watson.org/fxr/source/vm/uma_core.c?

v=FREEBSD10#L30

http://fxr.watson.org/fxr/source/vm/uma_core.c?v=FREEBSD10#L30


memcached?
https://github.com/memcached/memcached/blob/master/slabs.c

https://github.com/memcached/memcached/blob/master/slabs.c


The Moby Dick of allocator papers
Published in 1995, one year after Bonwick’s Slab Allocator. 

But…not once is Bonwick or Slab mentioned.



–Wilson95, p. 3

“A major point of this section is that the mainstream 
of allocator research over the last several decades has 
focused on oversimplified (and unrealistic) models of 
program behavior, and that little is actually known 
about how to design allocators, or what performance 
to expect.” 



–Wilson95, p. 2

“Locality of reference is increasingly important, as 
the difference between CPU speed and main memory 
speeds has grown dramatically, with no sign of 
stopping.” 



–Wilson95, p. 6

“There are regularities in program behavior that 
allocators exploit, a point that is often insufficiently 
appreciated even by professionals who design and 
implement allocators. ” 



Bonwick’s Insights

• Object initialization is more expensive than allocation. 

• Objects of the same type often have the same lifetime. 

• Many mid-sized or larger objects receive a majority of their 
access on a minority of fields. 

• The beginning of a data structure is typically more active 
than the end. Put important information at the end for 
maximizing chance of debugging.



–Wilson95, p. 15

“Fragmentation is caused by isolated deaths…An 
allocator that can predict which objects will die at 
approximately the same time can exploit that 
information to reduce fragmentation, by placing those 
objects in contiguous memory.” 



–Wilson95, p. 23

“If the application requests the same size block soon 
after one is freed, the request can be satisfied by 
simply popping the pre-formatted block of a free list 
in a very small constant time.” 



Bonwick passes with 
flying colors



Super Malloc
A general allocator designed in 2015, 21 years after Bonwick’s 

Slab Allocator.



It's a general allocator.



Faster than popular allocators.
Especially as thread count grows.



So…basically a slab.



So…slab coloring



This sounds familiar…



Slab Magazine Layer
(USENIX 2001)



WAT?
Seriously…really?



This is actually kind of cool. 
Independent discovery of 

the same ideas.



Where do we go from 
here?



–Bonwick94, Sec. 7.3

“The slab allocator could also be used as a user-level 
memory allocator. The back-end page supplier could 
be mmap(2) or sbrk(2).” 



libumem
Bonwick & Adams, USENIX 2001



time for POSIX slab: 
cache_alloc(3C) 
cache_free(3C)



What have we 
learned?



Thank You
ryan@zinascii.com

mailto:ryan@zinascii.com


References
[Bonwick94] Jeff Bonwick. The Slab Allocator: An Object-Caching 
Kernel Memory Allocator. USENIX Summer Technical Conference, 
1994. 

[Wilson95] Paul R. Wilson et al. Dynamic Storage Allocation: A 
Survey and Critical Review. International Workshop on Memory 
Management, 1995. 

[Bonwick01] Jeff Bonwick & Jonathan Adams. Magazines and 
Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary 
Resources. USENIX Annual Technical Conference, 2001. 

[Kuszmaul15] Bradley C. Kuszmaul. SuperMalloc: a super fast 
multithreaded malloc for 64-bit machines. International Symposium on 
Memory Managment, 2015.



Further Reading
[Ross67] Douglas T. Ross. The AED free storage package. CACM 
Vol. 10 Issue 8, 1967. 

[Korn85] D. G. Korn & K. P Vo. In Search of a Better Malloc. USENIX 
Summer Conference, 1985. 

[Lea00] Doug Lea. A Memory Allocator. 2000. 

[Gorman07] Mel Gorman. Understanding The Linux Virtual Memory 
Manager. 2007. 

[Stone12] Adrian Stone. The Hole That dlmalloc Can't Fill. Game 
Angst, 2012. 


